
Convergence of Policy Gradient for Entropy Regularized MDPs
with Neural Network Approximation in the Mean-Field Regime

Bekzhan Kerimkulov * 1 James-Michael Leahy * 2 David Šiška * 1 3 Łukasz Szpruch * 1 4

Abstract
We study the global convergence of policy gra-
dient for infinite-horizon, continuous state and
action space, and entropy-regularized Markov de-
cision processes (MDPs). We consider a soft-
max policy with (one-hidden layer) neural net-
work approximation in a mean-field regime. Ad-
ditional entropic regularization in the associated
mean-field probability measure is added, and the
corresponding gradient flow is studied in the 2-
Wasserstein metric. We show that the objective
function is increasing along the gradient flow. Fur-
ther, we prove that if the regularization in terms of
the mean-field measure is sufficient, the gradient
flow converges exponentially fast to the unique
stationary solution, which is the unique maxi-
mizer of the regularized MDP objective. Lastly,
we study the sensitivity of the value function
along the gradient flow with respect to regular-
ization parameters and the initial condition. Our
results rely on the careful analysis of the non-
linear Fokker–Planck–Kolmogorov equation and
extend the pioneering work of (Mei et al., 2020)
and (Agarwal et al., 2020), which quantify the
global convergence rate of policy gradient for
entropy-regularized MDPs in the tabular setting.

1. Introduction
1.1. Overview

In the last decades, reinforcement learning (RL) algorithms
with neural network approximation have demonstrated in-
credible performance. Notable successes have been reported
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in (Mnih et al., 2015; Silver et al., 2018; Vinyals et al., 2019).
Various versions of the policy gradient algorithms have been
demonstrated to be particularly effective. However, a mathe-
matical theory that provides guarantees for the convergence
of these algorithms has been elusive. In particular, we are
not aware of any work that has established convergence of a
policy gradient algorithm in the continuous state and action
setting with neural network approximation. The motivation
behind this work is to shed more light on this challenging
open question in the setting of entropy regularized MDPs
(Markov decision processes) where the policy is of soft-
max type and parameterized by a one-hidden layer neural
network in the mean-field regime.

Entropy regularized MDPs have been widely studied due
to their excellent empirical performance and desirable theo-
retical properties (Haarnoja et al., 2017; Geist et al., 2019).
Convergence of policy gradient with softmax policies was
first studied for the entropy regularized problem in (Agarwal
et al., 2020). The convergence has been further quantified
in (Mei et al., 2020), where the authors showed that softmax
policy gradient converges at an exponential rate. Encour-
aged by the recent convergence results of (Mei et al., 2020)
in the tabular setting, we consider the continuous state and
action space setting with policies approximated mean-field
neural networks. The mean-field setting was also considered
in (Agazzi & Lu, 2020). The authors show that if the mean-
field policy gradient flow converges, then, under appropriate
assumptions, the limiting policy is optimal.

We consider an infinite horizon Markov decision model
M = (S,A, P, r, γ), where S is the state space, A the
action space with a fixed finite reference measure µ, P the
transition probability kernel, r is a bounded reward function,
and γ is the discount factor. For a given stochastic policy
π : S → P(A) and initial distribution ρ ∈ P(S), we
consider the entropy-regularized value function

V πτ (ρ) = Eπρ

[ ∞∑
n=0

γn
(
r(sn, an)− τ ln

dπ

dµ
(an|sn)

)]
,

where τ ≥ 0 determines the intensity of the entropy regular-
ization. Denoting V π(s) = V π(δs), we have

V πτ (s) = V π0 (s)− τ

1− γ

∫
S

dπ(ds′|s)KL(π(·|s′)|µ) , (1)
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where dπ is the occupancy kernel under the policy π. For
full details on our assumptions and notation, we refer to
Sections A.1 and 2.1. There are two implications of having
τ > 0. The first is that the optimal policy satisfies

π∗τ (da|s) = exp

(
1

τ
(Q∗τ (s, a)− V ∗τ (s))

)
µ(da) ,

where V ∗τ and Q∗τ denote the optimal value and state-action
value functions, respectively (see Theorem 2.1 or (Ziebart
et al., 2010; Haarnoja et al., 2017; Geist et al., 2019)). Sec-
ond, since the entropy term is strictly convex (Dupuis &
Ellis, 1997)[Sec. 1.4], the addition (see, e.g., (1)) is ex-
pected to improve the convergence when optimizing V πτ (ρ)
with respect π with a gradient-descent-type method such as
softmax policy gradient. While the latter point may seem
intuitive, the analysis is far from being straightforward even
in the tabular case studied in (Mei et al., 2020), where the
entropic regularization is shown to lead to exponential con-
vergence of the softmax policy gradient algorithm. The
difficulty arises chiefly from the fact that V πτ depends on π
in a non-linear and, in general, non-convex way.

In the case where S and A are finite sets (i.e., the tabular
setting), (Mei et al., 2020) considered softmax policies πF :
S → P(A) of the form

πF (a|s) ∝ exp(F (s, a)) (2)

for F : S × A → R, and where we have identified πF
with its probability mass function. Since F is equivalent
to a parameter θ ∈ R|S|×|A|, policy gradient is a gradient
flow in R|S|×|A|. This approach becomes computationally
intractable as the size of the sets S and A grow large. To
overcome this and also to cover the continuous state-action
setting, we use function approximation. More specifically,
we consider policies approximated by a one hidden layer
neural network with mean-field scaling:

πθ(da|s) ∝ exp

(
1

m

m∑
i=1

f(θi, s, a)

)
µ(da) , θ ∈ Rd×m ,

where f : Rd × S × A → R. The continuous-time policy
gradient is given by

d

dt
θt = ∇V πθtτ (ρ) ,

where here and later ∇ means ∇θ unless stated otherwise.
One can equivalently view the policy as a function of an
empirical measure over parameters νmt := 1

m

∑m
i=1 δθit :

πνmt (da|s) ∝ exp

(∫
Rd
f(θ, s, a)νmt (dθ)

)
µ(da) .

While the one-hidden-layer neural network is typically non-
convex as a function of the parameters θ, once lifted to

the space of measures it becomes linear as a function of
measure.

The idea of using mean-field scaling to understand the con-
vergence of gradient descent algorithms used to train neural
networks has been extensively studied in a recent series of
works, see (Mei et al., 2018; Rotskoff & Vanden-Eijnden,
2018; Chizat & Bach, 2018; Sirignano & Spiliopoulos,
2021; Hu et al., 2021). These works show that in the context
of supervised learning, finding the optimal weights in deep
neural networks can be viewed as a sampling problem. What
emerges is the idea that the aim of the learning algorithm is
to find optimal distribution over the parameter space rather
than optimal values of the parameters. As a consequence,
individual values of the parameters are not important in the
sense that different sets of weights sampled from the correct
(i.e., optimal) distribution are equally good.

The key feature of the supervised learning task studied
by the aforementioned mentioned works is that a finite-
dimensional non-convex optimization problem becomes
convex when lifted to an infinite-dimensional space of mea-
sures; that is, working with the limiting measure νm → ν
as m→∞. This observation, unfortunately, does not hold
in RL problem with policies πν : S → P(A) indexed by
probability measures ν ∈ P(Rd) of the form

πν(da|s) ∝ exp

(∫
Rd
f(θ, s, a)ν(dθ)

)
µ(da)

due to the non-linearity and non-convexity of the problem
in π, and hence ν. Despite this, in (Agazzi & Lu, 2020),
the authors show that if the policy gradient flow for the
mean-field neural network parameters νt converges to ν∗

with full support, then the resulting parameterized policy
πν∗ is globally optimal for the entropy regularized problem
(i.e., V ∗ = V πν∗ ) under the assumption that the activation
function used leads to a sufficiently expressive class of func-
tions. However, the work of (Agazzi & Lu, 2020) does not
establish that the flow converges.

In general, ν ∈ P(Rd) 7→ V πντ is not convex, and hence
one should not expect convergence to the global optimum
for the associated policy gradient algorithm. To alleviate
this issue and establish global convergence rates for policy
gradient, we introduce further entropic regularization of ν
relative to a prior e−U for some normalized potential U . For
arbitrarily given τ ≥ 0, σ ≥ 0, and ρ ∈ P(S), we define
Jτ,σ : P2(Rd)→ R by

Jτ,σ(ν) = V πντ (ρ)− σ2

2
KL(ν|e−U ) . (3)

In Theorem A.10, we prove that Jτ,σ(νt) increases as func-
tion of t along the gradient flow for any τ ≥ 0, σ ≥ 0. This
fact is missing in (Agazzi & Lu, 2020), which considered
the case σ = 0. Moreover, for any τ ≥ 0 and for sufficiently



Convergence of Policy Gradient for Entropy Regularized MDPs in the Mean-Field Regime

large σ > 0, we show that νt → ν∗ exponentially fast and
that ν∗ is the optimal parameter measure, see Theorem 2.12.
While having τ > 0 motivates considering policies of soft-
max type (see Theorem 2.1 below), this condition is not
needed to prove any of our results. How large σ needs to
be taken depends on the bounds we establish in Theorem
2.4. In Corollary 2.14, we estimate the sensitivity of the
value function along the gradient flow with respect to regu-
larization parameters and the initial condition. A heuristic
derivation of the gradient flow and conditions for optimality
is provided in Section 1.3 for the readers convenience.

1.2. Literature Review

There is an enormous amount of research literature on RL
and we cannot hope to do it justice here. For this reason, we
focus on the subset of RL that we feel is most related to this
work. Entropy regularized RL has demonstrated both good
algorithmic performance and desirable theoretical proper-
ties (Haarnoja et al., 2017; 2018; Geist et al., 2019; Vieillard
et al., 2020; Neu et al., 2017; Fox et al., 2015; Ziebart et al.,
2010). It has been shown that softmax policies are optimal
in the entropy regularized setting. In fact, many authors
consider softmax parameterized policies and the policy gra-
dient algorithm without adding entropic regularization. In
the tabular and “compatible” function approximation case,
(Agarwal et al., 2020) proved convergence of softmax policy
gradient at rate O(1/

√
t). In the tabular case, (Mei et al.,

2020) showed that softmax policy gradient converges with
rate O(1/t). Moreover, using Łojasiewicz inequalities, they
showed that entropic regularization improves the rate of
convergence to O(e−t). We remark that the authors in (Li
et al., 2021) establish lower bounds for the policy gradi-
ent algorithms studied in (Agarwal et al., 2020) and (Mei
et al., 2020), and show that these may scale poorly with
the cardinality of the state space. In (Liu et al., 2019) and
(Wang et al., 2020), the authors consider consider over-
parameterized neural-network policies and show that neural
proximal/trust region and actor-critic policy optimization,
respectively, converges with rate O(1/

√
t) in the idealized

setting (exact action-value setting).

As explained above, the tabular softmax policy (2) gradient
method becomes computationally intractable as the size of
the sets S and A grow large. In this paper, we consider
continuous state and action spaces and softmax policies ap-
proximated by an idealized infinitely-wide one hidden layer
neural network (i.e., the mean-field regime). Working in
the mean-field regime is motivated in part by the success
of a series of recent works which prove the convergence of
(noisy) stochastic gradient algorithms arising in the train-
ing of neural networks in the static and supervised learning
setting, see (Jordan et al., 1998; Mei et al., 2018; Rotskoff
& Vanden-Eijnden, 2018; Chizat & Bach, 2018; Sirignano
& Spiliopoulos, 2021; Hu et al., 2021) and by the recent

work (Agazzi & Lu, 2020) in RL. We will discuss the con-
nection (Hu et al., 2021) and (Agazzi & Lu, 2020) in more
detail.

In (Hu et al., 2021), the authors studied the supervised learn-
ing setting for a one-hidden layer neural network in the
mean-field regime. The key feature of this setting is the con-
vexity of the unregularized (e.g., σ = 0) objective. By tak-
ing σ > 0, the objective function becomes strictly convex,
which allows them to establish convergence to the invariant
measure for any σ > 0. In the RL setting, the objective
function is highly non-linear and, in general, non-convex,
and hence the analysis of the problem is significantly more
involved. This can be seen in Theorem 2.4, where necessary
boundedness and regularity results of the objective function
are obtained. The analysis of the gradient flow (4) in the
current work is done using PDE techniques that are differ-
ent from the tools used in (Hu et al., 2021) and require less
regularity. This enables us to establish that the objective
function is decreasing along the flow even when σ = 0,
which, even in a supervised setting, is a new result.

In (Agazzi & Lu, 2020), the authors consider mean-field
softmax parameterized policies and derive the gradient flow
for the parameter measure, see (4) with σ = 0. Their main
theorem says that if ν∗ is a stationary solution of (4) with
full support and the family of functions (s, a) 7→ f(s, a, θ)
indexed by θ ∈ Rd gives rise to a sufficiently expressive
class of functions, then V πν∗τ = V ∗τ , which implies that
the parameterized policy is optimal. Whether there exists
a solution to the stationary equation in the space of proba-
bility measures is unknown. Optimality is not established
by directly showing ν∗ ∈ argmaxν J

τ,0(ν), but rather by
showing V πν∗τ satisfies the optimal Bellman equation (9)
for V ∗τ , and hence that πν∗ ∈ argmaxπ V

π
τ (ρ). Since the

gradient flow preserves the support of the initial condition
ν0, they are able to conclude that if the gradient flow νt
converges to ν∗, then πν∗ is optimal. Crucially, the work
of (Agazzi & Lu, 2020) does not establish that the flow
converges. Moreover, it does not establish that the gradient
flow is non-decreasing; our Theorem 2.9 establishes this for
τ, σ ≥ 0. The insight gained by (Agazzi & Lu, 2020) is that
the value function plays a vital role as the solution to the
Bellman equation. We no longer study the original value
function Jτ,0(ν) = V πντ , but rather Jτ,σ , which with σ > 0
introduces regularization of the parameter measure, and
does not solve a Bellman equation. Hence, we must employ
different techniques to show optimality (see the proof of
Theorem 2.12). In particular, we make use of Theorem 2.9,
which is a step toward understanding what is happening at
the level of the value function. Our other main theorem, The-
orem 2.12, is meant to complement the work of (Agazzi &
Lu, 2020) by identifying sufficient conditions under which
one can conclude that νt → ν∗ at a rate O(e−βt), where
β > 0 is a constant quantified in our analysis.
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1.3. Heuristic Derivation of the Gradient Flow and
Conditions for Optimality

Our aim is to maximize Jτ,σ : P2(Rd)→ R defined in (3).
In this section, we present a heuristic computation in the
spirit of Otto calculus (Villani, 2009) through which we
identify the gradient flow equation. For simplicity, in this
section, we will restrict to absolutely continuous measures
ν ∈ Pac

2 (Rd) and abuse notation and identify ν with its
density dν/dθ. At the end of this section, we explain how
this abstract gradient flow relates to a familiar noisy gradient
ascent. Let E : R+ × Rd → Rd denote a time-dependent
vector field and consider the gradient flow

∂tνt = ∇ · (Etνt) .

Our aim is to identify the vector field E so that Jτ,σ(νt) is
increasing as a function of t. To do this, we will use differ-
ential calculus on P2(Rd) equipped with the 2-Wasserstein
distance, see (Ambrosio et al., 2008; Carmona & Delarue,
2018). Ignoring for the moment that entropy is only lower
semi-continuous, and hence that the linear functional deriva-
tive δJτ,σ

δν : P2(Rd)× Rd → R does not exists (see Defini-
tion A.1), we have

∂tJ
τ,σ(νt) = lim

h→0

Jτ,σ(νt+h)− Jτ,σ(νt)

h

= lim
h→0

1

h

∫ 1

0

∫
Rd

δJτ,σ

δν
(νε,ht )(νt+h − νt) dθ dε ,

where νε,ht := νt+ε(νt+h−νt). Since νε,ht → νt as ε→ 0,
integrating by parts, we obtain

∂tJ
τ,σ(νt) =

∫
Rd

δJτ,σ

δν
(νt)∇ · (Etνt) dθ

= −
∫
Rd
∇δJ

τ,σ

δν
(νt)Etνt dθ .

