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Abstract

Minwise hashing (MinHash) is an important and
practical algorithm for generating random hashes
to approximate the Jaccard (resemblance) similar-
ity in massive binary (0/1) data. The basic theory
of MinHash requires applying hundreds or even
thousands of independent random permutations
to each data vector in the dataset, in order to ob-
tain reliable results for (e.g.,) building large-scale
learning models or approximate near neighbor
search. In this paper, we propose Circulant Min-
Hash (C-MinHash) and provide the surprising
theoretical results that using only two indepen-
dent random permutations in a circulant manner
leads to uniformly smaller Jaccard estimation vari-
ance than that of the classical MinHash with K
independent permutations. Experiments are con-
ducted to show the effectiveness of the proposed
method. We also propose a more convenient C-
MinHash variant which reduces two permutations
to just one, with extensive numerical results to
validate that it achieves essentially the same esti-
mation accuracy as using two permutations.

1. Introduction

Given two D-dimensional binary vectors v, w € {0, 1},
the Jaccard similarity is defined as

iy Mo = w =1}
Zil 1{v; + w; > 1}’

which is a commonly used similarity metric in machine
learning and web search applications. The vectors v and
w can also be viewed as two sets of items (which repre-
sent the locations of non-zero entries), where the Jaccard

J(v,w) =

)
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similarity can be equivalently viewed as the size of set inter-
section over the size of set union. In large-scale search and
learning, directly calculating the pairwise Jaccard similarity
among the sample points becomes too costly as the sample
size grows. The well-known method of “minwise hash-
ing” (MinHash) (Broder, 1997; Broder et al., 1997; 1998;
Li and Church, 2005; Li and Ko6nig, 2011) is a standard
technique for computing/estimating the Jaccard similarity in
massive binary datasets, with numerous applications in near
neighbor search, duplicate detection, malware detection,
clustering, large-scale learning, social networks, computer
vision, etc. (Charikar, 2002; Fetterly et al., 2003; Henzinger,
2006; Das et al., 2007; Buehrer and Chellapilla, 2008; Ga-
mon et al., 2008; Bendersky and Croft, 2009; Chierichetti
et al., 2009; Najork et al., 2009; Pandey et al., 2009; Lee
et al., 2010; Li et al., 2011; Deng et al., 2012; Chum and
Matas, 2012; Li et al., 2012; Shrivastava and Li, 2012; He
et al., 2013; Tamersoy et al., 2014; Shrivastava and Li, 2014;
Zamora et al., 2016; Ondov et al., 2016; Zhu et al., 2017,
Nargesian et al., 2018; Wang et al., 2019; Lemiesz, 2021;
Tseng et al., 2021; Feng and Deng, 2021; Jia et al., 2021).

1.1. A Review of Minwise Hashing (MinHash)

Algorithm 1 Minwise-hashing (MinHash)

Input: Binary data vector v € {0,1}7;
K independent permutations 71, ..., mx: [D] — [D]

Output: K hash values hq(v), ..., hx (v)
Fork=1to K

hi(v) <= min;.,, 20 74 (%)
End For

We first recap the method of minwise hashing. For simplic-
ity, Algorithm 1 considers just one vector v € {0,1}”. In
order to generate K hash values for v, we assume K inde-
pendent permutations: w1, ...,7x : [D] — [D]. For each
permutation, the hash value is the first non-zero location in
the permuted vector, i.e., hi(v) = min;.,, 2o ¢ (2), Yk =
1,..., K. Similarly, for another binary vector w € {0, l}D,
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using the sam& permutations, we can also obtddnhash  1.3. Outline of Main Results

aluesh . The estimator of (v;w) is simpl . . .
val k(W) ! (viw) is simply From K Permutations to two. UsingK independent per-

1 mutations in MinHash has been widely used as the standard
S (v;w) = K 1fhe(v) = hk(W)g;  (2)  approach in textbooks and industry for over two decades.
k=1 The main idea of this work, is to replace the independent per-
wherelf g is the indicator function. By fundamental prob- mutations in MinHash with “circulant” permutations. Thus,
ability and the independence among the permutations, it ig’e name the proposed framewdtkMinHash (circulant
easy to show that MinHash). The “circulant” trick was used in the literature of
i J) random projections. For example, Yu et al. (2017) showed
= ———=: (3) that using circulant projections hurts the estimation accu-
K racy, but not by too much when the data are sparse. In

