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Abstract
The implicit stochastic gradient descent (ISGD),
a proximal version of SGD, is gaining interest
in the literature due to its stability over (explicit)
SGD. In this paper, we conduct an in-depth anal-
ysis of the two modes of ISGD for smooth con-
vex functions, namely proximal Robbins-Monro
(proxRM) and proximal Poylak-Ruppert (proxPR)
procedures, for their use in statistical inference
on model parameters. Specifically, we derive non-
asymptotic point estimation error bounds of both
proxRM and proxPR iterates and their limiting
distributions, and propose on-line estimators of
their asymptotic covariance matrices that require
only a single run of ISGD. The latter estimators
are used to construct valid confidence intervals
for the model parameters. Our analysis is free of
the generalized linear model assumption that has
limited the preceding analyses, and employs fea-
sible procedures. Our on-line covariance matrix
estimators appear to be the first of this kind in the
ISGD literature.

1. Introduction
Consider the optimization problem of the form

min
θ
L(θ) := E[ℓ(Z, θ)] (1)

where θ ∈ Rp is the variable (parameter) of interest, Z is
a random variable, and E[·] denotes the expectation over
the distribution of Z. Function ℓ is a real-valued sample
function, information on which can only be obtained by
observing independent copies of Z. For example, if ℓ refers
to the negative log-likelihood of the model parameter θ
given data Z, then problem (1) reduces to finding the “true
parameter” θ⋆ of the model.
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A popular method for solving problem (1) is the stochastic
gradient descent (SGD) method

θn = θn−1 − γn∇ℓ(Zn, θn−1), (2)

where the gradient is with respect to the second argument
of ℓ. The γn is the algorithm parameter called either step
size or learning rate. Assuming ∇L(θ) = E[∇ℓ(Z, θ)],
∇ℓ(Zn, θ) is an unbiased estimator of ∇L(θ), and SGD
(2) is an instance of stochastic approximation due to Rob-
bins & Monro (1951) for finding the root of ∇L. The past
decade witnessed a renewed interest in the Robbins-Monro
procedure, mainly due to its adaptivity to large-scale data in
machine learning problems (Nemirovski et al., 2009; Bot-
tou, 2010; Bach & Moulines, 2011; Bottou et al., 2018).
In particular, SGD and its variants are among the major
driving forces of deep learning (LeCun et al., 2015; Abadi
et al., 2016). Its convergence property has been extensively
studied (Zinkevich, 2003; Nemirovski et al., 2009; Bach &
Moulines, 2011). More recently, SGD has been studied as
a tool for statistical inference from large datasets (Li et al.,
2018; Liang & Su, 2019; Chen et al., 2020).

A notable issue with SGD is its sensitivity to the step size
selection. If it is too small, the convergence can be arbitrarily
slow; if it is too large, then the iterate {θn} can diverge
(Bach & Moulines, 2011; Ryu & Boyd, 2014).

As an alternative to SGD, consider the following iteration.

θn = proxγnℓ(Zn,·)(θn−1), (3)

where proxγf (θ) = argminθ′∈Rp

{
f(θ′) + 1

2γ ∥θ′ − θ∥2
}

is the proximity operator of f . Here the norm ∥·∥ is the
Euclidean (ℓ2) norm. Using the optimality condition of the
minimand in the definition of the operator, iteration (3) can
be written as an implicit equation

θn = θn−1 − γn∇ℓ(Zn, θn). (3′)

Iteration (3) can be considered as a noisy version of the
proximal point algorithm due to Rockafellar (1976), in-
troduced to alleviate the sensitivity to the step size in the
(noiseless) gradient descent method. Being relatively new in
the literature, iteration (3) has been called in various names:
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incremental proximal method (Bertsekas, 2011), stochas-
tic proximal point method (Ryu & Boyd, 2014; Bianchi,
2016), and implicit SGD (ISGD, Toulis et al., 2014; Toulis
& Airoldi, 2017a).

Convergence of ISGD is studied for the finite population
case (Bertsekas, 2011). For infinite population, its stability
(that the iterates do not diverge) and asymptotic rate of
convergence are studied in Toulis et al. (2014); Ryu & Boyd
(2014). Non-asymptotic estimation error bounds are studied
in Toulis & Airoldi (2017a); Patrascu & Necoara (2017);
Asi & Duchi (2019). These results can be summarized as
that ISGD enjoys the same asymptotic rate of convergence
as (explicit) SGD, while the former is much more stable and
less sensitive to the choice of the step size.

Asymptotic normality of the ISGD is shown in Toulis &
Airoldi (2017a) under several assumptions. However, the
result of Toulis & Airoldi (2017a) is limited by the as-
sumption that the sample function ℓ takes the form of
ℓ(Z, θ) = g(XT θ, Y ) where Z = (X,Y ), which we shall
call the generalized linear model (GLM) assumption. While
the GLM model family is one of the most widely used in
practice and the GLM assumption simplifies the computa-
tion of the proximity operator, it may not fit when dealing
with the general problem (1). For example, consider esti-
mating the α quantile of a univariate distribution with CDF
F (θ). Then ℓ(Z, θ) = max(0, θ−Z)−α(θ−Z) where Z
is drawn from F . This function does not satisfy the GLM
assumption. In addition, it is assumed that the Fisher infor-
mation matrix coincides with the Hessian of the objective
function L, which is not in general true unless ℓ is the neg-
ative log-likelihood of P . Furthermore, Toulis & Airoldi
(2017a) assume that L is both globally Lipschitz and glob-
ally strongly convex, a contradiction (Bach & Moulines,
2011; Asi & Duchi, 2019).

These restriction and contradiction are relaxed in some sense
by Toulis et al. (2021), who consider the proximal Robbins-
Monro procedure that idealizes ISGD:

θ+n = proxγnL(θn−1),

θn = θn−1 − γn∇ℓ(Zn, θ
+
n ),

(4)

and show asymptotic normality of θn under the assumption
that L is locally strongly convex at θ⋆ and the gradient of
L is globally Lipschitz (Toulis et al., 2021, Theorem 2.4).
Nevertheless, procedure (4) is not feasible since θ+n cannot
be computed (L is unknown or difficult to compute). ISGD
(3) can be understood as a plug-in procedure mimicking
(4), since θn in (3) is an unbiased estimator of θ+n . In the
sequel, we shall call the ISGD iteration (3) simply proximal
Robbins-Monro (proxRM) and distinguish it from (4) by
calling the latter the idealized proxRM. Unlike the idealized
counterpart, the consistency (convergence) and limiting dis-
tribution of proxRM has not been studied well, except for

the special case mentioned above.

In the explicit SGD literature, averaging the iterates, known
as the Polyak-Ruppert averaging (Polyak & Juditsky, 1992;
Ruppert, 1988) has been studied as a means to achieve the
optimal asymptotic rate and adapt to large step sizes (Bach
& Moulines, 2011). Averaging the ISGD iterates (3), i.e.,
taking θ̄n = 1

n

∑n−1
k=0 θk, can thus be called the proximal

Polyak-Ruppert (proxPR) procedure. Asymptotic normality
of proxPR is shown by Asi & Duchi (2019). However, non-
asymptotic (point) estimation error bounds, which capture
the transient behavior of {θ̄n}, has not been studied well,
although was conjectured to improve the rate (Toulis et al.,
2021).

The goal of this paper is to fill these gaps in the literature, as
well as to propose a device for efficient statistical inference
with ISGD, in line with the similar works in explicit SGD
(Li et al., 2018; Liang & Su, 2019; Chen et al., 2020). The
latter goal is important since it enables to construct a valid
confidence interval for the true parameter. Building the
interval on-line is also important as it means a single run of
ISGD iteration suffices for legitimate inference.

Contributions. Specifically, our contributions are as fol-
lows. (i) We extend the work by Toulis & Airoldi (2017a)
on proxRM for GLM models to non-GLM settings. The
relevant results include a non-asymptotic error bound on
model parameter estimation, stability of the procedure, and
its asymptotic normality under strong convexity. (ii) We
elucidate that the above properties agree with those of the
idealized proxRM (Toulis et al., 2021), thereby asserting the
feasibility of the procedure. (iii) We derive a non-asymptotic
estimation error bound for proxPR, featuring the transient
behavior of averaged ISGD. (iv) We propose consistent on-
line estimators of the asymptotic covariance matrices of
both proxRM and proxPR iterates, enabling statistical infer-
ence on the model parameter. In addition to these results
toward statistical inference, which requires strong convexity
for identifiability of the parameter, (v) we provide a non-
asymptotic analysis of the two procedures in the absence
of strong convexity. In particular, we show that proxPR
achieves the minimax optimal rate up to a logarithmic fac-
tor, confirming the conjecture by Toulis et al. (2021). Table 1
summarizes the contributions.

2. Preliminary
Let us begin with formally defining the objective function
of problem (1).

L(θ) ≜ E[ℓ(Z, θ)] =

∫
Ω

ℓ(z, θ)dP (z),

where z is an element of the probability space (Ω,F , P ),
for which the probability measure P can be considered as
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Table 1. Summary of contributions to implicit SGD. Learning rate schedule (R) is assumed.
GLM free Feasibility Non-asymptotic Asympt. normality Inference

Toulis & Airoldi (2017a) ✗ ✓ ✓ (RM) ✓ (RM) ✗
Patrascu & Necoara (2017) ✓ ✓ ✓ (RM) ✗ ✗

Asi & Duchi (2019) ✓ ✓ △ (PR)* ✓ (PR) ✗
Toulis et al. (2021) ✓ ✗ ✓ (RM) ✓ (RM) ✗
This work ✓ ✓ ✓ (RM, PR) ✓ (RM) ✓ (RM, PR)
* Restricted to a certain class of “easy” problems. RM = proximal Robbins-Monro; PR = proximal Polyak-Ruppert.

the distribution of a random variable Z : Ω → Ω : z 7→ z.
In most practical situations Ω is the Euclidean space Rm, F
is the Borel sets of Rm. The sample function ℓ : Ω×Rp →
R is a real-valued. The ISGD procedure is implemented
by sampling Z1, . . . , Zn, . . . from P independently and
applying the update equation (3). Finally, the filtration Fn

is the smallest σ-algebra generated by Z1, . . . , Zn.

We make the following basic assumptions on the sample
function ℓ.

Assumption A1. Function ℓ(z, ·) is real-valued convex
function in Rp for each z ∈ Ω; Function ℓ(·, θ) is integrable
for each θ ∈ Rp.

Assumption A2. Function ℓ(Z, ·) is β(Z)-smooth almost
surely (a.s.), with E[β2(Z)] = β2

0 < ∞ around a
minimizer θ⋆ of L(·) = E [ℓ(Z, ·)]. That is, a sample
function ℓ(Z, θ) is continuously differentiable in θ and
∥∇ℓ(Z, θ)−∇ℓ(Z, θ⋆)∥ ≤ β(Z) ∥θ − θ⋆∥ for all θ, with
probability one.

Definition 2.1 (M -convexity (Ryu & Boyd, 2014)). An
extended real-valued function f : Rp → R ∪ {∞} is called
M -convex at x ∈ Rp for a symmetric, positive semidefinite
matrix M ∈ Rp×p (denoted by M ⪰ 0) if for s ∈ ∂f(x)

f(y) ≥ f(x)+sT (y−x)+ 1
2 ∥y − x∥2M , ∀y ∈ Rp, (5)

where ∥z∥M = (zTMz)1/2.

Assumption A3. Suppose θ⋆ minimizes L(θ) = E[ℓ(Z, θ)].
Then ℓ(Z, ·) is Λ(Z)-convex at θ⋆ a.s. with Λ(Z) ⪰ 0 and
Λ0 = E[Λ(Z)] is positive definite so that λ = λmin(Λ0) >
0, where λmin(M) is the smallest eigenvalue of symmetric
matrix M .

Assumption A4. E ∥∇ℓ(Z, θ⋆)∥2 ≤ σ2 <∞.

Remark 2.1. If f is differentiable, then condition (5) is
equivalent to

(y − x)T (∇f(y)−∇f(x)) ≥ ∥y − x∥2M .

Observe that if f is M -convex, then it is µI-convex with
µ = λmin(M), where I is the identity matrix. The latter is
equivalent to the standard notion of µ-convexity (if µ > 0,
then f is strongly convex) (Bauschke & Combettes, 2011).

Remark 2.2. From Assumptions A1, A2, and A4 the ob-
jective function L(θ) = E[ℓ(Z, θ)] is well-defined for all

θ ∈ Rp. Furthermore, L is continuously differentiable and
its gradient has a representation ∇L(θ) = E[∇ℓ(Z, θ)]
(Bertsekas, 1973). Assumption A3 implies thatL is λ-convex
at θ⋆. Since λ > 0, it also implies that the minimizer θ⋆ is
unique.

Throughout, we fix the learning rate schedule as follows.

γn = γ1n
−γ for some γ1 > 0 and γ > 0. (R)

The valid range of the exponent γ depends on the algorithm
and the conditions on L; the subsequent discussions will
elaborate on this.

Notation. We employ the following asymptotic notation.
For a sequence of random vectors/matrices {An} defined
on (Ω,F , P ) and a positive scalar sequence {bn}, An =
O(bn) means E[∥An∥] ≤ cbn for some c > 0 and for all
n = 1, 2, . . . . On the other hands, An = o(bn) means
E[∥An∥]/bn → 0 as n → ∞. Here the norm ∥·∥ refers to
the (operator) 2-norm. Notation bn ↓ 0 means that {bn} is
positive and converges monotonically toward zero.

3. Approximation of ISGD by SGD
The results presented in Sects. 4 and 5 rely on the fol-
lowing proposition bounding the difference between ISGD
(proxRM) and (explicit) SGD iterates. This result holds
without strong convexity.

Proposition 3.1 (Approximation of ISGD by SGD). In
addition to Assumptions A1, A2, and A4, also assume that a
minimizer θ⋆ of L exists (not necessarily unique). Then,

θn = θn−1 − γn∇ℓ(Zn, θn−1) +Rn,

with

E [∥Rn∥|Fn−1]≤γ2nβ2
0 ∥θn−1−θ⋆∥+

γ2
n

2 (β2
0+σ

2) (6a)

E [∥Rn∥2 |Fn−1] ≤ 8γ2nβ
2
0 ∥θn−1 − θ⋆∥2 + 8γ2nσ

2 (6b)

E ∥Rn∥ ≤ γ2n[β
2
0(r + 1/2) + σ2/2] (6c)

E ∥Rn∥2 ≤ 8γ2n(β
2
0r

2 + σ2), (6d)

where r =
(
∥θ0 − θ⋆∥2 + σ2

∑∞
k=1 γ

2
k

)1/2
. Inequalities

(6a) and (6b) hold for γ ∈ (0, 1], and inequalities (6c) and
(6d) hold for γ ∈ (1/2, 1].
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Proposition 3.1 relies on the following intermediate result:

Lemma 3.1. Under Assumptions A1, we have

∥θn − θn−1∥ = γn ∥∇ℓ(Zn, θn)∥ ≤ γn ∥∇ℓ(Zn, θn−1)∥ .

Proposition 3.1 and Lemma 3.1 jointly play the role of The-
orem 3.1 in Toulis & Airoldi (2017a), which states that
∇ℓ(Zn, θn) has the same direction as ∇ℓ(Zn, θn−1) under
the GLM assumption, expressing ISGD as a variant of SGD.
In the absence of this special relation, knowing that the
norm of Rn is O(γ2n), not just O(γn) as can be inferred
from ∥Rn∥2 = O(γ2n), is crucial since it allows (in prin-
ciple) the techniques of bounding the estimation errors of
explicit SGD (e.g., Bach & Moulines, 2011) can be em-
ployed by controlling the impact of the additional term Rn

(e.g., Theorem 4.1). Furthermore, in the proof of asymp-
totic normality (Theorem 4.3), Proposition 3.1 is used to
obtain the o(γ3/2n ) = n−

3
2γ ·o(1) error term in the recursive

equation for the estimation error θn − θ⋆ (see Eqs. (A.16)
and (A.17)). The resulting recursion admits the use of the
central limit theorem due to Fabian (1968, Theorem 2.2) for
classical stochastic approximation (including the explicit
SGD) can be employed almost directly. Proposition 3.1 is
also indispensable (through Theorem 4.3) in showing consis-
tency of the proposed on-line estimators of the asymptotic
covariance matrices (Theorem 4.4 and Corollary 4.1).

4. Strongly convex objectives
4.1. Proximal Robbins-Monro

4.1.1. STABILITY

Under Assumptions A1–A4, Bianchi (2016) and Asi &
Duchi (2019, Proposition 3.8) show that the proxRM it-
erate θn converges to the unique solution θ⋆ a.s. A finite-
sample (non-asymptotic) mean-squared error bound of θn
in estimating model parameter θ⋆ is obtained by Patrascu
& Necoara (2017, Theorem 14) for γ ∈ (0, 1]. A simpler
bound for γ ∈ (1/2, 1] can be found as follows. We provide
the proof in Appendix A since it shows how the analysis of
Toulis & Airoldi (2017a) extends to non-GLM settings (and
without the contradictory assumptions).