To ensure that Jτ,σ(νt) is increasing, one must take (up to a
multiplicative constant) Et := −∇ δJτ,σ

δν (νt) so that

∂tJ
τ,σ(νt) =

∫
Rd

∣∣∣∣∇δJτ,σδν
(νt)

∣∣∣∣2 νt dθ ≥ 0 .

It can be shown that along the gradient flow, we have

δJτ,σ

δν
(νt, θ) =

δJτ,0

δν
(νt, θ)−

σ2

2
(U(θ) + ln νt(θ) + 1) ,

where we recall that Jτ,0(ν) = V πντ . In Lemma 2.3, we
compute δJτ,0

δν (νt, θ), and if τ = 0, the expression is equiva-
lent to the expression arising in policy gradient, see (Sutton
& Barto, 2018)[Ch. 13], with the difference being that our
policies are parameterized by measures, and so measure
derivatives appear instead of classical gradients. Thus, the
gradient flow is given by

∂tνt = ∇ ·
[(
−∇δJ

τ,0

δν
(νt) +

σ2

2
∇U

)
νt

]
+
σ2

2
∆νt .

(4)

In Theorem 2.6 and Corollary 2.7, below, we show that
any local maximum ν∗ of Jτ,σ must satisfy the first order
condition θ 7→ δJτ,σ

δν (ν∗, θ) is constant, or equivalently that
ν∗ is a stationary solution of (4). This also implies that in
the case σ > 0, ν∗ satisfies

ν∗(θ) ∝ exp

(
2

σ2

δJτ,0

δν
(ν∗, θ)− U(θ)

)
,

which can be viewed as a posterior distribution over the
parameters space given the prior e−U .

On the other hand, if νt converges to a stationary solution of
(4), then using the fact that Jτ,σ(νt) is increasing, we can
conclude that ν∗ is a maximum as long as there is a unique
stationary solution. Thus, we see that the question of the
existence of the unique global minimizer is related to the ex-
istence of a unique stationary solution of (4). However, from
the general theory of nonlinear Fokker–Planck–Kolmogorov
equations, one only expects existence and uniqueness of so-
lutions to the stationary equation if σ > 0 is large (see, e.g.,
(Bogachev et al., 2019)[Ex. 1.1], (Bogachev et al., 2018)[Ex.
4.3], (Manita et al., 2015)[Sec. 6]).

To implement the gradient flow (4) one needs to compute
or estimate ∇ δJτ,0

δν (ν, θ), where δJτ,0

δν (ν, θ) is specified in
Lemma 2.3. The policy gradient method is a cornerstone
of RL precisely because the terms dπνρ and Qπντ can be
estimated using Monte Carlo (e.g., Reinforce) from roll-outs
without having to explicitly know the transition probability.
Instead of working with the non-linear PDE (4), one can
use the probabilistic representation ν = Law(θ), where
θ : Ω × R+ → Rd is the solution of the McKean–Vlasov
stochastic differential equation (SDE)

dθt =

(
∇δJ

τ,0

δν
(Law(θt), θt)−

σ2

2
∇U(θt)

)
dt+σdWt ,

and where W is a d-dimensional Wiener process. Approx-
imating ν with its empirical measure and discretizing in
time with a learning rate η, we arrive at the familiar noisy
gradient ascent algorithm

θik+1 = θik + η

(
∇δJ

τ,0

δν
(νmk , θ

i
k)− σ2

2
∇U(θik)

)
+
√
ησζik+1 , k ∈ N0 ,

νmk :=
1

m

m∑
i=1

δθik ,

(5)
where {ζik}1≤i≤m,k∈N0

i.i.d.∼ N(0, 1). The convergence rates
of (5) to the gradient flow (4) (or its probabilistic represen-
tation) are well understood under general conditions. For
example, we refer a reader to (Jabir et al., 2019)[Thms. 8
and 9], in which such analysis has been carried out in the
context of training recurrent neural networks, and to (De-
larue & Tse, 2021), where uniform in time weak particles
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approximation error has been studied. The approximations
errors between νmk given by (5) and νt, with t = kη, are of
O(1/m) +O(η) uniformly in time, and this can be seen as
proxy for algorithmic complexity.

1.4. Outline of the Paper

The main contributions of this work are

1. Theorem 2.9, which proves that the objective Jτ,σ(νt)
increases along the gradient flow equation for the evo-
lution of (νt)t∈R+

corresponding to policy gradient;

2. Theorem 2.12, which proves exponential convergence
of νt to ν∗ if σ > 0 is sufficiently large.

3. Theorem 2.13 and Corollary 2.14, where the depen-
dence of the gradient flow and its stationary solutions
and of the value function on τ and σ is quantified.

The notation and essential definitions are introduced in Sec-
tion A.1. Entropy regularized MDPs are introduced in Sec-
tion 2.1. The main results of the paper are stated Section 2.2,
the proofs of which will be given in Section A.2. Conclu-
sions and possible future research directions are discussed
in Section 4. A heuristic derivation of our results is also
provided in Section 1.3, which sheds more light on our work
and the mean-field approach.

2. Formulation and the Statement of the Main
Results

2.1. Entropy Regularized Markov Decision Processes

We refer readers to (Puterman, 2014; Bertsekas & Shreve,
2004; Hernández-Lerma & Lasserre, 2012) for thorough in-
troduction Markov decision processes. Let S and A denote
Polish spaces. Let P ∈ P(S|S × A). Let r ∈ Bb(S × A).
Let γ ∈ [0, 1). Let τ ∈ R+ and µ ∈ M+(A) de-
note a strictly positive finite measure. The seven-tuple
M = (S,A, P, r, γ, τ, µ) determines an infinite horizon
τ -entropy regularized γ-discounted Markov decision model.
Here, we note, that τ = 0 is considered, and if τ = 0,
thenM is a infinite horizon Markov decision modelM =
(S,A, P, r, γ) since µ is not needed to formulate the control
problem. If τ = 0, we further assume that A is compact,
P (·|·, a) ∈ P(S|S) is strongly Feller for all a ∈ A, and that
r(s, ·) : A→ R is upper semi-continuous for every s ∈ S
so that Condition 3.3.3 in (Hernández-Lerma & Lasserre,
2012) holds, and thus measurable selection condition holds.

Let ((S×A)N,F) denote the canonical sample space, where
F is the corresponding σ-algebra. Elements of (S × A)N

are of the form (s0, a0, s1, a1, . . .) with sn ∈ S and an ∈ A
denoting the projections and called the state and action vari-
ables, at time n ∈ N0, respectively. By Proposition 7.28 in

(Bertsekas & Shreve, 2004), for an arbitrarily given initial
distribution ρ ∈ P(S) and randomized stationary policy
π ∈ P(A|S), there exists a unique product probability mea-
sure Pπρ on the canonical sample space with expectation
denoted Eπρ such that for every time n ∈ N0, Pπρ (s0 ∈ S) =
ρ(S), Pπ(an ∈ A|(s0, a0, . . . , sn)) = π(an|sn), and

Pπρ (sn+1 ∈ S|(s0, a0, . . . , sn, an)) = P(S|sn, an)

for all S ∈ B(S) and A ∈ B(A). In particular, {sn}n∈N0
is

a Markov chain with kernel Pπ ∈ P(S|S) given by

Pπ(ds′|s) =

∫
A

P (ds′|s, a′)π(da′|s) .

For given s ∈ S, we denote Eπs = Eπδs , where δs ∈ P(S)
denotes the Dirac measure at s ∈ S.

Let Π0 = P(A|S) and

Πτ = {exp(F (s, a))µ(da) ∈ Pµ(A|S)|F ∈ Bb(S ×A)}

if τ > 0. For a given policy π ∈ Πτ , we define the τ -
entropy regularized value function V πτ : S → R by

V πτ (s) = Eπs

[ ∞∑
n=0

γn
(
r(sn, an)− τ ln

dπ

dµ
(an|sn)

)]
.

For a given policy π ∈ Πτ , we define the regularized state-
action value function Qπτ ∈ Bb(S ×A) by

Qπτ (s, a) = r(s, a) + γ

∫
S

V πτ (s′)P (ds′|s, a) . (6)

The occupancy kernel dπ ∈ P(S|S) is defined by

dπ(ds′|s) = (1− γ)

∞∑
n=0

γnPnπ (ds′|s) ,

where P 0
π (ds′|s) := δs(ds

′), Pnπ is understood as a product
of kernels, and convergence is understood in bK(S|S). It
follows that for all s ∈ S,

V πτ (s) =

∫
A

(
r(s, a)− τ ln

dπ

dµ
(a|s)

+γ

∫
S

V πτ (s′)P (ds′|s, a)

)
π(da|s) (7)

=
1

1− γ

∫
S

∫
A

(r(s′, a′)

−τ ln
dπ

dµ
(a′|s′)

)
π(da′|s′)dπ(ds′|s) . (8)

For a given initial distribution ρ ∈ P(S), we define

V πτ (ρ) =

∫
S

V πτ (s)ρ(ds), dπρ (ds) =

∫
S

dπ(ds|s′)ρ(ds′) .
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For each (s, a) ∈ S ×A, we define the measurable optimal
value and state-action value functions by

V ∗τ (s) = sup
π∈Πτ

V πτ (s) and Q∗τ (s, a) = sup
π∈Πτ

Qπτ (s, a) .

By virtue of (Hernández-Lerma & Lasserre, 2012)[Thm.
4.2.3] in the τ = 0 case and (Geist et al., 2019)[Thm. 1] in
the τ > 0 case (using (Dupuis & Ellis, 1997)[Prop. 1.4.2.),
we obtain the following dynamical programming principle.
See, also, (Haarnoja et al., 2017)[Thm. 1 and 2].

Theorem 2.1 (Dynamic programming principle for τ ≥ 0).
The optimal value function V ∗τ ∈ Bb(S) is the unique solu-
tion of the regularized Bellman equation given by

V ∗τ (s) = max
m∈P(A)

[∫
A

(
r(s, a)− τ ln

dm

dµ
(a)

+γ

∫
S

V ∗τ (s′)P (ds′|s, a)

)
m(da)

]
.

(9)

Moreover, Q∗τ (s, a) = r(s, a) + γ
∫
S
V ∗τ (s′)P (ds′|s, a).

If τ = 0, then there exists a measurable function f∗ : S →
A called a selector such that f∗(s) ∈ argmaxa∈AQ

∗
0(s, a)

and the induced policy π∗ ∈ Π0 defined by π∗(da|s) =
δf∗(s)(da) for all s ∈ S satisfies V ∗0 = V π

∗

0 .

If τ > 0, then for all s ∈ S,

V ∗τ (s) = τ ln

∫
A

exp {Q∗τ (s, a)/τ}µ(da),

and π∗τ ∈ Πτ defined by

π∗τ (da|s) = exp ((Q∗τ (s, a)− V ∗τ (s))/τ)µ(da)

is the unique policy satisfying V ∗τ = V
π∗τ
τ .

2.2. Softmax Mean-Field Policy and the Entropy
Regularized Objective

For arbitrarily given k ∈ N0, let Ak consist of jointly mea-
surable functions h : Rd × S × A → R such that for all
s ∈ S, µ-almost-all a ∈ A, h is k-times differentiable in θ,
and satisfies

|h|Ak := max
0≤j≤k

ess sup
a∈A

sup
s∈S

ess sup
θ∈Rd

|∇jh(θ, s, a)| <∞ ,

where the essential supremum over A is defined relative
to the reference measure µ, the essential supremum over
Rd is defined relative to the Lebesgue measure λ, and here
and henceforth ∇ = ∇θ. For given f ∈ A0, define π :
P(Rd)→ Pµ(A|S) by

πν(da|s) =
exp

(∫
Rd f(θ, s, a)ν(dθ)

)∫
A

exp
(∫

Rd f(θ, s, a′)ν(dθ)
)
µ(da′)

µ(da) ,

which we refer to as a mean-field softmax policy. It follows
that ln(dπνdµ ) ∈ Bb(S × A) (see Lemma A.4), and hence
πν ∈ Πτ for τ > 0.

If S × A is a compact subset of RdS × RdA , then we may
take f to be of the form

f(θ, s, a) = f(θ, x) = ψ(θ0) · g(θ1x) ,

where x = (s1, . . . , sdS , a1, . . . , adA , 1)> ∈ RdS+dA+1,
θ = (θ0, θ1) ∈ Rd′ × Rd′×(dS+dA+1), g : R → R is an
activation function such as a sigmoid or hyperbolic tangent
applied component-wise, and ψ : R→ [−C,C], C > 0, is
a smooth rescaling function. We see that f ∈ Ak for any
k ∈ N0. Here, we may also take the reference measure µ to
be the Lebesgue measure.

We now introduce a measurable positive potentialU : Rd →
R satisfying

∫
Rd e

−U(θ)dθ = 1. The prototypical example
one should have in mind is the quadratic potential U(θ) =
d
2 ln(2π) + 1

2 |θ|
2. For given ρ ∈ P(S), τ ≥ 0, and σ ≥

0, we define the entropy regularized functional Jτ,σ(ρ) :
P(Rd)→ R by

Jτ,σ(ρ)(ν) = V πντ (ρ)− σ2

2
KL(ν|e−U ) .

Henceforth we fix ρ ∈ P(S) and write Jτ,σ = Jτ,σ(ρ),
unless otherwise specified. In the case σ > 0, we maximize
Jτ,σ over P2(Rd) and, without loss of generality, it suffices
to maximize over

P fe
2 (Rd) := {ν ∈ Pac

2 (Rd) : KL(ν|e−U ) <∞} .

2.3. Statement of Main Results

Our main results are Theorems 2.6, 2.9, 2.12, and 2.13,
which establish necessary conditions for optimality, the
well-posedness of a gradient flow along which the objective
increases, convergence of the gradient flow in a regular-
ized regime, and upper bounds on W2-distance between
two gradient flows with different σ, τ, and initial conditions.
Before stating these, we highlight our core auxiliary results,
namely Lemmas 2.2 and 2.3 and Theorem 2.4, which en-
able us to apply methods from the analysis of non-linear
Fokker–Planck PDEs and McKean–Vlasov dynamics to the
MDP problem described in Section 2.1, and specifically the
parameterized problem described in Section 2.2.

Lemma 2.2 (Functional derivative of π). If f ∈ A0, then
the function π : P(Rd) → bKµ(A|S) has a linear func-
tional derivative δπ

δν : P(Rd)× Rd → bKµ(A|S) given by

δπ

δν
(ν, θ)(da|s) = (f(θ, s, a)

−
∫
A

f(θ, s, a′)πν(da′|s)
)
πν(da|s) .

(10)
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Lemma 2.2 is proved in Section A.2.3.
Lemma 2.3 (Functional derivative of Jτ,0). If f ∈ A1, then
the function Jτ,0 : P1(Rd) → R has a linear functional
derivative δJτ,0

δν : P1(Rd)× Rd → R given by

δJτ,0

δν
(ν, θ) =

1

1− γ

∫
S

∫
A

(Qπντ (s, a)

−τ ln
dπν
dµ

(a|s)
)
δπ

δν
(ν, θ)(da|s)dπνρ (ds) .

