
Finding Global Homophily in Graph Neural Networks When Meeting
Heterophily

Xiang Li 1 Renyu Zhu 1 Yao Cheng 1 Caihua Shan 2 Siqiang Luo 3 Dongsheng Li 2 Weining Qian 1

Abstract

We investigate graph neural networks on graphs
with heterophily. Some existing methods amplify
a node’s neighborhood with multi-hop neighbors
to include more nodes with homophily. How-
ever, it is a significant challenge to set personal-
ized neighborhood sizes for different nodes. Fur-
ther, for other homophilous nodes excluded in
the neighborhood, they are ignored for informa-
tion aggregation. To address these problems, we
propose two models GloGNN and GloGNN++,
which generate a node’s embedding by aggregat-
ing information from global nodes in the graph.
In each layer, both models learn a coefficient ma-
trix to capture the correlations between nodes,
based on which neighborhood aggregation is per-
formed. The coefficient matrix allows signed val-
ues and is derived from an optimization problem
that has a closed-form solution. We further ac-
celerate neighborhood aggregation and derive a
linear time complexity. We theoretically explain
the models’ effectiveness by proving that both
the coefficient matrix and the generated node em-
bedding matrix have the desired grouping effect.
We conduct extensive experiments to compare
our models against 11 other competitors on 15
benchmark datasets in a wide range of domains,
scales and graph heterophilies. Experimental re-
sults show that our methods achieve superior per-
formance and are also very efficient.

1School of Data Science and Engineering, East China Normal
University, Shanghai, China 2Microsoft Research Asia, Shanghai,
China 3School of Computer Science and Engineering, Nanyang
Technological University, Singapore. Correspondence to: Xiang
Li <xiangli@dase.ecnu.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Graph-structured data is ubiquitous in a variety of domains
including chemistry, biology and sociology. In graphs (net-
works), nodes and edges represent entities and their rela-
tions, respectively. To enrich the information of graphs,
nodes are usually associated with various features. For
example, on Facebook, users are connected by the friend-
ship relation and each user has features like age, gender
and school. Both node features and graph topology pro-
vide sources of information for graph-based learning. Re-
cently, graph neural networks (GNNs) (Kipf & Welling,
2016; Veličković et al., 2017; Hamilton et al., 2017) have
received significant attention for the capability to seamlessly
integrate the two sources of information and they have been
shown to serve as effective tools for representation learning
on graph-structured data.

Based on the implicit graph homophily assumption, tradi-
tional GNNs (Kipf & Welling, 2016) adopt a non-linear
form of smoothing operation and generate node embeddings
by aggregating information from a node’s neighbors. Specif-
ically, homophily is a key characteristic in a wide range of
real-world graphs, where linked nodes tend to share simi-
lar features or have the same label. These graphs include
friendship networks (McPherson et al., 2001), political net-
works (Gerber et al., 2013) and citation networks (Ciotti
et al., 2016). However, in the real world, there also exist
graphs with heterophily, where nodes with dissimilar fea-
tures or different labels are more likely to be connected.
For example, different amino acid types are connected in
protein structures; predator and prey are related in the eco-
logical food webs. In these networks, due to the heterophily,
the smoothing operation could generate similar representa-
tions for nodes with different labels, which lead to the poor
performance of GNNs.

To generalize GNNs to heterophilous graphs, some recent
works (Zhu et al., 2020b; Bo et al., 2021; Chien et al., 2020)
have been proposed to leverage high-pass convolutional
filters and multi-hop neighbors to address the heterophily
issue. On the one hand, the high-pass filters can be used to
push away a node’s feature vector from its neighbors’ while
the low-pass filters used by traditional GNNs do the oppo-
site. The combination of low-pass and high-pass filters in

Submission and Formatting Instructions for ICML 2022

Local

Global

Me

Homophilous nodes

Heterophilous nodes

<=3 hops

>3 hops

Figure 1. A toy example to show global homophily. All the ho-
mophilous nodes express the global homophily of the center user.

these models enforces the learned representation of a node
to be close to its homophilous neighbors’ and distant from
heterophilous ones’. On the other hand, in heterophilous
graphs, linked nodes are more likely to be dissimilar while
distant nodes could share a certain similarity, so we have to
jump the locality of a node to find its homophilous neigh-
bors. As shown in Figure 1, a user has only one local
neighbor with homophily, while three homophilous nodes
exist multi-hop away. All these four nodes exhibit the global
homophily for the user, which can be used to help predict
her label. Meanwhile, since it has been pointed out in (Zhu
et al., 2020b) that the 2-hop neighborhood of a node under
some mild condition will be homophily-dominant in expec-
tation, some models amplify a node’s neighborhood with
multi-hop neighbors. However, how large the neighborhood
size should be set for different nodes is a challenge. Further,
for those homophilous nodes excluded in the neighborhood,
they will not be utilized in information aggregation. There-
fore, we propose to leverage the global homophily for a node
in the graph by adding all the nodes to its neighborhood.
As a side effect, in this case, the traditional neighborhood
aggregation will have a quadratic time complexity, which
is practically infeasible. Further, more heterophilous nodes
will be included in the neighborhood, which could adversely
affect the model performance. Therefore, a research ques-
tion arises: Can we find global homophily for a node and
develop a GNN model that is both effective and efficient for
heterophilous graphs?

In this paper, to find Global homophily for nodes in graphs
with heterophily, we propose an effective and scalable GNN
model, namely, GloGNN. In the l-th convolutional layer,
inspired by the linear subspace model (Liu et al., 2012), we
linearly characterize each node by all the nodes in the graph
and derive a coefficient matrix Z(l) such that Z(l)

ij describes
the importance of node xj to node xi. We formulate the
characterization problem as an optimization problem that
has a closed-form solution forZ(l). After that, takingZ(l) as
the weight matrix, we generate node embedding matrixH(l)

by aggregating information from global nodes. Note that
directly computing such Z(l) and Z(l)-based neighborhood
aggregation lead to cubic and quadratic time complexities
w.r.t. the number of nodes, respectively. Hence, we avoid
calculating Z(l) directly and reorder matrix multiplication
in neighborhood aggregation, which effectively reduces the

time complexity to linear. Finally, we mathematically show
that both Z(l) and the generated node embedding matrix
H(l) have the grouping effect (Lu et al., 2012), i.e., for any
two nodes in a graph, no matter how distant they are, if
they share similar features and local structures, their embed-
ding vectors will be close to each other. This helps explain
the effectiveness of our models. We summarize the main
contributions of our paper as:

• We propose two effective and efficient GNN models,
GloGNN and GloGNN++.

• We theoretically show that both Z(l) and the generated
node embedding matrix H(l) have the grouping effect.

•We combine low-pass and high-pass convolutional filters
in neighborhood aggregation, as Z(l) allows signed values.

•We show the superiority of our models against 11 other
methods on 15 benchmark datasets of diverse domains, sizes
and graph heterophilies.

2. Related Work
GNNs have recently received significant interest for the
superior performance on graph-based learning. The early
model GCN (Kipf & Welling, 2016) extends the convolu-
tion operation from regular data to irregular graph-structured
data. GCN is a spectral model (Bruna et al., 2013; Deffer-
rard et al., 2016), which decomposes graph signals via graph
Fourier transform and convolves on the spectral components.
There are also a class of spatial GNN models that directly
aggregate information from spatially nearby neighbors of
a node. For example, GraphSAGE (Hamilton et al., 2017)
generates a node’s embedding by aggregating information
from a fixed number of neighbors. GAT (Veličković et al.,
2017) introduces the attention mechanism to learn the im-
portance of a node’s neighbors and aggregates information
from these neighbors based on the learned weights. Further,
GNNs have been widely studied from various perspectives,
such as the over-smoothing problem (Zhao & Akoglu, 2019;
Rong et al., 2019), the adversarial attack and defense (Dai
et al., 2018; Zhu et al., 2019), and the model explainabil-
ity (Vu & Thai, 2020; Shan et al., 2021).