How large isK ? The answer depends on the applicationS€ction 3, we present some (perhaps surprising) theoretical
domains. For example, for training large-scale machinendings that we just need 2 permutations in MinHash and
learning models, it appears thi&t = 512 or K = 1024  the results (esnm_appn varlance§) are even more accurate.
might be suf cient (Li et al., 2011). However, for approxi- Basically, with thenitial permutation (denoted by ), we

mate near neighbor search using many hash tables (|nd)y§ndomly shuf e the data to break whatever structure which
and Motwani, 1998), it is likely thak might have to be might exist in the original data, and then thecond per-

much larger thari024(Shrivastava and Li, 2012; 2014).  Mutation (denoted by ) is applied and re-useld times
to generat&K hash values, via circulation. This method

In the early work of MinHash (Broder, 1997; Broder et al., s called C-MinHasl-; ). Before that, in Section 2, we
1997), actually only one permutation was used by storinganalyze a simpler variant C-MinHag: ) without initial
the rst K non-zero locations after the permutation. Later,permutation . Although it is not our recommended method,
Li and Church (2005) proposed better estimators to improveyyr analysis for C-MinHask®; ) provides the necessary

the estimation accuracy. The major drawback of the originalyreparation for later methods and the intuition to understand
scheme was that the hashed values did not form a metrigie need for the initial permutation.

space (e.g., satisfying the triangle inequality) and hence ] ] )
could not be used in many algorithms/applications. WeT0m two permutations to one. Section 5 provides a conve-
believe this was the main reason why the original authorgiént variant C-MinHasl{-; ) that only needs one permu-

moved to using< permutations (Broder et al., 1998). tation  for both pre-processing and hashing. The resultant
estimator is no longer unbiased but the bias is extremely

small and has essentially no impact on the estimation accu-
racy, as veri ed by extensive numerical experiments.

We believe the idea of using randomness circulantly, as

;tudied in our paper, mig_ht be he]pful in broader applica%_ C-MinHash-(0; ) Without Initial

tions. For example, minwise hashing can also be extende .

to the non-binary data. For two non-negative data vectors Permutation
v;w 2 RP, the weighted Jaccard similarity is de ned as

Elfun 1= J; Var[Jun |

1.2. Hashing for Non-binary Data

Algorithm 2 C-MinHash{0; )

P, : (4) Input: Binary data vectov 2 f 0; 1g° ;

i=1 Max(vi;wi) Permutation vector: [D]! [D]
which obviously becomes Ed@L) in binary data. Consis- Output: Hash value$(v);:::; hg (V)
tent weighted sampling (CWS) (Manasse et al., 2010; loffe
2010) is the standard hashing method for the weighted Jabork =1 toK
card in massive data. In general, CWS can be applied to the Shift circulantly rightwards bk units: = |
scenarios where MinHash is found useful, and in many cases 1, (v) Minivs0 1 k(i)
CWS might be more feasible as real-valued data typlcaII)iEnd For
contains more information than binary. As an algorithm;
CWS is considerably much more complex than MinHash
and essentially reduces to MinHash in binary data. Recently\s shown in Algorithm 2, the C-MinHas{®; ) algorithm
Li et al. (2021) developed a family of new algorithms for has similar operations as MinHash. The difference lies in
hashing weighted Jaccard based on extremal processes. thie permutations used in the hashing process. To generate
and Zhang (2017) generalized (4) to datasets with negativeach hasliny (v), we permute the data vector using y,
entries and Li and Zhao (2022) reported their efforts onwhich is the permutation shiftddunits circulantly towards
using CWS and variants for training deep neural networksright based on . For example, = [3;1;2;4]; | 1 =

P D .
o iz Min(vi;wi)
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“won

placed before the rst*” (counting from small to large);
the location of “ ” entries would not affect the collision.
This observation will be the key in our theoretical analysis.

De nition 2.2. ForA;B 2 fO; ; g, letf(A;B)jdg
denote the sdt(i;j ) : (xi;Xj)=(A;B);j i=4g. For
eachl 4 K 1,dene

Lo(4)= f(O;0)j4g ; L1(4)= f(O; )g; L2(4)= f(O; )a;
G(4)=f( ;0)j4g; G(4)=1f( ; )g:&@)=1(: )g

Ho(4)=f( ;0)j4g; H1(4)=f( ; )g H24)=f( ; )
Figure 1.An illustration of the idea of C-MinHash. The data vector ) ) )

hash value$ik (v) =3, hxs1 (V) = 1. write Xj = Xj p whenD <j< 2D.