Definition 4.1. ϕγ(n) ≜ (n1−γ − 1)/(1− γ) if γ ̸= 1, and
ϕγ(n) ≜ log n if γ = 1.

Theorem 4.1 (Non-asymptotic point estimation error
bound). Under Assumptions A1–A4, for any initial step
size γ1 > 0 when γ ∈ (1/2, 1) and for γ1 > 1/(2λ) when
γ = 1, there exist a fixed integer n0 and constants K1, Dn0

such that

E ∥θn − θ⋆∥2 ≤ K1n
−γ + exp

(
− 1

2 log(1 + 2λγ1)ϕγ(n)
)

× (∥θ0 − θ⋆∥2 +Dn0), n ∈ N. (7)

All of the constants in inequality (7) are explicit, and are
presented at the end of the proof given in Appendix A.3.

The result of Theorem 4.1 can be summarized as
E ∥θn − θ⋆∥2 = O(γn). This asymptotic rate of O(n−γ)
matches that of SGD (Bach & Moulines, 2011) and the
idealized proxRM with the same learning rate schedule (R)
with γ ∈ (0, 1]. For γ < 1, the effect of the initial point is
forgotten at an exponential rate (second term in the right-
hand side of the inequality (7)). For γ = 1, the rate is also
O(γn) provided that γ1 ≥ (e2 − 1)/(2λ), although the “ex-
ponential forgetting” behavior is not so much prominent (it
is polynomial). Either way, this insensitivity to the initial
step size is one that features ISGD in contrast to SGD, where
in the latter the impact of the initial point may exponentially
increase with the initial step size γ1 in the transient phase
(Bach & Moulines, 2011), while in the former it always
decreases.

The stability of proxRM can also be formalized in a non-
MSE fashion. In order to analyze the error θn − θ⋆ (not
∥θn − θ⋆∥2), we need an additional assumption:
Assumption B1. The objective function L is twice differen-
tiable at θ⋆.

The Hessian ∇2L of L at θ⋆ is denoted by H(θ⋆). Note
0 < λ ≤ λmin(H(θ⋆)).
Theorem 4.2 (Stability). Under Assumptions A1–A4 and
B1, if γ ∈ (1/2, 1) or γ = 1 and γ1 ≥ (e2 − 1)/λ, then the
proxRM iterate {θn} satisfies the following.

E[θn − θ⋆] = Qn
1 (θ0 − θ⋆) + o(1) (8)

where Qn
1 =

∏n
i=1[I + γiH(θ⋆)]

−1.

In contrast, if {ϑn} denotes the explicit SGD iterate (started
from the same initial point), then

E[ϑn − θ⋆] = Pn
1 (θ0 − θ⋆), Pn

1 =

n∏
i=1

[I − γiH(θ⋆)],

ignoring the remainder term in the second-order Taylor
expansion of L at θ⋆. To avoid the explosion of the leading
eigenvalue of Pn

1 , it is desirable to control the initial step
size γ1 < 2/λmax(H(θ⋆)) ≤ 2/λ. In other words, in SGD
the initial step size should not be large. On the other hand,
in proxRM the eigenvalues of Qn

1 is always strictly smaller
than 1 regardless of the choice of γ1 (when γ < 1). Thus
in proxRM the step sizes can be taken large to promote fast
convergence. A similar informal discussion can be found in
(Toulis & Airoldi, 2017a, Sect. 2.5); we derive equation (8)
formally under weaker assumptions on differentiablility and
without the GLM model.

4.1.2. INFERENCE

Asymptotic normality. The following result generalizes
that of Toulis & Airoldi (2017a) under weaker differentia-
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bility assumptions and without the GLM model. As already
mentioned in Sect. 3, the key instrument for deriving this
result is Proposition 3.1, which quantifies the degree of ap-
proximation to SGD by ISGD. Our proof also fixes a flaw
in the proof of Toulis & Airoldi (2017a, Theorem 2.4); see
Remark A.1.

In order to establish asymptotic normality, we need addi-
tionally the following assumption on the stochastic error:
Assumption B2. Let σ2

n,s = E(I∥εn(θ⋆)∥2≥s/γn
∥εn(θ⋆)∥)

where εn(θ⋆) = ∇ℓ(Zn, θ⋆)−∇L(θ⋆). Then for all s > 0,∑n
i=1 σ

2
i,s = o(n) if γ = 1, and σ2

n,s = o(1) otherwise.

Theorem 4.3 (Asymptotic normality). Suppose Assump-
tions A1– A4 and B1–B2 hold. Then, the proxRM iterate θn
is asymptotically normal, such that

nγ/2(θn − θ⋆)
d→ Np(0,Σ) (9)

where

Σ =

{
γ21L−1

2γ1H(θ⋆)−I(I(θ⋆)), γ = 1, γ1 ≥ e2−1
λ ,

γ21L−1
2γ1H(θ⋆)

(I(θ⋆)), γ ∈ (1/2, 1),

(10)
for I(θ⋆) = E[∇ℓ(Z, θ⋆)∇ℓ(Z, θ⋆)T ]. Here, L−1

P denotes
the inverse operator of the Lyapunov linear map LP (X) =
1
2 (PX +XP ) for symmetric, positive definite matrix P .

Remark 4.1. The inverse of the Lyapunov map has a closed
form:

vec(L−1
2B(Y )) = (I ⊗B +B ⊗ I)−1 vec(Y )

where ⊗ denotes the Kronecker product and vec(·) refers to
the usual vectorization operator for matrices.

Theorem 4.3 emphasizes that, in order for proxRM to con-
verge (in distribution), γ1 > 1/(2λ) ≥ 1/[2λmin(H(θ⋆))]
is necessary, at least for γ = 1. (Note γ1 ≥ (e2 − 1)/λ
implies this condition.) Thus in proxRM a large initial step
is promoted, rather than prohibited for a stability concern as
in explicit SGD; see the discussion after Theorem 4.2.

Estimation of the asymptotic covariance matrix. An ob-
vious way of consistently estimating the the covariance ma-
trix Σ of the asymptotic distribution (9) is to run n proxRM
iterations B times independently, and take

B−1
∑B

i=1(θ
(i)
n − θ̄)(θ

(i)
n − θ̄)T , (11)

where θ(i)n denotes the nth iterate for the ith run. This
estimator is of course not very practical since many runs
are required. Here we show a consistent estimator based
on only a single run can be constructed. Specifically, we
propose to use

Σ̂n =

{
γ21L−1

2γ1Ĥn−I
(În), γ = 1, γ1 ≥ e2−1

λ ,

γ21L−1

2γ1Ĥn
(Ĥn), γ ∈ (1/2, 1),

where

Ĥn =
1

n

n∑
k=1

∇2ℓ(Zk, θk−1),

În =
1

n

n∑
k=1

∇ℓ(Zk, θk−1)∇ℓ(Zk, θk−1)
T

(12)

are plug-in estimators of H(θ⋆) and I(θ⋆), respectively. It
is clear that both Ĥn and În can be computed in an on-line
fashion, so can Σ̂n. Since Ĥn may not be positive definite
in practice, a bit of adjustment on its eigenvalues may be
needed to ensure invertibility (see Remark 4.1).

In Theorem 4.4 below, we show that with additional regula-
tory assumptions along with the positive-definite adjustment,
Σ̂n is a consistent estimator of Σ, from which valid infer-
ence on θ⋆ can be implemented. The following assumptions
are adopted from Chen et al. (2020).

Assumption B3. For the error sequence εn = ∇L(θn−1)−
∇ℓ(Zn, θn−1), the fourth conditional moment is bounded
as follows.

E[∥εn∥4 |Fn−1] ≤ Σ3 +Σ4 ∥θn−1 − θ⋆∥4

for some constants Σ3 and Σ4.

Assumption B4. The sample function ℓ(Z, ·) is twice dif-
ferentiable a.s., and is M -Lipschitz continuous at the mini-
mizer θ⋆ of L(·) = E [ℓ(Z, ·)]. That is, ∇2ℓ(Z, θ) exists for
all θ and

∥∥∇2ℓ(Z, θ)−∇2ℓ(Z, θ⋆)
∥∥ ≤M ∥θ − θ⋆∥ for all

θ, with probability one.

Assumption B5. The sample function ℓ(Z, ·) is twice differ-
entiable a.s. The second moment of the Hessian is bounded:∥∥E[(∇2ℓ(Z, θ⋆))

2]− [H(θ⋆)]
2
∥∥ ≤ L4

for some constant L4.

Remark 4.2. According to Lemma 3.1 of Chen et al. (2020),
Assumption B3 is satisfied if ||∇2ℓ(θ, Z)|| ≤ H(Z) for
some H with a bounded fourth moment, Thus, it can be eas-
ily checked that these assumptions hold for common losses
such as quadratic or logistic loss. In fact Assumptions B3–
B5 correspond to part 3 of Assumption 3.2 and Assumption
4.1 of Chen et al. (2020). Note part 2 of their Assumption
3.2 is not used in the present paper.

Theorem 4.4 (Consistency of plug-in estimator). Suppose
Assumptions A1–A4, B1, and B3–B5 hold. Let Ĥn and În
be as given in Equation (12). Let β+ = 1 if γ = 1 and
β+ = 0 otherwise. Choose δ ∈ (β+/(2γ1), λmin(H(θ⋆)))
and let H̃n = P diag(max(d1, δ), . . . ,max(dp, δ))P

T for
the spectral decomposition P diag(d1, . . . , dp)P

T of Ĥn.
Then, for the asymptotic covariance matrix (10),

E
∥∥∥γ21L−1

2γ1H̃n−I
(În)− Σ

∥∥∥ = O(γ1/2n )
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if γ = 1, γ1 ≥ e2−1
λ , 2γ1H(θ⋆) ≻ I; if γ ∈ ( 12 , 1),

E
∥∥∥γ21L2γ1H̃n

(În)− Σ
∥∥∥ = O(γ1/2n ).

Thus the 100(1− α)% confidence interval for the j-th com-
ponent of θ⋆ can be approximated by θn,j ±zα/2σ̂n,j where
zα/2 is the 1− α/2 quantile of the standard normal distri-
bution, and

σ̂n,j =

n−1/2γ1

√
[L2γ1H̃n−I(În)]jj , γ = 1,

n−γ/2γ1

√
[L2γ1H̃n

(În)]jj , γ ∈ (1/2, 1).

(13)

4.2. Proximal Polyak-Ruppert

4.2.1. STABILITY

With slightly stronger assumptions on the objective function,
the stability of proxPR can be analyzed:

Assumption A2′. Function ℓ(Z, ·) is β0-smooth a.s. around
the minimizer θ⋆ of L(·) = E [ℓ(Z, ·)]. That is, a sam-
ple function ℓ(Z, θ) is continuously differentiable in θ and
∥∇ℓ(Z, θ)−∇ℓ(Z, θ⋆)∥ ≤ β0 ∥θ − θ⋆∥ for all θ, with
probability one.

Assumption A4′. E ∥∇ℓ(Z, θ⋆)∥4 ≤ σ4 <∞.

Note Assumption A2′ (resp. A4′) implies Assumption A2
(resp. A4).

Theorem 4.5 (Non-asymptotic point estimation error
bound). Under Assumptions A1, A2′, A3, A4′, B1, and B4,
for θ̄n = 1

n

∑n−1
k=0 θk, the following holds for γ ∈ (1/3, 1).

(E
∥∥θ̄n − θ⋆

∥∥2)1/2 ≤ 1√
n

[
tr (H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1)
]1/2

+
K

1/2
1

λ1/2n

(
(β0 + γ−1

1 )nγ/2 + 2β0ϕ
1/2
γ (n)

+ γ(β0 + γ−1
1 )ϕ1−γ/2(n) +

M
2 ϕγ(n)

)
+ Ã

λ1/2n
+ MB̃

2λ1/2n

+
β0+γ−1

1

λ1/2 exp
(
− 1

4 log(1 + 2λγ1)ϕγ(n)
)

× (∥θ0 − θ⋆∥2 +Dn0
)1/2, (14)

where n0,K1, Dn0 are the same as in Theorem 4.1.

The constants Ã and B̃ in inequality (14) are explicit, and
are presented at the end of the proof given in Appendix A.7.

Compared with the (explicit) SGD (Bach & Moulines, 2011,
Theorem 3), the allowed range of γ is a bit narrower. (This
is due to Lemma A.2 and Corollary A.1 in the Appendix A.)
However, when M > 0, to obtain the optimal O(1/n) rate
(in mean square error) independent of γn, we need γ ∈
(1/2, 1], just as SGD (for γ = 1 we get a simpler bound

by averaging the bound in Theorem 4.1); when M = 0 (L
is quadratic) then the rate is O(1/n) for all γ ∈ (1/3, 1].
The second slowest term has an order of either O(n−(2−γ))
or O(n−(1+γ)) due to the second line in inequality (14),
suggesting γ = 2/3 to get a balance.

The rate of “forgetting the initial condition” consists of
two parts, one with the rate of O(1/n2) involving quan-
tities Ã and B̃ and the other with an exponential rate of
O(exp

(
− 1

2 log(1 + 2λγ1)ϕγ(n)
)
). Furthermore, the con-

stant B̃ can be quite large: it involves the term exponential
in ϕ 5

3γ
(k), which is increasing if γ < 3/5 (see Appendix A).

Thus, unlike proxRM, the impact of the initial condition
many remain for a long time, and this is what we observed
in the experiments in Sect. 6. Like in SGD, having a burn-in
period before taking averages appears to be beneficial.

The key difference between proxPR the forward Polyak-
Ruppert (averaged explicit SGD) is that there is no expo-
nential term multiplied to the constant B̃ in (14), which
corresponds to the constant “A” in Theorem 3 of Bach &
Moulines (2011). Thus there is no “catastrophic term” in
proxPR. This suggests that we can take γ1 large.

Remark 4.3. In Toulis et al. (2016), a non-asymptotic error
bound with rate O(1/n) for any γ ∈ (1/2, 1] is obtained
for the averaged iterate, however under the contradictory
assumption that the objective function L is both globally
Lipschitz and globally strongly convex, as well as the GLM
assumption. In particular, their Lemma 5 crucially depends
on the Lipschitz continuity of L.

4.2.2. INFERENCE

Asymptotic normality. The asymptotic normality of
proxPR, i.e., that of θ̄n = 1

n

∑n−1
k=0 θk, is estab-

lished in Asi & Duchi (2019, Theorem 3.11) for
γ ∈ (1/2, 1). The asymptotic covariance matrix is
n−1H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1, which achieves the Cramér-

Rao lower bound. Its rate of vanishing matches that of the
asymptotic covariance matrix of the proxRM iterate θn, but
θ̄n is statistically more efficient.

Estimation of the asymptotic covariance matrix. The
proof of Theorem 4.4 involves consistency of Ĥn and
În in estimating H(θ⋆) and I(θ⋆) respectively (see
Lemma A.4) and that H̃n is asymptotically equivalent
to Ĥn. Hence H̃−1

n ÎnH̃
−1
n is a consistent estimator of

H(θ⋆)
−1I(θ⋆)H(θ⋆)

−1, the asymptotic covariance ma-
trix of the scaled Polyak-Ruppert average

√
nθ̄n =

1√
n

∑n−1
k=0 θk. It follows:

Corollary 4.1 (Plug-in estimator). Suppose Assumptions
A1–A4, B1, and B3–B5 hold. Then, for H̃n and În as
appeared in Theorem 4.4 and for γ ∈ (1/2, 1),

E
∥∥∥H̃−1

n ÎnH̃
−1
n −H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1
∥∥∥ = O(γ1/2n ).
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An asymptotic 100(1−α)% confidence interval for the j-th
component of θ⋆ is given by θ̄n,j ± zα/2σ̃n,j where

σ̃n,j = n−1/2
√
[H̃−1

n ÎnH̃
−1
n ]jj , γ ∈ (1/2, 1). (15)

5. Non-strongly convex objectives
5.1. Proximal Robbins-Monro

In this and the next subsection, we do not assume that the
objective function L is strongly convex. However we do
assume that the minimum is attained. In other words, we
replace Assumption A3 with a weaker one:

Assumption A3′. There exists a minimizer θ⋆ of the objec-
tive L. The minimizer may not be unique.

Since the minimizer is not unique, we derive a finite-sample
bound on the objective value.

