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Abstract
It has been a recent trend to leverage the power of
supervised learning (SL) towards more effective
reinforcement learning (RL) methods. We pro-
pose a novel phasic approach by alternating on-
line RL and offline SL for tackling sparse-reward
goal-conditioned problems. In the online phase,
we perform RL training and collect rollout data
while in the offline phase, we perform SL on those
successful trajectories from the dataset. To further
improve sample efficiency, we adopt additional
techniques in the online phase including task re-
duction to generate more feasible trajectories and
a value- difference-based intrinsic reward to allevi-
ate the sparse-reward issue. We call this overall al-
gorithm, PhAsic self-Imitative Reduction (PAIR).
PAIR substantially outperforms both non-phasic
RL and phasic SL baselines on sparse-reward
goal-conditioned robotic control problems, includ-
ing a challenging stacking task. PAIR is the first
RL method that learns to stack 6 cubes with only
0/1 success rewards from scratch.

1. Introduction
Despite great advances achieved by deep reinforcement
learning (RL) in a wide range of application domains such
as playing games (Mnih et al., 2015; Schrittwieser et al.,
2020), controlling robots (Lillicrap et al., 2016; Hwangbo
et al., 2019; Akkaya et al., 2019), and solving scientific
problems (Jeon & Kim, 2020), deep RL methods have been
empirically shown to be brittle and extremely sensitive to
hyper-parameter tuning (Tucker et al., 2018; Ilyas et al.,
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Figure 1. Overall workflow of PAIR. PAIR iteratively alternates
between online RL and offline SL phases. During online phases,
the agent is trained using both environment reward and a value-
difference-based intrinsic reward. Meantime, it collects trajectories
and augments them with task reduction into successful demonstra-
tions for offline training. In the offline phases, the agent runs su-
pervised learning to improve its policy using the generated dataset.

2020; Engstrom et al., 2020; Yu et al., 2021a; Andrychow-
icz et al., 2021), which largely limits the practice use of
deep RL in many real-world scenarios. On the contrary, su-
pervised learning (SL) provides another learning paradigm
by imitating given demonstrations, which is much simpler
for tuning and typically results in a much more steady op-
timization process (Lynch et al., 2020; Ghosh et al., 2020).
Inspired by the success of training powerful fundamental
models by SL (Brown et al., 2020; Dosovitskiy et al., 2020;
Jumper et al., 2021), it has also been a recent trend in RL
to leverage the power of SL to develop more powerful and
stable deep RL algorithms (Levine, 2021).

One representative line of research that incorporates SL
into RL is offline RL, which assumes that a large offline
dataset of transition data is available and solely performs
learning on the dataset without interacting with the environ-
ment (Lange et al., 2012; Wu et al., 2019; Levine et al., 2020;
Kumar et al., 2020; Fujimoto & Gu, 2021). However, both
empirical (Yu et al., 2021b) and theoretical (Rashidinejad
et al., 2021) evidence suggests that the success of recent of-
fline RL methods rely on the quality of the dataset. Accord-
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ingly, popular of�ine RL datasets are typically constructed
by human experts, which may not be feasible for many real-
world problems. Besides, of�ine RL suffers from a �nal
performance gap compared with online RL algorithms.

Another representative line of research is self-imitation
learning (SIL) (Oh et al., 2018), which combines SL and
RL in a completely online fashion. SIL directly performs
SL over selected self-generated rollout trajectories by treat-
ing the SL objective as an auxiliary loss and optimizing it
jointly with the standard RL objective. SIL does not require
a dataset in advance. However, optimizing a mixed objec-
tive consisting of both RL and SL makes the optimization
process even more brittle and requires substantial efforts of
parameter tuning to achieve best empirical performance.

In this paper, we propose a simple phasic approach,PhAsic
self-ImitativeReduction(PAIR), to effectively balance both
RL and SL training for goal-conditioned sparse-reward prob-
lems. The main principle of PAIR is to alternate between RL
and SL: in the RL phase, we solely perform standard online
RL training for optimization stability and collect rollout tra-
jectories as a dataset for the of�ine SL phase; while in the SL
phase, we pick out successful trajectories as SL signals and
run imitation learning to improve policy. To improve sample
ef�ciency, PAIR also includes two additional techniques in
the RL phase: 1) a value-difference-based intrinsic reward
that alleviates the sparse-reward issue, and 2)task reduction,
a data augmentation technique that largely increases the
total number of successful trajectories, especially for hard
compositional tasks. Our theoretical analysis suggests that
task reduction can convergeexponentiallyfaster than the
vanilla phasic approach that does not use task reduction.