De nition 2.2 measures the relative location of different
[4;3;1;2]; | » = [2;4;3;1], etc. Conceptually, we may types of points in the location vector, for a specic pair
think of circulation as concatenating the rst and last el-of data vectors. Moreover, one can easily verify that for
ements of a vector to form a circle; see Figure 1 for an81 4 K 1,
illustration. We set the hash valir (v) as the position

of the rst non-zero after being permuted by . Anal- Lol * jLaj+ jL2j = jLoj + jGoj + [Hoj = &
ogously, we de ne the C-MinHas[®; ) estimator ofthe  jGoj + jGij+ |Gj = jLoj+ G+ jH2j=D f;  (7)
Jaccard similarityl (v;w) as jHoj+ jH1j+ jHoj = jLaj+ jGij+ Hi=f &
1 X which is the intrinsic constraints on the size of above sets.
Jo. = (V) = hdw)g; (3)  We are now ready to analyze the expectation and variance
k=1 of Jo. . Itis easy to see thaf,. is still unbiased, i.e.,

whereh is the hash value output by Algorithm 2. In this E[J‘o; 1= J, by linearity of expectation. Lemma 2.4 pro-
paper, for simplicity, we assunt¢  D. vides an important quantity that leads\@r[Jo. ] which

5 is given in Theorem 2.5. All the missing proofs in the paper

Next, we present the theoretical analysis for Algorithm , ,
are placed in Appendix A.

in terms of the expectation (mean) and the variance of th
estimatori\o; . Our results reveal that the estimation ac-Lemma 2.4. Foranyl s<t K witht s= 4,6 we
curacy depends on the initial data distribution, which mayhave that

lead to undesirable performance behaviors when real-world

datasets exhibit various structures. On the other hand, while B 1fhs(v) = hs(w)glfhi(v) = hi(w)g

it is not our recommended method, the analysis serves a _jLo(4)j+(iG(4)j+ jL2(4)))J .
preparation (and insight) for the C-MinHagh- ) which - f+jG(4)j+ jGi(4)j '

will soon be described.

_ ) ) N ~ where the sets are de ned in De nition 2.2 ahd, h; are
First, we introduce some notations and de nitions. Givenine hash values output by Algorithm 2.

v;w 2 f0;1g°, we de nea andf as . .
Theorem 2.5. For C-MinHash{0; ), the variance of

0 » Jo. is given by
a= 1fvi=w; =1g;f = 1fvi +w; 19 (6) p
i=1 i=1 2 l;:z (S l) K s+l

K2 "

Var[Jo, 1= 3,
We say thafv;w) is a(D;f; a )-data pair, whose Jaccard K
similarity can be written ag = a=f. where 4, , E 1fhs(v) = hs(w)glfhi(v) = he(w)g
De nition 2.1. Considerv;w 2 f0;1g°. De ne thelo- asinLemmaZ2.4withany s= 4.

cation vectorforv;w asx 2f O; ; g P, with x; being

“o”,* " * ", whenvi = w; =1,vi+w; =1and Proof. We usel to denotelfhs(v) = hs(w)g, 81 s
vi = w; =0, respectively. K. By the expansion of variance formula, sirgg?] =

) ) ~ E[1s]= J, we have
The location vectoxr can fully characterize a hash collision. P
K

When a permutation,  is applied, the hashdw(v) and J A P f@ <Ells14]
hx (w) would collide if after permutation, the rstO” is Vaf[j\o; 1= K + K 2

J2:
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Note here that foBt > s, thet-th hash sample uses as
the permutation, which is shifted rightwards$éy=1t s
from 4. Thus, we hav&[1l:1;] = E[1s ;1; i]for80<
i <s " t,whichimpliesE[1s1:] = E[111; s+1],85<t.
Since by assumptiod D, we have

XX
E[1s1¢]

S t6s
=2E (1112+ 1,13+ 0+ 111K)

