
Phasic Self-Imitative Reduction for
Sparse-Reward Goal-Conditioned Reinforcement Learning

Yunfei Li * 1 Tian Gao * 1 Jiaqi Yang 2 Huazhe Xu 3 Yi Wu 1 4

Abstract
It has been a recent trend to leverage the power of
supervised learning (SL) towards more effective
reinforcement learning (RL) methods. We pro-
pose a novel phasic approach by alternating on-
line RL and offline SL for tackling sparse-reward
goal-conditioned problems. In the online phase,
we perform RL training and collect rollout data
while in the offline phase, we perform SL on those
successful trajectories from the dataset. To further
improve sample efficiency, we adopt additional
techniques in the online phase including task re-
duction to generate more feasible trajectories and
a value- difference-based intrinsic reward to allevi-
ate the sparse-reward issue. We call this overall al-
gorithm, PhAsic self-Imitative Reduction (PAIR).
PAIR substantially outperforms both non-phasic
RL and phasic SL baselines on sparse-reward
goal-conditioned robotic control problems, includ-
ing a challenging stacking task. PAIR is the first
RL method that learns to stack 6 cubes with only
0/1 success rewards from scratch.

1. Introduction
Despite great advances achieved by deep reinforcement
learning (RL) in a wide range of application domains such
as playing games (Mnih et al., 2015; Schrittwieser et al.,
2020), controlling robots (Lillicrap et al., 2016; Hwangbo
et al., 2019; Akkaya et al., 2019), and solving scientific
problems (Jeon & Kim, 2020), deep RL methods have been
empirically shown to be brittle and extremely sensitive to
hyper-parameter tuning (Tucker et al., 2018; Ilyas et al.,

*Equal contribution 1Institute for Interdisciplinary Informa-
tion Sciences, Tsinghua University, Beijing, China 2Department
of Electrical Engineering and Computer Sciences, University
of California, Berkeley, CA, USA 3Stanford University, CA,
USA 4Shanghai Qi Zhi Institute, Shanghai, China. Correspon-
dence to: Yunfei Li <liyf20@mails.tsinghua.edu.cn>, Yi Wu
<jxwuyi@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Data

augmentation

Online Offline
Success

Offline

dataset

On-policy

update

𝒓𝒕
𝒊𝒏𝒕 ≔

𝑽 𝒔𝒕+𝟏 − 𝑽(𝒔𝒕)

𝒔𝒕+𝟏, 𝒓𝒕

𝒂𝒕

Failure

𝒓𝒕
𝒊𝒏𝒕

Subgoal GoalStart

Task reduction

Supervised

Learning

Figure 1. Overall workflow of PAIR. PAIR iteratively alternates
between online RL and offline SL phases. During online phases,
the agent is trained using both environment reward and a value-
difference-based intrinsic reward. Meantime, it collects trajectories
and augments them with task reduction into successful demonstra-
tions for offline training. In the offline phases, the agent runs su-
pervised learning to improve its policy using the generated dataset.

2020; Engstrom et al., 2020; Yu et al., 2021a; Andrychow-
icz et al., 2021), which largely limits the practice use of
deep RL in many real-world scenarios. On the contrary, su-
pervised learning (SL) provides another learning paradigm
by imitating given demonstrations, which is much simpler
for tuning and typically results in a much more steady op-
timization process (Lynch et al., 2020; Ghosh et al., 2020).
Inspired by the success of training powerful fundamental
models by SL (Brown et al., 2020; Dosovitskiy et al., 2020;
Jumper et al., 2021), it has also been a recent trend in RL
to leverage the power of SL to develop more powerful and
stable deep RL algorithms (Levine, 2021).

One representative line of research that incorporates SL
into RL is offline RL, which assumes that a large offline
dataset of transition data is available and solely performs
learning on the dataset without interacting with the environ-
ment (Lange et al., 2012; Wu et al., 2019; Levine et al., 2020;
Kumar et al., 2020; Fujimoto & Gu, 2021). However, both
empirical (Yu et al., 2021b) and theoretical (Rashidinejad
et al., 2021) evidence suggests that the success of recent of-
fline RL methods rely on the quality of the dataset. Accord-

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

ingly, popular offline RL datasets are typically constructed
by human experts, which may not be feasible for many real-
world problems. Besides, offline RL suffers from a final
performance gap compared with online RL algorithms.

Another representative line of research is self-imitation
learning (SIL) (Oh et al., 2018), which combines SL and
RL in a completely online fashion. SIL directly performs
SL over selected self-generated rollout trajectories by treat-
ing the SL objective as an auxiliary loss and optimizing it
jointly with the standard RL objective. SIL does not require
a dataset in advance. However, optimizing a mixed objec-
tive consisting of both RL and SL makes the optimization
process even more brittle and requires substantial efforts of
parameter tuning to achieve best empirical performance.

In this paper, we propose a simple phasic approach, PhAsic
self-Imitative Reduction (PAIR), to effectively balance both
RL and SL training for goal-conditioned sparse-reward prob-
lems. The main principle of PAIR is to alternate between RL
and SL: in the RL phase, we solely perform standard online
RL training for optimization stability and collect rollout tra-
jectories as a dataset for the offline SL phase; while in the SL
phase, we pick out successful trajectories as SL signals and
run imitation learning to improve policy. To improve sample
efficiency, PAIR also includes two additional techniques in
the RL phase: 1) a value-difference-based intrinsic reward
that alleviates the sparse-reward issue, and 2) task reduction,
a data augmentation technique that largely increases the
total number of successful trajectories, especially for hard
compositional tasks. Our theoretical analysis suggests that
task reduction can converge exponentially faster than the
vanilla phasic approach that does not use task reduction.

We implement PAIR with Proximal Policy Optimization
(PPO) for RL and behavior cloning for SL and we con-
duct experiments on a variety of goal-conditioned control
problems, including relatively simple benchmarks such
as pushing and ant-maze navigation, and a challenging
sparse-reward cube-stacking task. PAIR substantially out-
performs all the baselines including non-phasic online meth-
ods, which jointly perform self-imitation and RL training,
and phasic SL methods, which only perform supervised
learning on self-generated trajectories (Ghosh et al., 2020).
We highlight that PAIR successfully learns to stack 6 cubes
with 0/1 rewards from scratch. To our knowledge, PAIR is
the first deep RL method that could solve this challenging
sparse reward task.

2. Related Work
Goal-conditioned RL: We study goal-conditioned rein-
forcement learning (Kaelbling, 1993) with sparse reward in
this work. Goal-conditioned RL enables one agent to solve
a variety of tasks by predicting actions given both observa-

tions and goals, and is studied in a number of works (Schaul
et al., 2015; Nair et al., 2018b; Pong et al., 2018; Veeriah
et al., 2018; Zhao et al., 2019; Eysenbach et al., 2020).
Although some techniques like relabeling (Andrychowicz
et al., 2017) are proposed to address the sparse reward issue
when learning goal-conditioned policies, there are still chal-
lenges in long-horizon problems (Nasiriany et al., 2019).