(11)

Lemma 2.3 is proved in Section A.2.4. If τ = 0, then (11)
is the policy gradient theorem in (Sutton & Barto, 2018).

Theorem 2.4 (Boundedness and regularity of δJ
τ,0

δν ). There
are constants Ck = C(γ, |r|Bb(S×A), τ, µ(A), |f |Ak), k ∈
N , L = L(γ, |r|Bb(S×A), τ, µ(A), |f |A1

) , and D =

D(γ, µ(A), |f |A1
) such that for all τ, τ ′ ≥ 0, θ ∈ Rd,

ν, ν′ ∈ P1(Rd), and k ∈ N,∣∣∣∣∇k δJτ,0δν
(ν, θ)

∣∣∣∣ ≤ Ck , (12)

|Jτ,0(ν′)− Jτ,0(ν)| ≤ C1W1(ν′, ν) ,∣∣∣∣∇δJτ,0δν
(ν′, θ)−∇δJ

τ,0

δν
(ν, θ)

∣∣∣∣ ≤ LW1(ν′, ν) ,

and

∣∣∣∣∣∇δJτ
′,0

δν
(ν, θ)−∇δJ

τ,0

δν
(ν, θ)

∣∣∣∣∣ ≤ D|τ ′ − τ | .
Theorem 2.4 is proved in Section A.2.5. As a result of (12),
we note Jτ,σ(ν) = Jτ,σ(ν′) if ν = ν′, λ-a.e.. We will
always work under the following assumption on U .
Assumption 2.5 (Growth of ∇U ). There is a constant
CU > 0 such that for all θ ∈ Rd, |∇U(θ)| ≤ CU (1 + |θ|).
Theorem 2.6 (Necessary condition for optimality). Let f ∈
A1 and Assumption 2.5 hold. If ν ∈ P1(Rd) is a local
maximum of Jτ,σ , then

θ 7→ δJτ.0

δν
(ν, θ)− σ2

2
U(θ)− σ2

2
ln ν(θ)

is constant ν-a.e.. Moreover, if σ > 0, then ν is equivalent
to the Lebesgue measure λ, and for λ-a.a. θ ∈ Rd,

ν(θ) = Z−1e
2
σ2

δJτ.0

δν (ν,θ)−U(θ) , (13)

where Z :=

∫
Rd
e

2
σ2

δJτ.0

δν (ν,θ′)−U(θ′) dθ′ .

Theorem 2.6 is proved in Section A.2.6. Assume f ∈ A1

and for given ν ∈ P1(Rd), define the linear operator Lν on
C∞c (Rd) by

Lνφ =
σ2

2
∆φ+

(
∇δJ

τ,0

δν
(ν)− σ2

2
∇U

)
· ∇φ .

We denote the adjoint ofLν byL∗ν , which acts on probability
measures P(Rd).

Corollary 2.7 (Local maximum and elliptic PDE). Let f ∈
A1 and Assumption 2.5 hold. If ν ∈ P1(Rd) is a local
maximum of Jτ,σ and has full support, then ν is a measure-
valued solution of

L∗νν = 0 . (14)

Corollary 2.7 is proved in Section A.2.6. We will also
require the following additional assumption on U .

Assumption 2.8 (Lipschitzness of ∇U ). There exists a
constant LU > 0 such that for all θ, θ′ ∈ Rd, |∇U(θ) −
∇U(θ′)| ≤ LU |θ − θ′|.

The following theorem establishes precise conditions for
the well-posedness of (4) and for the objective function
to be increasing along the flow. The formula (16), even in
σ = 0 case, is the first of its kind in the literature. In order to
establish (16) for non-smooth and non-compactly-supported
initial conditions ν0, we have extended the argument in
(Bogachev et al., 2016).

Theorem 2.9 (Gradient flow). Let f ∈ A1 and Assumption
2.5 hold. If ν0 ∈ Pp(Rd) for some p ∈ N, then there exists
a measure-valued solution ν ∈ C(R+;Pp(Rd)) of

∂tνt = L∗νtνt , ν|t=0 = ν0 . (15)

If σ = 0 or ν0 ∈ P fe
2 (Rd), then

Jτ,σ(νt) = Jτ,σ(ν0)

+

∫ t

0

∫
Rd

∣∣∣∣∇δJτ,0δν
(νs, θ)−

σ2

2
∇ ln

νs(θ)

e−U(θ)

∣∣∣∣2 νs(dθ) ds .
(16)

Moreover, if both f ∈ A2 and Assumption 2.8 holds or both
σ > 0 and p ≥ 4 holds, then the solution of (40) is unique.

Theorem 2.9 will be proved in Section A.2.7.

Theorem 2.10 (McKean–Vlasov SDE well-posedness).
Let f ∈ A2 and Assumptions 2.5 and 2.8 hold. Let
(Ω,F ,F = (Ft)t∈R+ ,P) denote a filtered probability triple
supporting an F-adapted Wiener process (Wt)t∈R+ and F0-
measurable random variable θ0 independent of (Wt)t∈R+

.
Then there exists a unique continuous F-adapted solution
θ : Ω× R+ → Rd of the McKean–Vlasov SDE

dθt =

(
∇δJ

τ,0

δν
(Law(θt), θt)−

σ2

2
∇U(θt)

)
dt+σdWt ,

(17)
where θ|t=0 = θ0. Moreover, (νt)t≥0 := (Law(θt))t≥0 is
the unique solution of (15) with ν0 := Law(θ0).

If f ∈ A2 and Assumptions 2.5 and 2.8 hold, then by The-
orem 2.4, we can conclude by (42), (43), and (44) that the
drift of (17) has linear growth and is Lipschitz continuous
in ν and θ (see Corollary A.9). Theorem 2.10 then follows
from (Carmona & Delarue, 2018)[Thm. 4.21], Itô’s formula
((Krylov, 2008)[Ch 2. Sec 10]) and Theorem 2.9.
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The following theorem says that in the highly regularized
regime, there is a unique solution of (14) which is a global
optimizer of Jτ,σ , and we have exponential convergence of
the gradient flow (15) to this unique optimizer.

Assumption 2.11 (Dissipativity of ∇U ). There exists a
constant κ > 0 such that for all θ, θ′ ∈ Rd,

(∇U(θ)−∇U(θ′)) · (θ − θ′) ≥ κ|θ − θ′|2.

Theorem 2.12 (Convergence in the regularized regime). Let
f ∈ A2 and Assumptions 2.5, 2.8, and 2.11 hold. Assume
further that β := σ2

2 κ − C2 − L > 0, where C2 and L
are the constants given in Theorem 2.4. Then there exists
a unique solution ν∗ of (14) which is the global maximizer
ν∗ of Jτ,σ in P2(Rd). Moreover, if (νt)t≥0 is the solution
of (15) for a given ν0 ∈ P2(Rd), then for all t ∈ R+,

W2(νt, ν
∗) ≤ e−βtW2(ν0, ν

∗) .

Theorem 2.12 will be proved in Section A.2.9. The ex-
ponential convergence holds also in the total variation
norm (Butkovsky, 2014)[Thm. 3.1], in W1 (Bogachev et al.,
2018)[Remark 4.2], and in Wp using the method of The-
orem 2.13 with the Itô formula applied to higher powers,
see also (Šiška & Szpruch, 2020). From the general theory
of nonlinear Fokker–Planck–Kolmogorov equations, one
only expects existence and uniqueness of solutions to the
stationary equation if σ > 0 is large relative to the con-
stants appearing in Theorem 2.4 (see, e.g., (Bogachev et al.,
2019)[Ex. 1.1], (Bogachev et al., 2018)[Ex. 4.3], (Manita
et al., 2015)[Sec. 6]). The exponential convergence of the
policy gradient flow for large σ can be regarded as an inter-
polation between the neural tangent kernel regime, where
the neural network can be linearized around the initializa-
tion/prior, and the mean-field regime, where the distribution
is evolving with the training time (see (Mei et al., 2019)).

The following theorem estimates the sensitivity of solutions
of (15) and (14) on ν0, τ , and σ.

Theorem 2.13 (Sensitivity in W2). Let f ∈ A2 and As-
sumptions 2.5, 2.8, and 2.11 hold. Let σ, τ, σ′, τ ′ ≥ 0
and ν0, ν

′
0 ∈ P2(Rd). Let (νt)t≥0 and (ν′t)t≥0 be the solu-

tions of (15) with parameters and initial data σ, τ, ν0 and
σ′, τ ′, ν′0, respectively. Then for all ` > 0 and t ∈ R+,

W 2
2 (νt, ν

′
t) ≤ e−2β`tW 2

2 (ν0, ν
′
0)

+
|σ2 − σ′2|

8`

∫ t

0

∫
Rd
e2β`(s−t)|∇U(θ)|2ν′s(dθ) ds

+
1

2β`

(
D|τ − τ ′|+ d|σ − σ′|2

)
(1− e−2β`t) ,

(18)
where β` := σ2

2 κ−C2(τ)−L(τ)− `|σ2− σ′2| and C2(τ)
and L(τ) are the constants obtained in Theorem 2.4. More-
over, if β := σ2

2 κ− C2(τ)− L(τ) > 0 and ν∗ and ν′∗ are

solutions of (14) with σ, τ and σ′, τ ′, respectively, then for
all ` > 0 such that β` = β − `|σ2 − σ′2| > 0, we have

W 2
2 (ν∗, ν′∗) ≤ |σ

2 − σ′2|
16`β`

∫
Rd
|∇U(θ)|2ν′∗(dθ)

+
1

2β`

(
D|τ − τ ′|+ d|σ − σ′|2

)
.

(19)

Theorem 2.13 will be proved in Section A.2.8. Assumption
2.5 and Lemma A.11, proved in Section A.2.8, yield bounds
on
∫
Rd |∇U(θ)|2ν′t(dθ) for all σ′, τ ′ ≥ 0 and ν′0 ∈ P2(Rd)

and bounds on
∫
Rd |∇U(θ)|2ν′∗(dθ) for all σ′, τ ′ ≥ 0 such

that either σ′2κ > 2C2(τ ′) or both∇U(0) = 0 and σ′ > 0.

As a corollary of Theorems 2.4 and 2.13, we obtain the
sensitivity with respect to the MDP value function.

Corollary 2.14 (Sensitivity of value function). Under the
assumptions of Theorem 2.13 with (νt)t≥0, (ν′t)t≥0, ν∗, and
ν′∗ defined accordingly, for all τ̂ ≥ 0,

|V πνtτ̂ (ρ)− V
πν′t
τ̂ (ρ)| ≤ C1(τ̂)W2(νt, ν

′
t)

and |V πν∗τ̂ (ρ)− V πν′∗τ̂ (ρ)| ≤ C1(τ̂)W2(ν∗, ν′∗) ,

where W2(νt, ν
′
t) and W2(ν∗, ν′∗) can be estimated by the

square-roots of (18) and (19), respectively.

As discussed in the literature review, the authors of (Agazzi
& Lu, 2020) showed that if (ν0

t )t∈R+ is a solution of
(15) with σ = 0 and τ > 0 such that ν0

t converges
to a solution ν0,∗ of (14) in W2 with full support, then
V
πν0,∗
τ (s) = V ∗τ (s) for all s ∈ S, provided f is expressive

enough (see (Agazzi & Lu, 2020)[Asm. 1]). Letting νσ,∗ be
as in Theorem 2.12, by Corollary 2.14, we find that for all
` > 0,

|V πνσ,∗τ (ρ)− V ∗τ (ρ)|

≤ σC1

4
√
`β

(∫
Rd
|∇U(θ)|2ν0,∗(dθ)

) 1
2

+
σC1√

2β
,

where β := σ2

2 κ − C2 − L − `|σ2| > 0. However, as
discussed above, is not clear why, in the setting of (Agazzi
& Lu, 2020), one would expect limt→∞ ν0

t = ν0,∗ in W2.

3. Examples
3.1. The Effect of Regularization on Rate of

Convergence

Consider the bandit setting. Let S = ∅, A = Rd, γ = 0,
µ(da) = da, ` ∈ Rd, λ > 0, and r(a) = `·a−λ|a|2.While
this example does not formally satisfy our assumptions due
to unboundedness, we could extend our analysis to include
this example with more cumbersome assumptions. The
optimal policy in this setting is π∗τ (da) ∼ N ( `

2λ ,
τ
2λId) for
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τ > 0. We let f(θ, a) = −λτ |a − θ|
2, which implies that

πν ∼ N (
∫
Rd θν(dθ), τ2λId). For a given mU ∈ Rd and

σU > 0, we let U(θ) = d
2 ln 2πσ2

U + 1
2σ2
U
|θ −mU |2. The

first-order condition for the objective

Jτ,σ(ν) =

∫
Rd
θ>`ν(dθ)− λ

(
τ

2λ
+

∣∣∣∣∫
Rd
θν(dθ)

∣∣∣∣2
)

+
τd

2

(
ln 2πσ2

f + 1
)
− σ2

2
KL(ν|e−U )

is
∫
Rd θν

∗(dθ) = `
2λ if σ = 0 and

ν∗ ∼ e
− 1

2σ2
U

∣∣∣∣θ− mUσ
2

σ2+4λσ2
U

− 2σ2U`

σ2+4λσ2
U

∣∣∣∣2

if σ > 0, where we have solved for the mean in the RHS
of (13) using that the measure ν∗ is Gaussian. We see
that if σ = 0, then there are infinitely many critical points.
Moreover, if σ > 0, then for any critical point, we have

πν∗ ∼ N
(

mUσ
2

σ2 + 4λσ2
U

+
2σ2

U `

σ2 + 4λσ2
U

,
τ

2λ
Id

)
.

We see that if σ = 0, then any critical point satisfies πν∗ =
π∗τ , and thus ν∗ ∈ argmaxν∈P2(Rd)V

πν . For mU = 0 and
small σ > 0, the mean of πν∗ is approximately `/2λ, and
hence πν∗ ≈ π∗τ , which Theorem 2.13 and Corollary 2.14
illustrate. Furthermore, the probabilistic representation of
the gradient flow (17) is given by

dθt =

(
`− 2λEθt −

σ2

2σ2
U

(θt −mU )

)
dt+ σdWt

which is an Ornstein–Uhlenbeck-like process; the mean can
be solved for explicitly and substituted back into the equa-
tion. For σ > 0, the process has a unique invariant measure
and converges exponentially fast, which can be shown using
the same proof as that of Theorem 2.12. We expect a similar
phenomenon in the linear quadratic regulator setting, pro-
vided the function f is chosen appropriately so that its mean
is Kx, where K is the control gain. For more complicated
examples without any special structure (e.g., convexity) on
the unregularized objective, we expect that one needs to
take σ larger to obtain exponential convergence at the level
of the parameterization.

3.2. Explicit Constants in Theorem 2.4

The following example, while a bit contrived, illustrates the
general procedure to determine the constants in Theorem 2.4.
The bandit setting is characterized by S = ∅ and γ =
0 with a bounded reward function r : A → R. We let
f(θ, a) = ψ(θ) ·tanh(g(a)), where ψ : R→ R is a smooth
rescaling function such that ψ and its derivatives up to order
two are bounded by |ψ|∞, and where for simplicity we

take g : A → Rd to be a random feature map. For given
m ∈ Rd and Σ ∈ Rd×d satisfying Σ−1 � κId, we let
U(θ) := 2−1 ln det(2πΣ) + (θ −mU )>Σ−1(θ −mU ). In
this setting, using Lemma 2.2 and 2.3, we find

∇kθ
δJτ,0

δν
(ν, θ)

= ∇kθψ(θ)

∫
A

(
r(a)− τ tanh(g(a)) ·

∫
Rd
ψ(θ′)ν(dθ′)

)
×
(

tanh(g(a))−
∫
A

tanh(g(a′))πν(da′)

)
πν(da) .

