
C-MinHash: Improving Minwise Hashing with Circulant Permutation

Xiaoyun Li, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA

{lixiaoyun996, pingli98}@gmail.com

Abstract
Minwise hashing (MinHash) is an important and
practical algorithm for generating random hashes
to approximate the Jaccard (resemblance) similar-
ity in massive binary (0/1) data. The basic theory
of MinHash requires applying hundreds or even
thousands of independent random permutations
to each data vector in the dataset, in order to ob-
tain reliable results for (e.g.,) building large-scale
learning models or approximate near neighbor
search. In this paper, we propose Circulant Min-
Hash (C-MinHash) and provide the surprising
theoretical results that using only two indepen-
dent random permutations in a circulant manner
leads to uniformly smaller Jaccard estimation vari-
ance than that of the classical MinHash with K
independent permutations. Experiments are con-
ducted to show the effectiveness of the proposed
method. We also propose a more convenient C-
MinHash variant which reduces two permutations
to just one, with extensive numerical results to
validate that it achieves essentially the same esti-
mation accuracy as using two permutations.

1. Introduction
Given two D-dimensional binary vectors v,w ∈ {0, 1}D,
the Jaccard similarity is defined as

J(v,w) =

∑D
i=1 1{vi = wi = 1}∑D
i=1 1{vi +wi ≥ 1}

, (1)

which is a commonly used similarity metric in machine
learning and web search applications. The vectors v and
w can also be viewed as two sets of items (which repre-
sent the locations of non-zero entries), where the Jaccard

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

similarity can be equivalently viewed as the size of set inter-
section over the size of set union. In large-scale search and
learning, directly calculating the pairwise Jaccard similarity
among the sample points becomes too costly as the sample
size grows. The well-known method of “minwise hash-
ing” (MinHash) (Broder, 1997; Broder et al., 1997; 1998;
Li and Church, 2005; Li and König, 2011) is a standard
technique for computing/estimating the Jaccard similarity in
massive binary datasets, with numerous applications in near
neighbor search, duplicate detection, malware detection,
clustering, large-scale learning, social networks, computer
vision, etc. (Charikar, 2002; Fetterly et al., 2003; Henzinger,
2006; Das et al., 2007; Buehrer and Chellapilla, 2008; Ga-
mon et al., 2008; Bendersky and Croft, 2009; Chierichetti
et al., 2009; Najork et al., 2009; Pandey et al., 2009; Lee
et al., 2010; Li et al., 2011; Deng et al., 2012; Chum and
Matas, 2012; Li et al., 2012; Shrivastava and Li, 2012; He
et al., 2013; Tamersoy et al., 2014; Shrivastava and Li, 2014;
Zamora et al., 2016; Ondov et al., 2016; Zhu et al., 2017;
Nargesian et al., 2018; Wang et al., 2019; Lemiesz, 2021;
Tseng et al., 2021; Feng and Deng, 2021; Jia et al., 2021).

1.1. A Review of Minwise Hashing (MinHash)

Algorithm 1 Minwise-hashing (MinHash)
Input: Binary data vector v ∈ {0, 1}D;

K independent permutations π1, ..., πK : [D]→ [D]

Output: K hash values h1(v), ..., hK(v)

For k = 1 to K

hk(v)← mini:vi ̸=0 πk(i)

End For

We first recap the method of minwise hashing. For simplic-
ity, Algorithm 1 considers just one vector v ∈ {0, 1}D. In
order to generate K hash values for v, we assume K inde-
pendent permutations: π1, ..., πK : [D] 7→ [D]. For each
permutation, the hash value is the first non-zero location in
the permuted vector, i.e., hk(v) = mini:vi ̸=0 πk(i), ∀k =
1, ...,K. Similarly, for another binary vector w ∈ {0, 1}D,

C-MinHash: Improving Minwise Hashing with Circulant Permutation

using the sameK permutations, we can also obtainK hash
values,hk (w). The estimator ofJ (v; w) is simply

ĴMH (v; w) =
1
K

KX

k=1

1f hk (v) = hk (w)g; (2)

where1f�g is the indicator function. By fundamental prob-
ability and the independence among the permutations, it is
easy to show that

E[ĴMH] = J; V ar[ĴMH] =
J (1 � J)

K
: (3)

How large isK ? The answer depends on the application
domains. For example, for training large-scale machine
learning models, it appears thatK = 512 or K = 1024
might be suf�cient (Li et al., 2011). However, for approxi-
mate near neighbor search using many hash tables (Indyk
and Motwani, 1998), it is likely thatK might have to be
much larger than1024(Shrivastava and Li, 2012; 2014).