+( 11+ i+ 11 )+ i+ 1 11

X X
=2 (S 1)E[111K S+2] , 2 (S 1) K s+1 -
s=2 s=2
The result then follows. O

From Theorem 2.5, we see that the variancdwof depends
ona, f, and the sizes of setss andGs as in De nition 2.1,
which are determined by the location vectorSince we use

the original data vectors without randomly permuting the

entries beforehand ar[J\o; ]is called location-dependeit

as it is dependent on the location of non-zero entries of th&he feasible set=

wherehy's are the hash values output by Algorithm 3. In the
remaining part of this section, we will present our detailed
theoretical analysis and the main result (Theorem 3.4). First,
by linearity of expectation and the fact thatand are
independent, it is easy to verify thét s still an unbiased
estimator of]. Based on Theorem 2.5, in the following we
provide the exact variance formuladf .

Theorem 3.1. Leta;f be de ned asin (6). Wheb< a <
f D@ 2f0;1g), we have

J (K 1E

var[fl 1= >+ = j2 9
B 1= o ©)
wherel = max(0;D 2f + a), and
X |0 a(go+|2) Dxf 1 D f
E= + 55T
f+rgo+g (fF+g+a)f =1 DTy
f a 1 s D f s D f s f a (D f s) a 1 )
D f s 1 nj ny ns ng a lp Iz
D 1
a
(10)

flo;12; go; 019 satis es the intrinsic

original data. Consequently, as will also be shown in ourconstraints (7), and

numerical studyy ar[J\o; ] may be either smaller or larger

than that of MinHash estimatf, 4 up to different structure
of the data vectors.

3. C-MinHash-( ;
Permutation

) with Independent Initial

Algorithm 3 C-MinHash{; )
Input: Binary data vectov 2 f 0; 1g° ;

Permutation vectors and : [D]! [D]
Output: Hash value$(v);:::; hg (v)
Initial permutationv®=(v)
Fork =1 toK
Shift  circulantly rightwards bk units: ¢ = | «
hi(v)  mini.yogo 1 k(i)

End For

nn=g (DO f s o); n,=D f s @
ns=1 g+(D f s aq);
ng=lh (D f s )

Whena=0orf = a(d =0 ori),Var[f. 1=0.

As expected, since the original locational structure of the
data is broken by the initial permutationV ar[J‘; ] only
depends on the values dd{f; a ) but not the speci c set
sizes as in Theorem 2.5, i.e., it'lecation-independent’
This would make the performance of C-MinHagh- )
consistent in different tasks. In the sequel, we investigate the
statistical properties of ar[J\; ] in more details. Firstly,
same as MinHash, Proposition 3.2 states that giveand

f, the variance off. is symmetric aboufl = 0:5, as
illustrated in Figure 2, which also shows that the variance of
J'. is smaller than the variance of the original MinHash.

Next, we present an improved algorithm by eliminating the

“location-dependennce” of C-MinHagql®: ) as analyzed
above. The method C-MinHagh- ) is summarized in

Algorithm 3, which is very similar to Algorithm 2. This time,

as pre-processing, we apply an initial permutatign  on

the data to break whatever structures which might exist.

Analogously, we de ne the C-MinHash; ) estimator as

1fhg(v) = hg(w)g;
k=1

(8)

Figure 2.V ar[f, ] versusJ, with D = 1000 and varyingf .
Left: K =500. Right: K =800.
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Proposition 3.2(Symmetry) V ar[f; ]is the same for the
(D; f;a)-data pair and thgD; f; f a)-data pair, 80
a f D.

A rigorous comparison of ar[J. ] andV ar[Juy ] ap-
pears to be a challenging task given the complicated combi-
natorial form ofV ar[\]"; ]. The following lemma character-
izes an important property & in (10), that it is monotone

in D whena andf are xed, as illustrated in Figure 3 (left).

Lemma 3.3(Strict Increment) Letf >a > OandK be  Figure 3.Left: TheoreticalE, f = 10 xed. Each dash line
arbitrary and xed. Denotefp as in(10)in Theorem 3.1,  represents the correspondidig. Right: Variance ratioy, - [[‘gﬂ“{'“ ]],
with D is a parameter. TherEp.; > B for8D  f. D = 1000. This plot holds for alla value (by Proposition 3.6).