Using (31), we obtain

C = Ck := 2|ψ|∞(|r|∞ + τ |ψ|∞), k ∈ N,

and L := (6|r|∞ + 2τ)|ψ|2∞ + 6τ |ψ|3∞,

and hence σ2

2 κ > C + L in Theorem 2.12 is explicit.

4. Conclusion
We identified conditions that allow us to extend the work
of (Mei et al., 2020), where exponential convergence of the
policy gradient method has been established in the tabular
case to the continuous state and action setting with policies
parameterized by two-layer neural networks in the mean-
field regime. This was enabled by introducing entropic reg-
ularization in the space of parameterizations (σ > 0) rather
than just space of policies as is commonly done in entropy
regularized in RL and careful analysis of the corresponding
non-linear Fokker–Planck–Kolmogorov equations. The re-
sults and techniques of this paper open up many possible
research directions of which we mention a few. It should be
possible to extend the one-hidden-layer mean-field setting
to recurrent neural network approximation, see (Weinan,
2017; Hu et al., 2019; Jabir et al., 2019). Moreover, it
should be possible to extend the techniques identified here
to actor-critic-type algorithms where the policy and the Q
function are approximated by their own mean-field neural
networks (Agarwal et al., 2020; Sirignano & Spiliopoulos,
2019). Furthermore, since the main focus of RL is in the
regime where the model is not known, it would be interest-
ing to explore the non-idealized setting, where regret bounds
are proved in terms of the number of samples of state and
action pairs.
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A. Appendix
A.1. Notation and Definitions

Let R+ := [0,∞). For given k ∈ N0 ∪∞, let Ck(Rd) denote the space of k-times continuously differentiable functions and
Ckb (Rd) the subspace of functions of Ck(Rd) for which the function and all the derivatives up to order k are bounded. Let
Ckc (Rd) denote the subspace of Ck(Rd) of functions with compact support. We will use standard notation Lp, p ∈ [1,∞],
for Lebesgue spaces of integrable functions.

Let (E, d) denote a complete separable metric space (i.e., a Polish space). We always equip a Polish space with its Borel
sigma-field B(E). Denote by Bb(E) the space of bounded strongly measurable functions f : E → R endowed with
the supremum norm |f |Bb(E) = supx∈E |f(x)|. Denote by M(E) the Banach space of signed measures (finite) µ on
E endowed with the total variation norm |µ|M(A) = |µ|(E), where |µ| is the total-variation measure. We note that if
µ = fdρ, where ρ ∈ M+(E) is a non-negative measure and f ∈ L1(E, ρ), then |µ|M(E) = |f |L1(E,ρ). We denote by
P(E) ⊂M(E) the convex subset of probability measures on E. For µ, µ′ ∈ P(E) such that µ is absolutely continuous
with respect to µ′, the relative entropy of µ with respect to µ′ (or Kullback-Liebler divergence of µ relative to µ′) is defined
by

KL(µ|µ′) =

∫
E

ln
dµ

dµ′
(x)µ(dx) .

For measure µ ∈M+(E) and measurable function f : E → R, let

µ− ess sup
x∈E

f = inf{c ∈ R : µ{x ∈ E : f(x) > c} = 0} .

It is convenient to have notation for measurable functions k : E1 →M(E2) for given Polish spaces (E1, d1) and (E2, d2).
For example, P : S → P(S ×A) will denote a controlled transition probability and π : S → P(A) will denote a stochastic
policy. Denote by bK(E1|E2) the Banach space of bounded signed kernels k : E2 → M(E1) endowed with the norm
|k|bK(E1|E2) = supx∈E2

|k(x)|M(E1); that is, k(U |·) : E2 → R is measurable for all U ∈ M(E1) and k(·|x) ∈ M(E1)
for all x ∈ E2. For a fixed positive reference measure µ ∈M(E1), we denote by bKµ(E1|E2) the space of bounded kernels
that are absolutely continuous with respect to µ.

Every kernel k ∈ bK(E1|E2) induces bounded linear operators Tk ∈ L(M(E2),M(E1)) and Sk ∈ L(Bb(E1), Bb(E2))
defined by

Tkµ(dy) = µk(dy) =

∫
E2

µ(dx)k(dy|x) and Skf(x) =

∫
E1

k(dy|x)f(y) ,

respectively. Moreover, by (Kunze, 2011)[Ex. 2.3 and Prop. 3.1], we have

|k|bK(E1|E2) = sup
x∈E2

sup
h∈Bb(E1)

|h|Bb(E1)≤1

∫
E1

h(y)k(dy|x) = |Sk|L(Bb(E1),Bb(E2)) = |Tk|L(M(E2),M(E1)) ,

where the latter are operator norms. Thus, bK(E|E) is a Banach algebra with the product defined via composition of the
corresponding linear operators; in particular, for a given k ∈ bK(E|E),

Tnk µ(dy) = µkn(dy) =

∫
En

µ(dx0)k(dx1|x0)k(dx2|x1) · · · k(dxn−1|xn−2)k(dy|xn−1) .

Notice that if f ∈ L∞(E1, µ) and k ∈ bKµ(E1|E2), then for all x ∈ E2,

Skf(x) =

∫
E1

µ(dy)
dk

dµ
(y|x)f(y) ≤ |f |L∞(E1,µ)

∣∣∣∣dkdµ (·|x)

∣∣∣∣
L1(E1,µ)

≤ |f |L∞(E1,µ)|k|bK(E1|E2) . (20)

We denote by P(E1|E2) the convex subspace of P ∈ bK(E1|E2) such that P (·|x) ∈ P(E1) for all x ∈ E2; such kernels
are referred to as stochastic kernels. A stochastic kernel P ∈ P(E1|E2) is said to be strongly Feller if

∫
E1
P (dy|x)f(y) is

continuous in x ∈ E2 for all f ∈ Bb(E1). For a fixed positive reference measure µ ∈ M(E1), we denote by Pµ(E1|E2)
the space of kernels that are absolutely continuous with respect to µ. A bounded kernel k ∈ bK(E1|E2) is thus strongly
Feller if the range of Sk lies in the space of continuous functions on E2.
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For given p ∈ N, let Pp(Rd) denote the set of probability measures with finite p-th moments. The p-Wasserstein distance
between ν, ν′ ∈ Pp(Rd) is given by

Wp(ν, ν
′) = inf

π∈Π(ν,ν′)

(∫
Rd×Rd

|θ − θ′|pπ(dθ, dθ′)

) 1
p

where Π(ν, ν′) denotes the set of probability measures on Rd ×Rd with ν and ν′ as first and second marginals, respectively.
For all p, p′ ∈ N with p′ > p and ν, ν′ ∈ Pp′(E), we have

Wp(ν, ν
′) ≤Wp′(ν, ν

′) . (21)

The set Pp(Rd) endowed with the topology induced by the p-Wasserstein distance is a complete separable metric space (Vil-
lani, 2009)[Thm. 6.18]. The Kantorovich–Rubinstein duality theorem (Villani, 2009)[Thm. 5.10] implies that for all
ν, ν′ ∈ P1(Rd),

W1(ν, ν′) = sup
φ∈Lip1(Rd)

∫
Rd
φ(θ)(ν − ν′)(dθ) , (22)

where Lip1(Rd) denotes the space of all functions φ : Rd → R with a Lipschitz constant 1. Henceforth, we let P0(Rd) =
P(Rd) and recall that this convex subset ofM(Rd) is endowed with the topology of total variation distance. We denote the
Lebesgue measure on Rd by λ. Denote by Pac

p (Rd) the subset of Pp(Rd) consisting of measures that absolutely continuous
with respect to λ. We abuse notation and identify ν = dν

dθ := dν
dλ in Pac

p (Rd). Let C(R+;Pp(Rd)) denote the space of
continuous functions ν : R+ → Pp(Rd).

Definition A.1. Let p ∈ N0. Let (V, |·|V ) denote a Banach space. We say a function u : Pp(Rd)→ V has a linear functional
derivative if there exists a continuous and bounded function δu

δν : Pp(Rd)× Rd → V such that for all ν, ν′ ∈ Pp(Rd),

lim
ε→0
ε∈[0,1]

u(ν + ε(ν′ − ν))− u(ν)

ε
=

∫
Rd

δu

δν
(ν, θ)(ν′ − ν)(dθ) .

Owing to the fundamental theorem of calculus a function u : Pp(Rd)→ V has a linear functional derivative if and only if
there exists a continuous and bounded function δu

δν : Pp(Rd)× Rd → V such that for all ν, ν′ ∈ Pp(Rd),

u(ν′)− u(ν) =

∫ 1

0

∫
Rd

δu

δν
(ν + ε(ν′ − ν), θ)(ν′ − ν)(dθ) dε . (23)

A.2. Proofs

A.2.1. AUXILIARY RESULTS

We need the following version of the fundamental theorem of calculus of variations.

Lemma A.2 (c.f. Lem. 33 in (Jabir et al., 2019)). Let ν ∈ P(Rd) and u : Rd → R be measurable. Assume that∫
Rd u(θ)ν(dθ) exists and is finite. If for all ν′ ∈ P(Rd)∫

Rd
u(θ)(ν′ − ν)(dθ) ≥ 0 , (24)

then u is a constant ν-a.e.. Moreover, if ν ∈ P fe
2 (Rd) and (24) holds for all ν′ ∈ P fe

2 (Rd), then the conclusion still holds.

We will also require the following property of relative entropy.

Lemma A.3. Let U : R→ R+ be measurable such that
∫
Rd e

−U(θ)dθ = 1. Let γ(dθ) = e−U(θ)dθ. Moreover, assume that
there exist constants C > 0 and p ∈ N such that |U(θ)| ≤ CU (1 + |θ|p) for all θ ∈ Rd. Then for all ν ∈ Pp(Rd),∫

Rd
ln
dν

dγ
(θ)ν(dθ) <∞ ⇔

∫
Rd

∣∣∣∣ln dνdγ (θ)

∣∣∣∣ ν(dθ) <∞ ,

⇔
∫
Rd

ln
dν

dθ
(θ)ν(dθ) <∞ ⇔

∫
Rd

∣∣∣∣ln dνdθ (θ)

∣∣∣∣ ν(dθ) <∞ .
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Proof. First notice that∫
Rd

ln
dν

dγ
(θ)ν(dθ) =

∫
Rd

(
ln
dν

dγ
(θ)

)+

ν(dθ)−
∫
Rd

dν

dγ
(θ)

(
ln
dν

dγ
(θ)

)−
γ(dθ)

and ∫
Rd

∣∣∣∣ln dνdγ (θ)

∣∣∣∣ ν(dθ) =

∫
Rd

(
ln
dν

dγ
(θ)

)+

ν(dθ) +

∫
Rd

dν

dγ
(θ)

(
ln
dν

dγ
(θ)

)−
γ(dθ),

where for all x ∈ R, x+ = max(x, 0) and x− = −min(x, 0). Using the fact that the function g(s) = s(ln s)− is bounded
on R+, we find that ∫

Rd
ln
dν

dγ
(θ)ν(dθ) <∞ ⇔

∫
Rd

∣∣∣∣ln dνdγ (θ)

∣∣∣∣ ν(dθ) <∞ .

The triangle and reverse triangle inequalities imply that∫
Rd

∣∣∣∣ln dνdθ (θ)

∣∣∣∣ ν(dθ)−
∫
Rd
U(θ)ν(dθ) ≤

∫
Rd

∣∣∣∣ln dνdγ (θ)

∣∣∣∣ ν(dθ) ≤
∫
Rd

∣∣∣∣ln dνdθ (θ)

∣∣∣∣ ν(dθ) +

∫
Rd
U(θ)ν(dθ) .

By assumption, we have ∫
Rd
U(θ)ν(dθ) ≤ C

∫
Rd

(1 + |θ|)pν(dθ) <∞

and hence ∫
Rd

∣∣∣∣ln dνdγ (θ)

∣∣∣∣ ν(dθ) <∞ ⇔
∫
Rd
ν(θ)

∣∣∣∣ln dνdθ (θ)

∣∣∣∣ ν(dθ) <∞ .

Combining the above equivalences, we complete the proof.

A.2.2. AUXILIARY BOUNDS

In the proof of the main results, we will need the following auxiliary lemma, which concerns the boundedness of the i)
log-density (relative to reference measure µ) of the class of mean-field policies, ii) value function and iii) state-action value
function.
Lemma A.4. Assume that f ∈ A0. For all τ, τ ′ ≥ 0, ν ∈ P(Rd), s ∈ S, and µ− a.e. a ∈ A, we have∣∣∣∣ln dπνdµ (a|s)

∣∣∣∣ ≤ 2|f |A0
+ | lnµ(A)| , |V πντ (s)| ≤ 1

1− γ
(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)
,

|Qπντ (s, a)| ≤ 1

1− γ
(
|r|Bb(S×A) + γτ (2|f |A0

+ | lnµ(A)|)
)
,

|V πντ ′ (s)− V πντ (s)| ≤ |τ
′ − τ |

1− γ
(2|f |A0 + | lnµ(A)|) ,

and |Qπντ ′ (s, a)−Qπντ (s, a)| ≤ γ|τ ′ − τ |
1− γ

(2|f |A0
+ | lnµ(A)|) .

Proof. Let a ∈ A, s ∈ S, and ν ∈ P(Rd) be arbitrarily given. Estimating directly, we find∣∣∣∣ln dπνdµ (a|s)
∣∣∣∣ =

∣∣∣∣∫
Rd
f(θ, s, a)ν(dθ)− ln

(∫
A

exp

(∫
Rd
f(θ, s, a′)ν(dθ)

)
µ(da′)

)∣∣∣∣
≤ 2|f |A0

+ | lnµ(A)| .
(25)

Using (8), (25), |πν |bK(A|S) = 1 and |dπν |bK(S|S) = 1, we obtain

|V πντ (s)| = 1

1− γ

∣∣∣∣∫
S

∫
A

(
r(s′, a)− τ ln

dπν
dµ

(a|s)
)
dπν (ds′|s)πν(da|s′)

∣∣∣∣
≤ 1

1− γ

(
|r|Bb(S×A) + τ

∣∣∣∣ln dπνdµ
∣∣∣∣
Bb(S×A)

)
|πν |bK(A|S)|dπν |bK(S|S)

≤ 1

1− γ
(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)
.

(26)
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To estimate the state-action value function, we use (6), (26), and |P |bK(S|S×A) = 1 to get

|Qπντ (s, a)| ≤ |r|Bb(S×A) + γ|V πντ |Bb(S)|P |bK(S|S×A)

≤ |r|Bb(S×A) +
γ

1− γ
(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)

=
1

1− γ
(
|r|Bb(S×A) + γτ (2|f |A0

+ | lnµ(A)|)
)
.

The remaining inequalities are derived similarly using

V πντ ′ (s)− V πντ (s) =
τ − τ ′

1− γ

∫
S

∫
A

ln
dπν
dµ

(a|s)πν(da|s′)dπ(ds′|s) ,

which follows from (8).