Offline reinforcement learning: Offline RL (Lange et al.,
2012; Levine et al., 2020) is a popular line of research
that incorporates SL into RL, which studies extracting a
good policy from a fixed transition dataset. A large portion
of offline RL methods focus on regularized dynamic pro-
gramming (e.g., Q-learning) (Kumar et al., 2020; Fujimoto
& Gu, 2021), with the constraint that the resulting policy
does not deviate too much from the behavior policy in the
dataset (Wu et al., 2019; Peng et al., 2019; Kostrikov et al.,
2021). Some other works directly treat policy learning as a
supervised learning problem, and learn the policy in a con-
ditioned behavior cloning manner (Chen et al., 2021; Janner
et al., 2021; Furuta et al., 2021; Emmons et al., 2021), which
can be considered as special cases of upside down RL and
reward-conditioned policies (Schmidhuber, 2019; Kumar
et al., 2019). There are also methods that learn transition
dynamics from offline data before extracting policies in a
model-based way (Matsushima et al., 2020; Kidambi et al.,
2020). Some works also consider a single online fine-tuning
phase after offline learning (Nair et al., 2020; Lu et al., 2021;
Mao et al., 2022; Uchendu et al., 2022) while we repeatedly
alternate between offline and online training.

Imitation learning in RL: Imitation learning is a frame-
work for learning policies from demonstrations, which has
been shown to largely improve the sample complexity of
RL methods (Hester et al., 2018; Rajeswaran et al., 2018)
and help overcome exploration issues (Nair et al., 2018a).
Self-imitation learning (SIL) (Oh et al., 2018), which imi-
tates good data rolled out by the RL agent itself, does not
require any external dataset and has been shown to help ex-
ploration in sparse reward tasks. Our method also performs
imitation learning over self-generated data. Self-imitation
objective is optimized jointly with the RL objective, while
we propose to perform SL and RL separately in two phases.
The idea of substituting joint optimization with iterative
training for minimal interference between different objec-
tives is similar to phasic policy gradient (Cobbe et al., 2021).
Goal-conditioned supervised learning (GCSL) (Ghosh et al.,
2020) is perhaps the most related work to ours. GCSL
repeatedly performs imitation learning on self collected re-
labeled data without any RL updates while we leverage the
power from both RL and SL and adopt further task reduction
for enhanced data augmentation.

Sparse reward problems: There are orthogonal interests
in solving long horizon sparse reward with hierarchical

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

modeling (Stolle & Precup, 2002; Kulkarni et al., 2016;
Bacon et al., 2017; Nachum et al., 2018) or by encouraging
exploration (Singh et al., 2005; Burda et al., 2019; Badia
et al., 2020; Ecoffet et al., 2021). Our framework can be
also viewed as an effective solution to tackle challenging
sparse-reward compositional problems.

3. Preliminary
We consider the setting of goal-conditioned Markov
decision process with 0/1 sparse rewards defined by
(S,A, P (s′|s, a),G, r(s, a, g), ρ0, γ). S is the state space,
A is the action space, G is the goal space and γ is the dis-
counted factor. P (s′|s, a) denotes transition probability
from state s to s′ after taking action a. The reward function
r(s, a, g) is 1 only if the goal g is reached at the current
state s within some precision threshold and otherwise 0. In
the beginning of each episode, the initial state s0 is sampled
from a distribution ρ0 and a goal g is sampled from the goal
space. An episode terminates when the goal is achieved or
it reaches a maximum number of steps.

The agent is represented as a goal-conditioned stochastic
policy πθ(a|s, g) parametrized by θ. The optimal policy πθ⋆
should maximize the objective J(θ) defined by the expected
discounted cumulative reward over all the goals, i.e.,

J(θ) = J(πθ) = Eg∈G,at∼πθ

[∑
t

γtr(st, at, g)

]
. (1)

Policy gradient optimizes J(θ) via the gradient computa-
tion

∇J(θ) = Eg,at

[∑
t

(Rt − Vψ(st, g))∇ log π(at|st, g)

]
,

where Vψ(st, g) is the goal-conditioned value function pa-
rameterized by ψ and Rt denotes the discounted return
starting from time t on the current trajectory. Note that in
our goal-conditioned setting with 0/1 rewards, Rt will be
either1 0 or 1 and the value function Vψ(st, g) can be ap-
proximately interpreted as the discounted success rate from
state st towards goal g.

Goal-conditioned imitation learning optimizes a policy πθ
by running supervised learning over a given demonstration
dataset D = {τ : (g; s0, a0, s1, a1, . . .)}, where τ denotes
a single trajectory. The supervised learning loss L(θ) is
typically defined by

L(θ) = −E(g;s,a)∈D [w(s, a, g) log π(a|s, g)] , (2)

where w(s, a, g) is some sample weight. Behavior cloning
(BC) simply sets w(s, a, g) as 1 while more advanced meth-

1More precisely, the return Rt will be 0 or close to 1 due to the
discount factor γ.

𝑎𝑡

𝑎𝑡

𝜏1

𝜏2

𝑉t = 0.86𝑉0 = 0.01

𝑠0

𝑉𝑡+1 = 0.41

𝑠𝑡+1

𝑠𝑡+1

𝑉𝑡+1 = 0.88

Failure

Success

𝑎0, … , 𝑎𝑡−1

advi ≥ 0

advi ≤ 0

𝑠t

Figure 2. Motivation of value-difference intrinsic reward. Trajecto-
ries τ1 and τ2 only differ at a single action at. τ1 succeeds and will
have positive advantage. τ2 fails since at knocks down the cubes,
then all the transitions in τ2 will have negative advantages due to
0/1 goal-conditioned reward, even if early actions are perfect.

ods may have other choices. Note that self-imitation learn-
ing (SIL) is a paradigm that jointly optimizes the RL objec-
tive J(θ) and the SL objective L(θ) in an online fashion.

4. Method
Our phasic solution PAIR consists of 3 components, in-
cluding the online RL phase (Sec. 4.1), which also collects
rollout trajectories, task reduction (Sec. 4.2) as a mean for
data augmentation, and the offline phase (Sec. 4.3), which
performs SL on self-generated demonstrations. We summa-
rize the overall algorithm in Sec. 4.4.

4.1. RL Phase with Intrinsic Rewards

The RL phase follows any standard online RL training.
Specifically in our work, we adopt PPO (Schulman et al.,
2017) as our RL algorithm, which trains both policy πθ and
value function Vψ using rollout trajectories. When a trajec-
tory τ = (g; st, at) is successful, i.e., goal g is reached, we
keep this trajectory τ as a positive demonstration towards
goal g in the dataset D for the offline phase.

Value-difference-based intrinsic rewards:

The sparse-reward issue is a significant challenge for online
RL training, which can yield substantially high variance in
gradients. In particular, let’s assume γ = 1 for simplicity
and consider a single trajectory τ = (g; st, at). In our goal-
conditioned setting, the return Rt on τ will be binary and
the value function Vψ(st, g) will be approximately between
0 and 1. Hence, the advantage function for state-action pair

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Figure 3. Illustration of task reduction. (Left) Given a trajectory
that fails to reach g from s0 (orange arrows), task reduction
searches for an intermediate sB , then executes the resulting two
sub-tasks (green and red arrows) to generate a successful demon-
stration. (Right) Heatmap of composed value in Eq. 4 w.r.t. sB .
The green star denotes the position of optimal sB .

(st, at) ∈ τ , i.e., Rt − V (st), will be either positive or neg-
ative for the entire trajectory τ . Imagine a concrete example
as illustrated in Fig. 2, where we have two trajectories, a
successful trajectory τ1 and a failed trajectory τ2. These
two trajectories only differ at the final timestep st+1, which
may be due to some random exploration noise at action at.
However, only due to a single mistake, all the state-action
pairs from τ2 will have negative advantages, even though
most of the actions in τ2 are indeed approaching the desired
target. Likewise, in a successful trajectory, it is also possible
that some single action is poor but eventually the subsequent
actions fix this early mistake.