We implement PAIR with Proximal Policy Optimization
(PPO) for RL and behavior cloning for SL and we con-
duct experiments on a variety of goal-conditioned control
problems, including relatively simple benchmarks such
as pushing and ant-maze navigation, and a challenging
sparse-reward cube-stacking task. PAIR substantially out-
performs all the baselines including non-phasic online meth-
ods, which jointly perform self-imitation and RL training,
and phasic SL methods, which only perform supervised
learning on self-generated trajectories (Ghosh et al., 2020).
We highlight that PAIR successfully learns to stack 6 cubes
with 0/1 rewards from scratch. To our knowledge, PAIR is
the�rst deep RL method that could solve this challenging
sparse reward task.

2. Related Work

Goal-conditioned RL: We study goal-conditioned rein-
forcement learning (Kaelbling, 1993) with sparse reward in
this work. Goal-conditioned RL enables one agent to solve
a variety of tasks by predicting actions given both observa-

tions and goals, and is studied in a number of works (Schaul
et al., 2015; Nair et al., 2018b; Pong et al., 2018; Veeriah
et al., 2018; Zhao et al., 2019; Eysenbach et al., 2020).
Although some techniques like relabeling (Andrychowicz
et al., 2017) are proposed to address the sparse reward issue
when learning goal-conditioned policies, there are still chal-
lenges in long-horizon problems (Nasiriany et al., 2019).

Of�ine reinforcement learning: Of�ine RL (Lange et al.,
2012; Levine et al., 2020) is a popular line of research
that incorporates SL into RL, which studies extracting a
good policy from a �xed transition dataset. A large portion
of of�ine RL methods focus on regularized dynamic pro-
gramming (e.g., Q-learning) (Kumar et al., 2020; Fujimoto
& Gu, 2021), with the constraint that the resulting policy
does not deviate too much from the behavior policy in the
dataset (Wu et al., 2019; Peng et al., 2019; Kostrikov et al.,
2021). Some other works directly treat policy learning as a
supervised learning problem, and learn the policy in a con-
ditioned behavior cloning manner (Chen et al., 2021; Janner
et al., 2021; Furuta et al., 2021; Emmons et al., 2021), which
can be considered as special cases of upside down RL and
reward-conditioned policies (Schmidhuber, 2019; Kumar
et al., 2019). There are also methods that learn transition
dynamics from of�ine data before extracting policies in a
model-based way (Matsushima et al., 2020; Kidambi et al.,
2020). Some works also consider a single online �ne-tuning
phase after of�ine learning (Nair et al., 2020; Lu et al., 2021;
Mao et al., 2022; Uchendu et al., 2022) while we repeatedly
alternate between of�ine and online training.

Imitation learning in RL: Imitation learning is a frame-
work for learning policies from demonstrations, which has
been shown to largely improve the sample complexity of
RL methods (Hester et al., 2018; Rajeswaran et al., 2018)
and help overcome exploration issues (Nair et al., 2018a).
Self-imitation learning (SIL) (Oh et al., 2018), which imi-
tates good data rolled out by the RL agent itself, does not
require any external dataset and has been shown to help ex-
ploration in sparse reward tasks. Our method also performs
imitation learning over self-generated data. Self-imitation
objective is optimized jointly with the RL objective, while
we propose to perform SL and RL separately in two phases.
The idea of substituting joint optimization with iterative
training for minimal interference between different objec-
tives is similar to phasic policy gradient (Cobbe et al., 2021).
Goal-conditioned supervised learning (GCSL) (Ghosh et al.,
2020) is perhaps the most related work to ours. GCSL
repeatedly performs imitation learning on self collected re-
labeled data without any RL updates while we leverage the
power from both RL and SL and adopt further task reduction
for enhanced data augmentation.

Sparse reward problems:There are orthogonal interests
in solving long horizon sparse reward with hierarchical
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modeling (Stolle & Precup, 2002; Kulkarni et al., 2016;
Bacon et al., 2017; Nachum et al., 2018) or by encouraging
exploration (Singh et al., 2005; Burda et al., 2019; Badia
et al., 2020; Ecoffet et al., 2021). Our framework can be
also viewed as an effective solution to tackle challenging
sparse-reward compositional problems.