There are also works (Zhu et al., 2020b; Bo et al., 2021;
Chien et al., 2020; Yan et al., 2021; Suresh et al., 2021;
Pei et al., 2020; Dong et al., 2021; Lim et al., 2021; Yang
et al., 2021; Luan et al., 2021; Zhu et al., 2020a; Liu et al.,
2021) that extend GNNs to heterophilous graphs. Some
methods propose to leverage both low-pass and high-pass
convolutional filters in neighborhood aggregation. For ex-
ample, GPR-GNN (Chien et al., 2020) adapts to the ho-
mophily/heterophily structure of a graph by learning signed
weights for node embeddings in different propagation steps.
ACM-GCN (Luan et al., 2021) applies both low-pass and

Submission and Formatting Instructions for ICML 2022

high-pass filters for each node in a layer, and adaptively
fuses the generated node embeddings from each filter. Fur-
ther, some methods enlarge the node neighborhood size
to include more homophilous nodes. As a representative
model, H2GCN (Zhu et al., 2020b) presents three designs to
improve the performance of GNNs under heterophily: ego
and neighbor embedding separation, higher-order neighbor-
hood utilization and intermediate representation combina-
tion. WRGAT (Suresh et al., 2021) transforms the original
graph into a multi-relational one that contains both raw
edges and newly constructed edges. The new edges can
connect distant nodes and are weighted by node local struc-
tural similarity. There also exist GNNs that study the graph
heterophily issue from other perspectives. For example, to
jointly study the heterophily and over-smoothing problems,
GGCN (Yan et al., 2021) allows for signed messages to be
propagated from a node’s neighborhood. On the other hand,
it adopts a degree correction mechanism to rescale node de-
grees and further alleviate the over-smoothing problem. To
generalize GNNs to large-scale graphs, LINKX (Lim et al.,
2021) separately embeds node features and graph topology.
After that, the two embeddings are combined with MLPs to
generate node embeddings. Different from all these meth-
ods, GloGNN performs node neighborhood aggregation
from the whole set of nodes in the graph, which takes more
nodes in the same class as neighbors and thus boosts the
performance of GNNs on graphs with heterophily.

3. Preliminaries
In this section we introduce notations and concepts used in
this paper.

[Notations]. We denote an undirected graph without self-
loops as G = (V, E), where V = {vi}ni=1 is a set of nodes
and E ⊆ V × V is a set of edges. Let A denote the adja-
cency matrix such that Aij represents the weight of edge eij
between nodes vi and vj . For each node vi, we use Ni to
denote vi’s neighborhood, which is the set of nodes directly
connected to vi. We further construct a diagonal matrix D
where Dii =

∑n
j=1Aij . We denote the node representa-

tion matrix in the l-th layer as H(l), where the i-th row is
the embedding vector h(l)i of node vi. For the initial node
feature matrix, we denote it as X . We use Y ∈ Rn×c to
denote the ground-truth node label matrix, where c is the
number of labels in node classification and the i-th row yi
is the one-hot encoding of node vi’s label.

[Homophily/Heterophily]. The homophily/heterophily
of a graph is typically defined based on the similar-
ity/dissimilarity between two connected nodes w.r.t. node
features or node labels. In this paper, we focus on ho-
mophily/heterophily in node labels. There have been some
metrics of homophily proposed. For example, edge ho-
mophily (Zhu et al., 2020b) is defined as the fraction of

edges that connect nodes with the same label. Further, high
homophily indicates low heterophily, and vice versa. We
thus interchangeably use these two terms in this paper.

[GNN basics]. The convolution operation in GNNs is typi-
cally composed of two steps: (1) feature propagation and ag-
gregation: ĥ(l)i = AGGREGATE(h

(l)
j ,∀vj ∈ Ni); (2) node

embedding updating: h(l+1)
i = Update(h

(l)
i , ĥ

(l)
i). One of

the most widely used GNN models is vanilla GCN (Kipf &
Welling, 2016), which adopts a renormalization trick to add
a self-loop to each node in the graph. After that, the normal-
ized affinity matrix Â = D̃−

1
2 ÃD̃−

1
2 , where Ã = A+ In,

D̃ = D + In and In ∈ Rn×n is the identity matrix. Note
that Â is a low-pass filter while the corresponding Laplacian
matrix L = In − Â is a high-pass filter. The output in the
(l+ 1)-th layer of vanilla GCN is H(l+1) = σ(ÂH(l)W (l)),
where W (l) is a learnable weight matrix and σ is the Relu
function. After L layers, HL is then subsequently fed into
a softmax layer to generate label probability logits and a
cross-entropy function for node classification.

4. Algorithm
In this section, we describe our models. We first show how
to capture node correlations and derive the coefficient matrix
Z in each layer. After that, we introduce how to accelerate
neighborhood aggregation based on Z. Further, we theoret-
ically prove that both Z and H have the desired grouping
effect. Finally, we summarize GloGNN and upgrade the
model to GloGNN++. The overall framework of GloGNN
is given in Figure 2.

𝒗𝟏

𝒗𝟐
𝒗𝟑

𝒗𝟔

𝒗𝟒
𝒗𝟓

Inputs

X

A

𝐌𝐋𝐏𝟏

𝐌𝐋𝐏𝟐

𝐇(𝟎)

𝐡𝟐
(𝟎)

𝐡𝟑
(𝟎)

𝐡𝟔
(𝟎)

𝐡𝟒
(𝟎)

𝐡𝟓
(𝟎)

𝐡𝟏
(𝟎)

𝒛𝟏
(𝟎)

𝑧%%
(&)

𝑧%'
(&)

𝑧%(
(&)

𝑧%)
(&)

𝑧%*
(&)

𝑧%+
(&)

𝒉𝟏
(𝟎)

𝐇(𝑳)for each node ...

L layers

Figure 2. The overall framework of GloGNN. In each layer, we
derive a coefficient matrix, based on which a node’s embedding is
generated by aggregating information from global nodes.

4.1. Coefficient matrix

In graphs with heterophily, connected nodes are more likely
to have different labels while distant nodes could be from the
same class. We thus have to enlarge a node’s neighborhood
to leverage more distant nodes. A straightforward way is
to use all the nodes in the graph. Inspired by the linear
subspace model (Liu et al., 2012), we characterize each
node by all the nodes in the graph. Specifically, in the l-th
layer, we can determine a coefficient matrix Z(l) ∈ Rn×n:

H(l) = Z(l)H(l) +O(l), (1)

Submission and Formatting Instructions for ICML 2022

where O(l) is a noise matrix. One can interpret Z(l)
ij as a

value that reflects how well node xj characterizes xi, so
Z(l) plays the role of a weight matrix. Note that Z(l)

ij allows
signed values. On the one hand, the more similar two nodes
are, the more likely that one node can be represented by
the other. Homophilous neighbors will thus be assigned
large positive coefficients. On the other hand, heterophilous
neighbors will be given small positive or negative coeffi-
cients due to the dissimilarities. Further, since it has been
pointed out in (Liu et al., 2020) that the over-smoothing
problem is caused by the coupling of neighborhood aggre-
gation and feature transformation, we decouple these two
processes by first performing feature transformation to gen-
erateH(0). Specifically, we use MLPs to map feature matrix
and adjacency matrix into H(0)

X ∈ Rn×c and H(0)
A ∈ Rn×c,

respectively:

H
(0)
X = MLP1(X), H

(0)
A = MLP2(A). (2)

Here, c is the number of labels. Then we derive the initial
node embedding matrix H(0):

H(0) = (1− α)H
(0)
X + αH

(0)
A , (3)

where α ∈ [0, 1] is the term weight. Note thatH(0) captures
the information of both nodes’ features and connectivities.
Inspired by (Klicpera et al., 2018), we use skip connection
and further modify H(l) in Equation 1 into:

H(l) = (1− γ)Z(l)H(l) + γH(0) +O(l), (4)

where γ ∈ [0, 1] is a hyper-parameter that balances the term
importance. Here, we characterize node correlations based
on H(l). However, as suggested in (Suresh et al., 2021),
if two nodes share similar local graph structures, they are
more likely to have the same label. We thus measure node
correlations in terms of both feature similarity and topology
similarity by further regularizing Z(l) with nodes’ multi-hop
reachabilities. We have the following objective function:

min
Z(l)
‖H(l)−(1−γ)Z(l)

H
(l)−γH(0)‖2F+β1‖Z(l)‖2F+β2‖Z(l)−

K∑
k=1

λkÂ
k‖2F

(5)

where β1 and β2 are weighting factors for adjusting the
importance of different components, andK is the maximum
hop count. To show the importance of the k-hop graph
connectivity, we further introduce a learnable parameter λk.
The objective function consists of three terms. The first
term reduces noise and drives the linear representation for
nodes to be close to their own embeddings, the second term
is a Frobenius norm, and the third term regularizes Z(l)

by the multi-hop regularized graph adjacency matrices. A
closed-form solution Z(l)∗ to the optimization problem is

Z
(l)∗

=

[
(1− γ)H(l)

(H
(l)

)
T

+ β2

K∑
k=1

λkÂ
k − γ(1− γ)H(0)

(H
(l)

)
T

]
·

[
(1− γ)2H(l)

(H
(l)

)
T

+ (β1 + β2)In
]−1

4.2. Aggregation acceleration

Based on Z(l)∗, we can write neighborhood aggregation in
the l-th layer:

H(l+1) = (1− γ)Z(l)∗H(l) + γH(0). (6)

However, directly updating H(l+1) by Equation 6 is infea-
sible due to the cubic time complexity in computing Z(l)∗

and the quadratic time complexity in calculating Z(l)∗H(l).
To accelerate the updates of H(l+1), instead of directly cal-
culating Z(l)∗, we transform Equation 6 into (see Section C
in the appendix):

H
(l+1)

=(1− γ)H(l)
(H

(l)
)
T
Q

(l+1)
+ β2

K∑
k=1

λkÂ
k
Q

(l+1)

− γ(1− γ)H(0)
(H

(l)
)
T
Q

(l+1)
+ γH

(0)

(7)

where

Q
(l+1)

=
1− γ
β1 + β2

H
(l) −

1− γ
(β1 + β2)2

H
(l)·[

1

(1− γ)2
Ic +

1

β1 + β2

(H
(l)

)
T
H

(l)

]−1

(H
(l)

)
T
H

(l)

(8)

Here, H(l), Q(l+1) ∈ Rn×c, Ic ∈ Rc×c is the identity
matrix and c is the number of labels. In this way, we avoid
computing Z(l)∗ directly and can accelerate the updates of
H(l+1) by matrix multiplication reordering. Specifically, we
first compute Q(l+1), where the second term is calculated
from right to left. In particular, the matrix inversion is
performed on a matrix in Rc×c, whose time complexity is
only O(c3) and c is generally a very small number. This
significantly improves the model efficiency. The overall
time complexity of updating Q(l+1) is O(nc2 + c3), where
c2 � n. After Q(l+1) is calculated, we then update H(l+1).
We compute each term of H(l+1) in a similar right-to-left
manner. For example, to calculate H(l)(H(l))TQ(l+1), we
first compute (H(l))TQ(l+1) but not H(l)(H(l))T . This
reduces the time complexity to be O(nc2), but not O(n2c).
When calculating

∑K
k=1 λkÂ

kQ(l+1), we can first compute
ÂQ(l+1) due to the sparsity of Â for a general graph, which
only requires a time complexity of O(k1cn). Here, k1 is
the average number of nonzero entries in a row of Â. While
ÂQ(l+1) generates a dense matrix, we can further employ
the sparsity of Â to get Â2Q(l+1). In this way, we can
sequentially derive ÂQ(l+1), Â2Q(l+1), ..., ÂKQ(l+1) in
O(k1cn). In summary, the total time complexity to update
H(l+1) by Equation 7 is O(k2n), where k2 is a coefficient
and k2 � n.

4.3. Grouping effect

For a node vi, we denote âki as the i-th row of Âk, which
represents vi’s k-hop node reachability in a graph. Given
two nodes vi and vj , if they have similar feature vectors and
local graph structures, their characterizations from other
nodes are expected to be similar. Formally, we have

Submission and Formatting Instructions for ICML 2022

Definition 4.1. (Grouping effect (Li et al., 2020)). Given
a set of nodes V = {vi}ni=1, let vi → vj denote the condi-
tion that (1) ‖xi−xj‖2 → 0 and (2) ‖âki −âkj ‖2 → 0, ∀k ∈
[1,K]. A matrix Z is said to have grouping effect if

vi → vj ⇒ |Zip − Zjp| → 0,∀1 ≤ p ≤ n. (9)

We next theoretically show the grouping effect of Z(l)∗,
(Z(l)∗)T and H(l+1) by giving the following lemmas.
Proofs of all these lemmas are deferred to Section D in
the appendix.
Lemma 4.2. ∀1 ≤ i, j, p ≤ n,

|Z(l)∗
ip − Z(l)∗

jp | ≤
1− γ
β1 + β2

‖h(l)
i − h

(l)
j ‖2‖(h

(l)
p)

T − (1− γ)2(H(l)
)
T
R‖2

+
γ(1− γ)
β1 + β2

‖h(0)
i − h(0)

j ‖2‖(h
(l)
p)

T − (1− γ)2(H(l)
)
T
R‖2

+
β2(1− γ)2

β1 + β2

K∑
k=1

λk‖âki − â
k
j ‖2‖R‖2

+
β2

β1 + β2

K∑
k=1

λk|Âk
ip − Â

k
jp|

whereR =
[
(1− γ)2H(l)(H(l))T + (β1 + β2)In

]−1

H(l)(h
(l)
p)T .

Lemma 4.3. ∀1 ≤ i, j, p ≤ n,

|Z(l)∗
pi − Z(l)∗

pj | ≤
η(1− γ)‖h(l)

i − h
(l)
j ‖2 + β2

∑K
k=1 λk|Âk

pi − Â
k
pj |

β1 + β2

where η =

√
‖h(l)

p − γh(0)
p ‖22 + β2‖

∑K
k=1 λkâ

k
p‖22.

Lemma 4.4. Matrices Z(l)∗, (Z(l)∗)T and H(l+1) all have
grouping effect.

The grouping effect of Z(l)∗, (Z(l)∗)T and H(l+1) indeed
explains the effectiveness of our model. In fact, for any two
nodes vi and vj , no matter how distant they are in a graph,
if they share similar feature vectors and local structures, we
conclude that (1) they will be given similar coefficient vec-
tors; (2) they will play similar roles in characterizing other
nodes; and (3) they will be given similar representation vec-
tors. On the other hand, in graphs with heterophily, adjacent
nodes are more likely to be dissimilar and they will thus be
given different embeddings. Further, for two nodes with low
feature similarity, using one to characterize the other can be
enhanced by the regularization term of local graph structure,
if they share high structural similarity. This also applies to
nodes that have high feature similarity but low structural
similarity. After L convolutional layers, we derive H(L).
We then normalize H(L) by a Softmax layer, whose re-
sults are further fed into the Cross-entropy function
for classification. Finally, we summarize the pseudocodes
of GloGNN in Algorithm 1 (Section A of the appendix).