Equipped with Lemma 3.3, we arrive at the following main
theoretical result of this work, on the uniform variance re-we show that the relative variance reduction of C-MinHash-
duction of C-MinHash-; ). (; ) over MinHash is the same for ayvalue for givenf

Theorem 3.4(Uniform Superiority) For any two binary andK , i.e., the relati\_/e improve_ment is independent of the
vectorsv;w 2 f0;1g° with J 6 0 or 1, it holds that Jaccard valug at a given sparsity level.
\Y ar[J‘; (v;w)] <Var [J\MH (v;w)]. Proposition 3.6(Consistent Improvement)Supposé is
xed. In terms ofa, the variance ratio\% isa

Remark3.5. In fact, from the proof of Lemma 3.3 and The- ¢opstantforanp <a <f . Y
orem 3.4, we can show that the collision indicator variables
1fhe(v) = he(w)g, k =1;:: K, in (8) arepairwise neg-  To investigate the in uence of sparsify and number of
atively correlated This provides intuition on the source of hashe& on the variance, in Figure 3 (right), we plot the
variance reduction. variance ratio\\%“gﬁ”]] with differentf andK . The results

. in Figure 3 again verify Theorem 3.4, as the variance ratio
Proof. By assumption we ha}’? <J a<ft. TOK COMPATE is always greater than 1. We see that the improvement in
Var[f, Jwith Var[fyn 1= 2652 = 2+ & D8 variance increases both wikh (i.e., more hashes) arid
J?2, it suf ces to compareE with J2. WhenD = f, we  (i.e., more non-zero entries). Note that, by Proposition 3.6,
know that the location vector of (v;w) containsno“”  here we do not need to considesince it does not affect
elements. It is easy to verify that in this cag&j = jG;j = the variance ratio.
jL2j = 0, andjL,j follows hyper€ 1;a;a 1). By

Theorem 3.1, it follows that wheld = f, 4. Numerical Experiments

B = %E[iLoj] = M =JF<J?: In this section, we provide numerical experiments to validate

f(E 1) our theoretical ndings and demonstrate that C-MinHash

. L can indeed lead to smaller Jaccard estimation errors.
Recall the de nitionJ™ = % which is always smaller

thanJ. Onthe other hand, d@3!1 ,wehavgloj! 0, 4.1, Sanity Check: a Simulation Study

jiL2j! a,j&j! aandjGj! f a. We can show that ] . ] . )
A simulation study is conducted on synthetic data to verify

Eb! J% asD!1 the theoretical variances given by Theorem 2.5 and Theo-

rem 3.1. We simulat® = 128 dimensional binary vector

By Lemma 3.3, the sequenéE ; E 11 ; E 42 ;) is strictly  pairs(v; w) with differentf anda, which have a special

increasing. Since it is convergent with liml€, by the locational structure that the location vectois such that

Monotone Convergence Theorem we know at< J 2,  a“O™s are followed by(f a) “ s and then followed

8D f. This completes the proof. O by(D f)*“ ™ssequentially. We plot the empirical and
theoretical mean square errors (MSE = variance +bias

Theorem 3.4 says that, using merely two permutations akigure 4, and we observe:

in C-MinHash{ ; ) improves the Jaccard estimation vari-

ance of standard MinHash, in all cases. That said, using two < The theoretical variance matches the empirical results,

permutations could be strictly better than uskagrermu- con rming Theorem 2.5 and Theorem 3.1. The vari-

tations in minwise hashing. How does the variancé\pf ance reduction effect becomes more signi cant with

rely ona,f andK ? First, interestingly, in Proposition 3.6, more number of hashés.
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Figure 5.Mean Absolute Error (MAE) of pairwise Jaccard estima-
tion: MinHash vs. C-MinHash on four real-world datasets.

more substantial with largef , which is consistent
with Figure 3 and Figure 4.

« Without the initial permutation , the accuracy of C-
MinHash{0; ) depends by the distribution/structure
Figure 4.Empirical vs. theoretical variance 6\5; (C-MinHash- of the original data, and it is worse than C-MinHash-
(0; ))andJ; (C-MinHash{; )), on synthetic binary data (; ) on all these four datasets. In addition, the per-
vector pairs with different data statistics. formance of C-MinHasl{©; ) on image data seems
i much worse than that on text data, which we believe is
« VarlJ, ]isalways smaller thaw ar[Ju ], as stated because the image datasets contain more structural pat-

by Theorem 3.4. In contrast,ar[Jo, ] (C-MinHash- terns. This again suggests that the initial permutation
(0; )) varies signi cantly depending on different data might be needed in practice.

structures, as discussed in Section 2.