Theorem 5.1 (Non-asymptotic optimization error bound).
Under Assumptions A1, A2′, A3′, and A4, the following
holds for the proxRM iterate (3):

E [L(θn)− L(θ⋆)] ≤
Γ1 · δ0+γ2

1(1+ϕ2γ(n))
ϕ1−γ/2(n)−ϕ1−γ/2(n1−1) , γ ∈ (0, 12 ],

Γ2 · δ0+γ2
1ζ(2γ)

ϕ1−γ/2(n)−ϕ1−γ/2(n1−1) , γ ∈ ( 12 ,
2
3 ),

Γ3 · δ0+γ2
1ζ(2γ)

ϕγ(n)−ϕγ(n1−1) , γ ∈ [ 23 , 1],

for n ≥ n1 ≜ max{inf{n ∈ N : γn ≤ 1/β0}, 3}, where
δ0 = ∥θ0 − θ⋆∥2; ζ(α) =

∑∞
k=1 k

−α is the Riemann zeta
function.

The constants Γ1, Γ2, and Γ3 are explicit, and are presented
at the end of the proof given in Appendix A.8.

This bound is decreasing only if γ > 2/5. Thus the rate
is O(n−(1−5γ/2)) if 2/5 < γ < 1/2, O(n−1/4 log n) if
γ = 1/2, O(n−γ/2) if 1/2 < γ < 2/3, O(n−(1−γ)) if
2/3 < γ < 1, and O(1/ log n) if γ = 1. The best rate is
attained for γ = 2/3 which is O(n−1/3). This is the same
rate as the explicit SGD counterpart (Bach & Moulines,
2011, Theorem 4), while the latter is valid for γ ∈ [1/2, 1].
Furthermore, no catastrophic term appears in the bounds in
Theorem 5.1.

The convergence rates and stability implied in Theorem 5.1
fully agree with Toulis et al. (2021, Theorem 2) obtained
for the idealized, but infeasible, proxRM procedure (γ ∈
(1/2, 1]). Therefore, realizing the ideal procedure (4) by
equation (3) loses nothing.

5.2. Proximal Poylak-Ruppert

Theorem 5.2 (Non-asymptotic optimization error bound).
Under Assumptions A1, A2′, A3′, and A4, the following

holds.

E [L(θ̄n)− L(θ⋆)] ≤

Γ̃1

n +
σ2γ2

1

(1−2γ)nγ + 2σ̃2γ1

(1−γ)nγ , γ ∈ (0, 12 ),
Γ̃2

n +
σ2γ2

1(1+logn)√
n

+ 2σ̃2γ1

(1−γ)
√
n
, γ = 1

2 ,

Γ̃3

n +
σ2γ2

1ζ(2γ)
n1−γ + 2σ̃2γ1

(1−γ)nγ , γ ∈ ( 12 , 1),
Γ̃3

n + σ2γ21ζ(2) +
2σ̃2γ1 logn
(1−γ)n , γ = 1

for n ≥ n∗ ≜ inf{k ∈ N : (1− γkβ0) ≥ 1/2}. Also,

E [L(θ̄n)− L(θ⋆)] ≤
β0

2

(
δ0 +

σ2γ2
1

(1−2γ)(2−2γ)n
1−2γ

)
, γ ∈ (0, 12 ),

β0

2

(
δ0 + σ2γ21

log(n+1)
n

)
, γ = 1

2 ,

β0

2

(
δ0 +

σ2γ2
1ζ(2γ)
n

)
, γ ∈ ( 12 , 1],

for n < n∗, where δ0 = ∥θ0 − θ⋆∥2.

The constants Γ̃1, Γ̃2, Γ̃3, and σ̃2 are explicit, and are pre-
sented at the end of the proof given in Appendix A.9.

The convergence rate can be summarized as O(n−γ ∨
n−(1−γ)). Thus with γ = 1/2, we attain the minimax
optimal asymptotic rate of O(n−1/2) (Ruppert, 1988) up to
a logarithmic factor. We have thereby confirmed the conjec-
ture by Toulis et al. (2021, Remark 3.1) that the minimax
rate may be achieved by averaging the (ideal) proxRM it-
erates, i.e., proxPR. Moreover, our procedure is feasible.
Compared to explicit SGD (Bach & Moulines, 2011, Theo-
rem 6), again no catastrophic term is involved and the initial
step size γ1 can be taken large to obtain the best rate.

6. Experiments
6.1. Point estimation and optimization

Figure 1. Error reduction for various learning rates.
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Figure 2. Error reduction for various values of initial step size.

Following Bach & Moulines (2011), we examined the
convergence behavior of proxRM and proxPR using two
univariate functions: L(θ) = 1

2θ
2 (strongly convex) and

L(θ) = 1
4θ

4 (non-strongly convex); the sample functions
were chosen ℓ(Z, θ) = 1

2θ
2 +Zθ and ℓ(Z, θ) = 1

4θ
4 +Zθ,

where Z ∼ N(0, 42). We fixed the initial point θ0 = 10
for the quadratic and θ0 = 2 for the quartic function, and
observed 100 independent runs of n = 106 ISGD iterations
for initial step size γ1 ∈ {1/5, 1, 5, 20, 100} and exponent
γ ∈ {1/5, 1/3, 2/5, 1/2, 2/3, 1}.

Figs. 1 and 2 plot the squared estimation (∥θn − θ⋆∥2) or
optimization (L(θn)−L(θ⋆)) error averaged over all replica-
tions for each iteration. The trend generally aligns with the
results in Sects. 4 and 5. First, several instances of proxPR
showed slower reduction than proxRM in the early stage
of the iteration, as expected by the theory. For the strongly
convex case, the error reduction was proportional to γ in
proxRM and at the same fastest convergence rate in proxPR
for all values except for γ = 1, for which too small an ini-
tial step size showed a noticeable slowdown. For a given γ,
the rate was proportional to γ1 in proxRM, ending up with
parallel lines in Fig. 2; in proxPR, the rate was independent
of γ and γ1. Note that an initial step size as large as 100
was allowed, with no explosion, confirming the stability of
ISGD over SGD. For the non-strongly convex case, γ = 1
was the fastest among proxRM if γ1 was not too small but
became the slowest among proxPR, for which slower decays
led to faster convergence.

6.2. Interval estimation and inference

To evaluate the performance of the plug-in estimators of the
asymptotic covariance matrices (Theorem 4.4 and Corol-
lary 4.1), we conducted statistical inference on model pa-
rameters in linear regression and quantile estimation models
using ISGD; see Chen et al. (2020); Toulis et al. (2021).
Based on the observations on proxPR in the previous sub-
section, we discarded the first tenth of the iterations when
calculating H̃n, În, and θ̄n. Then, we gathered the average
rate of the nominal 95% confidence interval (13), (15) cov-
ering θ∗ for each coordinate (“cover”), mean squared error
from θ∗ (“MSE”), and the length of the 95% confidence
interval (“lenCI”) from B = 500 independent replications.

We also compared the plug-in estimator of each run with the
multi-run estimator (11) using the Frobenius norm (normal-
ized by dimension p); its average is reported (“covdiff”).

Linear regression. We generated Zn = (yn,xn) where
yn = xT

nθ∗ + ϵn, Rp ∋ xn ∼ N(0,Σ), and ϵn ∼ N(0, 1),
for ℓ(Zn, θ) =

1
2 (yn − xT

nθ)
2. Three different covariance

structures were considered: identity (Σ = Ip), Toeplitz
(Σij = (0.5)|i−j|), and equicorrelation (Σij = 0.2 for i ̸=
j, Σii = 1). We fixed θ⋆ = (1, . . . , 1)T and ran n = 105

iterations of ISGD for γ ∈ {0.6, 1.0}, p ∈ {5, 20, 100, 200}
with θ0 = 0 for each type of Σ. Table 2 collects the results.
The coverage rates generally observed the nominal level,
with proxRM showing a slightly better coverage, possibly
because proxPR exhibited shorter confidence intervals.

Quantile estimation. Since the sample function for quan-
tile estimation introduced in Sect. 1 is nondifferentiable,
we instead used a smoothed version in which the max(0, ·)
part is replaced by a quadratic function (4µ)−1(x + µ)2

on [−µ, µ]. The smoothing parameter µ makes ∇ℓ(Z, θ)
(2µ)−1-Lipschitz and introduces a bias. We nevertheless
set θ⋆ to be the 99%-ile of the standard normal and let
Z ∼ N(0, 1). The n = 106 iterations were started with
θ0 = 0 for each replication, where γ ∈ {0.6, 1} and
µ ∈ {10−1, 10−2, 10−3}; we used γ1 = 250 when γ = 1
and γ1 = 30 when γ = 0.6. Table 3 summarizes the results.
While proxPR exhibits smaller MSE and covdiff, the cov-
erage rate of proxRM was close to 95% and there are few
cases that proxPR deteriorates. This result may be mislead-
ing since the actual minimizer of L is not θ⋆ here, and the
length of the confidence interval is smaller for proxPR. On
the other hand, if the genuine goal is to find the quantile, the
better coverage of (biased) proxRM might be a blessing.

7. Conclusion
In both point estimation of the model parameter for the
strongly convex case and optimization of non-strongly con-
vex functionals, the behavior of implicit SGD as revealed
by our non-asymptotic analysis, either proxRM or proxPR,
resembles the explicit SGD when the gradient is uniformly
bounded a.s. on a bounded domain (Bach & Moulines, 2011,
Theorems 2, 5, 7), which replaces Assumption(s) A4 (and,
with strong convexity, A2). Thus ISGD effectively imposes
the latter condition without requiring it, operating under
weaker assumptions on the gradient map.

Like its explicit counterpart, our analysis (and experiments)
states that averaging brings to ISGD robustness to the initial
step size and lack of strong convexity. On the other hand,
averaged ISGD (proxPR) may suffer from slow progress in
the early phase of iterations. Burn-in is a viable option.

It is interesting to note that the plug-in estimators of the
asymptotic covariance matrices of proxRM and proxPR,
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Table 2. Statistical inference for linear regression model parameters.
ProxRM ProxPR

Σ γ p cover MSE lenCI covdiff cover MSE lenCI covdiff

Identity 0.6 5 95.92 4.991e-3 0.285 5.817e-4 95.00 1.177e-5 0.013 1.299e-6
20 97.54 4.424e-3 0.298 1.640e-3 95.01 1.270e-5 0.014 2.657e-6

100 99.59 3.348e-3 0.334 4.180e-3 95.11 1.611e-5 0.016 7.309e-6
200 99.97 2.511e-3 0.352 5.783e-3 95.05 1.782e-5 0.017 1.129e-5

1 5 94.56 5.278e-5 0.028 3.436e-6 94.52 1.170e-5 0.013 1.344e-6
20 95.14 5.245e-5 0.028 1.050e-5 94.70 1.151e-5 0.013 2.361e-6

100 95.33 5.260e-5 0.029 2.353e-5 94.39 1.184e-5 0.013 5.456e-6
200 95.48 5.197e-5 0.029 3.299e-5 94.44 1.192e-5 0.013 7.547e-6

Toeplitz 0.6 5 95.88 4.890e-3 0.285 6.979e-4 94.96 1.766e-5 0.017 2.037e-6
20 97.40 4.439e-3 0.298 1.617e-3 94.96 2.082e-5 0.018 4.247e-6

100 99.61 3.347e-3 0.334 4.185e-3 94.99 2.679e-5 0.020 1.194e-5
200 99.96 2.525e-3 0.352 5.779e-3 95.19 2.959e-5 0.021 1.894e-5

1 5 94.92 5.486e-5 0.029 4.976e-6 94.32 1.809e-5 0.016 1.874e-6
20 95.05 5.518e-5 0.029 1.066e-5 93.95 1.985e-5 0.017 4.767e-6

100 94.96 5.520e-5 0.029 2.487e-5 93.61 2.067e-5 0.017 9.691e-6
200 95.47 5.396e-5 0.029 3.424e-5 93.88 2.083e-5 0.017 1.337e-5

EquiCorr 0.6 5 95.64 4.968e-3 0.285 6.030e-4 94.68 1.306e-5 0.014 1.490e-6
20 97.42 4.454e-3 0.298 1.604e-3 94.90 1.532e-5 0.015 3.125e-6

100 99.60 3.394e-3 0.334 4.159e-3 95.20 1.985e-5 0.018 8.990e-6
200 99.95 2.583e-3 0.353 5.773e-3 95.13 2.228e-5 0.019 1.412e-5

1 5 94.72 5.307e-5 0.029 3.199e-6 94.00 1.307e-5 0.014 1.518e-6
20 95.15 5.326e-5 0.029 1.058e-5 94.49 1.403e-5 0.014 2.853e-6

100 95.19 5.337e-5 0.029 2.391e-5 94.25 1.480e-5 0.015 6.827e-6
200 95.45 5.267e-5 0.029 3.334e-5 94.36 1.497e-5 0.015 9.483e-6

Table 3. Statistical inference for quantile estimation.
Method γ µ cover MSE lenCI covdiff

ProxRM 0.6 1e-3 95.20 1.339e-3 0.148 1.185e-4
1e-2 95.60 1.315e-3 0.146 9.965e-5
1e-1 95.40 1.191e-3 0.140 8.716e-5

1 1e-3 96.60 4.933e-5 0.028 1.689e-6
1e-2 96.00 4.887e-5 0.028 1.021e-6
1e-1 91.40 5.769e-5 0.027 6.967e-7

ProxPR 0.6 1e-3 73.80 2.626e-5 0.016 4.363e-6
1e-2 73.40 2.587e-5 0.015 3.262e-6
1e-1 96.40 1.266e-5 0.015 2.755e-6

1 1e-3 94.60 1.603e-5 0.016 1.246e-6
1e-2 95.60 1.589e-5 0.015 5.692e-7
1e-1 87.40 2.872e-5 0.015 5.506e-7

indispensable for valid statistical inference on the model
parameter, does not benefit from averaging. Since this paper
appears to be the first to propose estimators based only
on a single run, investigation of more statistically efficient
estimators as well as online ones as in SGD (Chen et al.,
2020) will make a promising avenue of future research.
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A. Proofs of main results
A.1. Preliminary

In this section, we collect known facts useful for the subsequent proofs.

Proposition A.1 (Bach & Moulines (2011), p. 17).

∥a+ b∥k ≤ 2k−1(∥a∥k + ∥b∥k), k = 1, 2, 3, 4.

Proposition A.2.

γn ≤ γn−1 ≤ 2γn, n ≥ 2;

γ1/2n − γ
1/2
n+1 ≥ γ

1/2
1

4nγ/2
, n ≥ 3.

Proposition A.3. Let ϕγ(n) = (n1−γ − 1)/(1− γ) if γ > 0 and γ ̸= 1, and ϕγ(n) = log n if γ = 1. Then,

n∑
k=1

1

kγ
≤ 1 + ϕγ(n) ≤


n1−γ

1−γ , γ ∈ (0, 1),

1 + log n, γ = 1,

ζ(γ) :=
∑∞

k=1
1
kγ <∞, γ > 1

and
1

2
[ϕγ(n)− ϕγ(m)] ≤

n∑
k=m+1

1

kγ
≤ ϕγ(n)− ϕγ(m), n > m ≥ 1.

The last inequality is from Bach & Moulines (2011, p. 13).

A.2. Proof of Proposition 3.1

Proposition 3.1 can be proved by combining the following intermediate result and Lemma 3.1.

Lemma A.1 (Theorem 3.3 and Corollary 3.3 of Asi & Duchi (2019)). In addition to Assumptions A1, A2, and A4, also
assume that a minimizer θ⋆ of L exists (not necessarily unique). Then, the iterates from the ISGD update (3) with learning
rate sequence (R) satisfies

E[∥θn − θ⋆∥2 |Fn−1] ≤ ∥θn−1 − θ⋆∥2 + σ2γ2n, γ ∈ (0, 1],

E ∥θn − θ⋆∥2 ≤ ∥θ0 − θ⋆∥2 + σ2
∞∑
k=1

γ2k = r2 <∞, γ ∈ (1/2, 1].

for all n = 1, 2, . . . .

Proof of Proposition 3.1. Note that

θn = θn−1 − γn∇ℓ(Zn, θn)

= [θn−1 − γn∇ℓ(Zn, θn−1)] + [γn∇ℓ(Zn, θn−1)− γn∇ℓ(Zn, θn)].

Thus Rn = γn[∇ℓ(Zn, θn−1)−∇ℓ(Zn, θn)]. Then,

∥Rn∥ = γn∥∇ℓ(Zn, θn−1)−∇ℓ(Zn, θn)]∥
≤ γnβ(Zn)∥θn−1 − θn∥ ≤ γ2nβ(Zn)∥∇ℓ(Zn, θn−1)∥,

(A.1)

where the first inequality is due to Assumption A2, and the second due to Lemma 3.1.