3. Preliminary

We consider the setting of goal-conditioned Markov
decision process with 0/1 sparse rewards de�ned by
(S; A ; P(s0js; a); G; r (s; a; g); � 0; 
 ). S is the state space,
A is the action space,G is the goal space and
 is the dis-
counted factor.P(s0js; a) denotes transition probability
from states to s0 after taking actiona. The reward function
r (s; a; g) is 1 only if the goalg is reached at the current
states within some precision threshold and otherwise 0. In
the beginning of each episode, the initial states0 is sampled
from a distribution� 0 and a goalg is sampled from the goal
space. An episode terminates when the goal is achieved or
it reaches a maximum number of steps.

The agent is represented as a goal-conditioned stochastic
policy � � (ajs; g) parametrized by� . The optimal policy� � ?

should maximize the objectiveJ (� ) de�ned by the expected
discounted cumulative reward over all the goals, i.e.,

J (� ) = J (� � ) = Eg2G ;a t � � �

"
X

t


 t r (st ; at ; g)

#

: (1)

Policy gradient optimizesJ (� ) via the gradient computa-
tion

r J (� ) = Eg;a t

"
X

t

(Rt � V (st ; g)) r log � (at jst ; g)

#

;

whereV (st ; g) is the goal-conditioned value function pa-
rameterized by and Rt denotes the discounted return
starting from timet on the current trajectory. Note that in
our goal-conditioned setting with 0/1 rewards,Rt will be
either1 0 or 1 and the value functionV (st ; g) can be ap-
proximately interpreted as the discounted success rate from
statest towards goalg.

Goal-conditioned imitation learning optimizes a policy� �

by running supervised learning over a given demonstration
datasetD = f � : (g; s0; a0; s1; a1; : : :)g, where� denotes
a single trajectory. The supervised learning lossL(� ) is
typically de�ned by

L(� ) = � E(g;s;a )2D [w(s; a; g) log � (ajs; g)] ; (2)

wherew(s; a; g) is some sample weight. Behavior cloning
(BC) simply setsw(s; a; g) as1 while more advanced meth-

1More precisely, the returnRt will be 0 or close to 1 due to the
discount factor
 .

Figure 2.Motivation of value-difference intrinsic reward. Trajecto-
ries� 1 and� 2 only differ at a single actionat . � 1 succeeds and will
have positive advantage.� 2 fails sinceat knocks down the cubes,
then all the transitions in� 2 will have negative advantages due to
0/1 goal-conditioned reward, even if early actions are perfect.

ods may have other choices. Note that self-imitation learn-
ing (SIL) is a paradigm that jointly optimizes the RL objec-
tive J (� ) and the SL objectiveL(� ) in an online fashion.

4. Method

Our phasic solution PAIR consists of 3 components, in-
cluding the online RL phase (Sec. 4.1), which also collects
rollout trajectories, task reduction (Sec. 4.2) as a mean for
data augmentation, and the of�ine phase (Sec. 4.3), which
performs SL on self-generated demonstrations. We summa-
rize the overall algorithm in Sec. 4.4.

4.1. RL Phase with Intrinsic Rewards

The RL phase follows any standard online RL training.
Speci�cally in our work, we adopt PPO (Schulman et al.,
2017) as our RL algorithm, which trains both policy� � and
value functionV using rollout trajectories. When a trajec-
tory � = ( g; st ; at ) is successful, i.e., goalg is reached, we
keep this trajectory� as a positive demonstration towards
goalg in the datasetD for the of�ine phase.

Value-difference-based intrinsic rewards:

The sparse-reward issue is a signi�cant challenge for online
RL training, which can yield substantially high variance in
gradients. In particular, let's assume
 = 1 for simplicity
and consider a single trajectory� = ( g; st ; at ). In our goal-
conditioned setting, the returnRt on � will be binary and
the value functionV (st ; g) will be approximately between
0 and 1. Hence, the advantage function for state-action pair
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Figure 3.Illustration of task reduction.(Left) Given a trajectory
that fails to reachg from s0 (orange arrows), task reduction
searches for an intermediatesB , then executes the resulting two
sub-tasks (green and red arrows) to generate a successful demon-
stration.(Right)Heatmap of composed value in Eq. 4 w.r.t.sB .
The green star denotes the position of optimalsB .