4.2. Jaccard Estimation on Text and Image Datasets In summary, the simulation study has veri ed the correct-

i i , i ness of our theoretical ndings in Theorem 2.5 and Theo-
We test C-MinHash on four public datasets, including twoy 3 1 The experiments with Jaccard estimation on four

text datasets: the NIPS full paper dataset from UCI rePOSir'eal-world datasets con rm that C-MinHash is more accu-

tory (Dua "_md Graff, 2017), the BBC News d_ataset (Greengate than the original MinHash, and the initial permutation
and Cunningham, 2006), and two popular image datasets:iS recommended.

the MNIST dataset (LeCun et al., 1998) with hand-written
digits, and the CIFAR dataset (Krizhevsky, 2009) containing . ] ] . .
natural images. All the datasets are processed to be binaR: C-MinHash-('; ): Practically Reducing to

For image data, we rst transform the images to gray-scale, One Permutation
then binarize the samples by thresholding:&t For each . . : .
In this section, we propose a more convenient variant, C-

dataset witm data vectors, there are in tomn 1)=2 . ) . . :
data vector pairs. We estimate the Jaccard similarities fo!MmHaSh( ), which only requires one permutation. That

all the pairs and report the mean absolute errors (MAE). AllS: 1S used for both pre-processing and circulant hashing.

the results are averaged over 10 independent repetitions. V\?r%’i]t?ail)roecr?r?lljt;ilc?nth?ssiamggz dALgo”tgrgn?(’)’t:)iﬁzp;??et_the
report the MAE in Figure 5, from which we see that: b P Y-

sponding Jaccard estimator.ﬁ;s . The complicated de-

* The MAE of C-MinHash{ ; ) is consistently smaller pendency between (for initial permutation) and,  (for
than that of MinHash, demonstrating the practical merithashing) makes the estimator no longer unbiased. Never-
of variance reduction (Theorem 3.4) to improve the Jactheless, we found through extensive numerical experiments
card estimation accuracy. The improvements becoméhat, the MSE off.  is essentially the same &5
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Figure 6.Estimator MSE on simulated data pairs. “1 Perm”is rigyre 7.MAE of Jaccard estimation on four datasets. “1 Perm” is
C-MinHash{ ; ), and “2 Perm Theo.” is the theoretical variance c_MinHash( ; ), and “2 Perm” is C-MinHaslf-; ).

of C-MinHash{ ; ) (Theorem 3.1).

: . _ 6. Discussion and Conclusion
Figure 6 compares the empirical MSE of C-MinHgsh- ) o _ _
with the theoretical variances of C-MinHagh- ) on sim-  The method ominwise hashingMinHash), from the sem-
ulated data vector pairs. In Figure 7, we present the MAENal works of Broder and his colleagues, has become stan-
comparison on real datasets, where we see that the curvéard in industrial practice. One fundamental reason for its

' representation is convenient and suitable for a wide range

To illustrate the bias and variance of speci ¢ data pairspf practical scenarios. To estimate the Jaccard similarity
in more details, we test C-MinHagh- ) onthe "Words” o pinary data, the standard MinHash requires toKise
dataset (Li and Church, 2005). For each data point, thgygependent permutations, whete the number of hashes,
i-th 0/1 entry indicates whether a word appears inithe can pe several hundreds or even thousands in practice.

th document, for a total dd = 26 documents. See the

key statistics of the 120 selected word pairs in Table 1We have proposed Circulant MinHash (C-MinHash) and
Those pairs of words are more or less randomly selectefrésent the surprising theoretical results that, with merely
except that we make sure they cover a wide spectrum of dat& permutations, we still obtain an unbiased estimate of the
distributions. Denotd as the number of non-zero entries Jaccard similarity with the variance strictly smaller than
in the vector. Table 1 reports the density= d=D for that of the original MinHash, as con rmed by numerical

each word vector, ranging from 0.0006 to 0.6. The Jaccar@xperiments on simulated and real datasets. The initial per-
similarity J ranges from 0.002 to 0.95. mutation is applied to break whatever structure the original

) ) ~_data may exhibit. The second permutation is re-used
In Figures 8 - 15 (also see Appendix B), we plot the empiriyimes in a circulant shifting fashion. Moreover, we propose
cal MSE along with the empirical bidgor ', , aswellas 43 more convenient C-MinHash variance which uses only 1
the empirical MSE fod’; . From the results in the Figures, permutation for both pre-processing and circulant hashing.
we can observe We validate through extensive experiments that it does not
result in loss of accuracy in practice.
¢ For all the data pairs, the MSE of C-MinHaséh- )
estimator overlaps with the empirical MSE of
MinHash{ ; ) estimator for alK from 1 up to 4096.