We show the bounds on ∥Rn∥. First, observe from the triangular inequality and Assumption A2 that

∥∇ℓ(Zn, θn−1)∥ ≤ β(Zn) ∥θn−1 − θ⋆∥+ ∥∇ℓ(Zn, θ⋆)∥ . (A.2)
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Then,

E [∥Rn∥ |Fn−1] ≤ γ2n E [β2(Zn)] ∥θn−1 − θ⋆∥

+ (1/2)γ2n E [β2(Zn)] + (1/2)γ2n E ∥∇ℓ(Zn, θ⋆)∥2

≤ γ2nβ
2
0 ∥θn−1 − θ⋆∥+ (1/2)γ2nβ

2
0 + (1/2)γ2nσ

2

(A.3)

using 2ab ≤ a2 + b2 and Assumption A2. Therefore for γ ∈ (1/2, 1] with which r <∞,

E ∥Rn∥ ≤ γ2nβ
2
0 E ∥θn−1 − θ⋆∥+ (1/2)γ2n(β

2
0 + σ2) ≤ γ2n[β

2
0(r + 1/2) + σ2/2].

The last inequality is due to Lemma A.1 and Jensen’s inequality.

To establish bounds on ∥Rn∥2, from inequality (A.2),

∥∇ℓ(Zn, θn−1)∥2 ≤ 2β2(Zn) ∥θn−1 − θ⋆∥2 + 2 ∥∇ℓ(Zn, θ⋆)∥2

using (a+ b)2 ≤ 2a2 + 2b2. So

E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1] ≤ 2β2
0 ∥θn−1 − θ⋆∥2 + 2σ2 (A.4)

from Assumption A4. Then, by the definition of Rn,

E [∥Rn∥2 |Fn−1] = γ2n E [∥∇ℓ(Zn, θn)−∇ℓ(Zn, θn−1)∥2 |Fn−1]

= γ2n E [∥∇ℓ(Zn, θn)∥2 |Fn−1]− 2γ2n E [∇ℓ(Zn, θn)
T∇ℓ(Zn, θn−1)|Fn−1]

+ γ2n E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1]

≤ 4γ2n E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1] ≤ 8γ2nβ
2
0 ∥θn−1 − θ⋆∥2 + 8γ2nσ

2

using the Cauchy-Schwarz inequality and Lemma 3.1. Then, for γ ∈ (1/2, 1],

E ∥Rn∥2 ≤ 8γ2nβ
2
0 E ∥θn−1 − θ⋆∥2 + 8γ4nσ

2 ≤ 8γ2n(β
2
0r

2 + σ2) (A.5)

from Lemma A.1.

A.3. Proof of Theorem 4.1

We enhance the result by Toulis & Airoldi (2017a, Lemma 2.2 in the Supplement):

Lemma A.2. Consider positive sequences an such that
∑∞

k=1 ak = A <∞, bn ↓ 0, and cn ↓ 0, and there is n′ such that
cn/bn < 1 for all n > n′. Let

δn =
1

an

(
an−1

bn−1
− an
bn

)
, ζn =

cn
bn−1

an−1

an

and suppose δn ↓ δ ≥ 0 and ζn ↓ 0. Then, for a nonnegative sequence yn such that

yn ≤ 1 + cn
1 + (1 + δ)bn

yn−1 + an, (A.6)

there holds
yn ≤ K0

an
bn

+Qn
1y0 +Qn

n0+1[(1 + c1)
n0A+B] (A.7)

for every n = 1, 2, . . . , where n0 is an integer such that δn + ζn < 1 + δ and cn < (1 + δ)bn for all n ≥ n0,
K0 = [1 + (1 + δ)b1]/(1 + δ − δn0

− ζn0
), B = K0an0

/bn0
, and Qn

i =
∏n

j=i(1 + cj)/(1 + (1 + δ)bj) if n ≥ i and
Qn

i = 1 otherwise.

Proof. See Sect. B.
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Corollary A.1. Let α > β > γ where α > 1 and γ ∈ (0, 1]. Consider a nonnegative sequence {yn} such that

yn ≤ (1− ηn−γ + νn−β)yn−1 + a1n
−α (A.8)

with η > 0, ν ≥ 0, and a1 ≥ 0. If γ = 1, assume that η > α− γ. Then, there holds

yn ≤ K1n
−(α−γ) +K2(n) exp

(
− 1

2 log(1 + η)ϕγ(n)
)
(y0 +Dn0), (A.9)

where

ϕγ(n) =

{
(n1−γ − 1)/(1− γ), γ ∈ (0, 1),

log n, γ = 1,
and δ =

{
0, γ ∈ (0, 1),

1/( η
α−γ − 1), γ = 1.

and

K1 = K0
a1(1 + δ)

η
, (A.10a)

K2(n) =

{
exp

(
ν(1 + η)

∑∞
k=1 k

−β
)
<∞, β > 1,

exp
(
ν(1 + η)ϕβ(n)

)
, β ≤ 1,

(A.10b)

Dn0 = (1 + η)n0
(
[1 + ν(1 + η)]n0A+B

)
, (A.10c)

A = a1

∞∑
k=1

k−α <∞, B = K0(1 + δ)η−1a1n
−(α−γ)
0 . (A.10d)

The n0 is an integer such that

nγ
(
[n/(n− 1)]α−γ − 1

)
+ ν(1 + η)[n/(n− 1)]α−γn−γ < η (A.11a)

ν(1 + η)n−γ < η (A.11b)

for all n ≥ n0. The constant K0 is given by

K0 =
(1 + η)/(1 + δ)

1−
(

n−γ
0

η ([ n0

n0−1 ]
α−γ − 1) + ν(1+η)

η n
−(β−γ)
0 [ n0

n0−1 ]
α−γ

) .
In particular, if ν = 0, then K2(n) ≡ 1.

Proof. See Sect. B.

Proof of Theorem 4.1. From Proposition 3.1, one can obtain

E ∥θn − θ⋆∥2 =E ∥θn−1 − θ⋆∥2 (A.12a)

− 2γn E[(θn−1 − θ⋆)
T∇ℓ(Zn, θn−1)] (A.12b)

+ γ2n E ∥∇ℓ(Zn, θn−1)∥2 (A.12c)

+ 2E[(θn−1 − θ⋆)
TRn] (A.12d)

− 2E[RT
n∇ℓ(Zn, θn−1)] (A.12e)

+E ∥Rn∥2 . (A.12f)

The second term (A.12b) is upper bounded as follows.

−2γn E[(θn−1 − θ⋆)
T∇ℓ(Zn, θn−1)]

= −2γn EE[(θn−1 − θ⋆)
T∇ℓ(Zn, θn−1)|Fn−1]

= −2γn E[(θn−1 − θ⋆)
T E[∇ℓ(Zn, θn−1)|Fn−1]]

= −2γn E[(θn−1 − θ⋆)
T∇L(θn−1)]

= −2γn E[(θn−1 − θ⋆)
T (∇L(θn−1)−∇L(θ⋆))]

≤ −2γnλE ∥θn−1 − θ⋆∥2 .

(A.13)
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The last inequality is due to Assumption A3 and Remark 2.2; the penultimate inequality is due to ∇L(θ⋆) = 0.

In order to bound the third term (A.12c), from inequality (A.4) in the proof of Proposition 3.1,

γ2n E ∥∇ℓ(Zn, θn−1)∥2 ≤ 2γ2nβ
2
0 E ∥θn−1 − θ⋆∥2 + 2γ2nσ

2

≤ 2γ2n(β
2
0r

2 + σ2).

The last line follows from Lemma A.1.

Also for the term (A.12d), from the Cauchy-Schwarz and inequality (6a) in Proposition 3.1 we have

E [(θn−1 − θ⋆)
TRn|Fn−1] ≤ E [∥θn−1 − θ⋆∥ ∥Rn∥ |Fn−1]

= ∥θn−1 − θ⋆∥E [∥Rn∥ |Fn−1]

≤ γ2nβ
2
0 ∥θn−1 − θ⋆∥2 + γ2n(β

2
0 + σ2) ∥θn−1 − θ⋆∥ .

Thus
2E [(θn−1 − θ⋆)

TRn] ≤ 2γ2n[β
2
0r

2 + (β2
0 + σ2)r]

using Lemma A.1 and Jensen’s inequality.

For the term (A.12e), we obtain

−E [RT
n∇ℓ(Zn, θn−1)|Fn−1] = −E [γn[∇ℓ(Zn, θn−1)−∇ℓ(Zn, θn)]

T∇ℓ(Zn, θn−1)|Fn−1]

= −γn E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1] + γn E∇ℓ(Zn, θn)
T∇ℓ(Zn, θn−1)|Fn−1]

≤ −γn E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1] + γn E ∥∇ℓ(Zn, θn)∥ ∥∇ℓ(Zn, θn−1)∥ |Fn−1]

≤ −γn E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1] + γn E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1]

= 0,

where the last inequality is due to Lemma 3.1. Thus we have −2E [RT
n∇ℓ(Zn, θn−1)] ≤ 0.

The final term (A.12) is bounded by inequality (6d) in Proposition 3.1.

Combining these results yields

E ∥θn − θ⋆∥2 ≤ (1− 2λγn)E ∥θn−1 − θ⋆∥2 + 2[6β2
0r

2 + 5σ2 + (β2
0 + σ2)r]γ2n.

Now we can apply Corollary A.1 by setting yn = E ∥θn − θ⋆∥2, α = 2γ, a1 = 2[6β2
0r

2 + 5σ2 + (β2
0 + σ2)r], γ21 ,

η = 2λγ1 > 0, and ν = 0. This proves the claim.

Below we put the explicit values of the constants:

δ =

{
0, γ ∈ (1/2, 1),

1/(2λγ1 − 1), γ = 1,

K0 =
1/(1 + δ) + γ1

1− nγ
0

2λγ1
([ n0

n0−1 ]
γ − 1)

,

K1 = K0
2[6β2

0r
2 + 5σ2 + (β2

0 + σ2)r]γ1(1 + δ)

2λ
,

K2(n) ≡ 1,

Dn0 = (1 + 2λγ1)
n0(A+B),

A = 2[6β2
0r

2 + 5σ2 + (β2
0 + σ2)r]γ21

∞∑
k=1

k−2γ <∞,

B = 2K0[6β
2
0r

2 + 5σ2 + (β2
0 + σ2)r]γ1n

−γ
0 .
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A.4. Proof of Theorem 4.2

Proof of Theorem 4.2. Suppose the following holds.

E [∇ℓ(Zn, θn)] = H(θ⋆)E [θn − θ⋆] +O(γ1/2n ). (A.14)

Taking expectations on the update equation θn = θn−1 − γn∇ℓ(Zn, θn), equation (A.14) entails

E [θn − θ⋆] = E [θn−1 − θ⋆]− γnH(θ⋆)E [θn − θ⋆] +O(γ1/2n ),

or

E [θn − θ⋆] = [I + γnH(θ⋆)]
−1 E [θn−1 − θ⋆] + [I + γnH(θ⋆)]

−1O(γ1/2n ).

By recursively applying the above equation, we see

E [θn − θ⋆] = Qn
1 (θ0 − θ⋆) +Qn

1O(

n∑
k=1

γ
1/2
k ) = Qn

1 (θ0 − θ⋆) +Qn
1O(n1−γ/2).

Note ∥Qn
1∥ =

∥∥∏n
i=1[I + γiH(θ⋆)]

−1
∥∥ ≤ (

∏n
i=1(1 + λγi))

−1 where λ ≤ λmin(H(θ⋆)). From inequality (B.5), Qn
1 =

O(exp(−κn1−γ)) if γ ∈ (1/2, 1) and Qn
1 = O(n−κ) if γ = 1, where κ = log(1 + λγ1) > 0. In either case, we have

Qn
1O(n1−γ/2) = o(1) as desired (when γ = 1, we are given γ1 ≥ (e2 − 1)/λ with which κ ≥ 1).

To see equation (A.14) holds, recall that the objective function L is twice differentiable at θ⋆. It follows that

∇ℓ(Zn, θn) =Wn +H(θ⋆)(θn − θ⋆) + o(∥θn − θ⋆∥),
=Wn +H(θ⋆)(θn − θ⋆) + o(γ1/2n ),

Wn = ∇ℓ(Zn, θn)−∇L(θn),
(A.15)

From Proposition 3.1, we see ∇ℓ(Zn, θn) = ∇ℓ(Zn, θn−1) − γ−1
n Rn and E[Rn] = O(γ2n). In other words, Wn =

∇ℓ(Zn, θn−1)− L(θn)− γ−1
n Rn and

E[Wn] = ∇L(θn−1)−∇L(θn) +O(γn).

The difference of the first two terms are bounded as follows.

∥∇L(θn)−∇L(θn−1)∥ = ∥E[∇ℓ(Z, θn)−∇ℓ(Z, θn−1)]∥
≤ E ∥∇ℓ(Z, θn)−∇ℓ(Z, θn−1)∥ (Jensen’s inequality)
≤ E ∥∇ℓ(Z, θn)−∇ℓ(Z, θ⋆)∥+E ∥∇ℓ(Z, θn−1)−∇ℓ(Z, θ⋆)∥
≤ E [β(Z) ∥θn − θ⋆∥] +E [β(Z) ∥θn−1 − θ⋆∥] (Assumption A2)

≤ (E [β2(Z)])1/2(E ∥θn − θ⋆∥2)1/2

+ (E [β2(Z)])1/2(E ∥θn−1 − θ⋆∥2)1/2 (Cauchy-Schwarz)

= O(γ1/2n ),

where the last inequality is due to Assumption A2 and Theorem 4.1. Hence E[Wn] = O(γ
1/2
n ). Finally, by taking

expectations on both sides of equation (A.15), equation (A.14) follows.

A.5. Proof of Theorem 4.3

The proof utilizes Fabian’s central limit theorem for stochastic approximation Fabian (1968, Theorem 2.2) to show the
asymptotic normality (9).

Lemma A.3 (Fabian). Let Un, Vn, Tn ∈ Rp and Φn, Γn ∈ Rp×p satisfy the following equation

Un = (I − n−αΓn)Un−1 + n−(α+β)/2ΦnVn + n−α−β/2Tn
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for α ∈ (0, 1] and β ≥ 0, where Γn → Γ ≻ 0, Φn → Φ, Tn → T or E ∥Tn − T∥ → 0, E[Vn|Fn−1] = 0, C >∥∥E[VnV
T
n − Σ|Fn−1

∥∥] → 0 for some C and Fn a non-decreasing sequence of σ-fields such that Γn, Φn, and Vn are
Fn-measurable. Suppose σ2

j,r = E[I∥Vj∥2≥rjα ∥Vj∥2], and either limj→∞ σ2
j,r = 0 for every r > 0 or α = 1 and

limn→∞ n−1
∑n

j=1 σ
2
j,r = 0 for every r > 0. Let β+ = β if α = 1, β+ = 0 if α ̸= 1 and assume Γ ≻ (β+/2)I . Then

the asymptotic distribution of nβ/2Un is normal with mean (Γ− (β+/2)I)
−1T and covariance matrix L−1

2Γ−β+I(ΦΣΦ
T ),

where LP : X 7→ (1/2)(PX +XP ) is the Lyapunov linear map.

If P ≻ 0, the inverse linear map L−1
P is well-defined; if furthermore C ≻ 0, then L−1

P (C) ≻ 0.

Proof of Theorem 4.3. Using Proposition 3.1, the implicit update equation becomes

θn = θn−1 − γn∇ℓ(Zn, θn)

= θn−1 − γn∇ℓ(Zn, θn−1) +Rn

= θn−1 − γn[∇L(θn−1) +∇ℓ(Zn, θn−1)−∇L(θn−1)] +O(γ2n)

= θn−1 − γn∇L(θn−1) + γnεn +O(γ2n),

(A.16)

where εn = ∇L(θn−1)−∇ℓ(Zn, θn−1). Since L is twice differentiable at θ⋆, we further have

θn − θ⋆ = θn−1 − θ⋆ − γnH(θ⋆)(θn−1 − θ⋆) + γno(∥θn−1 − θ⋆∥) + γnεn +O(γ2n)

= θn−1 − θ⋆ − γnH(θ⋆)(θn−1 − θ⋆) + γno(γ
1/2
n−1) + γnεn +O(γ2n)

= θn−1 − θ⋆ − γnH(θ⋆)(θn−1 − θ⋆) + o(γ3/2n ) + γnεn +O(γ2n)

= [I − γnH(θ⋆)](θn−1 − θ⋆) + γnεn + o(γ3/2n ),

(A.17)

where the second line is due to Theorem 4.1 and θn−1 → θ⋆ a.s. For the third line, recall that γn = γ1n
−γ (R).