Besides the trajectory-based advantage computation, it will
be beneficial to have some effective signal of whether a
transition (st, at, st+1) is properly “approaching” the de-
sired goal g or not. Our suggestion is to use Vψ(s, g) as
an empirical measure: if at is a good action, it should lead
to a higher state value, i.e., Vψ(st+1, g) − Vψ(st, g) > 0,
which indicates that at moves to a state with a higher suc-
cess rate; similarly, a poor action will result in a value drop,
i.e., Vψ(st+1, g) − Vψ(st, g) < 0. Accordingly, we pro-
pose to adopt value difference as an intrinsic reward rint for
stabilizing goal-conditioned RL training as follows

rint(st, at, g) := Vψ(st+1, g)− Vψ(st, g).

We remark that rint relies on an accurately learned value
function Vψ(s, g). Therefore, we suggest to only train
Vψ(s, g) over the sparse goal-conditioned rewards while
using another value head to fit the intrinsic rewards for critic
learning. Similar techniques have been previously explored
in (Burda et al., 2019) as well.

4.2. Task Reduction as Data Augmentation

In order to perform effective supervised learning in the of-
fline phase, it is critical that the online phase can generate as

much successful trajectories as possible. In our framework,
we consider two data augmentation techniques to boost the
positive samples in the dataset D, i.e., goal relabeling and
task reduction. We will first describe the simpler one, goal
relabeling, before moving to a much more powerful tech-
nique, task reduction.

Goal relabeling was originally proposed by Andrychowicz
et al. (2017). In our goal-conditioned learning setting, for
each failed trajectory τ = (g; st, at) originally targeted at
goal g, we can create an artificial goal g′ by setting g′ = sj
for some reached state sj ∈ τ , which naturally yields a
successful trajectory τ ′ as follows:

τ ′ ← (g′ = sj ; st=0:j , at=0:j) where sj ∈ τ. (3)

Therefore, despite its simplicity, goal relabeling can convert
every failed trajectory τ to a positive demonstration without
any further interactions with the environment.

Task reduction was originally proposed by Li et al. (2020b).
The main idea is to decompose a challenging task into a
composition of two simpler sub-tasks so that both sub-tasks
can be solved by the current policy. As illustrated in the left
part of Fig. 3, given a goal g from state s0, task reduction
searches for the best sub-goal s⋆B through a 1-step planning
process over the universal value function Vψ(s, g) as follows

s⋆B = argmax
sB

Vψ(s0, sB)⊕ Vψ(sB , g), (4)

where ⊕ is a composition operator typically implemented
as multiplication. Since the value function is learned, such a
search process can be accomplished without any further en-
vironment interactions by gradient descent or cross-entropy
method. A heatmap of the composed value for sub-goal
search (Eq.(4)) is visualized in the right part of Fig. 3. No-
tably, after s⋆B is obtained, we would still need to execute
the policy in the environment following the sub-goal s⋆B and
then the final goal g in order to obtain a valid demonstration.
Compared to goal relabeling, task reduction consumes ad-
ditional samples and may even fail to produce a successful
trajectory when either of the two sub-tasks fails. Hence,
task reduction can be expensive in the early stage of training
when the policy and value function have not yet been well
trained. However, we will show both theoretically (Sec. 5)
and empirically (Sec. 6.2) that task reduction can lead to an
exponentially faster convergence compared to using goal
relabeling solely in long-horizon problems.

By default, PAIR utilizes both goal relabeling and task re-
duction for data augmentation unless otherwise stated.

4.3. Offline SL Phase

After a dataset D of successful demonstrations, including
augmented trajectories, is collected, we switch from RL
training to offline SL by performing advantage weighted

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Algorithm 1 Phasic Self-Imitative Reduction

1: Initialize: goal-conditioned policy πθ(·|s, g), value
function Vψ(s, g).

2: for k ← 1, 2, · · · do
3: Sample a batch of trajectories B ← {τ : (g; st, at)}

w.r.t. the current policy πθ
4: Update πθ, Vψ by RL on B (Sec. 4.1)
5: Set dataset D ← ∅
6: for τ ∈ B do
7: if not is success(τ) then
8: τ ← data augment(τ, πθ, Vψ) (Sec. 4.2)
9: end if

10: D ← D ∪ {τ}
11: end for
12: Train πθ with SL over D (Sec. 4.3)
13: end for

behavior cloning (BC). In particular, we set the weight
w(s, a, g) in Eq. (2) to exp (1β (R− Vϕ(s, g))) follow-
ing (Peng et al., 2019). We remark that we only train policy
in the offline phase while keeping the value function Vψ
unchanged for algorithmic simplicity. We also empirically
find that training value function during the offline phase
does not improve the overall performance.

It is feasible to adopt more advanced methods in the offline
phase, such as offline RL methods, which typically assume
a pre-constructed dataset but conceptually compatible with
our phasic learning process. We conduct experiments by
substituting BC with two popular offline RL methods, deci-
sion transformer (Chen et al., 2021) and AWAC (Nair et al.,
2020), in Sec. 6.1. Empirical results show that these alter-
natives are much more brittle than BC and perform poorly
without a high-quality warm-start dataset. Thus, we simply
use BC as our SL method in this paper.

4.4. PAIR: Phasic Self-Imitative Reduction

By repeatedly performing the online RL phase with task
reduction and the offline SL phase, we derive our final
algorithm, PAIR. The pseudo-code is summarized in Alg. 1.
More implementation details can be found in Appendix B.3.
More analysis on the phasic training scheme vs. joint RL
and SL optimization is in Appendix B.4.

5. Theoretical Analysis
First, we establish the correctness of our framework. The
following theorems follows directly from the GCSL frame-
work in (Ghosh et al., 2020), because both GCSL and PAIR
are built upon SL.

Theorem 5.1 (Ghosh et al. (2020), Theorem 3.1). Let J(π)
be defined in Eq. (1) and JPAIR(π) = −L(θ) as defined in

Eq. (2). Let π̃ be the data collection policy induced by data
augmentation. Then

J(π) ≥ JPAIR(π)− 4T (T − 1)α2 + C, (5)

where α = maxs,gDTV(π(·|s, g)∥π̃(·|s, g)) and C is a
constant independent of π.2

Theorem 5.2 (Ghosh et al. (2020), Theorem 3.2). Assume
deterministic transition and that π̃ has full support. Define

ϵ := max
s,g

DTV(π(·|s, g)∥π̂⋆(·|s, g)). (6)

Then J(π⋆) − J(π) ≤ ϵ · T , where π̂⋆ minimizes L(θ)
defined in Eq. (2) and π⋆ is the optimal policy.

Here, we present theoretical justification to illustrate why
our algorithm is efficient on sparse-reward composite com-
binatorial tasks.

Theorem 5.3. Under mild assumptions, the PAIR frame-
work could use exponentially less number of iterations com-
pared to the phasic framework that does not use task reduc-
tion, e.g., GCSL (Ghosh et al., 2020).

We defer the exact statement of Theorem 5.3 and its proof
to Appendix A.

6. Experiment
We aim to answer the following questions in this section:

• Does phasic training of RL and SL objectives perform
better than non-phasic joint optimization?

• Is PAIR compatible with offline RL methods other than
BC?

• Does PAIR achieve exponential improvement over base-
lines without task reduction?

• Are all the algorithmic components of PAIR necessary
for good performance?

• Can PAIR be used to solve challenging long-horizon
sparse-reward problems, e.g., cube stacking?