4.4. GloGNN++

Given H l, the coefficient matrix Z(l)∗ in Equation 6 plays
the role of “longitudinal” attention that characterizes the

importance of a node to another. In neighborhood aggrega-
tion, not only varies the importance of a node’s neighbors,
but also that of hidden features. For example, in node clas-
sification, the imbalance of node labels could lead to the
various importance of hidden features corresponding to dif-
ferent labels. Therefore, we further upgrade our model by
considering “horizontal” attention w.r.t. hidden features.
We introduce a diagonal matrix Σ ∈ Rc×c such that Σii
describes the importance of the i-th dimension in H(l). We
modify Equation 5 into:

min
Z(l)
||H(l) − (1− γ)Z

(l)
H

(l)
Σ− γH(0)||2F

+ β1‖Z
(l)‖2F + β2||Z

(l) −
K∑

k=1

λkÂ
k||2F ,

(10)

and derive the optimal solution Z(l)∗:

Z
(l)∗

=

(1− γ)H
(l)

Σ(H
(l)

)
T

+ β2

K∑
k=1

λkÂ
k − γ(1− γ)H

(0)
Σ(H

(l)
)
T

 ·
[
(1− γ)

2
H

(l)
ΣΣ(H

(l)
)
T

+ (β1 + β2)In

]−1

Following the same procedure in Sec. 4.2 and 4.3, we can
also accelerate neighborhood aggregation and further prove
that suchZ(l)∗, (Z(l)∗)T andH(l+1) have the desired group-
ing effect. We omit the details due to the space limitation.

4.5. Discussion

We next discuss the major differences between our models
and the adapted GAT model that takes global nodes as a
node’s neighbors. First, the attention weights in GAT are
automatically learned and lack of interpretability, but Z(l)

in our models is derived from a well-designed optimiza-
tion problem and has a closed-form solution. Second, the
attention weights in GAT are always non-negative values
while Z(l) in our methods allows signed values. Therefore,
GAT only employs low-pass convolutional filters while our
methods combine both low-pass and high-pass filters. Third,
for each node, the neighborhood aggregation performed by
GAT over all the nodes in the graph is computationally ex-
pensive, which has a quadratic time complexity w.r.t. the
number of nodes. However, our methods accelerate the
aggregation and derive a linear time complexity.

5. Experiments
In this section, we comprehensively evaluate the perfor-
mance of GloGNN and GloGNN++. In particular, we com-
pare them with 11 other methods on 15 benchmark datasets,
to show the effectiveness and efficiency of our models. Due
to the space limitation, we move experimental setup (Sec. E)
and ablation study (Sec. F) to the appendix.

5.1. Datasets

For fairness, we conduct experiments on 15 benchmark
datasets, which include 9 small-scale datasets released

Submission and Formatting Instructions for ICML 2022

by (Pei et al., 2020) and 6 large-scale datasets from (Lim
et al., 2021). We use the same training/validation/test
splits as provided by the original papers. In particular,
these datasets span various domains, scales and graph het-
erophilies. The statistics of these datasets are summarized
in Tables 1 and 2. Details on these datasets can be found in
Section B of the appendix.

5.2. Algorithms for comparison

We compare GloGNN and GloGNN++ with 11 other
baselines, including (1) MLP; (2) general GNN methods:
GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017),
MixHop (Abu-El-Haija et al., 2019) and GCNII (Chen
et al., 2020); (3) heterophilous-graph-oriented methods:
H2GCN (Zhu et al., 2020b), WRGAT (Suresh et al., 2021),
GPR-GNN (Chien et al., 2020), GGCN (Yan et al., 2021),
ACM-GCN (Luan et al., 2021) and LINKX (Lim et al.,
2021). For these methods specially designed for het-
erophilous graphs, LINKX is a MLP-based method while
others are GNN models. Further, although several ACM-
variants are proposed in (Luan et al., 2021), ACM-GCN
is reported to achieve the overall best performance on the
same splits of benchmark datasets from (Pei et al., 2020), so
we choose it as the baseline. For other models like Geom-
GCN (Pei et al., 2020) and FAGCN (Bo et al., 2021), since
they have been shown to be outperformed by the state-of-
the-arts, we exclude their results in our paper.

5.3. Performance results

Tables 1 and 2 summarize the performance results of all the
methods on 15 benchmark datasets. Note that we compare
the AUC score on genius as in (Lim et al., 2021). For
other datasets, we show the results of classification accuracy.
Each column in the tables corresponds to one dataset. For
each dataset, we highlight the winner’s score in bold and
the runner-up’s with underline. From the tables, we make
the following observations:

(1) MLP that uses only node features performs surprisingly
well on some datasets with large heterophily, such as Ac-
tor. This shows the importance of node features for node
classification in heterophilous graphs.

(2) Compared with the plain GNN models GCN and GAT,
MixHop and GCNII generally perform better. For example,
on Wisconsin, the accuracy scores of MixHop and GCNII
are 0.7588 and 0.8039, respectively, which significantly out-
perform that of GCN and GAT. On the one hand, MixHop
amplifies a node’s neighborhood with its multi-hop neigh-
bors. This introduces more homophilous neighbors for the
node. On the other hand, the initial residual and identity
mapping mechanisms in GCNII implicitly combine interme-
diate node representations to boost the model performance.

(3) Although H2GCN, WRGAT and GGCN can achieve
good performance on small-scale datasets, they fail to run on
very large-scale datasets due to the out-of-memory (OOM)
error. This hinders the wide application of these models. For
ACM-GCN and LINKX, they cannot consistently provide
superior results. For example, LINKX ranks third on large-
scale datasets, but performs poorly on small-scale ones (rank
8th). ACM-GCN is the winner on Texas, but its accuracy
score on pokec is only 0.6381 (the best result is 0.8305).
While GPR-GNN leverages both low-pass and high-pass
filters, it only utilizes one type of convolutional filters in
each layer, which restricts its effectiveness.

(4) GloGNN++ achieves the first average rank over all the
datasets while GloGNN is the runner-up. This shows that
both of them can consistently provide superior results on
datasets in a wide range of diversity. On the one hand, both
methods learn to utilize more neighbors with homophily
for node neighborhood aggregation. This boosts the model
performance. On the other hand, GloGNN++ further learns
the importance of hidden features of nodes, which improves
the classification accuracy.

5.4. Efficiency study

In this section, we study GloGNN’s efficiency. For fair-
ness, we compare the training time for methods that are
specially designed for graphs with heterophily. In partic-
ular, we make the comparison on the large-scale datasets
for better efficiency illustration. For all these methods, we
use the same training set on each dataset and run the ex-
periments for 500 epochs. We repeat the experiments three
times and show the average training time of these methods
w.r.t. accuracy/AUC scores on the validation set in Figure 3.
Note that due to the OOM error, GGCN fails to run on these
datasets and we exclude it for comparison. We also drop
WRGAT because it takes long time to precompute the multi-
relational graph. For example, with default hyper-parameter
settings, WRGAT takes around 3200 seconds to compute
the multi-relational graph of Penn94 on a server with 48
CPUs. However, the runs of all other models that perform
on the original graph are finished within the period. We next
recap the major difference of these methods: all the methods
except LINKX are GNN models. Specifically, for each node,
ACM-GCN and GPR-GNN perform convolution directly
from its adjacent neighbors while H2GCN, GloGNN and
GloGNN++ amplify the neighborhood of the node. Here,
H2GCN considers multi-hop neighbors in the node’s neigh-
borhood while both GloGNN and GloGNN++ employ the
whole set of nodes in the graph. Compared with GloGNN,
GloGNN++ further incorporates an attention mechanism
to learn the importance of node hidden features. Finally,
LINKX is a simple MLP-based model that does not include
the graph convolution operation.

Submission and Formatting Instructions for ICML 2022

Table 1. The classification accuracy (%) over the methods on 9 small-scale datasets released in (Pei et al., 2020). The error bar (±) denotes
the standard deviation score of results over 10 trials. We highlight the best score on each dataset in bold and the runner-up score with
underline. Note that Edge Hom. (Zhu et al., 2020b) is defined as the fraction of edges that connect nodes with the same label.

Texas Wisconsin Cornell Actor Squirrel Chameleon Cora Citeseer Pubmed

Av
g.