(st ; at ) 2 � , i.e.,Rt � V (st ), will be either positive or neg-
ative for the entire trajectory� . Imagine a concrete example
as illustrated in Fig. 2, where we have two trajectories, a
successful trajectory� 1 and a failed trajectory� 2. These
two trajectories only differ at the �nal timestepst +1 , which
may be due to some random exploration noise at actionat .
However, only due to a single mistake, all the state-action
pairs from� 2 will have negative advantages, even though
most of the actions in� 2 are indeed approaching the desired
target. Likewise, in a successful trajectory, it is also possible
that some single action is poor but eventually the subsequent
actions �x this early mistake.

Besides the trajectory-based advantage computation, it will
be bene�cial to have some effective signal of whether a
transition(st ; at ; st +1 ) is properly “approaching” the de-
sired goalg or not. Our suggestion is to useV (s; g) as
an empirical measure: ifat is a good action, it should lead
to a higher state value, i.e.,V (st +1 ; g) � V (st ; g) > 0,
which indicates thatat moves to a state with a higher suc-
cess rate; similarly, a poor action will result in a value drop,
i.e., V (st +1 ; g) � V (st ; g) < 0. Accordingly, we pro-
pose to adopt value difference as an intrinsic rewardr int for
stabilizing goal-conditioned RL training as follows

r int(st ; at ; g) := V (st +1 ; g) � V (st ; g):

We remark thatr int relies on an accurately learned value
function V (s; g). Therefore, we suggest to only train
V (s; g) over the sparse goal-conditioned rewards while
using another value head to �t the intrinsic rewards for critic
learning. Similar techniques have been previously explored
in (Burda et al., 2019) as well.

4.2. Task Reduction as Data Augmentation

In order to perform effective supervised learning in the of-
�ine phase, it is critical that the online phase can generate as

much successful trajectories as possible. In our framework,
we consider two data augmentation techniques to boost the
positive samples in the datasetD, i.e.,goal relabelingand
task reduction. We will �rst describe the simpler one, goal
relabeling, before moving to a much more powerful tech-
nique, task reduction.

Goal relabeling was originally proposed by Andrychowicz
et al. (2017). In our goal-conditioned learning setting, for
each failed trajectory� = ( g; st ; at ) originally targeted at
goalg, we can create an arti�cial goalg0 by settingg0 = sj

for some reached statesj 2 � , which naturally yields a
successful trajectory� 0 as follows:

� 0  (g0 = sj ; st =0: j ; at =0: j ) where sj 2 �: (3)

Therefore, despite its simplicity, goal relabeling can convert
every failed trajectory� to a positive demonstration without
any further interactions with the environment.

Task reduction was originally proposed by Li et al. (2020b).
The main idea is to decompose a challenging task into a
composition of two simpler sub-tasks so that both sub-tasks
can be solved by the current policy. As illustrated in the left
part of Fig. 3, given a goalg from states0, task reduction
searches for the best sub-goals?

B through a 1-step planning
process over the universal value functionV (s; g) as follows

s?
B = arg max

sB
V (s0; sB ) � V (sB ; g); (4)

where� is a composition operator typically implemented
as multiplication. Since the value function is learned, such a
search process can be accomplished without any further en-
vironment interactions by gradient descent or cross-entropy
method. A heatmap of the composed value for sub-goal
search (Eq.(4)) is visualized in the right part of Fig. 3. No-
tably, afters?

B is obtained, we would still need to execute
the policy in the environment following the sub-goals?

B and
then the �nal goalg in order to obtain a valid demonstration.
Compared to goal relabeling, task reduction consumes ad-
ditional samples and may even fail to produce a successful
trajectory when either of the two sub-tasks fails. Hence,
task reduction can be expensive in the early stage of training
when the policy and value function have not yet been well
trained. However, we will show both theoretically (Sec. 5)
and empirically (Sec. 6.2) that task reduction can lead to an
exponentially faster convergence compared to using goal
relabeling solely in long-horizon problems.

By default, PAIR utilizes both goal relabeling and task re-
duction for data augmentation unless otherwise stated.

4.3. Of�ine SL Phase

After a datasetD of successful demonstrations, including
augmented trajectories, is collected, we switch from RL
training to of�ine SL by performing advantage weighted
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Algorithm 1 Phasic Self-Imitative Reduction

1: Initialize: goal-conditioned policy� � (�js; g), value
functionV (s; g).