In order to apply Lemma A.3, observe that E[εn|Fn−1] = 0 and

E[εnε
T
n |Fn−1] = E[(∇L(θn−1)−∇ℓ(Zn, θn−1))(∇L(θn−1)−∇ℓ(Zn, θn−1))

T |Fn−1]

= E[(∇L(θn−1)−∇ℓ(Z, θn−1))(∇L(θn−1)−∇ℓ(Z, θn−1))
T ]

= I(θn−1)

since θn−1 ∈ Fn−1. To meet the conditions for Lemma A.3, it suffices to show that I is continuous at θ⋆. Consider a
non-random convergent sequence {ϑn} such that ϑn → θ⋆. Fix ϵ > 0. Then there exists n0 such that for all n ≥ n0,
∥ϑn − θ⋆∥ ≤ ϵ. Then, ∥∥∇ℓ(Z, ϑn)∇ℓ(Z, ϑn)T∥∥ ≤ ∥∇ℓ(Z, ϑn)∥2

≤ 2β2(Z) ∥ϑn − ϑ⋆∥2 + 2 ∥∇ℓ(Z, θ⋆)∥2

≤ 2β2(Z)ϵ2 + 2 ∥∇ℓ(Z, θ⋆)∥2

for all n ≥ n0. The last line is integrable due to Assumptions A2 and A4. Therefore, by the dominated convergence theorem,
I(ϑn) = E [∇ℓ(Z, ϑn)∇ℓ(Z, ϑn)T ]−∇L(ϑn)L(ϑn)T <∞ and I(ϑn) → I(θ⋆) and I is continuous at θ⋆.

Letting Un = θn − θ⋆, Vn = εn, Tn = o(1), Φn = Φ = γ1I , Γn = Γ = γ1H(θ⋆), T = 0, Σ = I(θ⋆), and α = β = γ in
Lemma A.3 results in the desired asymptotic normality.

Remark A.1. The approximation of ISGD to SGD in Proposition 3.1 is crucial since otherwise εn would equal to
∇L(θn) − ∇ℓ(Zn, θn). Since θn /∈ Fn−1, we do not have E[εn|Fn−1] = 0. That is, εn is not a martingale difference
sequence and it is difficult to see if E[εnε

T
n |Fn−1] would converge to a known quantity. Toulis et al. (Toulis & Airoldi,

2017a;b) instead employ ∇ℓ(Zn, θ⋆) in place of εn, but assume ∇2ℓ(Zn, θ⋆) converges to H(θ⋆) = ∇2L(θ⋆) almost surely,
which rarely holds in general.



Statistical inference with implicit SGD

A.6. Proof of Theorem 4.4

The following result can be deduced from the proof of Chen et al. (2020, Lemma 4.1).

Lemma A.4. Suppose Assumptions A1–A4, B1, and B3–B5 hold. Then,

E
∥∥∥Ĥn −H(θ⋆)

∥∥∥ = O(γ1/2n ), and E
∥∥∥În − I(θ⋆)

∥∥∥ = O(γ1/2n ).

A key in the proof of Chen et al. (2020, Lemma 4.1) is Chen et al. (2020, Lemma 3.2) showing that E ∥θn − θ⋆∥ =

O(n−γ/2) = O(γ
1/2
n ) in (explicit) SGD, which can be replaced by Theorem 4.1 in implicit SGD.

Proof of Theorem 4.4. Let B = γ1H(θ⋆) − (β+/2)I , B̃n = γ1H̃n − (β+/2)I , and B̂n = γ1Ĥn − (β+/2)I , where
β+ = 1 if γ = 1 and β+ = 0 if γ ∈ (0.5, 1). By construction, λmin(B̃n) ≥ γ1δ − β+/2 > 0 and λmin(B) ≥
γ1λmin(H(θ⋆))− β+/2 > 0.

Recall that vec
(
L−1
2Bn

(În)
)
= (I ⊗Bn +Bn ⊗ I)−1 vec(În) and vec

(
L−1
2B(I(θ⋆)

)
= (I ⊗B +B ⊗ I)−1 vec(I(θ⋆). It

suffices to show that
E
∥∥∥vec (L−1

2Bn
(În)

)
− vec

(
L−1
2B(I(θ⋆)

)∥∥∥ = O(γ1/2n ). (A.18)

To see this, let

EB = (I ⊗ B̃n + B̃n ⊗ I)− (I ⊗B +B ⊗ I), EI = În − I(θ⋆),
FB = (I ⊗ B̃n + B̃n ⊗ I)−1 − (I ⊗B +B ⊗ I)−1.

Then,

vec
(
L−1
2Bn

(În)
)
− vec

(
L−1
2B(I(θ⋆)

)
=

[(I ⊗B +B ⊗ I)−1 + FB ](vec(I(θ⋆) + EI)− (I ⊗B +B ⊗ I)−1 vec(I(θ⋆)
= (I ⊗B +B ⊗ I)−1EI + FBEI + FB vec(I(θ⋆)).

Since the eigenvalues of I ⊗A+A⊗ I consist of λi(A) + λj(A) for i, j = 1, . . . , p if A is a p× p symmetric matrix,

∥FB∥ ≤
∥∥∥(I ⊗ B̃n + B̃n ⊗ I)−1

∥∥∥+ ∥∥(I ⊗B +B ⊗ I)−1
∥∥ ≤ 1

2γ1δ − β+
+

1

2λmin(B)
.

Therefore, by Lemma A.4,

E
∥∥(I ⊗B +B ⊗ I)−1EI + FBEI

∥∥ ≤
(

1

2γ1δ − β+
+

1

λmin(B)

)
E ∥EI∥ = O(γ1/2n ). (A.19)

In order to bound FB vec(I(θ⋆)), recall from Chen et al. (2020, Lemma C.1) that

∥FB∥ ≤ ∥EB∥
∥∥(I ⊗B +B ⊗ I)−1

∥∥2 ≤ 1

4λ2min(B)
∥EB∥

under the event
∥∥(I ⊗B +B ⊗ I)−1EB

∥∥ < 1/2. Thus

E ∥FB∥ ≤ 1

4λ2min(B)
E ∥EB∥P (

∥∥(I ⊗B +B ⊗ I)−1EB

∥∥ < 1/2)

+
( 1

2γ1δ − β+
+

1

2λmin(B)

)
P (
∥∥(I ⊗B +B ⊗ I)−1EB

∥∥ ≥ 1/2)

≤ 1

4λ2min(B)
E ∥EB∥+

( 1

2γ1δ − β+
+

1

2λmin(B)

) 1

λmin(B)
E ∥EB∥ ,

where the last line is due to Markov’s inequality

P (
∥∥(I ⊗B +B ⊗ I)−1EB

∥∥ ≥ 1/2) ≤ 2
∥∥(I ⊗B +B ⊗ I)−1

∥∥E ∥EB∥ .
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It remains to bound E ∥EB∥. If Ĥn ⪰ δI , then H̃n = Ĥn. Otherwise, λmin(Ĥn) < δ and

∥EB∥ =
∥∥∥(I ⊗ B̃n + B̃n ⊗ I)− (I ⊗B +B ⊗ I)

∥∥∥
≤
∥∥∥(I ⊗ B̃n + B̃n ⊗ I)− (I ⊗ B̂n + B̂n ⊗ I)

∥∥∥
+
∥∥∥(I ⊗ B̂n + B̂n ⊗ I)− (I ⊗B +B ⊗ I)

∥∥∥
≤ 2δ +

∥∥∥(I ⊗ B̂n + B̂n ⊗ I)− (I ⊗B +B ⊗ I)
∥∥∥ .

Thus, by using Lemma A.4,

E ∥EB∥ ≤ E
∥∥∥(I ⊗ B̂n + B̂n ⊗ I)− (I ⊗B +B ⊗ I)

∥∥∥+ 2δP (λmin(Ĥn) < δ)

≤ E
∥∥∥I ⊗ (B̂n −B) + (B̂n −B)⊗ I

∥∥∥
+ 2δP

(∥∥∥Ĥn −H(θ⋆)
∥∥∥ ≥ λmin(H(θ⋆))− δ

)
≤ 2E

∥∥∥Ĥn −H(θ⋆)
∥∥∥+ 2δ

λmin(H(θ⋆))− δ
E
∥∥∥Ĥn −H(θ⋆)

∥∥∥ ,
where the second line is due to Weyl’s inequalty

λmin(H(θ⋆)) ≤ λmax(H(θ⋆)− Ĥn) + λmin(Ĥn) ≤
∥∥∥H(θ⋆)− Ĥn

∥∥∥+ δ

and the third line is Markov’s inequality. Hence,

E ∥FB vec I(θ⋆)∥ ≤ ∥I(θ⋆)∥F

(
1

4λ2min(B)
+
( 1

2γ1δ − β+
+

1

2λmin(B)

) 1

λmin(B)

)
×(

2 +
2δ

λmin(H(θ⋆))− δ

)
E
∥∥∥Ĥn −H(θ⋆)

∥∥∥ = O(γ1/2n )

(A.20)

by Lemma A.4.

Combining inequalities (A.19) and (A.20), we obtain inequality (A.18).

A.7. Proof of Theorem 4.5

Lemma A.5. Under Assumptions A1, A2′, A3, A4′, B4, and B1, if γ ∈ (1/3, 1], it follows

E ∥θn − θ⋆∥4 ≤ K̃1n
−2γ + exp

(
ν(1 + λγ1/2)ϕ 5

3γ
(n)− 1

2 log(1 + λγ1/2)ϕγ(n)
)

× (∥θ0 − θ⋆∥4 + 8(β2
0+σ2)
λ γ1 ∥θ0 − θ⋆∥3 + D̃ñ0)

where

ν =
6(β2

0+σ2)
λ β

2/3
0 γ

5/3
1 + 14β2

0γ
2
1 + 16β3

0γ
3
1 + 8β4

0γ
4
1 + 2K2[(10σ

2 +
32σ(β2

0+σ2)
λ )γ21 +

16(β2
0+σ2)2

λ γ31 + 8γ41 ],

and
K2 = (K1 + ∥θ0 − θ⋆∥2 +Dn0)/γ1

with K1 and Dn0
as defined in Theorem 4.1. Here, ñ0 is an integer such that

nγ
(
[n/(n− 1)]2γ − 1

)
+ ν(1 + η)[n/(n− 1)]2γn−γ < η and ν(1 + λγ1/2)n

−γ < η (A.21)

for all n ≥ ñ0, and

K̃1 =
1 + λγ1/2

1−
(

ñ−γ
0

η ([ ñ0

ñ0−1 ]
2γ − 1) + ν(1+λγ1/2)

λγ1/2
ñ
−2γ/3
0 [ ñ0

ñ0−1 ]
2γ
) C1γ

3
1

λγ1/2
, (A.22a)
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C1 =
2(β2

0+σ2)
λ β2

0 + (16σ4 +
56(β2

0+σ2)
λ σ3)γ1 (A.22b)

D̃ñ0
= (1 + λγ1/2)

ñ0
(
[1 + ν(1 + λγ1/2)]

ñ0Ã+ B̃
)
, (A.22c)

Ã = C1γ
3
1

∞∑
k=1

k−3γ <∞, (A.22d)

B̃ =
1 + λγ1/2

1−
(

ñ−γ
0

η ([ ñ0

ñ0−1 ]
2γ − 1) + ν(1+λγ1/2)

λγ1/2
ñ
−2γ/3
0 [ n0

ñ0−1 ]
2γ
) C1γ

3
1

λγ1/2
ñ−2γ
0 . (A.22e)

Proof of Theorem 4.5. We follow the decomposition by Bach & Moulines (2011, section C) for explicit SGD. The only
difference is that

∇ℓ(Zn, θn) =
1

γn
(θn−1 − θn)

instead of ∇ℓ(Zn, θn−1) =
1
γn

(θn−1 − θn), which leads to

∥∇ℓ(Zn, θn−1)∥ ≤ ∥∇ℓ(Zn, θn−1)−∇ℓ(Zn, θn)∥+ ∥∇ℓ(Zn, θn)∥

≤ β0 ∥θn−1 − θn∥+
1

γn
∥θn−1 − θn∥ =

β0γn + 1

γn
∥θn−1 − θn∥

≤ β0γ1 + 1

γn
∥θn−1 − θn∥

and ∥∥∥∥∥ 1n
n∑

k=1

∇ℓ(Zk, θk−1)

∥∥∥∥∥ ≤ β0γ1 + 1

n

n−1∑
k=1

|γ−1
k+1 − γ−1

k | ∥θk − θ⋆∥

+
β0γ1 + 1

nγn
∥θn − θ⋆∥+

β0γ1 + 1

nγ1
∥θ0 − θ⋆∥ .

This in turn yields

(E
∥∥θ̄n − θ⋆

∥∥2)1/2 ≤ 1√
n

[
tr (H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1)
]1/2

+
β0γ1 + 1

λ1/2n

n−1∑
k=1

|γ−1
k+1 − γ−1

k |(E ∥θk − θ⋆∥2)1/2

+
β0γ1 + 1

λ1/2nγn
(E ∥θn − θ⋆∥2)1/2 +

β0γ1 + 1

λ1/2γ1n
∥θ0 − θ⋆∥

+
M

2λ1/2n

n∑
k=1

(E ∥θk − θ⋆∥4)1/2 +
2β0
λ1/2n

(

n−1∑
k=0

E ∥θk − θ⋆∥2)1/2,

which corresponds to inequality (26) of (Bach & Moulines, 2011). The above bound can be simplified to

(E
∥∥θ̄n − θ⋆

∥∥2)1/2 ≤ 1√
n

[
tr (H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1)
]1/2

+
1/γ1 + 3β0
λ1/2n

∥θ0 − θ⋆∥

+
β0γ1 + 1

λ1/2nγn
(E ∥θn − θ⋆∥2)1/2 (A.23a)

+
2β0
λ1/2n

(

n∑
k=1

E ∥θk − θ⋆∥2)1/2 (A.23b)

+
β0γ1 + 1

λ1/2n

n−1∑
k=1

|γ−1
k+1 − γ−1

k |(E ∥θk − θ⋆∥2)1/2 (A.23c)

+
M

2λ1/2n

n∑
k=1

(E ∥θk − θ⋆∥4)1/2 (A.23d)
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The terms (A.23a)–(A.23c) can be further bounded using Theorem 4.1 and Minkowski’s inequality:

(A.23a) ≤ (β0γ1 + 1)K
1/2
1

λ1/2γ1n1−γ/2

+
β0γ1 + 1

λ1/2γ1n1−γ
exp

(
− 1

4 log(1 + 2λγ1)ϕγ(n)
)
(∥θ0 − θ⋆∥2 +Dn0

)1/2

≤ β0γ1 + 1

λ1/2γ1

K
1/2
1

n1−γ/2
+
β0γ1 + 1

λ1/2γ1
exp

(
− 1

4 log(1 + 2λγ1)ϕγ(n)
)
(∥θ0 − θ⋆∥2 +Dn0

)1/2,

(A.23b) ≤ 2β0
λ1/2n

[
K1

n∑
k=1

k−γ +

n∑
k=1

exp
(
− 1

2 log(1 + 2λγ1)ϕγ(k)
)
(∥θ0 − θ⋆∥2 +Dn0

)

]1/2

≤ 2β0K
1/2
1

λ1/2
ϕ
1/2
γ (n)

n
+

2β0
λ1/2

A1/2

n
(∥θ0 − θ⋆∥2 +Dn0

)1/2,

(A.23c) ≤ γ(β0 + 1/γ1)

λ1/2n

[
K

1/2
1

n∑
k=1

kγ/2−1

+

n∑
k=1

kγ−1 exp
(
− 1

4 log(1 + 2λγ1)ϕγ(k)
)
(∥θ0 − θ⋆∥2 +Dn0)

1/2

]

≤ γK
1/2
1 (β0 + 1/γ1)

λ1/2
ϕ1−γ/2(n)

n
+
γ(β0 + 1/γ1)

λ1/2
A
n
(∥θ0 − θ⋆∥2 +Dn0

)1/2,

where
A =

∑∞
k=1 exp

(
− 1

4 log(1 + 2λγ1)ϕγ(k)
)
<∞.

The first inequality for (A.23c) is due to |γ−1
k+1 − γ−1

k | = 1
γ1
[(k + 1)γ − kγ ] = kγ

γ1
[(1 + 1/k)γ − 1] ≤ γ

γ1
kγ−1.

In order to bound the term (A.23d), from Lemma A.5,

(E ∥θn − θ⋆∥4)1/2 ≤ K̃
1/2
1 n−γ + exp

(
1
2ν(1 + λγ1/2)ϕ 5

3γ
(n)− 1

4 log(1 + λγ1/2)ϕγ(n)
)

× (∥θ0 − θ⋆∥4 +
8(β2

0 + σ2)

λ
γ1 ∥θ0 − θ⋆∥3 + D̃n0

)1/2.

It follows that

(A.23d) ≤ M

2λ1/2n

n∑
k=1

K̃
1/2
1

kγ
+

M

2λ1/2n
(∥θ0 − θ⋆∥4 +

8(β2
0 + σ2)

λ
γ1 ∥θ0 − θ⋆∥3 +Dn0

)1/2

×
n∑

k=1

exp
(

1
2ν(1 + λγ1/2)ϕ 5

3γ
(k)− 1

4 log(1 + λγ1/2)ϕγ(k)
)

≤ MK̃
1/2
1

2λ1/2
ϕγ(n)

n
+

M

2λ1/2
B
n
(∥θ0 − θ⋆∥4 +

8(β2
0 + σ2)

λ
γ1 ∥θ0 − θ⋆∥3 +Dn0

)1/2,

where
B =

∑∞
k=1 exp

(
1
2ν(1 + λγ1/2)ϕ 5

3γ
(k)− 1

4 log(1 + λγ1/2)ϕγ(k)
)
<∞.