C- Practically speaking, our theoretical results may reveal a use-
ful direction for designing hashing methods. For example,
in many applications, using permutation vectors of length
+ The biag of C-MinHash{ ; ) is several orders of (e.g.,)2%° might be suf cient. While it is perhaps unrealis-
magnitudes smaller than the MSE, in all data pairstic to store (e.g.,K = 1024 such permutation vectors in
This demonstrates that the bias‘ﬁf is extremely the memory, one can afford to store two such permutations
small and can be safely neglected in practice. (even in GPU memory). Using perfectly random permuta-
tions in lieu of approximate permutations would simplify the
In all gures, the overlapping curves validate our claim that design and analysis of randomized algorithms and ensure
in practice, we just need one permutatioin C-MinHash.  that the practical performance strictly matches the theory.



C-MinHash: Improving Minwise Hashing with Circulant Permutation

Table 1.120 selected word pairs from théordsdataset (Li and Church, 2005). For each pair, we report the deti§itymber of non-zero
entries divided byp = 28) for each word as well as the Jaccard similadityBoth dandJ cover a wide range of values.

a1 VP J a1 > J
ABOUT - INTO 0.302 0.125 0.258|| NEW - WEB 0.291 0.194 0.224
ABOUT - LIKE 0.302 0.140 0.281|| NEWS - LIKE 0.168 0.140 0.172
ACTUAL - DEVELOPED 0.017 0.030 0.071|| NO-WELL 0.220 0.120 0.244
ACTUAL - GRABBED 0.017 0.002 0.016|| NOT-IT 0.281 0.295 0.437
AFTER - OR 0.103 0.356 0.220|| NOTORIOUSLY - LOCK 0.0006 0.006 0.004
AND - PROBLEM 0.554 0.044 0.070|| OF - THEN 0.570 0.104 0.168
AS - NAME 0.280 0.144 0.204|| OF - WE 0.570 0.226 0.361
AT - CUT 0.374 0.242 0.052|| OPPORTUNITY - COUNTRIES| 0.029 0.024 0.066
BE - ONE 0.323 0.221 0.403|| OUR - THAN 0.244 0.125 0.245
BEST - AND 0.136 0.554 0.228|| OVER - BACK 0.148 0.160 0.233
BRAZIL - OH 0.010 0.031 0.019|| OVER - TWO 0.148 0.121 0.289
BUT - MANY 0.167 0.116 0.340|| PEAK - SHOWS 0.006 0.033 0.026
CALLED - BUSINESSES 0.016 0.018 0.043|| PEOPLE - BY 0.121 0.425 0.228
CALORIES - MICROSOFT 0.002 0.045 0.0003| PEOPLE - INFO 0.121 0.138 0.117
CAN - FROM 0.243 0.326 0.444|| PICKS - BOOST 0.007 0.005 0.007
CAN - SEARCH 0.243 0.214 0.237|| PLANET - REWARD 0.013 0.003 0.018
COMMITTED - PRODUCTIVE 0.013 0.004 0.029|| PLEASE - MAKE 0.168 0.141 0.195
CONTEMPORARY - FLASH 0.011 0.021 0.013|| PREFER - PUEDE 0.010 0.003 0.0001
CONVENIENTLY - INDUSTRIES | 0.003 0.011 0.009|| PRIVACY - FOUND 0.126 0.136 0.053
COPYRIGHT - AN 0.218 0.290 0.209|| PROSECUTION - MAXIMIZE 0.002 0.003 0.006