R
an

k

Edge Hom. 0.11 0.21 0.30 0.22 0.22 0.23 0.81 0.74 0.80
#Nodes 183 251 183 7,600 5,201 2,277 2,708 3,327 19,717
#Edges 295 466 280 26,752 198,493 31,421 5,278 4,676 44,327

#Features 1,703 1,703 1,703 931 2,089 2,325 1,433 3,703 500
#Classes 5 5 5 5 5 5 6 7 3

MLP 80.81± 4.75 85.29± 3.31 81.89± 6.40 36.53± 0.70 28.77± 1.56 46.21± 2.99 75.69± 2.00 74.02± 1.90 87.16± 0.37 9.72
GCN 55.14± 5.16 51.76± 3.06 60.54± 5.30 27.32± 1.10 53.43± 2.01 64.82± 2.24 86.98± 1.27 76.50± 1.36 88.42± 0.50 10.22
GAT 52.16± 6.63 49.41± 4.09 61.89± 5.05 27.44± 0.89 40.72± 1.55 60.26± 2.50 87.30± 1.10 76.55± 1.23 86.33± 0.48 11.11

MixHop 77.84± 7.73 75.88± 4.90 73.51± 6.34 32.22± 2.34 43.80± 1.48 60.50± 2.53 87.61± 0.85 76.26± 1.33 85.31± 0.61 10.11
GCNII 77.57± 3.83 80.39± 3.40 77.86± 3.79 37.44± 1.30 38.47± 1.58 63.86± 3.04 88.37± 1.25 77.33± 1.48 90.15± 0.43 5.89

H2GCN 84.86± 7.23 87.65± 4.98 82.70± 5.28 35.70± 1.00 36.48± 1.86 60.11± 2.15 87.87± 1.20 77.11± 1.57 89.49± 0.38 6.72
WRGAT 83.62± 5.50 86.98± 3.78 81.62± 3.90 36.53± 0.77 48.85± 0.78 65.24± 0.87 88.20± 2.26 76.81± 1.89 88.52± 0.92 6.17

GPR-GNN 78.38± 4.36 82.94± 4.21 80.27± 8.11 34.63± 1.22 31.61± 1.24 46.58± 1.71 87.95± 1.18 77.13± 1.67 87.54± 0.38 8.83
GGCN 84.86± 4.55 86.86± 3.29 85.68± 6.63 37.54± 1.56 55.17± 1.58 71.14± 1.84 87.95± 1.05 77.14± 1.45 89.15± 0.37 3.89

ACM-GCN 87.84± 4.40 88.43± 3.22 85.14± 6.07 36.28± 1.09 54.40± 1.88 66.93± 1.85 87.91± 0.95 77.32± 1.70 90.00± 0.52 3.78
LINKX 74.60± 8.37 75.49± 5.72 77.84± 5.81 36.10± 1.55 61.81± 1.80 68.42± 1.38 84.64± 1.13 73.19± 0.99 87.86± 0.77 8.78

GloGNN 84.32± 4.15 87.06± 3.53 83.51± 4.26 37.35± 1.30 57.54± 1.39 69.78± 2.42 88.31± 1.13 77.41± 1.65 89.62± 0.35 3.22
GloGNN++ 84.05± 4.90 88.04± 3.22 85.95± 5.10 37.70± 1.40 57.88± 1.76 71.21± 1.84 88.33± 1.09 77.22± 1.78 89.24± 0.39 2.56

Table 2. The classification results (%) over the methods on 6 large-scale datasets released in (Lim et al., 2021). Note that we compare
the AUC score on genius as in (Lim et al., 2021). For other datasets, we show the classification accuracy. The error bar (±) denotes the
standard deviation score of results over 5 trials. We highlight the best score on each dataset in bold and the runner-up score with underline.
Note that OOM refers to the out-of-memory error.

Penn94 pokec arXiv-year snap-patents genius twitch-gamers

Av
g.

R
an

k

Edge Hom. 0.47 0.44 0.22 0.07 0.61 0.54
#Nodes 41,554 1,632,803 169,343 2,923,922 421,961 168,114
#Edges 1,362,229 30,622,564 1,166,243 13,975,788 984,979 6,797,557

#Features 5 65 128 269 12 7
#Classes 2 2 5 5 2 2

MLP 73.61± 0.40 62.37± 0.02 36.70± 0.21 31.34± 0.05 86.68± 0.09 60.92± 0.07 10.00
GCN 82.47± 0.27 75.45± 0.17 46.02± 0.26 45.65± 0.04 87.42± 0.37 62.18± 0.26 7.00
GAT 81.53± 0.55 71.77± 6.18 46.05± 0.51 45.37± 0.44 55.80± 0.87 59.89± 4.12 8.50

MixHop 83.47± 0.71 81.07± 0.16 51.81± 0.17 52.16± 0.09 90.58± 0.16 65.64± 0.27 4.17
GCNII 82.92± 0.59 78.94± 0.11 47.21± 0.28 37.88± 0.69 90.24± 0.09 63.39± 0.61 6.00

H2GCN 81.31± 0.60 OOM 49.09± 0.10 OOM OOM OOM 10.50
WRGAT 74.32± 0.53 OOM OOM OOM OOM OOM 11.92

GPR-GNN 81.38± 0.16 78.83± 0.05 45.07± 0.21 40.19± 0.03 90.05± 0.31 61.89± 0.29 7.83
GGCN OOM OOM OOM OOM OOM OOM 12.25

ACM-GCN 82.52± 0.96 63.81± 5.20 47.37± 0.59 55.14± 0.16 80.33± 3.91 62.01± 0.73 6.83
LINKX 84.71± 0.52 82.04± 0.07 56.00± 1.34 61.95± 0.12 90.77± 0.27 66.06± 0.19 2.50

GloGNN 85.57± 0.35 83.00± 0.10 54.68± 0.34 62.09± 0.27 90.66± 0.11 66.19± 0.29 2.17
GloGNN++ 85.74± 0.42 83.05± 0.07 54.79± 0.25 62.03± 0.21 90.91± 0.13 66.34± 0.29 1.33

From Fig. 3, we see that GloGNN and GloGNN++ converge
very fast to the best/runner-up results over all the datasets.
While GPR-GNN runs faster, it generally performs poorly.
For LINKX, the MLP-based model structure instead of
GNN-based explains its scalability. However, the 8th-ranked
accuracy score on datasets in Table 1 restricts its wide usage.
For H2GCN and ACM-GCN, they are slower than GloGNN
and GloGNN++. For example, GloGNN++ achieves almost
8× speedup than ACM-GCN on genius; it is also 2× faster
than H2GCN on Penn94. These results show that GloGNN
and GloGNN++ are highly effective and also efficient; hence
they can be widely applied to large-scale datasets.

5.5. Grouping effect

Lemma 4.4 shows that both the coefficient matrix Z∗ and
the node embedding matrix H have the desired grouping
effect. Considering the dataset size for clear illustration, we
choose Texas, Wisconsin and Cornell as representatives to

show the grouping effect of Z∗ in Figure 4 (a)-(c). All these
datasets contain nodes in five labels. In each sub-figure,
rows and columns are reordered by ground-truth labels. We
use red and blue to indicate positive and negative values, re-
spectively. We further use pixel color brightness to show the
positive/negative degree of a value. The brighter a pixel, the
larger the degree. From the figures, the matrix exhibits the
well-defined block diagonal structure. This shows the group-
ing effect of Z∗. For Texas and Cornell, we see only four
blocks along the diagonal. This is because in both datasets,
there exists one object class that includes only one node.
Similarly, Figure 4 (d)-(f) further show the grouping effect
of the output node embedding matrix H on these datasets.
We reorder columns by gold-standard classes. Each column
in the matrix corresponds to a node’s embedding vector. For
nodes in the same class, their embedding vectors are close to
each other. This further explains the superior performance
of our models.