Combining these bounds, we get

(E
∥∥θ̄n − θ⋆

∥∥2)1/2 ≤ 1√
n

[
tr (H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1)
]1/2

+
1/γ1 + 3β0

λ1/2
∥θ0 − θ⋆∥

n

+
β0γ1 + 1

λ1/2γ1

K̃
1/2
1

n1−γ/2
+
β0γ1 + 1

λ1/2γ1
exp

(
− 1

4 log(1 + 2λγ1)ϕγ(n)
)
(∥θ0 − θ⋆∥2 + D̃n0)

1/2

+
2β0K̃

1/2
1

λ1/2
ϕ
1/2
γ (n)

n
+

2β0
λ1/2

A1/2

n
(∥θ0 − θ⋆∥2 + D̃n0

)1/2
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+
γK̃

1/2
1 (β0 + 1/γ1)

λ1/2
ϕ1−γ/2(n)

n
+
γ(β0 + 1/γ1)

λ1/2
A
n
(∥θ0 − θ⋆∥2 + D̃n0

)1/2

+
MK̃

1/2
1

2λ1/2
ϕγ(n)

n
+

M

2λ1/2
B
n
(∥θ0 − θ⋆∥4 +

8(β2
0 + σ2)

λ
γ1 ∥θ0 − θ⋆∥3 + D̃n0)

1/2,

which further simplifies to

(E
∥∥θ̄n − θ⋆

∥∥2)1/2 ≤ 1√
n

[
tr (H(θ⋆)

−1I(θ⋆)H(θ⋆)
−1)
]1/2

+
K̃

1/2
1

λ1/2n

(
(β0 + γ−1

1 )nγ/2 + 2β0ϕ
1/2
γ (n) + γ(β0 + γ−1

1 )ϕ1−γ/2(n) +
M

2
ϕγ(n)

)
+

1

λ1/2n

(
(γ−1

1 + 3β0) ∥θ0 − θ⋆∥+ 2β0A1/2(∥θ0 − θ⋆∥2 + D̃n0)
1/2

+ γ(β0 + γ−1
1 )A(∥θ0 − θ⋆∥2 + D̃n0

)1/2
)

+
MB

2λ1/2n
(∥θ0 − θ⋆∥4 + 8(β2

0+σ2)
λ γ1 ∥θ0 − θ⋆∥3 + D̃n0)

1/2

+
β0 + γ−1

1

λ1/2
exp

(
− 1

4 log(1 + 2λγ1)ϕγ(n)
)
(∥θ0 − θ⋆∥2 + D̃n0

)1/2.

Below we put the explicit values of the constants:

Ã = (γ−1
1 + 3β0) ∥θ0 − θ⋆∥+ 2β0A1/2(∥θ0 − θ⋆∥2 +Dn0

)1/2 + γ(β0 + γ−1
1 )A(∥θ0 − θ⋆∥2 +Dn0

)1/2,

B̃ = B · (∥θ0 − θ⋆∥4 + 8(β2
0+σ2)
λ γ1 ∥θ0 − θ⋆∥3 +Dn0)

1/2,

A =
∑∞

k=1 exp
(
− 1

4 log(1 + 2λγ1)ϕγ(k)
)
,

B =
∑∞

k=1 exp
(

1
2ν(1 + λγ1/2)ϕ 5

3γ
(k)− 1

4 log(1 + λγ1/2)ϕγ(k)
)
,

ν =
6(β2

0+σ2)
λ β

2/3
0 γ

5/3
1 + 14β2

0γ
2
1 + 16β3

0γ
3
1 + 8β4

0γ
4
1 + 2K2[(10σ

2 +
32σ(β2

0+σ2)
λ )γ21 +

16(β2
0+σ2)2

λ γ31 + 8γ41 ],

K2 = (K1 + ∥θ0 − θ⋆∥2 +Dn0
)/γ1.

A.8. Proof of Theorem 5.1

Proof of Theorem 5.1. Pick a minimizer θ⋆ of L. From Assumption A2′, ∇L is also β0-Lipschitz continuous. Therefore,

L(θn)− L(θ⋆) ≤ L(θn−1)− L(θ⋆) +∇L(θn−1)
T (θn − θn−1) +

β0
2

∥θn − θn−1∥2

≤ L(θn−1)− L(θ⋆) +∇L(θn−1)
T (θn − θn−1) +

β0γ
2
n

2
∥∇ℓ(Zn, θn)∥2 , (A.24)

where the last inequality is due to equation (3′).

In order to find a recursive relation for the sequence ∆n ≜ E [L(θn)− L(θ⋆)], observe that

∥∇ℓ(Zn, θn)∥2 = ∥∇ℓ(Zn, θn)−∇ℓ(Zn, θ⋆) +∇ℓ(Zn, θ⋆)∥2

≤ 2 ∥∇ℓ(Zn, θn)−∇ℓ(Zn, θ⋆)∥2 + 2 ∥∇ℓ(Zn, θ⋆)∥2

≤ 2β2
0 ∥θn − θ⋆∥2 + 2 ∥∇ℓ(Zn, θ⋆)∥2 .

Let r2n = δ0 + σ2
∑n

k=1 γ
2
k = ∥θ0 − θ⋆∥2 + σ2

∑n
k=1 γ

2
k . Since E ∥θn − θ⋆∥2 ≤ r2n due to Lemma A.1, we see

E ∥∇ℓ(Zn, θn)∥2 ≤ 2β2
0 E ∥θn − θ⋆∥2 + 2E ∥∇ℓ(Zn, θ⋆)∥2 ≤ 2β2

0r
2
n + 2σ2. (A.25)

In addition, from equation (3′) and Lemma 3.1,

∇L(θn−1)
T (θn − θn−1) = −γn∇L(θn−1)

T∇ℓ(Zn, θn)
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= −γn∇L(θn−1)
T∇ℓ(Zn, θn−1)

+∇L(θn−1)
T (γn[∇ℓ(Zn, θn−1) +∇ℓ(Zn, θn)])

≤ −γn∇L(θn−1)
T∇ℓ(Zn, θn−1) + ∥∇L(θn−1)∥ ∥Rn∥ ,

which leads to

E [∇L(θn−1)
T (θn − θn−1)|Fn−1] ≤ −γn∇L(θn−1)

T∇L(θn−1) + ∥∇L(θn−1)∥E [∥Rn∥ |Fn−1]

≤ −γn ∥∇L(θn−1)∥2

+ ∥∇L(θn−1)−∇L(θ⋆)∥
(
γ2nβ

2
0 ∥θn−1 − θ⋆∥+

β2
0 + σ2

2
γ2n

)
≤ −γn ∥∇L(θn−1)∥2

+ β0 ∥θn−1 − θ⋆∥
(
γ2nβ

2
0 ∥θn−1 − θ⋆∥+

β2
0 + σ2

2
γ2n

)
= −γn ∥∇L(θn−1)∥2

+ γ2nβ
3
0 ∥θn−1 − θ⋆∥2 +

β0(β
2
0 + σ2)

2
γ2n ∥θn−1 − θ⋆∥ .

Then by convexity of L,

L(θn−1)− L(θ⋆) ≤ ∇L(θn−1)
T (θn−1 − θ⋆) ≤ ∥∇L(θn−1)∥ ∥θn−1 − θ⋆∥ .

Thus

∆n−1 = E [L(θn−1)− L(θ⋆)] ≤ E [∥∇L(θn−1)∥ ∥θn−1 − θ⋆∥]

≤ (E ∥∇L(θn−1)∥2)1/2(E ∥θn−1 − θ⋆∥2)1/2

≤ E ∥∇L(θn−1)∥2
1/2
rn

to obtain

E ∥∇L(θn−1)∥2 ≥ 1

r2n
∆2

n−1.

Therefore

E [∇L(θn−1)
T (θn − θn−1)] ≤ −γn E ∥∇L(θn−1)∥2 + γ2nβ

3
0 E ∥θn−1 − θ⋆∥2 +

β0(β
2
0 + σ2)

2
γ2n E ∥θn−1 − θ⋆∥

≤ −γn
r2n

∆2
n−1 + γ2nβ

3
0r

2
n + γ2n

β0(β
2
0 + σ2)

2
rn. (A.26)

Combining inequalities (A.24), (A.25), and (A.26), we have

∆n ≤ ∆n−1 −
γn
r2n

∆2
n−1 +

1

2
γ2nβ̄nσ

2, (A.27)

where β̄n = σ−2(4β3
0r

2
n + β3

0rn + β0σ
2rn + 2β0σ

2).

If we let ψn(t) = t − γn

r2n
t2, then ∆n ≤ ψn(∆n−1) + 1

2γ
2
nβ̄nσ

2. Since ψ is increasing for t ∈ [0,
r2n
2γn

] and

∆n = E [L(θn)− L(θ⋆)] ≤ E [∇L(θ⋆)T (θn − θ⋆) +
β0

2 ∥θn − θ⋆∥2] = β0

2 E ∥θn − θ⋆∥2] ≤ β0

2 r
2
n, if we let n1 =

max{inf{n ∈ N : γn ≤ 1/β0}, 3}, then ψn(∆n) is increasing for n ≥ n1.

Now let us consider a surrogate sequence defined as

∆̃n = ∆̃n−1 −
γn
r2n

∆̃2
n−1 +

1

2
γ2nβ̄nσ

2, ∆̃n1
= ∆n1

.
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Then ∆n ≤ ∆̃n for n ≥ n1, since if we suppose ∆n−1 ≤ ∆̃n−1, then

∆n ≤ ψn(∆n−1) +
1

2
γ2nβ̄nσ

2 ≤ ψn(∆̃n−1) +
1

2
γ2nβ̄nσ

2 = ∆̃n

from the monotonicity of ψn.

It suffices to bound ∆̃n. Let εn = (4β̄
1/2
n σγ

3/2
1 )−1 min{r1, rnn3γ/2−1}, which is decreasing. Since γ1/2n − γ

1/2
n−1 ≥ γ

1/2
1

4nγ/2

for n ≥ 3 (Proposition A.2), we have for all n ≥ n1,

γ1/2n (1 + εn)
1/2 − γ

1/2
n+1(1 + εn+1)

1/2 ≥ γ1/2n (1 + εn+1)
1/2 − γ

1/2
n+1(1 + εn+1)

1/2

≥ γ
1/2
1

4nγ/2
(1 + εn+1)

1/2 ≥ γ
1/2
1

4nγ/2
.

On the other hand,

εnβ̄
1/2
n σγ2nr

−1
n = (1/4)β̄−1/2

n σ−1γ
−3/2
1 β̄1/2

n σγ21n
−2γr−1

n min{r1, rnn3γ/2−1}

=
γ
1/2
1

4n2γ
min

{ r1
rn
, n3γ/2−1

}
≤ γ

1/2
1

4n2γ
≤ γ

1/2
1

4nγ/2
.

Thus
γ1/2n (1 + εn)

1/2 − γ
1/2
n+1(1 + εn+1)

1/2 ≥ εnβ̄
1/2
n σγ2nr

−1
n , n ≥ n1. (A.28)

Let n2 = inf{n ≥ n1 : ∆̃2
n−1 ≥ (1 + εn)β̄nγ

2
nσ

2r2n/2}. Assume for now n2 is finite. We want to show that

∆̃2
n−1 ≥ (1 + εn)β̄nγnσ

2r2n/2, n ≥ n2. (A.29)

Indeed, inequality (A.29) is true for n = n2 by construction. If ∆̃n−1 ≥ (1 + εn)
1/2β̄

1/2
n γ

1/2
n σrn/

√
2, then since ψn is

increasing,

∆̃n = ψn(∆̃n−1) +
1

2
γ2nβ̄nσ

2

≥ ψn((1 + εn)
1/2β̄1/2

n γ1/2n σrn/
√
2) +

1

2
γ2nβ̄nσ

2

= (1 + εn)
1/2β̄1/2

n γ1/2n σrn/
√
2− γn

2r2n
(1 + εn)β̄nγnσ

2r2n +
1

2
γ2nβ̄nσ

2

=
(
1+εn

2

)1/2
β̄
1/2
n γ

1/2
n σrn − 1

2 (1 + εn)γ
2
nβ̄nσ

2 + 1
2γ

2
nβ̄nσ

2

=
( 1+εn+1

2

)1/2
β̄
1/2
n γ

1/2
n+1σrn − 1

2εnγ
2
nβ̄nσ

2 −
( 1+εn+1

2

)1/2
β̄
1/2
n γ

1/2
n+1σrn +

(
1+εn

2

)1/2
β̄
1/2
n γ

1/2
n σrn

=
( 1+εn+1

2

)1/2
β̄
1/2
n γ

1/2
n+1σrn − 1

2εnγ
2
nβ̄nσ

2 + 1√
2
β̄
1/2
n σrn[γ

1/2
n (1 + εn)

1/2 − γ
1/2
n+1(1 + εn+1)

1/2]

(A.28)
≥

( 1+εn+1

2

)1/2
β̄
1/2
n γ

1/2
n+1σrn − 1

2εnγ
2
nβ̄nσ

2 + 1√
2
εnγ

2
nβ̄nσ

2

≥
( 1+εn+1

2

)1/2
β̄
1/2
n γ

1/2
n+1σrn.

Hence inequality (A.29) holds for all n ≥ n2.

Therefore, for n ≥ n2,

∆̃n = ∆̃n−1 −
γn
r2n

∆̃2
n−1 +

1

2
γ2nβ̄nσ

2

(A.29)
≤ ∆̃n−1 −

γn
r2n

∆̃2
n−1 +

γn
2

∆̃2
n−1

1 + εn
= ∆̃n−1 −

γn
r2n

εn
1 + εn

∆̃2
n−1

Divide the preceding inequality by ∆̃n−1∆̃n to obtain

∆̃−1
n−1 ≤ ∆̃−1

n − γn
r2n

εn
1 + εn

∆̃n−1

∆̃n

≤ ∆̃−1
n − γn

r2n

εn
1 + εn

,
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where the last inequality is from ∆̃n ≤ ∆̃n−1. It follows ∆̃−1
n2−1 ≤ ∆̃−1

n −
∑n

k=n2

1
r2k

εk
1+εk

γk, or

∆̃n ≤ 1

∆̃−1
n2 +

∑n
k=n2

1
r2k

εk
1+εk

γk
, n ≥ n2.

By the definition of n2, ∆̃n2−1 ≤ (1 + εn2
)1/2β̄

1/2
n2 γn2

σrn2
/
√
2. Hence ∆̃−1

n2
≥ ∆̃−1

n2−1 ≥ (1 +

εn2)
−1/2β̄

−1/2
n2 γ−1

n2
σ−1r−1

n2

√
2. Now from inequality (A.28), since both εn and γn are decreasing, and β̄n is increas-

ing,

γ
−1/2
n+1 (1 + εn+1)

−1/2 − γ−1/2
n (1 + εn)

−1/2 ≥ β̄
1/2
n σr−1

n
εn

(1+εn)1/2(1+εn+1)1/2
γ2
n

γ
1/2
n γ

1/2
n+1

≥ σβ̄
1/2
n r−1

n
εn

1+εn
γn, n ≥ n1.

Also since γ1/2n1 (1 + εn1)
1/2 ≥ εn1 β̄

1/2
n1 σγn1r

−1
n1

,

γ−1/2
n1

(1 + εn1
)−1/2 ≥ σ

εn1

1+εn1
β̄
1/2
n1 r

−1
n1
γn1

, n ≥ n1.

Therefore

γ−1/2
n (1 + εn)

−1/2 =

n−1∑
k=n1

[γ
−1/2
k+1 (1 + εk+1)

−1/2 − γ
−1/2
k (1 + εk)

−1/2] + γ−1/2
n1

(1 + εn1
)−1/2

≥ σ
∑n−1

k=n1

β̄
1/2
k

rk
εk

1+εk
γk + σ

β̄1/2
n1

rn1

εn1

1+εn1
γn1

≥ σ
∑n−1

k=n1

β̄
1/2
k

rk
εk

1+εk
γk.

Since β̄1/2
n /rn is decreasing,

∆̃−1
n2

≥
√
2

γn2

1

r2n2

n2−1∑
k=n1

β̄
1/2
k

rk

rn2

β̄
1/2
n2

εk
1 + εk

γk ≥
√
2

γn2

1

r2n2

n2−1∑
k=n1

εk
1 + εk

γk. (A.30)

This entails, as r2n is increasing, for n ≥ n2,

∆̃n ≤ 1
√
2

γn2

1
r2n2

∑n2−1
k=n1

εk
1+εk

γk +
∑n

k=n2

1
r2k

εk
1+εk

γk
≤

max{γn2√
2
, 1}r2n∑n

k=n1

εk
1+εk

γk
. (A.31)

Given the derivation of inequality (A.30), inequality (A.31) holds for n1 ≤ n < n2, thus it is true even if n2 is infinite.
Therefore, inequality (A.31) holds for n ≥ n1.