A.2.3. PROOF OF LEMMA 2.2 AND A COROLLARY

Proof. Let ν, ν′ ∈ P(Rd) and define νε = ν + ε(ν′ − ν) for ε ∈ [0, 1]. We must show that

lim
ε→0
ε∈[0,1]

πνε(da|s)− πν(da|s)
ε

=

∫
Rd

δπν
δν

(ν, θ)(da|s)(ν′ − ν)(dθ) , (27)

where δπν
δν (ν, θ) is given by the right-hand-side of (10) and the limit is understood in bK(A|S). Recall from Section A.1 that∣∣∣∣πνε − πνε

−
∫
Rd

δπν
δν

(ν, θ)(da|s)(ν′ − ν)(dθ)

∣∣∣∣
bK(A|S)

= sup
s∈S

∫
A

∣∣∣∣∣
dπνε
dµ (·|s)− dπν

dµ (·|s)
ε

−
∫
Rd

d δπνδν (ν, θ)

dµ
(a|s)(ν′ − ν)(dθ)

∣∣∣∣∣µ(da) . (28)

For convenience, we introduce the unnormalized policy π̃ : P(Rd)→ bKµ(A|S) given by

π̃(ν)(da|s) = π̃ν(da|s) = exp

(∫
Rd
f(θ, s, a)ν(dθ)

)
µ(da) .

For all (s, a) ∈ S ×A, we have

dπνε

dµ
(a|s)− dπν

dµ
(a|s)

=

dπ̃νε
dµ (a|s)
π̃νε(A|s)

−
dπ̃ν
dµ (a|s)
π̃ν(A|s)

=

dπ̃νε
dµ (a|s)π̃ν(A|s)
π̃νε(A|s)π̃ν(A|s)

−
dπ̃ν
dµ (a|s)π̃νε(A|s)
π̃νε(A|s)π̃ν(A|s)

=

dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

π̃ν(A|s)
π̃νε(A|s)

+

dπ̃ν
dµ (a|s)
π̃νε(A|s)

π̃ν(A|s)− π̃νε(A|s)
π̃ν(A|s)

=

[
dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

+
dπν
dµ

(a|s) π̃ν(A|s)− π̃νε(A|s)
π̃ν(A|s)

]
π̃ν(A|s)
π̃νε(A|s)

=

[
dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

+
dπν
dµ

(a|s)
∫
A

(
dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

)
µ(da)

]
π̃ν(A|s)
π̃νε(A|s)

.

Simple manipulation yields

dπ̃νε

dµ
(a|s)− dπ̃ν

dµ
(a|s) = exp

(∫
Rd
f(θ, s, a)ν(dθ)

)(
exp

(
ε

∫
Rd
f(θ, s, a)(ν′ − ν)(dθ)

)
− 1

)
.
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Taylor expanding the exponential function, we find

exp

(
ε

∫
Rd
f(θ, s, a)(ν′ − ν)(dθ)

)
− 1

= ε

∫
Rd
f(θ, s, a)(ν′ − ν)(dθ) + ε2

∞∑
n=2

εn−2

(∫
Rd f(θ, s, a)(ν′ − ν)(dθ)

)n
n!

,

and hence

ε−1

dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

=
dπν
dµ

(a|s)
∫
Rd
f(θ, s, a)(ν′ − ν)(dθ)

+ ε
dπν
dµ

(a|s)
∞∑
n=2

εn−2

(∫
Rd f(θ, s, a)(ν′ − ν)(dθ)

)n
n!

.

(29)

Thus, using πν(A|s) = 1, we obtain∫
A

∣∣∣∣∣ε−1

dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

− dπν
dµ

(a|s)
∫
Rd
f(θ, s, a)(ν′ − ν)(dθ)

∣∣∣∣∣µ(da)

≤ ε exp
(
|f |A0 |ν′ − ν|M(Rd)

)
and ∫

A

ε−1

∣∣∣∣∣
dπ̃νε
dµ (a|s)− dπ̃ν

dµ (a|s)
π̃ν(A|s)

∣∣∣∣∣µ(da) ≤ |f |A0
|ν′ − ν|M(Rd) + ε exp

(
|f |A0

|ν′ − ν|M(Rd)

)
.

The dominated convergence theorem implies that

lim
ε→0
ε∈[0,1]

|πνε − πν |bK(A|S) = lim
ε→0
ε∈[0,1]

sup
s∈S

∫
A

∣∣∣∣dπνεdµ
(·|s)− dπν

dµ
(·|s)

∣∣∣∣µ(da) = 0 , (30)

and hence

lim
ε→0
ε∈[0,1]

π̃ν(A|s)
π̃νε(A|s)

= 1 .

We also have the bound

sup
s∈S

π̃ν(A|s)
π̃νε(A|s)

≤ exp(2|f |A0
) .

Putting together the above bounds and limits, we find that limit of (28) as ε→ 0 is zero, and hence we obtain (27). We must
now show that δπδν is bounded and continuous. Boundedness follows from

sup
s∈S

∫
A

∣∣∣∣∣d δπδν (ν, θ)(a|s)
dµ

∣∣∣∣∣µ(da) = sup
s∈S

∫
A

∣∣∣∣(f(θ, s, a)−
∫
A

f(θ, s, a′)πν(da′|s)
)
dπν(a|s)
dµ

∣∣∣∣µ(da)

≤ 2|f |A0
.

Continuity of δπδν in the product topology then follows from the dominated convergence theorem along with the assumption
|f |A0 <∞.

We will now use Lemma 2.2 to obtain Lipschitz continuity of the occupancy measure. First, we will show Lipschitz
continuity of the occupancy measure with respect to stochastic policies.

Lemma A.5. For given π, π′ ∈ P(A|S), we have

|dπ
′
− dπ|bK(S|S) ≤

γ

1− γ
|π′ − π|bK(A|S) .
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Proof of Lemma A.5. It follows that

dπ
′
− dπ = (1− γ)

∞∑
n=0

n−1∑
i=0

γn(Pπ
′
)n−i−1(Pπ

′
− Pπ)(Pπ)i ,

where we understood both sides as elements of the Banach algebra bK(S|S), or equivalently as operators L(M(S),M(S)).
Thus,

|dπ
′
− dπ|bK(S|S) ≤ (1− γ)

∞∑
n=0

n−1∑
i=0

γn|Pπ
′
|n−i−1
bK(S|S)|P

π′ − Pπ|bK(S|S)|Pπ|ibK(S|S)

≤ (1− γ)

∞∑
n=0

γn|P |bK(S|A×S)|π′ − π|bK(A|S)

=
γ

1− γ
|π′ − π|bK(A|S) ,

which completes the proof.

Corollary A.6 (Lipschitz continuity of the occupancy measure in the parameter measure). For given ν, ν′ ∈ P1(Rd), we
have

|dπν′ − dπν |bK(S|S) ≤ 2|f |A1

γ

1− γ
W1(ν′, ν) .

Proof of Corollary A.6. By Lemma A.5 and (21), it is enough to show that

|πν′ − πν |bK(A|S) ≤ 2|f |A1W1(ν′, ν) . (31)

We have

|πν′ − πν |bK(A|S) = sup
s∈S
|πν′(·|s)− πν(·|s)|M(A)

= sup
s∈S

sup
h∈Bb(A)

|h|Bb(A)≤1

∫
A

h(a) (πν′ − πν) (da|s) .

Let νε = εν′ + (1− ε)ν, ε ∈ [0, 1]. Let s ∈ S and h ∈ Bb(A) be arbitrarily given. Using Lemma 2.2, we find that∫
A

h(a) (πν′ − πν) (da|s) =

∫
Rd
gs(θ)(ν

′ − ν)(dθ) ,

where

gs(θ) :=

∫
A

h(a)

∫ 1

0

(
f(θ, s, a)−

∫
A

f(θ, s, a′)πνε(da
′|s)
)
dε πνε(da|s) .

Applying (20), we get that for all θ, θ′ ∈ Rd and s ∈ S,

|gs(θ′)− gs(θ)|

=

∣∣∣∣∫
A

h(a)

∫ 1

0

(
f(θ′, s, a)− f(θ, s, a) +

∫
A

(f(θ, s, a′)− f(θ′, s, a′))πνε(da
′|s)
)
dε πνε(da|s)

∣∣∣∣
≤ |h|Bb(A)|πνε |bK(A|S)

(
|f |A1

+ |f |A1
|πνε |bK(A|S)

)
|θ′ − θ|

≤ 2|h|Bb(A)|f |A1
|θ′ − θ| .

Using (22), we obtain (31), which completes the proof.
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A.2.4. PROOF OF LEMMA 2.3

Proof. Let ν, ν′ ∈ P1(Rd) and define νε = ν + ε(ν′ − ν) for ε ∈ [0, 1]. We must show that

lim
ε→0
ε∈[0,1]

Jτ,0(νε)− Jτ,0(ν)

ε
=

∫
Rd

δJτ,0

δν
(ν, θ)(ν′ − ν)(dθ) , (32)

where δJ
δν (ν, θ) is as specified in the statement of the lemma. Noting that

Jτ,0(νε)− Jτ,0(ν)

ε
=

∫
S

V πνετ (s)− V πντ (s)

ε
ρ(ds) , (33)

we first study the difference quotient F ε(s) =
V
πνε
τ (s)−V πντ (s)

ε . By (7), we have

F ε(s) =
1

ε

[∫
A

(
r(s, a) + γ

∫
S

P (ds′|s, a)V πνετ (s′)− τ ln
dπνε

dµ
(a|s)

)
πνε(da|s)

−
∫
A

(
r(s, a) + γ

∫
S

P (ds′|s, a)V πντ (s′)− τ ln
dπν
dµ

(a|s)
)
πν(da|s)

]
= Iε1(s) + Iε2(s) + Iε3(s) + Iε4(s) + Iε5(s) ,

(34)

where

Iε1(s) :=

∫
A

r(s, a)
πνε(da|s)− πν(da|s)

ε
,

Iε2(s) := γ

∫
A

∫
S

V πνετ (s′)− V πντ (s′)

ε
P (ds′|s, a)πν(da|s) = γ

∫
S

F ε(s′)Pπν (ds′|s) ,

Iε3(s) := γ

∫
A

∫
S

V πνετ (s′)P (ds′|s, a)
πνε(da|s)− πν(da|s)

ε
,

Iε4(s) := −τ
∫
A

ln dπνε
dµ (a|s)− ln dπν

dµ (a|s)
ε

πνε(da|s) ,

Iε5(s) := −τ
∫
A

ln
dπν
dµ

(a|s)πν
ε(da|s)− πν(da|s)

ε
.

Iterating (34) (i.e., applying the usual policy gradient proof technique), we obtain

F ε(s) = Iε1(s) + Iε3(s) + Iε4(s) + Iε5(s) + γ

∫
S

F ε(s′)Pπν (ds′|s)

=
1

1− γ

∫
S

(Iε1(s′) + Iε3(s′) + Iε4(s′) + Iε5(s′))dπν (ds′|s) ,

and hence
Jτ,0(νε)− Jτ,0(ν)

ε
=

1

1− γ

∫
S

(Iε1(s) + Iε3(s) + Iε4(s) + Iε5(s))dπνρ (ds) .

We now will pass to the limit as ε→ 0. Let us begin with the Iε4 -term. Recalling (30), we have

lim
ε→0
ε∈[0,1]

|πνε − πν |bK(A|S) = lim
ε→0
ε∈[0,1]

sup
s∈S

∫
A

∣∣∣∣dπνεdµ
(·|s)− dπν

dµ
(·|s)

∣∣∣∣µ(da) = 0 . (35)

Since
dπν
dµ

(a|s) = π̃ν(A)−1 exp

(∫
A

f(θ, s, a)ν(dθ)

)
≥ exp(−2|f |A0

)

µ(A)
,

there is an ε0 ∈ (0, 1] such that for all ε < ε0, s ∈ S, and µ− a.e. a ∈ A,∣∣∣∣∣
dπνε
dµ (a|s)− dπν

dµ (a|s)
dπν
dµ (a|s)

∣∣∣∣∣ < 1

2
.
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Taylor expanding the logarithm, we get

ln
dπνε

dµ
(a|s)− ln

dπν
dµ

(a|s) = ln

(
1 +

dπνε
dµ (a|s)− dπν

dµ (a|s)
dπν
dµ (a|s)

)

=
1

dπν
dµ (a|s)

(
dπνε

dµ
(a|s)− dπν

dµ
(a|s)

)
+

∞∑
n=2

(−1)n+1

(
1

dπν
dµ (a|s)

(
dπνε
dµ (a|s)− dπν

dµ (a|s)
))n

n
.

Using (29), we find that
dπνε
dµ (a|s)− dπν

dµ (a|s)
dπν
dµ (a|s)

= ε

∫
Rd
f(θ, s, a)(ν′ − ν)(dθ) + ε2

∞∑
n=2

εn−2

(∫
Rd f(θ, s, a)(ν′ − ν)(dθ)

)n
n!

,

which implies ∣∣∣∣∣
dπνε
dµ (a|s)− dπν

dµ (a|s)
dπν
dµ (a|s)

∣∣∣∣∣ ≤ ε|f |A0
|ν′ − ν|M(Rd) + ε2 exp

(
|f |A0

|ν′ − ν|M(Rd)

)
,

Thus, by Lemma 2.2, we have

lim
ε→0
ε∈[0,1]

ln dπνε
dµ (a|s)− ln dπν

dµ (a|s)
ε

=

∫
Rd

(
f(θ, s, a)−

∫
A

f(θ, s, a′)πν(da′|s)
)

(ν′ − ν)(dθ) , (36)

and that there exists a constant M > 0 such that for all ε < ε0, s ∈ S, and µ− a.e. a ∈ A,

ε−1

∣∣∣∣ln dπνεdµ
(a|s)− ln

dπν
dµ

(a|s)
∣∣∣∣ ≤M .

Therefore, owing to (35) and (36), we find

lim
ε→0
ε∈[0,1]

Iε4(s) = −τ
∫
A

∫
Rd

(
f(θ, s, a)−

∫
A

f(θ, s, a′)πν(da′|s)
)
πν(da|s)(ν′ − ν)(dθ) = 0 .

We now turn our attention to Iε3 . Recalling (8), we have

V πνετ (s) =
1

1− γ

∫
S

∫
A

(
r(s′, a)− τ ln

dπνε

dµ
(a|s′)

)
πνε(da|s′)dπνε (ds′|s) .

It follows from Corollary A.6, (35), Lemma A.4, and the boundedness of the reward r that

lim
ε→0
ε∈[0,1]

V πνετ (s) = V πντ (s) .

Thus, by Lemmas A.4 and 2.2, we obtain

lim
ε→0
ε∈[0,1]

Iε3(s) = γ

∫
A

∫
S

V πντ (s′)P (ds′|s, a)

∫
Rd

δπν
δν

(ν, θ)(da|s)(ν′ − ν)(dθ) .

Using Lemmas A.4 and 2.2 and the boundedness of the reward, we get

lim
ε→0
ε∈[0,1]

(Iε1(s) + Iε5(s)) =

∫
A

(
r(s′, a)− τ ln

dπν
dµ

(a|s)
)∫

Rd

δπν
δν

(ν, θ)(da|s)(ν′ − ν)(dθ) .

Putting it all together and using the definition of Qπ , we arrive at

lim
ε→0
ε∈[0,1]

5∑
j=1

Iεj (s) =

∫
A

(
Qπντ (s, a)− τ ln

dπν
dµ

(a|s)
)∫

Rd

δπν
δν

(ν, θ)(da|s)(ν′ − ν)(dθ) .

Since (Ij)1≤j≤5 are bounded uniformly in ε, we may apply the bounded convergence theorem to pass to the limit in (33) to
obtain (32). Continuity of δJτ,0

δν in the product topology then follows from the dominated convergence theorem and the
continuity of π = π(ν), dπν (see Corollary A.6), and Qπν in ν (see (8)), and the joint continuity of δπδν , which completes the
proof.
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A.2.5. PROOF OF THEOREM 2.4

Proof. For given (s, a) ∈ S ×A and ν ∈ P1(Rd), we denote

Q̄πντ (s, a) =
1

1− γ

(
Qπντ (s, a)− τ ln

dπν
dµ

(a|s)
)
.