Submission and Formatting Instructions for ICML 2022

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Seconds

0.3

0.4

0.5

Ac
cu

ra
cy

GPR-GNN
H2GCN
ACM-GCN
LINKX
GloGNN
GloGNN++

(a) arXiv-year

0 10 20 30 40 50
Seconds

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

GPR-GNN
H2GCN
ACM-GCN
LINKX
GloGNN
GloGNN++

(b) Penn94

0 10 20 30 40 50 60
Seconds

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

GPR-GNN
ACM-GCN
LINKX
GloGNN
GloGNN++

(c) genius

0 50 100 150 200
Seconds

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

GPR-GNN
ACM-GCN
LINKX
GloGNN
GloGNN++

(d) pokec

0 50 100 150 200
Seconds

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

GPR-GNN
ACM-GCN
LINKX
GloGNN
GloGNN++

(e) snap-patents

0 20 40 60 80 100
Seconds

0.5

0.6

Ac
cu

ra
cy

GPR-GNN
ACM-GCN
LINKX
GloGNN
GloGNN++

(f) twitch-gamers

Figure 3. Efficiency study: x-axis shows the training time and y-
axis is the accuracy/AUC score on the validation set.

0 50 100 150

0

25

50

75

100

125

150

175

(a) Texas

0 50 100 150 200 250

0

50

100

150

200

250

(b) Wisconsin

0 50 100 150

0

25

50

75

100

125

150

175

(c) Cornell

0 25 50 75 100 125 150 175

0
1
2
3
4
5

(d) Texas

0 50 100 150 200 250

0
1
2
3
4
5

(e) Wisconsin

0 25 50 75 100 125 150 175

0
1
2
3
4
5

(f) Cornell

Figure 4. The grouping effect of Z∗ (a)-(c) and H (d)-(f) on Texas,
Wisconsin and Cornell (better view in color).

5.6. Global homophily

We end this section with a study to show how GloGNN finds
global homophily for nodes in the graph. Given a graph, we
first calculate the average number of k-hop neighbors that
share the same label with a node. We further inspect the
average number of positive Z∗ values for these neighbors.
After that, we compare the results on 6 graphs with large
heterophily in Figure 5. We see that for each node in these
datasets, the average number of adjacent neighbors in the
same class is less than that of multi-hop ones (2-hop to 6-
hop). There also exist many > 6-hop neighbors that can be
used to predict a node’s label. This necessitates jumping
the locality of a node and finding its global homophily.
Further, for each node, our model GloGNN can correctly
assign positive values to the global nodes in the same class,
including both adjacent neighbors and those that are distant.
This also explains the effectiveness of our models.

0 2 4 6 8
Hops

0

4

8

12

Nu
m

be
r (

lo
g2

)

z_positive
homo_neigh

(a) Texas

0 2 4 6 8
Hops

0

4

8

12

Nu
m

be
r (

lo
g2

)

z_positive
homo_neigh

(b) Wisconsin

0 2 4 6 8
Hops

0

4

8

12

Nu
m

be
r (

lo
g2

)

z_positive
homo_neigh

(c) Cornell

0 2 4 6 8 10 12
Hops

0

4

8

12

16

20

Nu
m

be
r (

lo
g2

)

z_positive
homo_neigh

(d) Actor

0 2 4 6 8 10
Hops

0

4

8

12

16

20
Nu

m
be

r (
lo

g2
)

z_positive
homo_neigh

(e) Squirrel

0 2 4 6 8 10 12
Hops

0

4

8

12

16

Nu
m

be
r (

lo
g2

)

z_positive
homo_neigh

(f) Chameleon

Figure 5. Global homophily study

6. Conclusions
In this paper, we generalized GNNs to graphs with het-
erophily. We proposed GloGNN and GloGNN++, which
generate a node’s embedding by aggregating information
from global nodes in the graph. In each layer, we formulated
an optimization problem to derive a coefficient matrix Z that
describes the relationships between nodes. Neighborhood
aggregation is then performed based on Z. We accelerated
the aggregation process by matrix multiplication reordering
without explicitly calculating Z. We mathematically proved
that both Z and the generated node embedding matrix H
have the desired grouping effect, which explains the model
effectiveness. We conducted extensive experiments to eval-
uate the performance of our models. Experimental results
show that our methods performs favorably against other 11
competitors over 15 datasets of diverse heterophilies; they
are also efficient and converge very fast.

Submission and Formatting Instructions for ICML 2022

Acknowledgements
We sincerely appreciate the insightful comments given by
the anonymous reviewers. Xiang Li is supported by Shang-
hai Pujiang Talent Program (Project No. 21PJ1402900) and
Shanghai Science and Technology Committee General Pro-
gram (Project No. 22ZR1419900). Siqiang Luo is supported
by Singapore MOE AcRF Tier 1 (RG18/21), Tier 1 Seed
Funding (RS05/21) and NTU startup grant.

References
Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,

Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In ICML,
pp. 21–29. PMLR, 2019.

Bo, D., Wang, X., Shi, C., and Shen, H. Beyond low-
frequency information in graph convolutional networks.
arXiv preprint arXiv:2101.00797, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In ICML, pp.
1725–1735. PMLR, 2020.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive uni-
versal generalized pagerank graph neural network. arXiv
preprint arXiv:2006.07988, 2020.

Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., and
Latora, V. Homophily and missing links in citation net-
works. EPJ Data Science, 5:1–14, 2016.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data. In
ICML, pp. 1115–1124. PMLR, 2018.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. NeurIPS, 29:3844–3852, 2016.

Dong, Y., Ding, K., Jalaian, B., Ji, S., and Li, J. Graph
neural networks with adaptive frequency response filter.
arXiv preprint arXiv:2104.12840, 2021.

Gerber, E. R., Henry, A. D., and Lubell, M. Political ho-
mophily and collaboration in regional planning networks.
American Journal of Political Science, 57(3):598–610,
2013.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NeurIPS, pp.
1025–1035, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Li, X., Kao, B., Shan, C., Yin, D., and Ester, M. Cast: A
correlation-based adaptive spectral clustering algorithm
on multi-scale data. In KDD, pp. 439–449, 2020.

Lim, D., Hohne, F., Li, X., Huang, S. L., Gupta, V.,
Bhalerao, O., and Lim, S. N. Large scale learning on
non-homophilous graphs: New benchmarks and strong
simple methods. NeurIPS, 34, 2021.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. Robust
recovery of subspace structures by low-rank representa-
tion. TPAMI, 35(1):171–184, 2012.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In KDD, pp. 338–348, 2020.

Liu, M., Wang, Z., and Ji, S. Non-local graph neural net-
works. TPAMI, 2021.

Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., and
Yan, S. Robust and efficient subspace segmentation via
least squares regression. In ECCV, pp. 347–360, 2012.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Is heterophily a real night-
mare for graph neural networks to do node classification?
arXiv preprint arXiv:2109.05641, 2021.

Max, A. W. Inverting modified matrices. In Memorandum
Rept. 42, Statistical Research Group, pp. 4. Princeton
Univ., 1950.

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of
a feather: Homophily in social networks. Annual review
of sociology, 27(1):415–444, 2001.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. arXiv preprint arXiv:1907.10903, 2019.

Shan, C., Shen, Y., Zhang, Y., Li, X., and Li, D. Rein-
forcement learning enhanced explainer for graph neural
networks. NeurIPS, 34, 2021.

Suresh, S., Budde, V., Neville, J., Li, P., and Ma, J. Breaking
the limit of graph neural networks by improving the as-
sortativity of graphs with local mixing patterns. In KDD,
pp. 1541–1551, 2021.

Submission and Formatting Instructions for ICML 2022

Tang, J., Sun, J., Wang, C., and Yang, Z. Social influence
analysis in large-scale networks. In KDD, pp. 807–816,
2009.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Vu, M. N. and Thai, M. T. Pgm-explainer: Probabilistic
graphical model explanations for graph neural networks.
arXiv preprint arXiv:2010.05788, 2020.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra,
D. Two sides of the same coin: Heterophily and over-
smoothing in graph convolutional neural networks. arXiv
preprint arXiv:2102.06462, 2021.