In order to obtain the rate, note

r2n = δ0 + γ21

n∑
k=1

k−2γ ≤

{
r2 ≜ δ0 + γ21ζ(2γ) <∞, γ ∈ (1/2, 1],

δ0 + γ21(1 + ϕ2γ(n)), γ ∈ (0, 1/2].

Also, for γ ∈ [2/3, 1], εn = (4β̄
1/2
n σγ

1/2
1 )−1r1. Since β̄n ≤ β̄∞ ≜ σ2[4β3

0r
2 + (β3

0 + β0σ
2)r + 2β0σ

2] <∞,

n∑
k=n1

εk
1 + εk

γk =

n∑
k=n1

1

ε−1
k + 1

γk =

n∑
k=n1

1

4σγ
1/2
1

r1
β̄
1/2
k + 1

γk

≥ γ1
4σγ

1/2
1

r1
β̄
1/2
∞ + 1

n∑
k=n1

1

kγ
≥ γ1/2

4σγ
1/2
1

r1
β̄
1/2
∞ + 1

[ϕγ(n)− ϕγ(n1 − 1)].
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If γ ∈ (0, 2/3), then εn = (4β̄
1/2
n σγ

1/2
1 )−1rnn

3γ/2−1. Since β̄1/2
n /rn is decreasing,

n∑
k=n1

1

ε−1
k + 1

γk =

n∑
k=n1

1

4σγ
1/2
1

β̄
1/2
k

rk
k1−3γ/2 + 1

γk =

n∑
k=n1

γ1

4σγ
1/2
1

β̄
1/2
k

rk
k1−γ/2 + kγ

≥ γ1

4σγ
1/2
1

β̄
1/2
1

r1
+ 1

n∑
k=n1

1

k1−γ/2
≥ γ1/2

4σγ
1/2
1

β̄
1/2
1

r1
+ 1

[ϕ1−γ/2(n)− ϕ1−γ/2(n1 − 1)].

Therefore,

∆n ≤



2max{ γn1√
2
,1}

4σγ
3/2
1 β̄

1/2
1 r−1

1 +γ1

δ0+γ2
1(1+ϕ2γ(n))

ϕ1−γ/2(n)−ϕ1−γ/2(n1−1) , γ ∈ (0, 1/2],

2max{ γn1√
2
,1}

4σγ
3/2
1 β̄

1/2
1 r−1

1 +γ1

δ0+γ2
1ζ(2γ)

ϕ1−γ/2(n)−ϕ1−γ/2(n1−1) , γ ∈ (1/2, 2/3),

2max{ γn1√
2
,1}

4σγ
3/2
1 β̄

1/2
∞ r−1

1 +γ1

δ0+γ2
1ζ(2γ)

ϕγ(n)−ϕγ(n1−1) , γ ∈ [2/3, 1],

for n ≥ n1 (note γn2
≤ γn1

).

Below we put the explicit values of the constants:

Γ1 =
2max{γn1√

2
, 1}

4σγ
3/2
1 β̄

1/2
1 r−1

1 + γ1
, Γ2 =

2max{γn1√
2
, 1}

4σγ
3/2
1 β̄

1/2
1 r−1

1 + γ1
Γ3 =

2max{γn1√
2
, 1}

4σγ
3/2
1 β̄

1/2
∞ r−1

1 + γ1

r2n = δ0 + σ2
n∑

k=1

γ2k,

β̄n = σ−2(4β3
0r

2
n + β3

0rn + β0σ
2rn + 2β0σ

2),

β̄∞ = σ2[4β3
0r

2 + (β3
0 + β0σ

2)r + 2β0σ
2] <∞,

r = δ0 + σ2
∞∑
k=1

γ2k.

A.9. Proof of Theorem 5.2

Proof of Theorem 5.2. Pick a minimizer θ⋆ of L. From the main iteration (3′), we have θk−θ⋆ = θk−1−θ⋆−γk∇ℓ(Zk, θk)
and

∥θk − θ⋆∥2 = ∥θk−1 − θ⋆∥2 − 2γk∇ℓ(Zk, θk)
T (θk−1 − θ⋆) + γ2k ∥∇ℓ(Zk, θk)∥2

= ∥θk−1 − θ⋆∥2 − 2γk∇ℓ(Zk, θk−1)
T (θk−1 − θ⋆)

+ 2γk(∇ℓ(Zk, θk−1)−∇ℓ(Zk, θk))
T (θk−1 − θ⋆) + γ2k ∥∇ℓ(Zk, θk)∥2

≤ ∥θk−1 − θ⋆∥2 − 2γk∇ℓ(Zk, θk−1)
T (θk−1 − θ⋆)

+ 2 ∥Rk∥ ∥θk−1 − θ⋆∥+ γ2k ∥∇ℓ(Zk−1, θk)∥2 ,

where the final inequality is due to Lemma 3.1. Therefore

E [∥θk − θ⋆∥2 |Fk−1] ≤ ∥θk−1 − θ⋆∥2 − 2γk∇L(θk−1)
T (θk−1 − θ⋆)

+ 2E [∥Rk∥ |Fk−1] ∥θk−1 − θ⋆)∥+ γ2k E [∥∇ℓ(Zk−1, θk)∥2 |Fk−1].
(A.32)

From the cocoercivity of Lipschitz continuous gradient operator (Bauschke & Combettes, 2011), we see

β−1
0 ∥∇ℓ(Zk, θk−1)−∇ℓ(Zk, θ⋆)∥2 ≤ (∇ℓ(Zk, θk−1)−∇ℓ(Zk, θ⋆))

T (θk−1 − θ⋆)

and thus

∥∇ℓ(Zk, θk−1)∥2 = ∥ℓ(Zk, θk−1)− ℓ(Zk, θ⋆) + ℓ(Zk, θ⋆)∥2
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≤ 2 ∥ℓ(Zk, θk−1)− ℓ(Zk, θ⋆)∥2 + 2 ∥ℓ(Zk, θ⋆)∥2

≤ 2β0(∇ℓ(Zk, θk−1)−∇ℓ(Zk, θ⋆))
T (θk−1 − θ⋆) + 2 ∥ℓ(Zk, θ⋆)∥2 .

Therefore from inequality (A.32)

E ∥θk − θ⋆∥2 ≤ E ∥θk−1 − θ⋆∥2 − 2γk E [∇L(θk−1)
T (θk−1 − θ⋆)]

+ 2γ2kβ
2
0 E ∥θk−1 − θ⋆∥2 + (β2

0 + σ2)γ2k E ∥θk−1 − θ⋆∥2

+ 2γ2kβ0 E [∇L(θk−1)
T (θk−1 − θ⋆)] + 2γ2kσ

2

≤ E ∥θk−1 − θ⋆∥2 − 2γk(1− β0γk)E [∇L(θk−1)
T (θk−1 − θ⋆)] + 2γ2kσ̃

2,

where σ̃2 = β2
0r

2+ r(β2
0 +σ

2)/2+σ2; the last inequality is due to Lemma A.1. Let δk denote E ∥θk − θ⋆∥2. The previous
inequality implies

2γk(1− β0γk)E [∇L(θk−1)
T (θk−1 − θ⋆)] ≤ δk−1 − δk + 2γ2kσ̃

2.

If we let n∗ = inf{k ∈ N : (1 − γkβ0) ≥ 1/2}, then E [∇L(θk−1)
T (θk−1 − θ⋆)] ≤ γ−1

k (δk−1 − δk + 2γ2kσ̃
2) for all

k ≥ n∗.

Lipschitz continuity of ∇L implies L(θk−1) − L(θ⋆) ≤ β0

2 ∥θk−1 − θ⋆∥2. Also, by convexity, L(θk−1) − L(θ⋆) ≤
∇L(θk−1)

T (θk−1 − θ⋆). Therefore, for n > n∗,

L(θ̄n)− L(θ⋆) = L(
1

n

n−1∑
k=0

θk)− L(θ⋆)

≤ 1

n

n∑
k=1

(L(θk−1)− L(θ⋆))

=
1

n

n∗∑
k=1

(L(θk−1)− L(θ⋆)) +
1

n

n∑
k=n∗+1

(L(θk−1)− L(θ⋆))

≤ β0
2n

n∗∑
k=1

∥θk−1 − θ⋆∥2 +
1

n

n∑
k=n∗+1

∇L(θk−1)
T (θk−1 − θ⋆).

Then it follows

E [L(θ̄n)− L(θ⋆)] ≤
1

n

(β0
2

n∗∑
k=1

δk−1 +

n∑
k=n∗+1

γ−1
k (δk−1 − δk + 2γ2kσ̃

2)
)
.

Observe that δk−1 ≤ r2k ≜ δ0 + σ2
∑k

j=1 γ
2
j ≤ δ0 + σ2γ21 [1 + ϕ2γ(k)]. Since 1 + ϕ2γ(k) ≤ k1−2γ/(1− 2γ) if γ < 1/2

and ϕ2γ(k) = log k if γ = 1/2, and
∑k

j=1 j
−2γ ≤

∑∞
j=1 j

−2γ = ζ(2γ) <∞ if γ > 1/2 where ζ(·) is the Riemann zeta
function, it follows that

n∗∑
k=1

r2k ≤


n∗δ0 +

σ2γ2
1

1−2γϕ2γ−1(n∗), γ < 1/2,

n∗δ0 + σ2γ21 log(n∗ + 1), γ = 1/2,

n∗[δ0 + σ2γ21ζ(2γ)], γ > 1/2.

On the other hand,

n∑
n∗+1

γ−1
k (δk−1 − δk) = γ−1

n∗+1δn∗ +

n−1∑
k=n∗+1

δk(γ
−1
k+1 − γ−1

k )− γ−1
n δn

≤ r2nγ
−1
n∗+1 + r2n

n−1∑
k=n∗+1

(γ−1
k+1 − γ−1

k )− γ−1
n δn

= r2nγ
−1
n − γ−1

n δn ≤ r2nγ
−1
n
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(Bach & Moulines, 2011, p. 27). Thus

E [L(θ̄n)− L(θ⋆)] ≤
1

n

(β0
2

n∗∑
k=1

r2k + r2nγ
−1
n + 2σ̃2

n∑
k=1

γk

)
≤ 1

n

(β0
2

n∗∑
k=1

r2k + δ0γ
−1
n + σ2γ21 [1 + ϕ2γ(n)]γ

−1
n + 2σ̃2γ1ϕγ(n)

)
=
β0
2n

n∗∑
k=1

r2k +
δ0

γ1n1−γ
+ σ2γ21

1 + ϕ2γ(n)

n1−γ
+ 2σ̃2γ1

ϕγ(n)

n

≤

β0[n∗δ0+
σ2γ2

1
1−2γ ϕ2γ−1(n∗)]

2n +
σ2γ2

1

(1−2γ)nγ + 2σ̃2γ1

(1−γ)nγ , γ < 1/2,
β0[n∗δ0+σ2γ2

1 log(n∗+1)]
2n + σ2γ21

1+logn√
n

+ 2σ̃2γ1

(1−γ)
√
n
, γ = 1/2.

When γ > 1/2, we can replace the 1 + ϕ2γ(n) with ζ(2γ), hence

E [L(θ̄n)− L(θ⋆)] ≤

{
β0n∗[δ0+σ2γ2

1ζ(2γ)]
2n +

σ2γ2
1ζ(2γ)

n1−γ + 2σ̃2γ1

(1−γ)nγ , γ ∈ (1/2, 1),
β0n∗[δ0+σ2γ2

1ζ(2γ)]
2n + σ2γ21ζ(2) +

2σ̃2γ1 logn
(1−γ)n , γ = 1.

The preceding argument immediately yields that for n ≤ n∗,

E [L(θ̄n)− L(θ⋆)] ≤


β0

2

(
δ0 +

σ2γ2
1

(1−2γ)(2−2γ)n
1−2γ

)
, γ < 1/2,

β0

2

(
δ0 + σ2γ21

log(n+1)
n

)
, γ = 1/2,

β0

2

(
δ0 +

σ2γ2
1ζ(2γ)
n

)
, γ > 1/2,

Since ϕ2γ−1(n) ≤ n2−2γ/(2− 2γ) when γ < 1/2.

Below we put the explicit values of the constants:

Γ̃1 =
β0[n∗δ0 +

σ2γ2
1

1−2γϕ2γ−1(n∗)]

2
, Γ̃2 =

β0[n∗δ0 + σ2γ21 log(n∗ + 1)]

2
Γ̃3 =

β0n∗[δ0 + σ2γ21ζ(2γ)]

2
,

σ̃2 = β2
0r

2 + r(β2
0 + σ2)/2 + σ2,

r = δ0 + σ2
∞∑
k=1

γ2k.

B. Proofs of technical lemmas
Proof of Lemma 3.1. Note from the ISGD update (3) that θn−1 − θn = γn∇ℓ(Zn, θn). Therefore

γn[ℓ(Zn, θn)− ℓ(Zn, θn−1)] ≤ γn∇ℓ(Zn, θn)
T (θn − θn−1) = −∥θn − θn−1∥2 ,

where the first inequality follows from the convexity of ℓ(Zn, ·), i.e., Assumptions A1. Using this convexity once more, we
see ℓ(Zn, θn)− ℓ(Zn, θn−1) ≥ ∇ℓ(Zn, θn−1)

T (θn − θn−1). It follows that

∥θn − θn−1∥2 ≤ γn∇ℓ(Zn, θn−1)(θn−1 − θn) ≤ γn ∥∇ℓ(Zn, θn−1)∥ ∥θn−1 − θn∥

and the claim is proved.

Proof of Lemma A.2. Let us first consider the case n < n0. Since cn ↓ 0, Qn
i+1 < (1 + ci+1) · · · (1 + cn) ≤ (1 + c1)

n0 .
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By expanding inequality (A.6), we see

yn ≤ Qn
1y0 +

n∑
i=1

Qn
i+1ai ≤ Qn

1y0 + (1 + c1)
n0

n∑
i=1

ai

≤ Qn
1y0 + (1 + c1)

n0A

≤ K0
an
bn

+Qn
1y0 + (1 + c1)

n0A+B,

(B.1)

where the last line is inequality (A.7).

Now consider the case n ≥ n0. Since

1 + (1 + δ)b1
1 + δ − δn − ζn

≤ 1 + (1 + δ)b1
1 + δ − δn0

− ζn0

= K0

and bn ↓ 0, it follows that K0(δn + ζn) + 1 + (1 + δ)bn ≤ K0(1 + δ), or

K0

an

(
an−1

bn−1
− an
bn

+
cnan−1

bn−1

)
+ 1 + (1 + δ)bn ≤ K0(1 + δ).

This implies

an[1 + (1 + δ)bn] ≤ K0

(
[1 + (1 + δ)bn]an

bn
− (1 + cn)an−1

bn−1

)
and

an ≤ K0

(
an
bn

− 1 + cn
1 + (1 + δ)bn

an−1

bn−1

)
. (B.2)

Combining inequalities (A.6) and (B.2), we obtain

yn −K0
an
bn

≤ 1 + cn
1 + (1 + δ)bn

(
yn−1 −K0

an−1

bn−1

)
.

Define sn = yn −K0an/bn. Then |sn| ≤ (1 + cn)[1 + (1 + δ)bn]
−1|sn−1| and thus |sn| ≤ Qn

n0+1|sn0 |. Therefore,

yn −K0
an
bn

≤ |sn| ≤ Qn
n0+1

∣∣∣∣yn0 −K0
an0

bn0

∣∣∣∣
≤ Qn

n0+1

(
yn0

+K0
an0

bn0

)
= Qn

n0+1yn0 +Qn
n0+1B

≤ Qn
1y0 +Qn

n0+1(1 + c1)
n0A+Qn

n0+1B,

where the last line follows from inequality (B.1).

Proof of Corollary A.1. It is easy to verify that

1− ηn−γ + νn−β ≤ 1 + ν(1 + η)n−β

1 + ηn−γ

for all n ≥ 1. Let an = a1n
−α, bn = ηn−γ/(1 + δ), cn = ν(1 + η)n−β . Then inequality (A.6) in Lemma A.2 holds for

(an, bn, cn).

To see if the conditions for Lemma A.2 hold, verify that an ↓ 0,
∑∞

n=1 an < ∞, bn ↓ 0, cn ↓ 0, cn/bn ∝ n−(β−α) ↓ 0,
hence cn/bn < 1 for all sufficiently large n, and

δn =
1

an

(
an−1

bn−1
− an
bn

)
=

1 + δ

η
nγ

([
n

n− 1

]α−γ

− 1

)
↓ δ,
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ζn =
cn
bn−1

an−1

an
= ν(1 + η)(1 + δ)

(
n

n− 1

)α−γ

n−(β−γ) ↓ 0.