We consider 3 goal-conditioned control problems with
increasing difficulty: (i) short-horizon robotic pushing
(adopted from (Nair et al., 2018b)), (ii) ant navigation in a
U-shaped maze, and (iii) robotic stacking with up to 6 cubes.
All the tasks are with only 0-1 sparse reward.

We compare PAIR with non-phasic RL baslines that jointly
perform RL and SL as well as phasic SL baselines that

2DTV(µ∥ν) := 1
2

∫
A|µ(a) − ν(a)| da is the total variation

between distribution µ and ν over the action set A.

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Figure 4. An initial
state and a successful
state in “Push” envi-
ronment.

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e6

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

PAIR
SIL
PPO
GCSL

Figure 5. Average success rate vs. number
of samples in “Push”. PAIR achieves the
best performance compared to non-phasic,
pure RL and pure SL baselines.

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e6

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

from scratch
from data
PAIR

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e6

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

from scratch
from data
PAIR

Figure 6. Combining PAIR with offline algorithms AWAC (left)
and DT (right) in “Push” domain. We train them both from scratch
(red) and from a demonstration dataset (blue). The performances
of PAIR with PPO/BC are in dashed purple line.

only perform SL over self-generated data. For non-phasic
RL baselines, we consider naive PPO, plain self-imitation
learning with goal relabeling (SIL) (Oh et al., 2018) and
self-imitation learning with task reduction (SIR) (Li et al.,
2020b). For phasic SL baselines, we consider goal-
conditioned supervised learning (GCSL) (Ghosh et al.,
2020). We emphasize that for a fair comparison, all the
RL-based baselines leverage our proposed intrinsic rewards.
All the experiments are repeated over 3 random seeds on a
single desktop machine with a GTX3090 GPU. More imple-
mentation and experiment details can be found in appendix.

6.1. Sawyer Push

We first answer whether our phasic framework can outper-
form non-phasic training algorithms on a simple “Push”
task. As illustrated in Fig. 4, a Sawyer robot is tasked to
push the puck to the goal within 50 steps. The initial posi-
tion of the robot hand, the puck and the goal are randomly
initialized on the table. Since it only requires very few steps
to reach the goal – even the largest distance between puck
and goal is within 20 steps of actions using a well trained
policy, task reduction would not make its best use and may
hurt sample efficiency due to extra sample consumption. In
this particularly simple domain, we only use goal relabeling
as a single data augmentation technique in PAIR.

Effectiveness of phasic training: We compare PAIR with

0 1 2 3 4 5
samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

PAIR
SIR
SIL
PPO
GCSL

0 1 2 3 4 5
samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

ha
rd

 su
cc

. r
at

e PAIR
SIR
SIL
PPO
GCSL

Figure 7. (Left) Average success rate over uniformly sampled tasks,
where ant and goal positions are uniformly sampled. (Right) Suc-
cess rate evaluated on one particularly difficult task configuration
with ant and goal initialized at two ends of the maze.

non-phasic RL method, i.e., SIL, which utilizes the suc-
cessful relabeled demonstrations by jointly optimizing SL
and RL objectives. As shown in Fig. 5, PAIR (red) gets
higher success rate than SIL (blue) using fewer samples
while both methods perform better than naive PPO, which
is a pure RL baseline. We also compare with phasic SL
method, GCSL (Ghosh et al., 2020), which only performs
iterative SL on relabeled data without RL training. Follow-
ing the original implementation of GCSL, every trajectory
is relabeled as a successful one targeting at an achieved
state. GCSL learns fast in the beginning, but achieves a
substantially lower final success rate than other methods.

Combining with offline RL methods: Here we provide
the results with initial attempts to combine our framework
with representative offline RL methods, AWAC (Nair et al.,
2020) and decision transformer (DT) (Chen et al., 2021).

Original AWAC performs a single fine-tuning phase after
offline pretraining (Nair et al., 2020; Lu et al., 2021). Fol-
lowing the phasic framework of PAIR, we alternate between
offline and online AWAC updates. We examine both train-
ing from scratch without any dataset prepared in advance,
or starting from the offline phase with a warm-start dataset
of successful trajectories. The results are shown on the left
of Fig. 6. Phasic-AWAC from scratch (red) continues mak-
ing progress as it switches from offline to online phase, but
finally converges to a much worse policy compared with the
variant initialized with a warm-start dataset (blue).

DT predicts actions conditioning on a sequence of de-
sired returns, past states and actions via a transformer
model (Vaswani et al., 2017). Since DT is proposed only
for a single offline phase, we similarly adopt PPO for RL
training in the online phase. We use a context length of 5 for
sequence conditioning and train DT both from scratch and
from prepared warm-start dataset with successful demonstra-
tions. As shown in the right plot of Fig. 6, the performance
progressively improves within each online phase and SL
phase. Phasic-DT with warm-start (blue) outperforms the
variant from scratch and gets similar final performance as
PAIR but the variance is much higher.

We generally observe that offline RL algorithms within our

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

0 1 2 3 4 5
samples 1e7

0.2

0.4

0.6

0.8

1.0
av

g.
 su

cc
. r

at
e

PAIR
PAIR w/o reduction
PAIR w/o relabel
PAIR w/o rint

(a) Ablate PAIR components.

0 1 2 3 4 5
samples 1e7

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

PAIR
PAIR w/o relabel
SIL
SIL w/o relabel

(b) The effect of goal-relabeling on SIL.

0 1 2 3 4 5
samples 1e7

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

Nonline = 40 218

Nonline = 20 218

Nonline = 10 218

Nonline = 218

(c) Sensitivity analysis of Nonline.

Figure 8. Ablation studies on algorithmic components of PAIR in “Ant Maze”. (a) Performances after removing different components
of PAIR. Using reduction data and intrinsic reward help the most for PAIR. (b) Validate the effectiveness of goal relabeling on SIL. (c)
Comparison of different Nonline, i.e., samples collected in the RL phase. PAIR works well with less frequent phase switches.

phasic framework would require a good dataset to initialize
and do not perform as robustly as the simple PPO and BC
combination when starting from scratch. Therefore, we
confirm our use of BC/PPO for the remaining experiments
and leave a more competitive combination with offline RL
algorithms as future work.

6.2. Ant Maze

We then consider a harder task “Ant Maze”, which requires
a locomotion policy with continuous actions to control the
ant robot and plan over an extended horizon to navigate
inside a 2-D U-shape maze. The observations include the
center of mass and the joint position and velocities of the
ant robot. The goal is a 2-D vector denoting the xy position
of that the robot should navigate to. For each episode, the
initial position of the ant’s center and the goal position are
uniformly sampled over the empty space inside the maze.
We define the hard task configuration as when the ant and
the goal are initialized at two different ends of the maze (see
Fig. 3). In this domain, we leverage both task reduction and
goal relabeling as data augmentation techniques in PAIR.