Yang, Y., Liu, T., Wang, Y., Zhou, J., Gan, Q., Wei, Z.,
Zhang, Z., Huang, Z., and Wipf, D. Graph neural net-
works inspired by classical iterative algorithms. arXiv
preprint arXiv:2103.06064, 2021.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmoothing
in gnns. arXiv preprint arXiv:1909.12223, 2019.

Zhu, D., Zhang, Z., Cui, P., and Zhu, W. Robust graph
convolutional networks against adversarial attacks. In
KDD, pp. 1399–1407, 2019.

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N., Ahmed,
N. K., and Koutra, D. Graph neural networks with het-
erophily. arXiv preprint arXiv:2009.13566, 2020a.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. arXiv preprint
arXiv:2006.11468, 2020b.

Submission and Formatting Instructions for ICML 2022

A. Pseudocodes
Given a graph G = (V, E) and a label set C with |C| = c, let V = L∪ U , where L is a set of labeled objects and U is a set of
unlabeled ones, the node classification problem is to learn a mapping ψ: V → C to predict the labels of nodes in U . We next
summarize the pseudocodes of GloGNN as follows.

Algorithm 1 GloGNN
1: Input: G = (V, E), V = L ∪ U , A, X , L, C, YL
2: Output: the label matrix YU of unlabeled nodes
3: Calculate H(0)

X and H(0)
A by Eq. 2

4: Calculate H(0) by Eq. 3
5: for l← 0 to L− 1 do
6: Calculate Q(l+1) by Eq. 8
7: Calculate H(l+1) by Eq. 7
8: end for
9: Normalize H(L) with the Softmax function and feed the results into the Cross-entropy function

10: Optimize the objective function to update weight matrices
11: Return: YU

B. Datasets
We first use 9 small-scale datasets from (Pei et al., 2020) and divide them into the following four categories:

• [Citation network]. Cora, Citeseer and Pubmed are citation graphs, where each node represents a scientific paper. These
graphs use bag-of-words representations as the feature vectors of nodes. Each node is assigned a label indicating the research
field. Note that these three datasets are homophilous graphs.

• [WebKB]. Texas, Wisconsin and Cornell are web page datasets collected from computer science departments of various
universities. In these datasets, nodes are web pages and edges represent hyperlinks between them. We take bag-of-words
representations as nodes’ feature vectors. The task is to classify the web pages into five categories including student, project,
course, staff and faculty.

• [Actor co-occurrence network]. Actor is a graph induced from the film-director-actor-writer network in (Tang et al.,
2009), which describes the co-occurrence relation between actors in Wikipedia pages. Node features are constructed by
keywords contained in the Wikipedia pages of actors. The task is to classify actors into five categories.

• [Wikipedia network]. Squirrel and Chameleon are two subgraphs of web pages in Wikipedia. Our task is to classify
nodes into five categories based on their average amounts of monthly traffic.

To further show the effectiveness and efficiency of our models, we also use 6 large-scale datasets released by (Lim et al.,
2021):

• [Social network]. Penn94 is a subgraph extracted from Facebook whose nodes are students. Node features include major,
second major/minor, dorm/house, year and high school. We take students’ genders as nodes’ labels. Pokec is a friendship
network from a Slovak online social network, whose nodes are users and edges represent directed friendship relations. We
construct node features from users’ profiles, such as geographical region, registration time, age. The task is to classify users
based on their genders. genius is a subnetwork extracted from genius.com, which is a website for crowdsourced annotations
of song lyrics. In the graph, nodes are users and edges connect users that follow each other. User features include expertise
scores, counts of contributions, roles held by users, etc. Some users are marked with a “gone” label on the site, which are
more likely to be spam users. Our goal is to predict whether a user is marked with “gone”. twitch-gamers is a subgraph
from the streaming platform Twitch, where nodes are users and edges connect mutual followers. Node features include the
number of views, the creation and update dates, language, life time and whether the account is dead. The task is to predict
whether the channel has explicit content.

• [Citation network]. arXiv-year is a directed subgraph of ogbn-arXiv, where nodes are arXiv papers and edges represent
the citation relations. We construct node features by taking the averaged word2vec embedding vectors of tokens contained
in both the title and abstract of papers. The task is to classify these papers into five labels that are constructed based on their

Submission and Formatting Instructions for ICML 2022

posting year. snap-patents is a US patent network whose nodes are patents and edges are citation relations. Node features
are constructed from patent metadata. Our goal is to classify the patents into five labels based on the time when they were
granted.

C. Aggregation acceleration

To accelerate the updates of H(l+1) in Equation 6, we first follow the Woodbury formula (Max, 1950) to derive[
(1− γ)2H(l)(H(l))T + (β1 + β2)In

]−1

=
1

β1 + β2
In −

1

(β1 + β2)2
H(l)

[
1

(1− γ)2 Ic +
1

β1 + β2
(H(l))TH(l)

]−1

(H(l))T
(11)

After that, based on Eq. 6 and Eq. 11, we can easily transform Eq. 6 into Eq. 7.

D. Proof
In this section, we prove Lemma 4.2, Lemma 4.3 and Lemma 4.4, respectively. In the following discussion, we use z(l)∗i to
denote the i-th row of Z(l)∗, which is the coefficient vector for representing node vi; we denote âki as the i-th row of Âk,
which represents vi’s k-hop node reachability in a graph. We first consider Lemma D.1:

Lemma D.1. ∀1 ≤ i, p ≤ n, the optimal solution Z(l)∗ in Eq. 5 satisfies

Z
(l)∗
ip =

(1− γ)[h
(l)
i − (1− γ)z

(l)∗
i H(l) − γh(0)i](h

(l)
p)T + β2

∑K
k=1 λkÂ

k
ip

β1 + β2
. (12)

Proof. For 1 ≤ i ≤ n, we define J(z
(l)
i) = ‖h(l)i − (1 − γ)z

(l)
i H(l) − γh(0)i ‖22 + β1‖z(l)i ‖22 + β2‖z(l)i −

∑K
k=1 λkâ

k
i ‖22.

Since Z(l)∗ is the optimal solution of Equation 5, we have ∂J

∂Z
(l)
ip

|
z
(l)
i =z

(l)∗
i

= 0, ∀1 ≤ p ≤ n. We take the derivative and get

−(1− γ)[h
(l)
i − (1− γ)z

(l)∗
i H(l) − γh(0)i](h

(l)
p)T + β1Z

(l)∗
ip + β2(Z

(l)∗
ip −

∑K
k=1 λkÂ

k
ip) = 0, which induces Eq. 12.

Based on Lemma D.1, we first prove Lemma 4.2:

Proof. From Equation 12, we get

Z
(l)∗
ip − Z

(l)∗
jp =

1− γ
β1 + β2

(h
(l)
i − h

(l)
j)(h(l)p)T − (1− γ)2

β1 + β2
(z

(l)∗
i − z(l)∗j)H(l)(h(l)p)T

− γ(1− γ)

β1 + β2
(h

(0)
i − h

(0)
j)(h(l)p)T +

β2
β1 + β2

K∑
k=1

λk(Âkip − Âkjp)
(13)

Since

z
(l)∗
i =

[
(1− γ)h

(l)
i (H(l))T + β2

K∑
k=1

λkâ
k
i − γ(1− γ)h

(0)
i (H(l))T

]
·

[
(1− γ)2H(l)(H(l))T + (β1 + β2)In

]−1 (14)

and

z
(l)∗
j =

[
(1− γ)h

(l)
j (H(l))T + β2

K∑
k=1

λkâ
k
j − γ(1− γ)h

(0)
j (H(l))T

]
·

[
(1− γ)2H(l)(H(l))T + (β1 + β2)In

]−1 (15)