Recall that δ = 1+δ
η (α− γ) if γ = 1.

Therefore inequality (A.7) from Lemma A.2 translates to

yn ≤ K1n
−(α−γ) +Qn

1y0 +Qn
n0+1 [(1 + c1)

n0A+B] , (B.3)

where K1, A, and B are given in equations (A.10a) and (A.10d); the conditions for the n0 translates to inequalities (A.11).
Furthermore,

Qn
i =

{∏n
j=i

1+ν(1+η)n−β

1+ηn−γ , n ≥ i,

1, n < i.

Since bn, cn ↓ 0, Qn
1 =

∏n
j=1

1+cj
1+(1+δ)bj

≥
∏n

j=1
1

1+(1+δ)bj
≥ (1 + η)−n. Hence

Qn
n0+1 = Qn

1/Q
n0
1 ≤ (1 + η)n0Qn

1 = (1 + η)n0Qn
1 . (B.4)

In order to bound Qn
1 , take a logarithm to see

logQn
1 =

n∑
k=1

log(1 + ν(1 + η)k−β)−
n∑

k=1

log(1 + ηk−γ).

For the first term, use log(1 + x) ≤ x for x ≥ 0 to get

n∑
k=1

log(1 + ν(1 + η)k−β) ≤ ν(1 + η)

n∑
k=1

1

kβ
≤

{
ν(1 + η)

∑∞
k=1

1
kβ , β > 1,

ν(1 + η)ϕβ(n), β ≤ 1,
,

since
∑n

k=1 k
−β ≤ ϕβ(n) for β ≤ 1. For the second term, since x 7→ x−1 log(1 + x) is decreasing for x > −1 and

k−γ ↓ 0, we have log(1 + ηk−γ) ≥ k−γ log(1 + η) to get

−
n∑

i=1

log(1 + ηk−γ) ≤ − log(1 + η)

n∑
k=1

1

kγ
≤ −1

2
log(1 + η)ϕγ(n), (B.5)

since
∑n

k=1 k
−γ ≥ 1

2ϕγ(n) for γ ≤ 1. Thus

Qn
1 ≤ K2(n) exp

(
− 1

2 log(1 + η)ϕγ(n)
)
, (B.6)

where K2(n) is given in equation (A.10b). Combining inequalities (B.3), (B.4), and (B.6), we finally obtain inequality
(A.9), with Dn0

given in equation (A.10c).

Proof of Lemma A.5. Recall that θn − θ⋆ = θn−1 − θ⋆ − γn∇ℓ(Zn, θn). Therefore,

∥θn − θ⋆∥2 = ∥θn−1 − θ⋆∥2 − 2γn(θn−1 − θ⋆)
T∇ℓ(Zn, θn) + γ2n ∥∇ℓ(Zn, θn)∥2

≤ ∥θn−1 − θ⋆∥2 − 2γnWn + γ2nVn, (B.7)

where Wn = (θn−1 − θ⋆)
T∇ℓ(Zn, θn) and Vn = ∥∇ℓ(Zn, θn−1)∥2; the last line follows from Lemma 3.1.

We first bound the fourth moment. Squaring both sides of inequality (B.7) yields

∥θn − θ⋆∥4 ≤ ∥θn−1 − θ⋆∥4 + 4γ2nW
2
n + γ4nV

2
n

− 4γn ∥θn−1 − θ⋆∥2Wn + 2γ2n ∥θn−1 − θ⋆∥2 Vn − 4γ3nWnVn.

In order to bound E [∥θn − θ⋆∥4 |Fn−1], first note that

E [Wn|Fn−1] = E [(θn−1 − θ⋆)
T∇ℓ(Zn, θn−1)− γ−1

n (θn−1 − θ⋆)
TRn)|Fn−1]
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≥ (θn−1 − θ⋆)
T E [∇ℓ(Zn, θn−1)|Fn−1]− γ−1

n ∥θn−1 − θ⋆∥E [∥Rn∥ |Fn−1]

≥ (θn−1 − θ⋆)
T E [∇ℓ(Zn, θn−1)|Fn−1]− γnβ

2
0 ∥θn−1 − θ⋆∥2 − γn(β

2
0 + σ2) ∥θn−1 − θ⋆∥

= (θn−1 − θ⋆)
T (∇L(θn−1)−∇L(θ⋆))− γnβ

2
0 ∥θn−1 − θ⋆∥2 − γn(β

2
0 + σ2) ∥θn−1 − θ⋆∥

≥ λ ∥θn−1 − θ⋆∥2 − γnβ
2
0 ∥θn−1 − θ⋆∥2 − γn(β

2
0 + σ2) ∥θn−1 − θ⋆∥ . (B.8)

The first inequality is Cauchy-Schwarz, the second is inequality (A.3), and the last inequality is from the strong convexity of
L. In addition,

E [Vn|Fn−1] ≤ 2β2
0 ∥θn−1 − θ⋆∥2 + 2σ2 (B.9)

from inequality (A.4), and

E [−WnVn|Fn−1] = −E [(θn−1 − θ⋆)
T∇ℓ(Zn, θn) ∥∇ℓ(Zn, θn−1)∥2 |Fn−1]

≤ ∥θn−1 − θ⋆∥E [∥∇ℓ(Zn, θn)∥ ∥∇ℓ(Zn, θn−1)∥2 |Fn−1]

≤ ∥θn−1 − θ⋆∥E [∥∇ℓ(Zn, θn−1)∥3 |Fn−1]

again by Lemma 3.1. Since ∥∇ℓ(Zn, θn−1)∥ ≤ β0 ∥θn−1 − θ⋆∥ + ∥∇ℓ(Zn, θ⋆)∥ by Assumption A2′, combining with
Assumption A4′ we have

E [∥∇ℓ(Zn, θn−1)∥3 |Fn−1] ≤ 4β3
0 ∥θn−1 − θ⋆∥3 + 4E ∥∇ℓ(Zn, θ⋆)∥3

≤ 4β3
0 ∥θn−1 − θ⋆∥3 + 4σ3.

by Proposition A.1. Therefore

E [−WnVn|Fn−1] ≤ 4β3
0 ∥θn−1 − θ⋆∥4 + 4σ3 ∥θn−1 − θ⋆∥ . (B.10)

Finally,

E [W 2
n |Fn−1] = E [((θn−1 − θ⋆)

T∇ℓ(Zn, θn))
2|Fn−1]

≤ ∥θn−1 − θ⋆∥2 E [∥ℓ(Zn, θn)∥2 |Fn−1]

≤ ∥θn−1 − θ⋆∥2 E [∥ℓ(Zn, θn−1)∥2 |Fn−1]

≤ 2β2
0 ∥θn−1 − θ⋆∥4 + 2σ2 ∥θn−1 − θ⋆∥2 (B.11)

from inequality (B.9), and

E [V 2
n |Fn−1] ≤ E [∥ℓ(Zn, θn−1)∥4 |Fn−1]

≤ 8β4
0 ∥θn−1 − θ⋆∥4 + 8E [∥ℓ(Zn, θ⋆)∥4 |Fn−1]

≤ 8β4
0 ∥θn−1 − θ⋆∥4 + 8σ4 (B.12)

from Proposition A.1 and Assumption A4′.

Combining inequalities (B.8), (B.9), (B.10), (B.11), and (B.12), we see

E [∥θn − θ⋆∥4 |Fn−1] ≤ (1− 4λγn + 14β2
0γ

2
n + 16β3

0γ
3
n + 8β4

0γ
4
n) ∥θn−1 − θ⋆∥4

+ 4(β2
0 + σ2)γ2n ∥θn−1 − θ⋆∥3 + 2σ2(γ2n + 4γ4n) ∥θn−1 − θ⋆∥2

+ 16σ3γ3n ∥θn−1 − θ⋆∥+ 8σ4γ4n

≤ (1− 4λγn + 14β2
0γ

2
n + 16β3

0γ
3
n + 8β4

0γ
4
n) ∥θn−1 − θ⋆∥4

+ 4(β2
0 + σ2)γ2n ∥θn−1 − θ⋆∥3

+ 2(5σ2γ2n + 4γ4n) ∥θn−1 − θ⋆∥2 + 16σ4γ4n,

(B.13)

where the last inequality follows from 16σ3γ3n ∥θn−1 − θ⋆∥ ≤ 8σ2γ2n ∥θn−1 − θ⋆∥2 + 8σ4γ4n.
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We now bound the third moment. Multiplying inequality (B.7) with

∥θn − θ⋆∥ ≤ ∥θn−1 − θ⋆∥+ γn ∥∇ℓ(Zn, θn)∥
≤ ∥θn−1 − θ⋆∥+ γnV

1/2
n

yields

∥θn − θ⋆∥3 ≤ ∥θn−1 − θ⋆∥3 − 2γn ∥θn − θ⋆∥Wn + γ2n ∥θn − θ⋆∥Vn
+ γn ∥θn − θ⋆∥2 V 1/2

n − 2γnWnV
1/2
n + γ3nV

3/2
n .

In addition to inequalities (B.9) and (B.12), we have

E [V 3/2
n |Fn−1] = E [∥∇ℓ(Zn, θn−1)∥3 |Fn−1] ≤ 4β3

0 ∥θn − θ⋆∥3 + 4σ3

E [V 1/2
n |Fn−1] = E [∥∇ℓ(Zn, θn−1)∥ |Fn−1] ≤ β0[∥∇ℓ(Zn, θn−1)∥+E ∥∇ℓ(Zn, θ⋆)∥

≤ β0[∥∇ℓ(Zn, θn−1)∥+ σ

E [−WnV
1/2
n |Fn−1] = −E [(θn−1 − θ⋆)

T∇ℓ(Zn, θn) ∥∇ℓ(Zn, θn−1)∥ |Fn−1]

≤ ∥θn−1 − θ⋆∥E [∥∇ℓ(Zn, θn)∥ ∥∇ℓ(Zn, θn−1)∥ |Fn−1]

≤ ∥θn−1 − θ⋆∥E [∥∇ℓ(Zn, θn−1)∥2 |Fn−1]

(B.9)
≤ 2β2

0 ∥θn−1 − θ⋆∥3 + 2σ2 ∥θn−1 − θ⋆∥ .

Therefore

E [∥θn − θ⋆∥3 |Fn−1] ≤ [1 + (β0 − 2λ)γn + 8β2
0γ

2
n + 4β3

0γ
3
n] ∥θn − θ⋆∥3

+ [σγn + 2(β2
0 + σ2)γ2n] ∥θn − θ⋆∥2 + 6σ2γ2n ∥θn − θ⋆∥+ 4σ3γ3n

≤ [1 + (β0 − 2λ)γn + 8β2
0γ

2
n + 4β3

0γ
3
n] ∥θn − θ⋆∥3

+ [4σγn + 2(β2
0 + σ2)γ2n] ∥θn − θ⋆∥2 + 7σ3γ3n (B.14)

since 6σ2γ2n ∥θn − θ⋆∥ ≤ 3σγn ∥θn − θ⋆∥2 + 3σ3γ3n.

Now, let

Un = ∥θn − θ⋆∥4 + cβ0γn+1 ∥θn − θ⋆∥3 , c =
8(β2

0 + σ2)

β0λ
.

Then, from inequalities (B.13) and (B.14)

E [Un|Fn−1] ≤ ∥θn−1 − θ⋆∥4 [1− 4λγn + 14β2
0γ

2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥3 [4(β2
0 + σ2)γ2n + cβ0γn+1(1 + (β0 − 2λ)γn + 8β2

0γ
2
n + 4β3

0γ
3
n)]

+ ∥θn−1 − θ⋆∥2 [10σ2γ2n + 8γ4n + cβ0γn+1(4σγn + 2(β2
0 + σ2)γ2n)]

+ 16σ4γ4n + 7cβ0σ
3γn+1γ

3
n

≤ ∥θn−1 − θ⋆∥4 [1− 1
2λγn + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥3 [4(β2
0 + σ2)γ2n + cβ0γn(1− 2λγn + 8β2

0γ
2
n + 4β3

0γ
3
n)]

+ cβ2
0γ

2
n ∥θn − θ⋆∥3

+ ∥θn−1 − θ⋆∥2 [10σ2γ2n + 8γ4n + cβ0γn(4σγn + 2(β2
0 + σ2)γ2n)]

+ 16σ4γ4n + 7cβ0σ
3γ4n

≤ ∥θn−1 − θ⋆∥4 [1− 1
2λγn + 3c

4 β
5/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥3 [4(β2
0 + σ2)γ2n + cβ0γn(1− 2λγn + 8β2

0γ
2
n + 4β3

0γ
3
n)]

+ ∥θn−1 − θ⋆∥2 [10σ2γ2n + 8γ4n + cβ0γn(4σγn + 2(β2
0 + σ2)γ2n)]
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+
c

4
β3
0γ

3
n + 16σ4γ4n + 7cβ0σ

3γ4n

≤ (∥θn−1 − θ⋆∥4 + cβ0γn ∥θn − θ⋆∥3)

× [1− 1
2λγn + 3c

4 β
5/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥3 [4(β2
0 + σ2)γ2n + cβ0γn(1− λγn + 8β2

0γ
2
n + 4β3

0γ
3
n)

− cβ0γn(1− 1
2λγn + 3c

4 β
5/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n)]

+ ∥θn−1 − θ⋆∥2 [10σ2γ2n + 8γ4n + cβ0γn(4σγn + 2(β2
0 + σ2)γ2n)]

+
c

4
β3
0γ

3
n + 16σ4γ4n + 7cβ0σ

3γ4n

≤ (∥θn−1 − θ⋆∥4 + cβ0γn ∥θn − θ⋆∥3)

× [1− 1
2λγn + 3c

4 β
5/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥3 [(4(β2
0 + σ2)− 1

2cβ0λ)γ
2
n]

+ ∥θn−1 − θ⋆∥2 [10σ2γ2n + 8γ4n + cβ0γn(4σγn + 2(β2
0 + σ2)γ2n)]

+
c

4
β3
0γ

3
n + 16σ4γ4n + 7cβ0σ

3γ4n

= Un−1[1− 1
2λγn +

6(β2
0+σ2)
λ β

2/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]

+ ∥θn−1 − θ⋆∥2 [(10σ2 +
32σ(β2

0+σ2)
λ )γ2n +

16(β2
0+σ2)2

λ γ3n + 8γ4n]

+
2(β2

0+σ2)
λ β2

0γ
3
n + (16σ4 +

56(β2
0+σ2)
λ σ3)γ4n,

where the third inequality is due to Young’s inequality

cβ2
0γ

2
n ∥θn−1 − θ⋆∥3 ≤ 3c

4 β
5/3
0 γ

5/3
n ∥θn−1 − θ⋆∥4 + c

4β
3
0γ

3
n.

Therefore,

E [Un] ≤ [1− 1
2λγn +

6(β2
0+σ2)
λ β

2/3
0 γ

5/3
n + 14β2

0γ
2
n + 16β3

0γ
3
n + 8β4

0γ
4
n]E [Un−1]

+ [(10σ2 +
32σ(β2

0+σ2)
λ )γ2n +

16(β2
0+σ2)2

λ γ3n + 8γ4n]E ∥θn−1 − θ⋆∥2

+
2(β2

0+σ2)
λ β2

0γ
3
n + (16σ4 +

56(β2
0+σ2)
λ σ3)γ4n

Since from Theorem 4.1

E ∥θn − θ⋆∥2 ≤ (K1 + ∥θ0 − θ⋆∥2 +Dn0)n
−γ = K2γn, K2 = (K1 + ∥θ0 − θ⋆∥2 +Dn0)/γ1

and γn−1 ≤ 2γn (Proposition A.2),

E [Un] ≤ (1− 1
2λγn + C0γ

5/3
n )E [Un−1] + C1γ

3
n,

where

C0 =
6(β2

0+σ2)
λ β

2/3
0 + 14β2

0γ
1/3
1 + 16β3

0γ
4/3
1 + 8β4

0γ
7/3
1

+ 2K2[(10σ
2 +

32σ(β2
0+σ2)
λ )γ

1/3
1 +

16(β2
0+σ2)2

λ γ
4/3
1 + 8γ

7/3
1 ]

C1 =
2(β2

0+σ2)
λ β2

0 + (16σ4 +
56(β2

0+σ2)
λ σ3)γ1.

It follows from Corollary A.1 that

E [Un] ≤ K̃1n
−2γ + exp

(
ν(1 + λγ1

2 )ϕ 5
3γ
(n)− 1

2 log(1 +
λγ1

2 )ϕγ(n)
)
(U0 + D̃ñ0

),

where ν = C0γ
5/3
1 and the ñ0 is as given in equation (A.21). The other constants are as given in equation (A.22). Noting

E ∥θn − θ⋆∥4 ≤ E [Un] completes the proof.