Effectiveness of PAIR and exponential improvement on
hard goals: As shown in Fig. 7, we evaluate the perfor-
mances of different algorithms with the average success
rate over the entire task space (left) and on hard tasks only
(right). We compare PAIR with: SIR, which runs SL and RL
jointly using both reduction and relabeling data; SIL, a plain
non-phasic RL method without task reduction; GCSL and
vanilla PPO. We observe that all the methods that utilize task
reduction (i.e., PAIR, SIR) can finally converge to a much
higher average success rate (left plot) and outperform SIL
and vanilla PPO. The gap becomes substantially larger on
the performance on hard situations (right plot), where only
methods with task reduction are able to produce non-zero
success rate within the given sample budget. This empiri-
cal observation is consistent with our theoretical analysis
in Sec. 5 on the effectiveness of task reduction. We also
remark that PAIR achieves a significantly higher sample

Figure 9. Illustration of the stacking environment. The left figure
shows an initial state, where the red ball denotes the identity and
the desired position of a target cube. On the right we show a
successful state for this task, where the red cube is close to the
goal and the robot hand does not touch the tower.

efficiency compared with the non-phasic method SIR on the
hard cases. Notably, GCSL completely fails in this problem.
We empirically observe that the ant robot may frequently get
stuck in the early stage of training (e.g., it may accidentally
fall over and cannot recover anymore). We hypothesis that
the failure of GCSL is largely due to a tremendous amount
of supervision from such corrupted trajectories. This sug-
gests that online RL training would be necessary compared
with running SL only (e.g., SIL performs well on this task).

Ablation studies: We then study the effectiveness of dif-
ferent components of PAIR. From Figure 8a, we can find
that removing value-difference-based intrinsic reward makes
PAIR converge slower while the policy is still able to achieve
a high success rate after convergence. After removing task
reduction, the performance becomes significantly worse. By
contrast, when removing goal relabeling, the performance
drop is negligible. These observations suggest that task re-
duction is the most critical component in PAIR. In Figure 8b,
we additionally examine the effectiveness of goal relabel-
ing within a non-phasic RL framework, i.e., SIL, where we
can clearly observe a performance drop of SIL with goal
relabeling turned off. This indicates that goal relabeling
can be still beneficial for methods that do not utilize task

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

0.0 0.5 1.0 1.5
samples 1e8

0.0

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

PAIR
PAIR w/o rint

SIR
SIR w/o rint

SIL

Figure 10. Average success rate in “stack-6-cube” with sparse re-
ward. PAIR solves the task with high success rate most efficiently.

Algorithm SR @ 7.5e7 steps SR @ 1.5e8 steps

PAIR 0.693 ± 0.176 0.955 ± 0.005
PAIR w/o rint 0.493 ± 0.156 0.952 ± 0.016
SIR 0.026 ± 0.043 0.815 ± 0.039
SIR w/o rint 0.003 ± 0.003 0.688 ± 0.011
SIL 0.000 ± 0.000 0.000 ± 0.000

Table 1. Mean and standard deviation of success rates for stacking
6 boxes with different algorithms over 3 seeds. The policies are
evaluated at 7.5e7 and 1.5e8 environment samples.

Figure 11. Learned policy of PAIR agent for stacking 6 randomly initialized cubes.

reduction. Finally, in Figure 8c, we also perform sensitivity
analysis on the frequency of alternating between the offline
and online phase. We perform one offline SL phase after
collecting Nonline samples in the online RL phase. We can
observe that a relatively low alternating frequency is critical
to the success of PAIR, which suggests that a large dataset
for SL training and a long RL fine-tuning period help accel-
erate learning. We notice that when the phase changes too
frequently, PAIR can be unstable or even fail to learn.

6.3. Stacking

Finally, we test whether PAIR can solve an extremely chal-
lenging long-horizon sparse-reward robotic manipulation
problem. We build a robotic control environment that fea-
tures stacking multiple cubes given only final success re-
ward. The simulated scene is shown in Fig. 9. A Franka
Panda arm is mounted on the side of a table. On top of
the table, there are a total of N cubes with random initial
positions. A goal spot specifies a target cube using its color
and also its desired position. The robot’s task is to manipu-
late the cubes on the table so that the specified target cube
can remain stable within 3cm distance to the goal position,
while its hand is at least 10cm apart from that position at the
same time. In order to accomplish this task, the robot must
build a “base” tower using other non-target cubes. During
the whole construction process, the robot cannot receive
any external reward for intermediate manipulations unless
when the target cube is in place. We perform curriculum on
the number of cubes to stack, and use the similar task reduc-
tion process described in (Li et al., 2020b). More details of
training specifications can be found in Appendix B.1.3.

Performance on stacking with 6 cubes: We report the suc-
cess rate on the most challenging “stack-6-cube” scenario
using PAIR, SIR and SIL algorithms in Fig. 10 and Table 1.
PAIR achieves an impressive 95.5% success rate in this chal-
lenging task. SIR is making considerable progress thanks
to task reduction, but it learns significantly less sample effi-
ciently than PAIR. SIL baseline without task reduction fails
completely, getting 0 success rate throughout the training
process. We also show the effectiveness of intrinsic reward
in online training: similar to the findings in other domains,
rint can significantly speed up the training process.

Learned strategies: The learned policy using PAIR is visu-
alized in Fig. 11. In the initial frame, all 6 cubes are scattered
randomly on the table. The robot then picks up non-target
cubes, transports them to accurate positions aligned with
the goal spot one by one. Even when picking up the red
cube which locates close to the half-built tower, the robot is
cautious enough to avoid knocking down the tower.

7. Conclusion
We propose a phasic training method PAIR that efficiently
combines offline supervised learning with online reinforce-
ment learning for sparse-reward goal-conditioned problems,
such as robotic stacking of multiple cubes. PAIR repeatedly
alternates between SL on self-generated datasets and RL
fine-tuning and leverages value difference as intrinsic re-
wards and task reduction as data augmentation. We validate
the effectiveness of PAIR both theoretically and empirically
on a variety of domains. We remark that PAIR provides a
general learning paradigm that has the potential to be com-

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

bined with more advanced offline RL methods, even though
our initial attempts are not satisfactory. We hope PAIR can
be a promising step to take advantage of both supervised
learning and reinforcement learning and help make RL a
more scalable tool for complex real-world challenges.

Acknowledgements
We thank Jingzhao Zhang for valuable discussion on pha-
sic optimization. Yi Wu is supported by 2030 Innovation
Megaprojects of China (Programme on New Generation
Artificial Intelligence) Grant No. 2021AAA0150000.

References
Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,

McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, pp. 5055–5065, 2017.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,
Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., Gelly, S., and Bachem, O. What
matters for on-policy deep actor-critic methods? a large-
scale study. In International Conference on Learning
Representations, 2021.

Azuma, K. Weighted sums of certain dependent random
variables. Tohoku Mathematical Journal, Second Series,
19(3):357–367, 1967.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, pp. 1726–1734, 2017.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., and Blundell, C. Never give up: Learning
directed exploration strategies. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Sye57xStvB.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),

Advances in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Bubeck, S. Convex optimization: Algorithms and complex-
ity. Found. Trends Mach. Learn., 8(3-4):231–357, 2015.
doi: 10.1561/2200000050.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=H1lJJnR5Ym.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Cobbe, K., Hilton, J., Klimov, O., and Schulman, J. Pha-
sic policy gradient. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning
Research, pp. 2020–2027. PMLR, 2021.

Coumans, E. and Bai, Y. Pybullet, a python module for
physics simulation for games, robotics and machine learn-
ing. 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590(7847):
580–586, 2021.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
Rvs: What is essential for offline rl via supervised learn-
ing? arXiv preprint arXiv:2112.10751, 2021.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep rl: A case study on ppo and trpo. In International
Conference on Learning Representations, 2020.

Eysenbach, B., Salakhutdinov, R., and Levine, S. C-
learning: Learning to achieve goals via recursive clas-
sification. In International Conference on Learning Rep-
resentations, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. arXiv preprint arXiv:2106.06860,
2021.

https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=Sye57xStvB
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Furuta, H., Matsuo, Y., and Gu, S. S. Generalized decision
transformer for offline hindsight information matching.
In Deep RL Workshop NeurIPS 2021, 2021.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M.,
Eysenbach, B., and Levine, S. Learning to reach goals via
iterated supervised learning. In International Conference
on Learning Representations, 2020.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Osband,
I., et al. Deep q-learning from demonstrations. In Thirty-
second AAAI conference on artificial intelligence, 2018.