Submission and Formatting Instructions for ICML 2022

let R =
[
(1− γ)2H(l)(H(l))T + (β1 + β2)In

]−1
H(l)(h

(l)
p)T and we derive

Z
(l)∗
ip − Z

(l)∗
jp =

1− γ
β1 + β2

(h
(l)
i − h

(l)
j)(h(l)p)T − (1− γ)3

β1 + β2
(h

(l)
i − h

(l)
j)(H(l))TR

− β2(1− γ)2

β1 + β2

K∑
k=1

λk(âki − âkj)R+
γ(1− γ)3

β1 + β2
(h

(0)
i − h

(0)
j)(H(l))TR

− γ(1− γ)

β1 + β2
(h

(0)
i − h

(0)
j)(h(l)p)T +

β2
β1 + β2

K∑
k=1

λk(Âkip − Âkjp)

(16)

We further have

|Z(l)∗
ip − Z

(l)∗
jp | ≤

1− γ
β1 + β2

‖h(l)i − h
(l)
j ‖2‖(h

(l)
p)T − (1− γ)2(H(l))TR‖2

+
γ(1− γ)

β1 + β2
‖h(0)i − h

(0)
j ‖2‖(h

(l)
p)T − (1− γ)2(H(l))TR‖2

+
β2(1− γ)2

β1 + β2

K∑
k=1

λk‖âki − âkj ‖2‖R‖2 +
β2

β1 + β2

K∑
k=1

λk|Âkip − Âkjp|

(17)

We next prove Lemma 4.3:

Proof. From Equation 12, we get

Z
(l)∗
pi − Z

(l)∗
pj =

(1− γ)[h
(l)
p − (1− γ)z

(l)∗
p H(l) − γh(0)p](h

(l)
i − h

(l)
j)T

β1 + β2

+
β2

β1 + β2

K∑
k=1

λk(Âkpi − Âkpj)
(18)

That implies

|Z(l)∗
pi − Z

(l)∗
pj | ≤

(1− γ)‖h(l)p − (1− γ)z
(l)∗
p H(l) − γh(0)p ‖2‖h(l)i − h

(l)
j ‖2

β1 + β2

+
β2

β1 + β2

K∑
k=1

λk|Âkpi − Âkpj |
(19)

Since Z(l)∗ is the optimal solution to Equation 5, we have

J(z(l)∗p) = ‖h(l)p − (1− γ)z(l)∗p H(l) − γh(0)p ‖22 + β1‖z(l)∗p ‖22

+ β2‖z(l)∗p −
K∑
k=1

λkâ
k
p‖22 ≤ J(0) = ‖h(l)p − γh(0)p ‖22 + β2‖

K∑
k=1

λkâ
k
p‖22.

(20)

Hence,

‖h(l)p − (1− γ)z(l)∗p H(l) − γh(0)p ‖2 ≤

√√√√‖h(l)p − γh(0)p ‖22 + β2‖
K∑
k=1

λkâkp‖22 = η. (21)

Equation 19 can be further simplified as

|Z(l)∗
pi − Z

(l)∗
pj | ≤

η(1− γ)‖h(l)i − h
(l)
j ‖2 + β2

∑K
k=1 λk|Âkpi − Âkpj |

β1 + β2
(22)

Submission and Formatting Instructions for ICML 2022

The proof of Lemma 4.4 is given as follows:

Proof. Given two nodes vi and vj , if vi → vj , we can get by definition (1) ‖xi − xj‖2 → 0 and (2) ‖âki − âkj ‖2 → 0, ∀k ∈
[1,K]. Then based on Equations 2 and 3, we can easily get ‖h(0)i − h

(0)
j ‖2 → 0. Hence H(0) has grouping effect. We

next show that Z(0)∗ has grouping effect. Since ‖âki − âkj ‖2 → 0, then |Âkip − Âkjp| → 0 and |Âkpi − Âkpj | → 0 (due to
the symmetry of Âk). According to Equation 17, the R.H.S. of the equation will become close to 0, which induces that
|Z(0)∗
ip − Z(0)∗

jp | → 0 and Z(0)∗ thus has grouping effect. Similarly, the R.H.S. of Equation 22 also approaches 0, leading to
the grouping effect of (Z(0)∗)T . Then we show H(1) has grouping effect. From Eq. 6, H(l+1) is updated based on H(0)

and Z(l)∗H(l). Due to the grouping effect of Z(0)∗ and H(0), the linear representation Z(0)∗H(0) also has grouping effect,
which further induces that H(1) has grouping effect. In this way, we can inductively prove that Z(l)∗, (Z(l)∗)T and H(l+1)

all have grouping effect.

E. Ablation study
We next conduct an ablation study to understand the main components of GloGNN. To construct the initial node embedding
matrix H(0), GloGNN first transforms both feature matrix and adjacency matrix into low-dimensional embedding vectors,
respectively. To show the importance of feature matrix in constructing H(0), we set α = 0 in Equation 3 and derive
H(0) = H

(0)
X . We call this variant GloGNN-na (no adjacency matrix). Similarly, to understand the importance of feature

matrix, we set α = 1 and call the variant GloGNN-nf (no feature matrix). Further, to utilize the local structural information
of a node, GloGNN regularizes the coefficient matrix Z with multi-hop graph adjacency matrices, as shown in Equation 5.
We thus consider a variant GloGNN-nl (no local regularization) by removing the regularization term to study the importance
of local graph structures of nodes. Finally, we compare GloGNN with these variants on all the benchmark datasets and show
the results in Fig. 6. From the figure, we see

(1) While GloGNN-na and GloGNN-nf can achieve comparable performance with GloGNN on some datasets, GloGNN
significantly outperforms them on others. This shows the necessity of GloGNN to adaptively learn the importance of feature
matrix and adjacency matrix when constructing the initial node embedding vectors on various datasets.

(2) GloGNN generally performs better than GloGNN-nl. Since GloGNN-nl ignores the local regularization term, it could
fail to identify two homophilous nodes that share similar local graph structures. On the other hand, GloGNN measures node
similarity in terms of both node features and local graph structures, which further explains GloGNN’s robustness towards
graphs with various heterophilies.

Texas Wisconsin Cornell Actor Squirrel Chameleon Cora Citeseer Pubmed Penn94 pokec arXiv snap genius twitch

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
u
ra
c
y
/A
U
C
 s
c
o
re

GloGNN-na

GloGNN-nf

GloGNN-nl

GloGNN

Figure 6. Ablation study

Submission and Formatting Instructions for ICML 2022

F. Experimental setup
We implemented GloGNN by PyTorch. For fairness, we run the experiments of 9 small-scale datasets on CPUs and optimize
the models by Adam as in (Yan et al., 2021). Meanwhile, we run the experiments of 6 large-scale datasets on a single Tesla
V100 GPU with 32G memory and use AdamW as the optimizer following (Lim et al., 2021). We perform a grid search to
tune hyper-parameters based on the results on the validation set. Details of these hyper-parameters are listed in Tables 3
and 4. Further, since the results of most baseline methods on these benchmark datasets are public, we directly report these
results. For those cases where the results are absent, we use the original codes released by their authors and fine tune the
model parameters as suggested in (Yan et al., 2021; Lim et al., 2021; Suresh et al., 2021). We provide our code and data at
https://github.com/RecklessRonan/GloGNN.

Table 3. Grid search space on small-scale datasets
Notation Range

lr {0.01, 0.005}
dropout [0, 0.9]

early stopping {40, 200, 300}
weight decay {1e−5, 5e−5, 1e−4}

α [0, 1]
β1 {0, 1, 10}
β2 {0.1, 1, 10, 102, 103}
γ [0, 0.9]

norm layers {1, 2, 3}
max hop count K [1, 6]

Table 4. Grid search space on large-scale datasets
Notation Range

lr {0.01, 0.005, 0.001}
dropout [0, 0.9]

weight decay {0, 1e−3, 1e−2, 1e−1}
α {0.1, 0.5, 0.9}
β1 {0, 0.1, 1}
β2 {0.1, 1}
γ {0.1, 0.5, 0.9}

norm layers {1, 2, 3}
max hop count K {1, 2, 3}

https://github.com/RecklessRonan/GloGNN