By Lemma A.4, for all τ ≥ 0, ν ∈ P(Rd), s ∈ S, and µ− a.e. a ∈ A, we have

|Q̄πντ (s, a)| ≤ 1

(1− γ)2

(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)
. (37)

Thus, for all θ ∈ Rd, ν ∈ P1(Rd) and k ∈ N,∣∣∣∣∇k δJτ,0δν
(ν, θ)

∣∣∣∣ ≤ ∫
S

∫
A

|Q̄πντ (s, a)|
∣∣∣∣(∇kf(θ, s, a)−

∫
A

∇kf(θ, s, a′)πν(da′|s)
)∣∣∣∣πν(da|s)dπνρ (ds)

≤ 2

(1− γ)2

(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)
|f |Ak , (38)

which yields the first inequality in (12). For arbitrarily given ν, ν′ ∈ P1(Rd), define νε = ν + ε(ν′ − ν), ε ∈ [0, 1]. By
Lemma 2.3 and (23) we have

Jτ,0(ν′)− Jτ,0(ν) =

∫ 1

0

∫
Rd

δJτ,0

δν
(νε, θ)(ν′ − ν)(dθ) dε .

Applying (38), we obtain the second inequality in (12)

|Jτ,0(ν′)− Jτ,0(ν)| ≤ sup
ε∈[0,1],θ∈Rd

∣∣∣∣∇δJτ,0δν
(νε, θ)

∣∣∣∣W1(ν′, ν) .

For arbitrarily given θ ∈ Rd and ν, ν′ ∈ P1(Rd), we have

∇δJ
τ,0

δν
(ν′, θ)−∇δJ

τ,0

δν
(ν, θ) =

∫
S

∫
A

Q̄πν′τ (s, a)∇δπ
δν

(ν′, θ)(da|s)[dπν′ρ − dπνρ ](ds)(:= I1)

+

∫
S

∫
A

[
Q̄πν′τ (s, a)− Q̄πντ (s, a)

]
∇δπ
δν

(ν′, θ′)(da|s)dπνρ (ds)(:= I2)

+

∫
S

∫
A

Q̄πντ (s, a)

[
∇δπ
δν

(ν′, θ)(da|s)−∇δπ
δν

(ν, θ)(da|s)
]
dπνρ (ds)

= I1 + I2 +

∫
S

∫
A

Q̄πντ (s, a)

∫
A

∇f(θ, s, a′)[πν′ − πν ](da′|s)πν′(da|s)dπνρ (ds)(:= I3)

+

∫
S

∫
A

Q̄πντ (s, a)

(
∇f(θ, s, a)−

∫
A

∇f(θ, s, a′)πν′(da
′|s)
)

[πν′ − πν ](da|s)dπνρ (ds)(:= I4) .

We will now estimate (Ij)1≤j≤4. Applying Corollary A.6 and (37), we find

|I1| ≤
4γ

(1− γ)3

(
|r|Bb(S×A) + τ (2|f |A1

+ | lnµ(A)|)
)
|f |2A1

W1(ν′, ν) .

By virtue of (31) and the duality description of the bK(A|S)-norm, for arbitrarily given measurable h : Rd × S ×A→ R,
we have ∫

A

h(θ, s, a)[πν′ − πν ](da|s) ≤ 2|f |A1
|h|L∞W1(ν′, ν) .

Thus, applying (31) and (37), we deduce

|I3 + I4| ≤
4

(1− γ)2

(
|r|Bb(S×A) + τ (2|f |A0

+ | lnµ(A)|)
)
|f |2A1

W1(ν′, ν) .
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It remains to estimate I2, and, in particular, to study the Lipschitzness of Q̄πντ in ν, and hence the Lipschitzness of Qπντ and
ln dπν

dµ separately. By (6) and the fact that

V πντ (s) = Jτ.0(δs)(ν), ∀s ∈ S ,

using Lemma 2.3, (23), and (38) (with ρ = δs), we find

Qπν′τ (s, a)−Qπντ (s, a) = γ

∫
S

(V πν′τ (s′)− V πντ (s′))P (ds′|s, a)

= γ

∫
S

∫ 1

0

∫
Rd

δJτ,0(δs)

δν
(νε, θ)(ν′ − ν)(dθ)P (ds′|s, a) dε

≤ γ sup
ν∈P1(Rd)

sup
θ∈Rd

∣∣∣∣∇δJτ,0(δs)

δν
(ν, θ)

∣∣∣∣W1(ν′, ν)|P |bK(S|A×S)

≤ 2γ

(1− γ)2

(
|r|Bb(S×A) + τ (2|f |A0 + | lnµ(A)|)

)
|f |A1W1(ν′, ν) ,

where in the first equality νε = ν + ε(ν′ − ν) for ε ∈ [0, 1]. Owing to (36) and the fundamental theorem of calculus (noting
that πν is continuous in W1), we find that for all (s, a) ∈ S ×A,

ln
dπν′

dµ
(a|s)− ln

dπν
dµ

(a|s) =

∫ 1

0

∫
Rd

(
f(θ, s, a)−

∫
A

f(θ, s, a′)πνε(da
′|s)
)

(ν′ − ν)(dθ) dε

≤ 2|f |A1W1(ν′, ν) .

Thus,

|I2| ≤
4

1− γ

(
γ

(1− γ)2

(
|r|Bb(S×A) + τ (2|f |A0 + | lnµ(A)|)

)
+ τ

)
|f |2A1

W1(ν′, ν) .

Putting it all together, we find that there is a constant L = L(γ, |r|Bb(S×A), τ, µ(A), |f |A1
) such that∣∣∣∣∇δJτ,0δν

(ν′, θ)−∇δJ
τ,0

δν
(ν, θ)

∣∣∣∣ ≤ LW1(ν′, ν) .

By Lemma A.4, for all τ, τ ′ ≥ 0, ν ∈ P(Rd), s ∈ S, and µ− a.e. a ∈ A, we have

|Q̄πντ ′ (s, a)− Q̄πντ (s, a)| ≤ |τ
′ − τ |

(1− γ)2
(2|f |A0

+ | lnµ(A)|) ,

and hence for all θ ∈ Rd,

∇δJ
τ ′,0

δν
(ν, θ)−∇δJ

τ,0

δν
(ν, θ) =

∫
S

∫
A

(
Q̄πντ ′ (s, a)− Q̄πντ (s, a)

)
∇δπ
δν

(ν, θ)(da|s)dπνρ (ds)

≤ 2|τ ′ − τ |
(1− γ)2

(2|f |A0
+ | lnµ(A)|) |f |A1

,

which completes the proof.

A.2.6. PROOF OF THEOREM 2.6 AND COROLLARY 2.7

Proof of Theorem 2.6. Let ν ∈ P1(Rd) be a local maximizer of Jτ,σ . Thus, there exists δ > 0 such that Jτ,σ(ν) ≥ Jτ,σ(ν′)
for all ν′ ∈ P1(Rd) satisfying W1(ν, ν′) < δ. Let ν′ ∈ P1(Rd) satisfy W1(ν′, ν) < δ and define νε = ν + ε(ν′ − ν) for
ε ∈ [0, 1]. Note that for all ε ∈ [0, 1], we have W1(ν, νε) < δ. Throughout the proof, we assume that ν ∈ P fe

1 (Rd) if σ > 0
since otherwise it would not be a local maximizer. Henceforth, we also restrict to ν′ ∈ P fe

1 (Rd) if σ > 0. For brevity of
notation, we drop the θ dependence in all integrands throughout the proof.

Using Lemma 2.2, we find

0 ≤ Jτ,σ(ν)− Jτ,σ(νε)

ε
= −1

ε

∫ ε

0

∫
Rd

δJτ,0

δν
(νε
′
)(ν′ − ν)(dθ) dε′ +

σ2

2ε

(
KL(νε|e−U )− KL(ν|e−U )

)
,
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where we note that if σ > 0 then KL(νε|e−U ) <∞ since νε is a convex combination of ν and ν′, both of which belong to
P fe

1 (Rd). It follows that

KL(νε|e−U )− KL(ν|e−U ) =

∫
Rd

(
νε ln

νε

e−U
− ν ln

ν

e−U

)
dθ

=

∫
Rd

(νε ln νε − ν ln ν + U(νε − ν)) dθ

=

∫
Rd

(g(νε)− g(ν) + εU(ν′ − ν)) dθ ,

where g(x) := x lnx. Since g is convex, we have that for all θ ∈ Rd,

1

ε
(g(νε)− g(ν) + εU(ν′ − ν)) ≤ g(ν′)− g(ν) + U(ν′ − ν) = ν′ ln

ν′

e−U
− ν ln

ν

e−U
.

Since KL(ν′|e−U ) and KL(ν|e−U ) are both finite, the right hand side of the above inequality is integrable, and hence
applying reverse Fatou’s lemma, we get

lim sup
ε→0

KL(νε|e−U )− KL(ν|e−U )

ε
≤
∫
Rd

(g′(ν) + U) (ν′ − ν)(dθ) .

Thus, using the boundedness of δJ
τ,0

δν (i.e., (12)) and Fatou’s Lemma, we obtain

0 ≤
∫
Rd

(
−δJ

τ,0

δν
(ν, θ) +

σ2

2
ln ν +

σ2

2
U

)
(ν′ − ν)(dθ) (39)

for all ν′ ∈ P1(Rd) if σ = 0 and for all ν′ ∈ P fe
1 (Rd) if σ > 0. Applying Lemma A.2, we find that the function

F (θ) =
δJτ.0

δν
(ν, θ)− σ2

2
U(θ)− σ2

2
ln ν(θ)

is constant in θ, ν-a.e..

We would like to show that if σ > 0 then ν is equivalent to the Lebesgue measure λ and to that end, we follow the argument
of the proof of (Hu et al., 2019)[Prop. 3.9]. Suppose, by contradiction, that ν is not equivalent to the Lebesgue measure.
Then there is a K ∈ B(Rd) such that ν(K) = 0 and λ(K) > 0. Note that on K, we have ln ν = −∞. Rearranging (39), we
get

σ2

2

∫
K

ln
ν

e−U
ν′(dθ) ≥

∫
Rd

δJτ,0

δν
(ν)(ν′ − ν)(dθ)− σ2

2
KL(ν|e−U )− σ2

2

∫
Rd\K

ln
ν

e−U
ν′(dθ) .

Choosing ν′ = e−U ∈ P fe
1 (Rd), we get∫

K
ln

ν

e−U
ν′(dθ) = −∞ and

∫
Rd\K

ln
ν

e−U
ν′(dθ) <∞ .

Noting that KL(ν|e−U ) < ∞ is finite because ν ∈ P fe
1 (Rd) and that

∫
Rd

δJτ,0

δν (ν, θ)(ν′ − ν)dθ < ∞ by (12), we get a
contradiction, and hence ν is equivalent to the Lebesgue measure. Therefore, if σ > 0, we have that the function F is
constant in θ, λ-a.e.. In particular, if σ > 0, then for λ-a.a. θ ∈ Rd,

ν(θ) = Z−1 exp

(
2

σ2

δJτ,0

δν
(ν, θ)− U(θ)

)
, where Z =

∫
Rd

exp

(
2

σ2

δJτ,0

δν
(ν, θ′)− U(θ′)

)
dθ′ .

Proof of Corollary 2.7. Define b : P1(Rd)× Rd → Rd by b(ν, θ) = ∇ δJτ,0

δν (ν, θ)− σ2

2 ∇U(θ). Recall that a measure ν̃ is
a solution of L∗ν̃ ν̃ = 0 if for all φ ∈ C∞c (Rd), we have∫

Rd
Lν̃φ(θ)ν̃(dθ) =

∫
Rd

(
σ2

2
∆φ(θ) + b(ν̃, θ) · ∇φ(θ)

)
ν̃(dθ) = 0 .
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Using Theorem 2.6, we have that

F (θ) =
δJτ,0

δν
(ν, θ)− σ2

2
U(θ)− σ2

2
ln ν(θ)

is constant in θ, ν-a.e.. By Theorem 2.4 and our assumptions on U , we have that δJ
τ,0

δν + σ2

2 U is differentiable. Moreover, in
the case σ > 0, by (13), we find that ln ν is differentiable. Thus,∇F = 0, ν-a.e., which implies that for all φ ∈ C∞c (Rd),∫

Rd

(
b(ν, θ)− σ2

2
∇ ln ν(θ)

)
· ∇φ(θ)ν(dθ) = 0 .

Applying the divergence theorem, we find ∫
Rd
Lνφ(θ)ν(dθ) = 0 ,

which completes the proof.

A.2.7. PROOF OF THEOREM 2.9

Let σ ≥ 0 and let b : P(Rd) × Rd → Rd such that for all ν ∈ P(Rd) we have b(ν) : Rd → Rd locally bounded. We
consider the Cauchy problem for ν : R+ → P(Rd) given by

∂tνt = L∗νtνt , t ∈ (0,∞) , ν|t=0 = ν0 , (40)

where for all ν ∈ P(Rd), φ ∈ C∞c (Rd), and θ ∈ Rd,

Lνφ(θ) :=
σ2

2
∆φ(θ) + b(ν, θ) · ∇φ(θ) .

Note that if b(ν, θ) = ∇ δJτ,0

δν (ν, θ)− σ2

2 ∇U(θ), then this equation is the gradient flow (15) started at ν0.

Definition A.7. A function ν : R+ → P(Rd) is called a measure-valued solution of (40) if for all φ ∈ C∞c (Rd) and
t ∈ R+, ∫

Rd
φ(θ)νt(dθ) =

∫
Rd
φ(θ)ν0(dθ) +

∫ t

0

∫
Rd
Lνsφ(θ)νs(dθ) ds .

The next theorem recalls results concerning the existence and uniqueness of a solution of (40). Moreover, it documents
important properties in the case σ > 0 that will be required in the proof of Theorem A.10. Let W 1,1(Rd) = {u ∈ D′(Rd) :
Du ∈ L1(Rd)}, where D′(Rd) is the space of distributions on Rd. Denote by C2,1(Rd × (0,∞)) the space of functions on
Rd × (0,∞) that are twice continuously differentiable on Rd and once continuously differentiable on (0,∞).

Theorem A.8 (Existence, uniqueness, and properties). Assume that there exists a constants C ′, L′ > 0 such that for all
ν, ν′ ∈ P1(Rd) and θ ∈ Rd,

|b(ν, θ)| ≤ C ′(1 + |θ|) and |b(ν′, θ)− b(ν, θ)| ≤ L′W1(ν′, ν) .

If ν0 ∈ Pp(Rd) for some p ∈ N, then there exists a measure-valued solution ν ∈ C(R+;Pp(Rd)) of (40). Moreover, if
σ > 0, then we have that

i) (Bogachev et al., 2015)[Cor. 6.3.2] ν : [0, T ]→ Pac
p (Rd);

ii) (Bogachev et al., 2015)[Rem. 7.3.12] νt → ν0 in L1(Rd) as t ↓ 0;

iii) (Bogachev et al., 2015)[Thm. 7.4.1] If
∫
Rd | ln ν0(θ)|ν0(dθ) <∞, then for almost every t ∈ (0,∞), νt ∈ W 1,1(Rd),

and for all t > 0 ∫ t

0

∫
Rd
|∇ ln νs(θ)|2νs(θ) dθ ds =

∫ t

0

∫
Rd

|∇νs(θ)|2

νs(θ)
dθ ds <∞ .