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26), 2019.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. A closer look at deep pol-
icy gradients. In International Conference on Learning
Representations, 2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Jeon, W. and Kim, D. Autonomous molecule generation
using reinforcement learning and docking to develop po-
tential novel inhibitors. Scientific reports, 10(1):1–11,
2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kaelbling, L. Learning to achieve goals. In Proc. of IJCAI-
93, pp. 1094–1098, 1993.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning. In
NeurIPS, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29:
3675–3683, 2016.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conser-
vative q-learning for offline reinforcement learning. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H. (eds.), Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Lange, S., Gabel, T., and Riedmiller, M. Batch reinforce-
ment learning. In Reinforcement learning, pp. 45–73.
Springer, 2012.

Levine, S. Understanding the world through action. In
Faust, A., Hsu, D., and Neumann, G. (eds.), Conference
on Robot Learning, 8-11 November 2021, London, UK,
volume 164 of Proceedings of Machine Learning Re-
search, pp. 1752–1757. PMLR, 2021.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, R., Jabri, A., Darrell, T., and Agrawal, P. Towards prac-
tical multi-object manipulation using relational reinforce-
ment learning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4051–4058. IEEE,
2020a.

Li, Y., Wu, Y., Xu, H., Wang, X., and Wu, Y. Solving
compositional reinforcement learning problems via task
reduction. In International Conference on Learning Rep-
resentations, 2020b.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR (Poster), 2016.

Lu, Y., Hausman, K., Chebotar, Y., Yan, M., Jang, E., Her-
zog, A., Xiao, T., Irpan, A., Khansari, M., Kalashnikov,
D., and Levine, S. AW-opt: Learning robotic skills
with imitation andreinforcement at scale. In 5th Annual
Conference on Robot Learning, 2021. URL https:
//openreview.net/forum?id=xwEaXgFa0MR.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J.,
Levine, S., and Sermanet, P. Learning latent plans from
play. In Conference on Robot Learning, pp. 1113–1132.
PMLR, 2020.

Mao, Y., Wang, C., Wang, B., and Zhang, C. Moore: Model-
based offline-to-online reinforcement learning, 2022.

Matsushima, T., Furuta, H., Matsuo, Y., Nachum, O., and
Gu, S. Deployment-efficient reinforcement learning via
model-based offline optimization. In International Con-
ference on Learning Representations, 2020.

https://openreview.net/forum?id=xwEaXgFa0MR
https://openreview.net/forum?id=xwEaXgFa0MR

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. Advances in Neural
Information Processing Systems, 31:3303–3313, 2018.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 6292–6299. IEEE, 2018a.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Awac: Accel-
erating online reinforcement learning with offline datasets.
2020.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual reinforcement learning with imagined goals.
Advances in Neural Information Processing Systems, 31:
9191–9200, 2018b.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning
with goal-conditioned policies. Advances in Neural Infor-
mation Processing Systems, 32:14843–14854, 2019.

Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learn-
ing. In International Conference on Machine Learning,
pp. 3878–3887. PMLR, 2018.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Pong, V., Gu, S., Dalal, M., and Levine, S. Temporal differ-
ence models: Model-free deep rl for model-based control.
In International Conference on Learning Representations,
2018.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G.,
Schulman, J., Todorov, E., and Levine, S. Learning
complex dexterous manipulation with deep reinforce-
ment learning and demonstrations. In Kress-Gazit, H.,
Srinivasa, S. S., Howard, T., and Atanasov, N. (eds.),
Robotics: Science and Systems XIV, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA, June
26-30, 2018, 2018. doi: 10.15607/RSS.2018.XIV.
049. URL http://www.roboticsproceedings.
org/rss14/p49.html.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell,
S. Bridging offline reinforcement learning and imi-
tation learning: A tale of pessimism. arXiv preprint
arXiv:2103.12021, 2021.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference
on machine learning, pp. 1312–1320. PMLR, 2015.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards–just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Singh, S., Barto, A. G., and Chentanez, N. Intrinsically mo-
tivated reinforcement learning. Technical report, MAS-
SACHUSETTS UNIV AMHERST DEPT OF COM-
PUTER SCIENCE, 2005.

Stolle, M. and Precup, D. Learning options in reinforcement
learning. In International Symposium on abstraction,
reformulation, and approximation, pp. 212–223. Springer,
2002.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahra-
mani, Z., and Levine, S. The mirage of action-dependent
baselines in reinforcement learning. In International con-
ference on machine learning, pp. 5015–5024. PMLR,
2018.

Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J.,
Bennice, M., Fu, C., Ma, C., Jiao, J., et al. Jump-start
reinforcement learning. arXiv preprint arXiv:2204.02372,
2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement
learning. arXiv preprint arXiv:1806.09605, 2018.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

http://www.roboticsproceedings.org/rss14/p49.html
http://www.roboticsproceedings.org/rss14/p49.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and Wu,
Y. The surprising effectiveness of mappo in cooperative,
multi-agent games. arXiv preprint arXiv:2103.01955,
2021a.

Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Levine,
S., and Finn, C. Conservative data sharing for multi-
task offline reinforcement learning. Advances in Neural
Information Processing Systems, 34, 2021b.

Zhao, R., Sun, X., and Tresp, V. Maximum entropy-
regularized multi-goal reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7553–7562.
PMLR, 2019.

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

The project webpage is at https://sites.google.com/view/pair-gcrl.

A. Missing Proofs in Section 5
In this section, we prove Theorem 5.3.

Here, we make the following assumptions to facilitate our analysis. First, we consider a goal-conditioned MDP with
deterministic transition. We assume that the goal set is the same as the state space, i.e., G = S. Furthermore, we consider
sparse-reward environment where the reward function is defined by r(s, a, g) = I{s = g}.

We note that our framework draw on-policy trajectories with random state-goal pairs. To further simplify our theoretical
analysis, we assume that each state-goal pair is sampled at least once in each iteration. Here, we may meet two practical
issues. First, the state space may be continuous, which makes it impossible to sample each state-goal pair once. This may fit
into our theoretical analysis by discretizing the state space. Second, Nonline may not be large enough. This fits into our
analysis by merging several consecutive iterations.

We use π(k) to denote the policy by the end of the k-th iteration, and π(0) denotes the initial policy. We assume that the
initial policy π(0) can reach any one-step goal. Specifically, if P (s′|s, a) = 1 then π(0)(a|s, g = s′) = 1.

For a state s, a goal g, and a (deterministic) policy π, we define

s
π−→ g :=

{
true, Pr[∃t ≥ 0 : st = g | s0 = s,∀i ≥ 0, ai ∼ π(·|si, g), si+1 ∼ P (·|si, ai)] = 1,

false, otherwise.
(7)

and we define

d(s, s′) := min{t : ∃policyπ such that Pr[st = s′ | s0 = s,∀i ≥ 0, ai ∼ π(·|si, g), si+1 ∼ P (·|si, ai)] = 1}, (8)

ℓk := sup
ℓ
{∀s, g : d(s, g) ≤ ℓ : s π(k)

−−→ g is true}. (9)

Finally, we let

D = max
s,s′∈S

{d(s, s′) : d(s, s′) < +∞} (10)

be the maximum possible length of trajectory from state s to goal s′ such that s′ is reachable from s.