2: for k  1; 2; � � � do
3: Sample a batch of trajectoriesB  f � : (g; st ; at )g

w.r.t. the current policy� �

4: Update� � ; V by RL onB (Sec. 4.1)
5: Set datasetD  ;
6: for � 2 B do
7: if not is success (� ) then
8: �  data augment (�; � � ; V ) (Sec. 4.2)
9: end if

10: D  D [ f � g
11: end for
12: Train � � with SL overD (Sec. 4.3)
13: end for

behavior cloning (BC). In particular, we set the weight
w(s; a; g) in Eq. (2) to exp ( 1

� (R � V� (s; g))) follow-
ing (Peng et al., 2019). We remark that we only train policy
in the of�ine phase while keeping the value functionV 

unchanged for algorithmic simplicity. We also empirically
�nd that training value function during the of�ine phase
does not improve the overall performance.

It is feasible to adopt more advanced methods in the of�ine
phase, such as of�ine RL methods, which typically assume
a pre-constructed dataset but conceptually compatible with
our phasic learning process. We conduct experiments by
substituting BC with two popular of�ine RL methods, deci-
sion transformer (Chen et al., 2021) and AWAC (Nair et al.,
2020), in Sec. 6.1. Empirical results show that these alter-
natives are much more brittle than BC and perform poorly
without a high-quality warm-start dataset. Thus, we simply
use BC as our SL method in this paper.

4.4. PAIR: Phasic Self-Imitative Reduction

By repeatedly performing the online RL phase with task
reduction and the of�ine SL phase, we derive our �nal
algorithm, PAIR. The pseudo-code is summarized in Alg. 1.
More implementation details can be found in Appendix B.3.
More analysis on the phasic training scheme vs. joint RL
and SL optimization is in Appendix B.4.

5. Theoretical Analysis

First, we establish the correctness of our framework. The
following theorems follows directly from the GCSL frame-
work in (Ghosh et al., 2020), because both GCSL and PAIR
are built upon SL.

Theorem 5.1(Ghosh et al. (2020), Theorem 3.1). Let J (� )
be de�ned in Eq. (1) andJPAIR (� ) = � L (� ) as de�ned in

Eq. (2). Let~� be the data collection policy induced by data
augmentation. Then

J (� ) � JPAIR (� ) � 4T(T � 1)� 2 + C; (5)

where� = max s;g DTV (� (�js; g)k~� (�js; g)) and C is a
constant independent of� .2

Theorem 5.2(Ghosh et al. (2020), Theorem 3.2). Assume
deterministic transition and that~� has full support. De�ne

� := max
s;g

DTV (� (�js; g)k�̂ ?(�js; g)) : (6)

ThenJ (� ?) � J (� ) � � � T , where�̂ ? minimizesL(� )
de�ned in Eq. (2) and� ? is the optimal policy.

Here, we present theoretical justi�cation to illustrate why
our algorithm is ef�cient on sparse-reward composite com-
binatorial tasks.

Theorem 5.3. Under mild assumptions, the PAIR frame-
work could use exponentially less number of iterations com-
pared to the phasic framework that does not use task reduc-
tion, e.g., GCSL (Ghosh et al., 2020).

We defer the exact statement of Theorem 5.3 and its proof
to Appendix A.

6. Experiment

We aim to answer the following questions in this section:

• Does phasic training of RL and SL objectives perform
better than non-phasic joint optimization?

• Is PAIR compatible with of�ine RL methods other than
BC?

• Does PAIR achieve exponential improvement over base-
lineswithout task reduction?

• Are all the algorithmic components of PAIR necessary
for good performance?

• Can PAIR be used to solve challenging long-horizon
sparse-reward problems, e.g., cube stacking?

We consider 3 goal-conditioned control problems with
increasing dif�culty: (i) short-horizon robotic pushing
(adopted from (Nair et al., 2018b)), (ii) ant navigation in a
U-shaped maze, and (iii) robotic stacking with up to 6 cubes.
All the tasks are with only 0-1 sparse reward.

We compare PAIR with non-phasic RL baslines that jointly
perform RL and SL as well as phasic SL baselines that

2D TV (� k� ) := 1
2

R
A j� (a) � � (a)j da is the total variation

between distribution� and� over the action setA .