CREDIT - CARD 0.046 0.041 0.285|| RECENTLY - INT 0.028 0.007 0.014
DE - WEB 0.117 0.194 0.091|| REPLY - ACHIEVE 0.013 0.012 0.023
DO - GOOD 0.174 0.102 0.276|| RESERVED - BEEN 0.172 0.141 0.108
EARTH - GROUPS 0.021 0.035 0.056|| RIGHTS - FIND 0.187 0.144 0.166
EXPRESSED - FRUSTRATED 0.010 0.002 0.024|| RIGHTS - RESERVED 0.187 0.172 0.877
FIND - HAS 0.144 0.228 0.214|| SCENE - ABOUT 0.012 0.301 0.029
FIND - SITE 0.144 0.275 0.212|| SEE-ALSO 0.138 0.166 0.291
FIXED - SPECIFIC 0.011 0.039 0.054|| SEIZE - ANYTHING 0.0007 0.037 0.012
FLIGHT - TRANSPORTATION 0.011 0.018 0.040|| SHOULDERS - GORGEOUS 0.003 0.004 0.028
FOUND - DE 0.136 0.117 0.039|| SICK-FELL 0.008 0.008 0.085
FRANCISCO - SAN 0.025 0.049 0.476|| SITE - CELLULAR 0.275 0.006 0.010
GOOD - BACK 0.102 0.160 0.220|| SOLD - LIVE 0.018 0.064 0.055
GROUPS - ORDERED 0.035 0.011 0.034|| SOLO - CLAIMS 0.010 0.012 0.007
HAPPY - CONCEPT 0.029 0.013 0.054|| SOON - ADVANCE 0.040 0.017 0.057
HAVE - FIRST 0.267 0.151 0.320|| SPECIALIZES - ACTUAL 0.003 0.017 0.008
HAVE - US 0.267 0.284 0.349|| STATE - OF 0.101 0.570 0.165
HILL - ASSURED 0.020 0.004 0.011|| STATES - UNITED 0.061 0.062 0.591
HOME - SYNTHESIS 0.365 0.002 0.003|| TATTOO - JEANS 0.002 0.004 0.035
HONG - KONG 0.014 0.014 0.925|| THAT - ALSO 0.301 0.166 0.376
HOSTED - DRUGS 0.016 0.013 0.013|| THIS-CITY 0.423 0.123 0.132
INTERVIEWS - FOURTH 0.012 0.011 0.031|| THEIR - SUPPORT 0.165 0.117 0.189
KANSAS - PROPERTY 0.017 0.045 0.052|| THEIR - VIEW 0.165 0.103 0.151
KIRIBATI - GAMBIA 0.003 0.003 0.712|| THEM - OF 0.112 0.570 0.187
LAST - THIS 0.135 0.423 0.221|| THEN - NEW 0.104 0.291 0.192
LEAST - ROMANCE 0.046 0.007 0.019|| THINKS - LOT 0.007 0.040 0.079
LIME - REGISTERED 0.002 0.030 0.004|| TIME-OUT 0.189 0.191 0.366
LINKS - TAKE 0.191 0.105 0.134|| TIME - WELL 0.189 0.120 0.299
LINKS - THAN 0.191 0.125 0.141|| TOP-AS 0.140 0.280 0.217
MAIL - AND 0.160 0.554 0.192|| TOP - COPYRIGHT 0.140 0.218 0.149
MAIL - BACK 0.160 0.160 0.132|| TOP - NEWS 0.140 0.168 0.192
MAKE - LIKE 0.141 0.140 0.297|| UP-AND 0.200 0.554 0.334
MANAGING - LOCK 0.010 0.006 0.010(| UP-HAS 0.200 0.228 0.312
MANY - US 0.116 0.284 0.210|| US-BE 0.284 0.323 0.335
MASS - DREAM 0.016 0.017 0.048(| VIEW -IN 0.103 0.540 0.153
MAY - HELP 0.184 0.156 0.206|| VIEW - PEOPLE 0.103 0.121 0.138
MOST - HOME 0.141 0.365 0.207|| WALKED - ANTIVIRUS 0.006 0.002 0.002
NAME - IN 0.144 0.540 0.207|| WEB -GO 0.194 0.111 0.138
NEITHER - FIGURE 0.011 0.016 0.085|| WELL - INFO 0.120 0.138 0.110
NET - SO 0.101 0.154 0.112|| WELL - NEWS 0.120 0.168 0.161
NEW - PLEASE 0.291 0.168 0.205|| WEEKS - LONDON 0.028 0.032 0.050