Lemma A.1. For the PAIR framework, we have ℓk ≥ 2ℓk−1 for every iteration k.

Proof. We prove by induction. For every state-goal pair s, g such that d(s, g) ≤ 2ℓk−1, we can find some state s′ such that

d(s, s′) ≤ ℓk−1 and d(s′, g) ≤ ℓk−1. By the inductive hypothesis, we have that s π(k)

−−→ s′ and s′ π(k)

−−→ g are true.

Now we claim that every (s, g) ∈ S × G would have a success trajectory after the k-th iteration. Note that by our
assumption, the framework would roll out a trajectory from s to g using π(·|s, g). If it succeeds, then we get a trajectory,

else task reduction (cf. Section 4.2) would find the state s′ such that s π(k−1)

−−−−→ s′ and s′ π(k−1)

−−−−→ g are true, because
V (s, s′) = V (s′, g) = 1. Therefore, task reduction would run π(k−1)(·|s, g = s′) followed by π(k−1)(·|s′, g), and get a

successful trajectory from s to g. Finally, the SL step would learn the policy π(k) such that s π(k)

−−→ g is true.

Lemma A.2. The PAIR framework uses at most O(|S|2 logD) samples to learn a policy that could go from any state to any
reachable goal.

Proof. By the definition of ℓk, we know that π(k) could go from any state to any reachable goal if ℓk ≥ D. By our
assumption, we have ℓ0 = 1. Therefore, by Lemma A.1, we have ℓk ≥ D after k = O(logD), i.e., PAIR uses at most
O(logD) iterations.

By our assumption, PAIR uses O(|S||G|) = O(|S|2) samples, because each state-goal pair is sampled for constant number
of times. Thus we conclude that PAIR uses at most O(|S|2 logD) samples in total.

https://sites.google.com/view/pair-gcrl

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Lemma A.3. Without PAIR, under assumptions described in Appendix A, for hard tasks, with high probability, the algorithm
needs Ω(|S|2D) samples to learn a policy that could go from any state to any reachable goal.

Proof. We consider the following hard task. Suppose s0, a0, · · · , sD is a trajectory of length D that maximizes Eq. (10).
We assume that the initial policy π(0) is a uniformly random policy and we assume Pr[π(0)(·|si, g = sD)]] ∝ |A|−1 for

i ≤ D − 2.3 We observe that for the SL framework, if si
π(k)

−−→ sD is true then the dataset must contain a trajectory from si

to sD, and thus the policy π(k) learned by SL would satisfy sj
π(k)

−−→ sD for every j ≥ i. For this, we analyze the sample
complexity by analyzing how many iterations would be enough for the algorithm to learn a policy from state s0 to goal

sD. To facilitate analysis, we define i(k) to be the smallest number such that si(k)
π(k)

−−→ sD. Then the algorithm learns the
desired policy after k iterations only if i(k) = 0.

Next, we prove that E[i(k−1) − i(k)|i(k−1)] ≤ O(1). To change i(k−1), the algorithm must roll out a success trajectory with
goal sD from some sj with j ≤ i. Note that

Pr[i(k−1) − i(k) = j|i(k−1)] ≤ Pr[algorithm rolls out a success trajectory from si(k−1)−j to sD] (11)

≤ Pr[π(k−1) could go from si(k−1)−j to si(k−1)] (12)

≤ O(|A|−j), (13)

so

E[i(k−1) − i(k)|i(k−1)] =

i(k−1)∑
j=0

j · Pr[i(k−1) − i(k) = j|i(k−1)] (14)

≤ O(

∞∑
j=0

j · |A|−j) (15)

≤ O(|A|−1) (16)
≤ O(1). (17)

Therefore, by the Azuma-Hoeffding inequality (Azuma, 1967), we conclude that with high probability 1 − δ, we have
i(k) < D for k = Θ(D −

√
D log δ−1) ≥ Ω(D), i.e., k ≥ Ω(D) with high probability. Together with that |S|2 trajectories

are rolled out in each iteration, we conclude that the sample complexity is with high probability at least Ω(|S|2D).

Finally, we conclude Theorem 5.3 by collecting Lemmas A.2 and A.3.

B. Experiment Details
B.1. Environment Description

In this section, we describe all the environment-specific details regarding MDP definitions.

B.1.1. SAWYER PUSH

“Push” is a robotic pushing environment adopted from (Nair et al., 2018b) simulated with MuJoCo (Todorov et al., 2012)
engine. Each episode lasts for at most 50 steps.

Observation: The agent can observe 2-D hand position and 2-D puck position in each step.

Action space: An action is a 2-D vector denoting the relative movement of the robot hand. The height of the hand and the
state of the gripper are fixed. Each dimension ranges from -1 to 1, and is categorized into 3 bins (therefore, there are a total
of 9 different actions).

3Actually, we can construct such an MDP. Assume we have (D + 2) states S = {s0, · · · , sD, sD+1} and 2 actions A = {0, 1}. The
transition is given by P (sD+1|si, a = 0) = 1 and P (si+1|si, a = 1) = 1 for 0 ≤ i ≤ D. Such an MDP can similarly be constructed for
|A| ≥ 3.

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Goal and reward: The puck goal is a 2-D vector denoting the target position on the table. The agent can only get reward
when the l2 distance between puck and goal is smaller than 5cm.

Initial state: Each episode starts with the hand initialized in a 0.03m × 0.03m region on the right side of the table, the
puck initialized in a 0.07m × 0.07m square, and the goal is uniformly sampled in a 0.4m × 0.4m square on the table.

B.1.2. ANT MAZE

This environment is adopted from (Nachum et al., 2018). The scene is a 24m × 24m maze simulated with MuJoCo (Todorov
et al., 2012). The maximum number of steps for each episode is 500 steps.

Observation: Joint positions and joint velocities of the ant robot. The center of mass of the robot is included in the joint
positions.

Action: 8-D real-valued vector controlling the motors on the robot. The actions output from the policy network are clipped
to -30 to 30 before sent to the simulator.

Goal and reward: The goals are 2-D vectors denoting the desired xy position of the ant. The agent gets reward when the
distance between the ant’s center of mass and the goal is smaller than 2m.

Initial state: Both the ant and the goal are uniformly sampled in the empty space (not collided with walls) in the maze. For
hard tasks, the ant is initialized at coordinate (0m, 0m), and the goal is at coordinate (0m, 16m).

B.1.3. STACKING

The stacking environment is built with PyBullet (Coumans & Bai, 2016).

Observation: The observation is a concatenation of robot state and objects states. The robot state contains 6-D end effector
pose, 3-D end effector linear velocity, 1-D finger position, and 1-D finger velocity. Each object state consists of its 6-D pose,
3-D relative position to the robot’s end effector, 3-D linear velocity, 3-D angular velocity and 1-D 0/1 indicator denoting the
identity of the target cube.

Action: A concatenation of 3-D relative movement of the end effector and 1-D finger control signal. Each dimension is
discretized into 20 bins.

Goal and reward: A goal specifies a 3-D desired position and an identity denoting which cube must be close to the goal
spot. A non-zero reward is only given when the target cube is within 3cm distance to the goal, and when the end effector is
at least 10cm away from the goal.

Adaptive curriculum: Since directly training on stacking tasks with large number of objects pose severe exploration
challenges, we adopt a simple curriculum on the number of cubes to stack, similar to the one in (Li et al., 2020a). In
the beginning, 70% of the tasks only need to stack one cube, and the other tasks are uniformly sampled to stack 2 to N
cubes. Whenever the average success rate reaches 0.6, the curriculum proceeds from sampling “stack-n-cubes” with 70%
probability to “stack-(n+ 1)-cubes” tasks. We switch to offline SL training when the curriculum proceeds and the success
rate for stacking n+ 1 cubes is lower than 0.5.