In particular, for all φ ∈ C1
b (Rd) and t1, t2 ∈ R+, we have∫

Rd
φ(θ)νt2(dθ) =

∫
Rd
φ(θ)νt1(dθ) +

∫ t2

t1

∫
Rd
∇φ(θ) ·

(
b(νs, θ)−

σ2

2
∇ ln νs(θ)

)
νs(dθ) ds ;
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iv) (Bogachev et al., 2015)[Cor. 8.2.2] For each compact interval [t1, t2] ⊂ (0,∞), there exists a constant K =
K(p, t1, t2, C

′, σ) such that for all t ∈ [t1, t2] and θ ∈ Rd, we have

exp
[
−K(1 + |θ|2)

]
≤ νt(θ) ≤ exp

[
K(1 + |θ|2)

]
;

v) (Bogachev et al., 2015)[Cor. 8.2.5] combined with (Bogachev et al., 2015)[Cor. 8.2.2] For every compact interval
[t1, t2] ⊂ (0,∞), we have ∫ t2

t1

∫
Rd
| ln νs(θ)|νs(θ) dθ ds <∞ .

In particular, if ν0 ∈ P fe
2 (Rd), then we can take t1 = 0;

vi) (Lasota & Mackey, 2013)[Thm. 11.7.1] Assume further that b(ν) ∈ C3(Rd) for all ν ∈ P2(Rd) and ν0 ∈ C0
c (Rd).

Then ν ∈ C2,1(Rd × (0,∞)) and for all t > 0

|νt(θ)|, |∂tνt(θ)|, |∇νt(θ)|, |∇2νt(θ)| ≤ Kt(−p+2)/2 exp

(
− 1

2t
δ|θ|2

)
.

If, in addition, there exists an L′′ > 0 such that for all ν ∈ P1(Rd) and θ, θ′ ∈ Rd,

|b(ν, θ′)− b(ν, θ)| ≤ L′′|θ′ − θ| , (41)

or both σ > 0 and p ≥ 4, then the solution ν is the unique solution of (40).

Proof of Theorem A.8. By (Funaki, 1984)[Thm. 2.1], there exists a measure-valued solution of (40) (see, also, (Manita &
Shaposhnikov, 2014)[Thm. 1.1] or (Hammersley et al., 2021)[Thm. 2.10]). The continuity in time of the solution in Pp(Rd)
follows from the weak continuity in time and (Villani, 2009)[Thm. 6.9].

Clearly, ν is a solution of the linear equation given by

∂tµt = L∗νtµt , t ∈ (0,∞) , µ|t=0 = ν0 .

Thus, if σ > 0 then, the statements i)-vi) hold by the references given in the statement of the theorem.

If (41) holds, then assumptions DH1-DH4 of (Manita et al., 2015)[Thm. 4.4] hold (i.e., taking the functions W,V,U and G
in DH1-DH4 to be W (θ) = 1, V (θ) = 1 + |θ|k, U(θ) =

√
1 + |θ|2 (not our potential U ), and G(u) = u), which implies

that the solution of (40) is unique. If σ > 0 and p ≥ 4, then the assumptions H1-H4 of (Manita et al., 2015)[Thm. 3.1, Ex.
3.2] hold, which implies that the solution of (40) is unique.

The following lemma indicates sufficient conditions on the activation function f and potential U to satisfy the assumptions
of Theorem A.8.

Corollary A.9. Define bσ : P1(Rp)× Rd → Rd by bσ(ν, θ) = ∇ δJτ,0

δν (ν, θ)− σ2

2 ∇U(θ).

i) If f ∈ A1 and Assumption 2.5 holds, then Theorem 2.4 implies that all ν, ν′ ∈ P1(Rd) and θ ∈ Rd,

|bσ(ν, θ)| ≤ C1 +
σ2

2
|∇U(θ)| ≤ C1 +

σ2CU
2

(1 + |θ|) (42)

and |bσ(ν′, θ)− bσ(ν, θ)| ≤ LW1(ν′, ν) ≤ LW2(ν′, ν) . (43)

ii) If f ∈ A2 and Assumption 2.8 holds, then Theorem 2.4 implies that for all ν ∈ P1(Rd) and θ, θ′ ∈ Rd,

|bσ(ν, θ′)− bσ(ν, θ)| ≤
(
C2 +

LUσ
2

2

)
|θ′ − θ| . (44)

iii) If f ∈ A4 and U ∈ C4(Rd), then by Theorem 2.4, bσ(ν) ∈ C3(Rd) for all ν ∈ P1(Rd).



Convergence of Policy Gradient for Entropy Regularized MDPs in the Mean-Field Regime

Therefore, the relevant conclusions of Theorem A.8 hold.

In the following theorem, we prove that the objective function Jτ,σ(ν) = Jτ,0(ν) − KL(ν|e−U ) is increasing along the
gradient flow (νt)t∈R+ .

Theorem A.10. Let f ∈ A1, Assumption 2.5 hold, and ν0 ∈ P1(Rd) if σ = 0, and ν0 ∈ P fe
2 (Rd) if σ > 0. Then for all

t ∈ R+,

Jτ,σ(νt) = Jτ,σ(ν0) +

∫ t

0

∫
Rd

∣∣∣∣∇δJτ,0δν
(νs, θ)−

σ2

2
∇ ln

νs(θ)

e−U(θ)

∣∣∣∣2 νs(dθ) ds . (45)

If we assume further that f ∈ A4, U ∈ C4(Rd), and ν ∈ C2
c (Rd), then (45) can be proved through classical considerations

using Corollary A.9 and Theorem A.8 (iiii-vi) and the fact that (40) holds classically for all t ∈ R+ (i.e., including t = 0),
so one can appeal to the fundamental theorem of calculus. We omit the proof of this (see, for example, the proof of (Otto &
Villani, 2000)[Lem. 1]).

Proof of Theorem A.10. We divide the proof into two steps. In the first step, we apply Lemma 2.3 to compute d
dtJ

τ,0(νt),
and in the second step, we use ideas from (Bogachev et al., 2018)[Thm. 1.1] to compute d

dtKL(νt|e−U ). For brevity
of notation, we drop the θ dependence in all integrands throughout the proof. Define b : P1(Rd) × Rd → Rd by
b(ν, θ) = ∇ δJτ,0

δν (ν, θ)− σ2

2 ∇U(θ).

Step I. By Corollary A.9, there exists a measure-valued solution ν ∈ C(R+;P1(Rd)) of (40). Using Lemma 2.3, we find
that for all t ∈ R+,

d

dt
Jτ,0(νt) = lim

h→0

Jτ,0(νt+h)− Jτ,0(νt)

h
= lim
h→0

∫ 1

0

[∫
Rd

δJτ,0

δν
(νε,ht )

1

h
(νt+h − νt)(dθ)

]
dε ,

where νε,ht := νt + ε(νt+h − νt) and h ≥ −t. In the case t = 0, we understand the derivative as a right-hand derivative.
Our aim to calculate the limit on the right-hand-side. Using Lemma A.9 and Theorem A.8(iii) in the case σ > 0 and a
simple density argument in the case σ = 0, we find that for all φ ∈ C1

b (Rd) and t1, t2 ∈ R+,∫
Rd
φ νt2(dθ) =

∫
Rd
φ νt1(dθ) +

∫ t2

t1

∫
Rd
∇φ ·

(
b(νs)−

σ2

2
∇ ln νs

)
νs(dθ) ds .

Owing to Theorem 2.4, we have that δJ
τ,0

δν (νε,ht ) ∈ C1
b (Rd) for all t, ε, and h. Thus, for all t ∈ R+,∫

Rd

δJτ,0

δν
(νε,ht )

1

h
(νt+h − νt)(dθ) =

1

h

∫ t+h

t

∫
Rd
∇δJ

τ,0

δν
(νε,hs ) ·

(
b(νs)−

σ2

2
∇ ln νs

)
νs(dθ) ds .

Owing to Corollary A.9 for all t ∈ R+, limh→0 νt+h = νt in W2. Thus, by Theorem 2.4 and (21), we obtain that for all
(θ, t) ∈ Rd × R+,

lim
h↓0

δJτ,0

δν
(νε,ht , θ) =

δJτ,0

δν
(νt, θ) .

Therefore, by virtue of the Lebesgue differentiation theorem and Lebesgue dominated convergence theorem, we get that for
all t ∈ R+,

d

dt
Jτ,0(νt) =

∫
Rd
∇δJ

τ,0

δν
(νt) ·

(
∇δJ

τ,0

δν
(νt)−

σ2

2
∇ ln

νt
e−U

)
νt(dθ) .

An application of the fundamental theorem of calculus then implies that for all t ∈ R+,

Jτ,0(νt) = Jτ,0(ν0) +

∫ t

0

∫
Rd
∇δJ

τ,0

δν
(νs) ·

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ ln

νs
e−U

)
νs(dθ) ds . (46)

The case σ = 0 of the theorem has now been proved (i.e. part i)).
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Step II. From now on, we assume σ > 0 so that ν ∈ C(R+;P2
ac(Rd)). We aim to show that

KL(νt|e−U ) = KL(ν0|e−U ) +

∫ t

0

∫
Rd
∇ ln

νs
e−U

·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ ln

νs
e−U

)
νs dθ ds .

Once we have shown this, multiplying it by σ2/2 and subtracting from (46) we obtain (45). Letting h = eUν, we find that
for all t ∈ R+,

KL(νt|e−U ) =

∫
Rd
νt ln

νt
e−U

dθ =

∫
Rd
ht lnhte

−Udθ .

In terms of h, we aim to show that∫
Rd
ht lnhte

−Udθ =

∫
Rd
h0 lnh0e

−Udθ +

∫ t

0

∫
Rd
∇ lnhs ·

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
e−Uhs dθ ds . (47)

Let us establish some preliminary bounds. By Corollary A.9, Theorem A.8 (iii) and (v) and Lemma A.3, we have∫ t

0

∫
Rd
|∇ lnhs|2e−Uhs dθ ds =

∫ t

0

∫
Rd
|∇U +∇ ln νs|2νs dθ ds

≤ 2

∫ t

0

∫
Rd

(
|∇U |2 + |∇ ln νs|2

)
νs dθ ds (48)

≤
∫ t

0

∫
Rd

(
2C2

U (1 + |θ|)2 + |∇ ln νs|2
)
νs dθ ds <∞ ,∫ t

0

∫
Rd
hs| lnhs|e−U dθ ds =

∫ t

0

νs (|ln νs|+ |U |) dθ ds

≤
∫ t

0

∫
Rd
νs
(
|ln νs|+ CU (1 + |θ|2)

)
dθ ds <∞ . (49)

Notice that ρ = e−U satisfies for all (θ, t) ∈ Rd × R+,

∂tρt = 0 =
σ2

2
∆ρt +

σ2

2
∇ · (∇Uρt) .

Applying (Bogachev et al., 2018)[Lem. 2.4(i)], we find that for all g ∈ C2(Rd), ψ ∈ C∞c (Rd), and t ≥ τ > 0, 1

∫
Rd
g(ht)ψe

−U dθ +
σ2

2

∫ t

τ

∫
Rd
|∇hs|2g′′(hs)ψe−U dθ ds

=

∫
Rd
g(hτ )ψe−U dθ +

∫ t

τ

∫
Rd
g(hs)

(
σ2

2
∆ψ +

σ2

2
∇U · ∇ψ

)
e−U dθ ds

+

∫ t

τ

∫
Rd

[
g′′(hs)∇hs · ∇

δJτ,0

δν
(νs)ψ + g′(hs)∇ψ · ∇

δJτ,0

δν
(νs)

]
hse
−U dθ ds .

Using the divergence theorem, the identity h∇ lnh = ∇h and Theorem A.8 (iii), we find that for all t ≥ τ > 0,∫
Rd
g(ht)ψe

−U dθ =

∫
Rd
g(hτ )ψe−U dθ +

∫ t

τ

∫
Rd
g′′(hs)∇hs ·

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
ψhse

−U dθ ds

+

∫ t

τ

∫
Rd
g′(hs)∇ψ

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds .

(50)

1In (Bogachev et al., 2018), the authors introduce a probabilistic approximation to the identity (ωε)ε∈(0,1) and the approximation
hε = ωε ∗ ν/ωε ∗ U , ε ∈ (0, 1). Then they write down the equation for hε, which, in particular, has smooth coefficients and holds
pointwise. At this point, they work classically and easily derive (50). To pass to the limit as ε ↓ 0, they appeal to the fact that ωε ∗ ν to ν
uniformly on suppψ × [τ, t] and∇ωε ∗ ν → ∇ν in L2(suppψ × [τ, t]) since ν is locally Hölder and Sobolev.
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Consider g ∈ C1(R+) such that g′ ∈ C0
b (R+), g′ is continuously differentiable except at a finite number of points D ⊂ R+,

and supx∈R+\D xg
′′(x) <∞. The functions (52) we consider below satisfy this assumption. Mollifying g, we obtain a

sequence {gn}n∈N ∈ C∞(R+) such that gn → g and g′n → g′ pointwise on R+ as n→∞, g′′n → g′′ pointwise on R+ \D
as n→∞, supn∈N,x∈R+

|g′n(x)| <∞, and supn∈N,x∈R+\D x|g
′′
n(x)| <∞. Let ψ ∈ C∞c (Rd) be such that ψ ≥ 0, ψ = 1

for |θ| < 1 and ψ = 0 for |θ| ≥ 2. For n ∈ N, define ψn ∈ C∞c (Rd) by ψn(x) = ψ(x/n). By (50) and the fact that the
Lebesgue measure of the set {ht ∈ D} is zero by (Kinderlehrer & Stampacchia, 2000)[Ch. 2, Lem. A.4], we have that for
all n ∈ N and t ≥ τ > 0,∫

Rd
gn(ht)ψne

−U dθ =

∫
Rd
gn(hτ )ψne

−U dθ

+

∫ t

τ

∫
hs 6∈D

g′′n(hs)∇hs ·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
ψnhse

−U dθ ds

+

∫ t

τ

∫
Rd
g′n(hs)∇ψn

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds .

For all (θ, t) ∈ Rd × R+, we have

|gn(h)|e−U ≤ sup
n∈N
|gn(0)|e−U + sup

n∈N,x∈R+

|g′n(x)|he−U ,

1h6∈Dg
′′
n(h)|∇h|

∣∣∣∣∇δJτ,0δν
(ν)− σ2

2
∇ lnh

∣∣∣∣he−U ≤ sup
n∈N,x∈R+\D

|xg′′n(x)|
(
C1|∇h|e−U +

σ2

2
|∇ lnh|2he−U

)
,

|g′n(h)|
∣∣∣∣∇δJτ,0δν

(ν)− σ2

2
∇ lnh

∣∣∣∣he−U ≤ sup
n∈N,x∈R+

|g′n(x)|
(
C1 +

σ2

2
|∇ lnh|he−U

)
.

Owing to (48), we have that for all t ∈ R+,∫ t

0

∫
Rd
|∇ lnhs|hse−U dθ ds ≤

√
t

(∫ t

0

∫
Rd
|∇ lnhs|2hse−U dθ ds

)1/2

<∞

and ∫ t

0

∫
Rd
|∇hs|e−U dθ ds =

∫ t

0

∫
Rd
|∇ lnhs|hse−U dθ ds <∞ .

Applying the dominated convergence theorem to pass to the limit as n→∞, we obtain that for all t ≥ τ > 0,∫
Rd
g(ht)e

−U dθ =

∫
Rd
g(hτ )e−U dθ +

∫ t

τ

∫
hs 6∈D

g′′(hs)∇hs ·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds .

By Taylor’s theorem and the fact that g′ ∈ C0
b (Rd), for all t ∈ R+, we have∣∣∣∣∫

Rd
g(ht)e

−Udθ −
∫
Rd
g(h0)e−Udθ

∣∣∣∣ ≤ ∫ 1

0

∫
Rd
|g′(h0 + ε(ht − h0))||ht − h0|e−U dε dθ

≤ |g′|L∞
∫
Rd
|νt − ν0| dθ ,

which tends to zero as t ↓ 0 by Corollary A.9 and Theorem A.8 (i). Therefore, for all t ∈ R+,∫
Rd
g(ht)e

−Udθ =

∫
Rd
g(h0)e−Udθ +

∫ t

0

∫
hs 6∈D

g′′(hs)∇hs ·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds . (51)

We would like to take g : R+ → R given by g(x) = x lnx− x in (51), but g′ 6∈ C0
b (R+). Nevertheless, if we could, then

for all t ∈ R+,∫
Rd

(ht lnht − ht)e−Udθ =

∫
Rd

(h0 lnh0 − h0)e−Udθ

+

∫ t

0

∫
Rd
∇ lnhs ·

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds ,
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which yields (47).

Instead, we will approximate g(x) = x lnx− x and pass to the limit. Towards this end, as in the proof of (Bogachev et al.,
2018)[Thm. 1.1], we consider the sequence {gk,m}k,m∈N ⊂ C1(R+) defined by

gk,m(x) =


−x ln k x ≤ k−1 ,

x lnx− x+ k−1 k−1 < x ≤ m,

x lnm−m+ k−1 x ≥ m.

Clearly,

g′k,m(x) =


− ln k x ≤ k−1 ,

lnx k−1 < x ≤ m,

lnm x ≥ m,

and g′′k,m(x) =


0 x ≤ k−1 ,

x−1 k−1 < x < m ,

0 x ≥ m,

from which we deduce that g′k,m ∈ C0
b (R+) and supx∈R+−{k,m} xg

′′
k,m(x) = 1. Applying (51), we find that for all t ∈ R+,∫

Rd
gk,m(ht)e

−Udθ =

∫
Rd
gk,m(h0)e−Udθ

+

∫ t

0

∫
k−1<hs<m

∇ lnhs ·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds .

(52)

We will now pass to the limit each term of (52) as k,m→∞. For all k,m ∈ N and t ∈ R+, we have∫
Rd
gk,m(ht)e

−Udθ = − ln k

∫
ht≤k−1

hte
−Udθ +

∫
k−1<ht<m

(ht lnht − ht) e−Udθ

+

∫
m≤ht

(ht lnm−m) e−Udθ + k−1

∫
k−1<ht

e−Udθ .

Since h ≥ 0, for all k,m ∈ N with m ≥ 3 (so that m lnm ≥ m) and t ∈ R+,∫
Rd
gk,m(ht)e

−Udθ ≤
∫
k−1<ht

ht lnhte
−Udθ −

∫
k−1<ht<m

hte
−Udθ + k−1

∫
k−1<ht

e−Udθ

and ∫
Rd
gk,m(ht)e

−Udθ ≥ − ln k

∫
ht≤k−1

hte
−Udθ +

∫
k−1<ht<m

(ht lnht − ht) e−Udθ .

The bound
1ht≤k−1ht ln k ≤ k−1 ln k ≤ sup

x≥1
x−1 lnx = e−1 , ∀(θ, t) ∈ Rd × R+ ,

allows us to apply the dominated convergence theorem to obtain that for all t ∈ R+,

lim
k→∞

ln k

∫
ht≤k−1

hte
−Udθ = 0 .

Clearly, for all t ∈ R+,

lim
k→∞

k−1

∫
k−1<ht

e−Udθ = 0 .

The bound (49) and another application of the dominated convergence theorem imply that for all t ∈ R+,

lim
k,m→∞

∫
k−1<|ht|<m

(ht lnht − ht) e−Udθ =

∫
Rd
ht lnhte

−Udθ − 1

and
lim
k→∞

∫
k−1<|ht|

ht lnhte
−Udθ −

∫
k−1<|ht|<m

hte
−Udθ =

∫
Rd
ht lnhte

−Udθ − 1 .
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Therefore, for all t ∈ R+,∫
Rd
ht lnhte

−Udθ − 1 ≤ lim
k,m→∞

∫
Rd
gk,m(ht)e

−Udθ ≤
∫
Rd
ht lnhte

−Udθ − 1 ,

which yields for all t ∈ R+,

lim
k,m→∞

∫
Rd
gk,m(ht)e

−Udθ =

∫
Rd
ht lnhte

−Udθ − 1 .

Using the bounds

∇ lnht ·
(
∇δJ

τ,0

δν
(νt)−

σ2

2
∇ lnht

)
hte
−U ≤

(
C1|∇ lnht|+

σ2

2
|∇ lnht|2

)
hte
−U , ∀(θ, t) ∈ Rd × R+ ,

and (48), and the dominated convergence theorem, we find that for all t ∈ R+,

lim
k,m→∞

∫ t

0

∫
k−1<hs<m

∇ lnhs ·
(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds

=

∫ t

0

∫
Rd
∇ lnhs ·

(
∇δJ

τ,0

δν
(νs)−

σ2

2
∇ lnhs

)
hse
−U dθ ds .

Combining the above, we pass to the limit in every term of (52) to obtain (47).

A.2.8. PROOF OF THEOREM 2.13 AND MOMENT ESTIMATES

Lemma A.11 (Moment estimates). Let f ∈ A2 and Assumptions 2.5, 2.8, and 2.11 hold. Let (νt)t≥0 be the solution of
(15) with initial condition ν0 ∈ P2(Rd). Then for all ` > 0 and t ∈ R+,∫

Rd
|θ|2νt(dθ) ≤ e−α1,`t

∫
Rd
|θ|2ν0(dθ) +

1

α1,`

(
1

4`

(
2C1 + σ2CU

)
+ dσ2

)
(1− e−α1,`t) , (53)

where α1,` := σ2κ− 2C2 − `. Moreover, if σ2κ > 2C2 and ν∗ ∈ P2(Rd) is a solution of (14), then for all ` > 0 such that
α1,` > 0, ∫

Rd
|θ|2ν∗(dθ) ≤ 1

α1,`

(
1

4`

(
2C1 + σ2CU

)
+ dσ2

)
. (54)

If, in addition, ∇U(0) = 0, then for all ` > 0 and t ∈ R+,∫
Rd
|θ|2νt(dθ) ≤ e−α2,`t

∫
Rd
|θ|2ν0(dθ) +

1

α2,`

(
C1

2`
+ dσ2

)
(1− e−α2,`t) ,

where α2,` := σ2κ− `. An analog of (54) then holds for ν∗ if σ > 0.

Proof. Define b : P2(Rp)× Rd → Rd by b(ν, θ) = ∇ δJτ,0

δν (ν, θ)− σ2

2 ∇U(θ) . Theorem 2.4 and Assumption 2.11 implies
that for all θ, θ′ ∈ Rd and ν, ν′ ∈ P2(Rd),

2(b(ν, θ′)− b(ν, θ)) · (θ − θ′) ≤
(
2C2 − σ2κ

)
|θ′ − θ|2 . (55)

Using (42), (55), and Young’s inequality, we find that for all θ ∈ Rd and ν ∈ P1(Rd) and ` > 0,

2b(ν, θ) · θ ≤ 2b(ν, 0) · θ +
(
2C2 − σ2κ

)
|θ|2 ≤

(
2C1 + σ2CU

)
|θ|+

(
2C2 − σ2κ

)
|θ|2

≤ 1

4`

(
2C1 + σ2CU

)
+
(
2C2 + `− σ2κ

)
|θ|2 , (56)

where C1 is the constant from Theorem 2.4.

There exists a probability triple (Ω,F ,P) supporting a Wiener process (Wt)t≥0 and a random variable θ0 such that
Law(θ0) = ν0 and θ0 is independent of W . Let F = (Ft)t≥0 be the corresponding filtration generated by θ0 and (Wt)t≥0.
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By Theorem 2.10, there exists a unique strong solution (θt)t∈R+
of (17) and νt = Law(θt) for all t ∈ R+. Applying Itô’s

formula and (56), we obtain that for all α′ ∈ R, ` > 0, and t ∈ R+,

d(eα
′t|θt|2) = eα

′t
(
α′|θt|2 + 2b(Law(θt), θt) · θt + dσ2

)
dt+ eα

′t2σθt · dWt

≤ eα
′t

(
(α′ + 2C2 + `− σ2κ)|θt|2 +

1

4`

(
2C1 + σ2CU

)
+ dσ2

)
dt+ eα

′t2σθt · dWt .

Setting α′ = α`, integrating the above, and taking the expectation (using a standard stopping time argument), we complete
the proof of (53).

To obtain (54), notice that ν∗ is a solution of (15), and hence by (53), for all t ≥ 0 and ` > 0,∫
Rd
|θ|2ν∗(dθ) ≤ e−α1,`t

∫
Rd
|θ|2ν∗(dθ) +

1

α1,`

(
1

4`

(
2C1 + σ2CU

)
+ dσ2

)
(1− e−α1,`t) .

Under the assumption σ2κ > 2C2, choosing ` > 0 such that α1,` > 0, we may pass to the limit in the right-hand-side as
t→∞ to derive (54).

If ∇U(0) = 0, then for all θ ∈ Rd and ν ∈ P1(Rd) and ` > 0,

2b(ν, θ) · θ ≤ 2C1|θ| − σ2κ|θ|2 ≤ C1

2`
+ (`− σ2κ)|θ|2 ,

from which the statements follow via a similar argument to the one given above.

Proof of Theorem 2.13. Define bτ,σ : P1(Rp)× Rd → Rd by

bτ,σ(ν, θ) = ∇δJ
τ,0

δν
(ν, θ)− σ2

2
∇U(θ) .

Theorem 2.4 implies that for all θ, θ′ ∈ Rd and ν, ν′ ∈ P1(Rd),

|bσ,τ (ν, θ)− bσ′,τ (ν, θ)| ≤ |σ
2 − σ′2|

2
|∇U(θ)| , (57)

and |bσ,τ (ν, θ)− bσ,τ ′(ν, θ)| ≤ D|τ − τ ′| , (58)

where D is the constant from Theorem 2.4.

There exists a probability space (Ω,F ,P) supporting a Wiener process (Wt)t≥0 and random variables θ0, θ′0 such that
Law(θ0) = ν0, Law(θ′0) = ν′0, and (θ0, θ

′
0) is independent of (Wt)t≥0. By Theorem 2.10, there exists a unique strong

solution (θt)t∈R+
of (17), and νt = Law(θt) for all t ∈ R+. Similarly, there exists a unique strong solution (θ′t)t∈R+

of (17)
with σ and τ replaced by σ′ and τ ′, ν′t = Law(θ′t) for all t ∈ R+.

By Lemma A.11, for all β′ ∈ R and t ∈ R+,

E
∫ t

0

e2β′s
(
|θs|2 + |θ′s|2

)
ds <∞ .

Thus, applying Itô’s formula and taking the expectation, we find that for all β′ ∈ R and t ∈ R+,

d
(
e2β′tE

[
|θt − θ′t|2

])
≤ e2β′tE

[
2β′|θt − θ′t|2 + d|σ − σ′|2

]
dt

+ e2β′tE [2(θt − θ′t) · (bσ,τ (Law(θt), θt)− bσ,τ (Law(θt), θ
′
t))] dt

+ e2β′tE [2|θt − θ′t| |bσ,τ (Law(θt), θ
′
t)− bσ,τ (Law(θ′t), θ

′
t)|] dt

+ e2β′tE [2|θt − θ′t| |bσ,τ (Law(θ′t), θ
′
t)− bσ′,τ (Law(θ′t), θ

′
t)|] dt

+ e2β′tE [2|θt − θ′t| |bσ′,τ (Law(θ′t), θ
′
t)− bσ′,τ ′(Law(θ′t), θ

′
t)|] dt .
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Making use of the identity
W2(Law(θt),Law(θ′t)) ≤ E|θt − θ′t|2 , ∀t ∈ R+ , (59)

the bounds (55),(43),(57), (58), and Young’s inequality, we get that for all β′ ∈ R, ` > 0, and t ∈ R+,

d
(
e2β′tE

[
|θt − θ′t|2

])
≤ e2β′tE

[
(2β′ − σ2κ+ 2C2(τ))|θt − θ′t|2 + 2L(τ)|θt − θ′t|W2(Law(θt),Law(θ′t))

]
dt

+ e2β′tE
[
|σ2 − σ′2||θt − θ′t||∇U(θ′t)|+D|τ − τ ′|+ d|σ − σ′|2

]
dt

≤ (2β′ − σ2κ+ 2C2(τ) + 2L(τ) + 2`|σ2 − σ′2|)e2β′tE
[
|θt − θ′t|2

]
dt

+ e2β′tE
[
|σ2 − σ′2|

8`
|∇U(θ′t)|2 +D|τ − τ ′|+ d|σ − σ′|2

]
dt .

Setting β′ = β`, integrating the above, taking the expectation, and then applying (59), we complete the proof of (18).

To obtain (19), notice that ν∗ and ν′∗ are solutions of (15) with corresponding parameters σ, τ and σ′, τ ′, respectively. Thus,
by (18), for all ` > 0 and t ≥ 0, we have

W 2
2 (ν∗, ν′∗) ≤ e−2β`tW 2

2 (ν∗, ν′∗) +
|σ2 − σ′2|

8`

∫ t

0

e2β`(s−t) ds

∫
Rd
|∇U(θ)|2ν′∗(dθ)

+
1

2β`

(
D|τ − τ ′|+ d|σ − σ′|2

)
(1− e−2β`t) ,

Under the assumption β := σ2

2 κ− C2(τ)− L(τ) > 0, choosing ` > 0 such that β` > 0, we may pass to the limit in the
right-hand-side as t→∞ to derive (19).

A.2.9. PROOF OF THEOREM 2.12

Proof of Theorem 2.12. Owing to (42), (55), (43), and β := σ2

2 κ−C2 − L > 0, (Bogachev et al., 2018)[Thm. 4.1] there is
a unique solution ν∗ of (14). We could also argument employed in (Komorowski & Walczuk, 2012)[Thm. 2.1] combined
with Theorem 2.13 to prove this result. Moreover, by Theorem 2.13, for any solution ν ∈ C(R+;P2(Rd)) of (15) and all
t ∈ R+, we have

W2(νt, ν
∗) ≤ e−βtW2(ν0, ν

∗) (60)

because ν̃t = ν∗, t ∈ R+, is a solution of (15).

We must show that Jτ,σ(ν∗) ≥ Jτ,σ(ν0) for an arbitrary ν0 ∈ P fe
2 (Rd). Let ν ∈ C(R+;P2(Rd)) be the unique solution

of (15) such that ν|t=0 = ν0. We have that limt→∞ νt = ν∗ in W2 by (60). By the continuity of Jτ,0 in W2 (i.e.,
Theorem 2.4), the lower semi-continuity of relative entropy in the 2-Wasserstein topology ((Dupuis & Ellis, 1997)[Lem.
1.4.3]), and by Theorem 2.9, we have

Jτ,σ(ν∗)− Jτ,σ(ν0) ≥ lim sup
t→∞

Jτ,σ(νt)− Jτ,σ(ν0)

= lim sup
t→∞

∫ t

0

∫
Rd

∣∣∣∣∇δJτ,0δν
(νs, θ)−

σ2

2
∇ ln

νs(θ)

e−U(θ)

∣∣∣∣2 νs(dθ) ds ≥ 0 .

Hence, ν∗ is a global maximizer. By Corollary 2.7, we know any local maximizer of Jτ,σ is a solution of (14). However,
equation (14) only has one solution, so ν∗ is the unique maximizer of Jτ,σ .