B.2. Combination with Offline RL

B.2.1. OFFLINE RL COMBINATION IN SAWYER PUSH

For the warm-start dataset, we collect rollout trajectories generated by random policy, where we keep successful samples
and do goal relabelling on failed trajectories. Therefore, the dataset only consists of successful demonstrations. The dataset
size for phasic-DT is 55K steps, and 15k for phasic-AWAC. Phasic-AWAC switches from online to offline training after
collecting 200k online samples to match the total number of phasic switches in original PAIR. The online training of
Phasic-DT is based on PPO, therefore we adopt the same number of PPO updates as PAIR for phasic-DT before switching
to its offline phase.

B.2.2. ADDITIONAL RESULTS IN STACK SCENARIO

We also try to run phasic-DT in the stacking domain. We train phasic-DT starting from the offline phase with a warm-up
dataset. The warm-up dataset consists of successful trajectories in “stack-1-cube” scenario generated by a pretrained PPO

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0 1.2
samples 1e8

0.0

0.1

0.2

0.3

av
g.

 su
cc

. r
at

e

stack 6

Figure 12. Average success rate of phasic-DT in “stack-6-cube” domain.

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e6

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

w/o v train
w/ v train

0 1 2 3 4 5
samples 1e7

0.2

0.4

0.6

0.8

1.0

av
g.

 su
cc

. r
at

e

w/o v train
w/ v train

Figure 13. Comparison of training value network or not in PAIR offline phase. Left plot is in “Push” domain, right plot is in “Ant Maze”.

model. We similarly adopt adaptive curriculum to alleviate exploration difficulty as when training PAIR. The results are
shown in Figure 12. The success rate of phasic-DT for stacking 6 cubes grows slowly, and does not converge to a value as
high as the original PAIR.

B.3. Algorithm Implementations

Network architecture: We use separate policy and value networks with the same architecture for PPO-based algorithms.
The specific network architectures for different domains are as follows. For “Push”, we use MLPs of hidden size 400 and
300. For “Ant Maze”, the networks are MLPs of hidden size 256 and 256. For “Stacking”, we use a transformer (Vaswani
et al., 2017)-based architecture, which stacks 2 self-attention blocks with one head and 64 hidden units, and then goes
though linear heads to output action distributions or values. Since there are exponential number of possible actions as we
discretize each action dimension into several bins, we assume different action dimensions are independent, and use separate
linear heads to predict distributions of different dimensions.

PAIR implementation: We use PPO (Schulman et al., 2017) for online training and advantage weighted imitation learning
for offline training by default. For PPO training, we use Nworker parallel workers to collect transitions (s, a, r, s′) from
the environments synchronously. When applying the value-difference-based intrinsic reward, r is replaced by the sum of
environment reward and the intrinsic reward calculated with the current value network. After each worker gets Nsteps data
points, we run Nepoch epochs of PPO training by splitting all the collected on-policy data into Nbatch batches. The successful
trajectories from these on-policy batch are directly stored into the offline data D, and the failed trajectories are cached into
a failure buffer Bfail. We repeat the data collection - PPO training phase until the total amount of on-policy data reaches
Nonline. Then we perform data augmentation (task reduction, goal relabeling) over Bfail so as to generate more successful
data, and insert the resulting demonstrations into D as well. After the dataset D is constructed, we run Mepoch epochs of
advantage weighted behavior cloning with batch size m. We use GAE advantage calculated with the value network learned
after the online phase as (R−V) for each data point. We use Adam optimizer (Kingma & Ba, 2015) for PPO and supervised
learning. All the hyper-parameters are listed in Table 2.

We do not additionally train the value network using the offline dataset in offline phase since we empirically find that training
V does not help the overall performance (see Figure 13).

GCSL baseline implementation: There is a slight difference between our implementation and the original version from
(Ghosh et al., 2020): we collect and relabel data in a more phasic fashion, i.e., we perform imitation learning on the data
batch collected from only the previous online collection phase. We keep the number of online steps before offline imitation
learning the same as PAIR. The original GCSL maintains a data buffer throughout the training process similar to the setting

Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning

Domain Push Ant Maze Stacking

Nworker 4 64 64
Nonline 10 · 214 20 · 218 adaptive
α 0.5
Nsteps 4096
Nepoch 10
Nbatch 32
β 1
Mepoch 10
m 64
lr 2.5e-4

Table 2. Hyperparameters of PAIR.

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e6

0.2

0.4

0.6

0.8

av
g.

 su
cc

. r
at

e

GCSL phasic
GCSL original

Figure 14. Comparison between phasic GCSL and the original ver-
sion.

0.0 0.5 1.0 1.5
samples 1e8

0.0

0.2

0.4

0.6

0.8

av
g.

 su
cc

. r
at

e

csl=0.03
csl=0.1
csl=0.3

Figure 15. Success rate of joint RL+SL with different cSL in “stack-
6-cube” task. We adopt cSL = 0.1 for SIR in the main paper.

in off-policy RL. We find our phasic GCSL can get better performance than the original version (see Figure 14), so we
present the results of phasic GCSL in the main paper.

DT baseline implementation: The policy and value networks adopt the same GPT-2 architecture similar to the original
version in (Chen et al., 2021). They output actions and values conditioning on desired return, past states, and past actions.
To avoid gradient explosion, only the last token of the predicted action or value sequence is used for updating the model. To
stabilize training, we remove all dropout layers from the transformer model. We use a context length of 5 for sequence
conditioning. The specific feature extractors for processing single-step observations in different domains are as follows.
For “Push”, we use MLPs of hidden size 300 and 300 for representation learning and we train separate policy and value
networks. For “Stacking”, we use a transformer-based architecture similar to PAIR for representation learning except that
the size of hidden layer is 128. We find that using shared or separate feature extractors for policy and value networks leads
to similar performances. Therefore we share parameters for them to save computational resources.

B.4. Analysis on Phasic vs. Joint RL and SL Optimization

PAIR decouples RL and SL objectives in two phases instead of optimizing them jointly (LRL + cSLLSL), since the two
objectives can largely interfere with each other and the choice of cSL is empirically brittle to tune. The RL objective is
policy gradient over rollout data (Eqn. 1), which requires (primarily) on-policy samples (both success and failures) to make
policy improvement. The SL objective (Eqn. 2) is performed over the successful dataset with both success-only rollout
samples and off-policy augmentation trajectories. These two objectives operate on very distinct data distributions. If cSL is
too large, the gradient will be pulled away from the policy improvement direction, which makes policy learning unstable or
even breaks training. If cSL is too small, the objective may not sufficiently leverage the augmented successful data learning
to slow convergence. We report sensitivity analysis in Fig. 15 by trying different cSL in the joint objective. With phasic
training, RL and SL are decoupled and the interference is largely reduced. We can also intuitively interpret the benefit of
decoupling RL and SL into two phases by echoing one result in stochastic optimization: smaller optimization step size
should be taken when the gradient noise is large (Theorem 6.2 in (Bubeck, 2015)). RL objective is with large gradient noise,
while SL offers clear supervision signal. When jointly optimizing RL and SL, only small step size is allowed which leads to
slow convergence; when optimizing RL and SL separately, different step sizes can be chosen for different objectives, thus
converges faster.