In the early work of MinHash (Broder, 1997; Broder et al.,
1997), actually only one permutation was used by storing
the �rst K non-zero locations after the permutation. Later,
Li and Church (2005) proposed better estimators to improve
the estimation accuracy. The major drawback of the original
scheme was that the hashed values did not form a metric
space (e.g., satisfying the triangle inequality) and hence
could not be used in many algorithms/applications. We
believe this was the main reason why the original authors
moved to usingK permutations (Broder et al., 1998).

1.2. Hashing for Non-binary Data

We believe the idea of using randomness circulantly, as
studied in our paper, might be helpful in broader applica-
tions. For example, minwise hashing can also be extended
to the non-binary data. For two non-negative data vectors
v; w 2 RD

+ , the weighted Jaccard similarity is de�ned as
P D

i =1 min(v i ; w i)
P D

i =1 max(v i ; w i)
; (4)

which obviously becomes Eq.(1) in binary data. Consis-
tent weighted sampling (CWS) (Manasse et al., 2010; Ioffe,
2010) is the standard hashing method for the weighted Jac-
card in massive data. In general, CWS can be applied to the
scenarios where MinHash is found useful, and in many cases
CWS might be more feasible as real-valued data typically
contains more information than binary. As an algorithm,
CWS is considerably much more complex than MinHash
and essentially reduces to MinHash in binary data. Recently,
Li et al. (2021) developed a family of new algorithms for
hashing weighted Jaccard based on extremal processes. Li
and Zhang (2017) generalized (4) to datasets with negative
entries and Li and Zhao (2022) reported their efforts on
using CWS and variants for training deep neural networks.

1.3. Outline of Main Results

From K Permutations to two. UsingK independent per-
mutations in MinHash has been widely used as the standard
approach in textbooks and industry for over two decades.
The main idea of this work, is to replace the independent per-
mutations in MinHash with “circulant” permutations. Thus,
we name the proposed frameworkC-MinHash (circulant
MinHash). The “circulant” trick was used in the literature of
random projections. For example, Yu et al. (2017) showed
that using circulant projections hurts the estimation accu-
racy, but not by too much when the data are sparse. In
Section 3, we present some (perhaps surprising) theoretical
�ndings that we just need 2 permutations in MinHash and
the results (estimation variances) are even more accurate.
Basically, with theinitial permutation (denoted by�), we
randomly shuf�e the data to break whatever structure which
might exist in the original data, and then thesecond per-
mutation (denoted by�) is applied and re-usedK times
to generateK hash values, via circulation. This method
is called C-MinHash-(�; �). Before that, in Section 2, we
analyze a simpler variant C-MinHash-(0; �) without initial
permutation� . Although it is not our recommended method,
our analysis for C-MinHash-(0; �) provides the necessary
preparation for later methods and the intuition to understand
the need for the initial permutation.

From two permutations to one.Section 5 provides a conve-
nient variant C-MinHash-(�; �) that only needs one permu-
tation� for both pre-processing and hashing. The resultant
estimator is no longer unbiased but the bias is extremely
small and has essentially no impact on the estimation accu-
racy, as veri�ed by extensive numerical experiments.

2. C-MinHash-(0; �) Without Initial
Permutation

Algorithm 2 C-MinHash-(0; �)

Input: Binary data vectorv 2 f 0; 1gD ;
Permutation vector� : [D] ! [D]

Output: Hash valuesh1(v); :::; hK (v)

For k = 1 to K

Shift � circulantly rightwards byk units: � k = � ! k

hk (v) min i :v i 6=0 � ! k (i)

End For

As shown in Algorithm 2, the C-MinHash-(0; �) algorithm
has similar operations as MinHash. The difference lies in
the permutations used in the hashing process. To generate
each hashhk (v), we permute the data vector using� ! k ,
which is the permutation shiftedk units circulantly towards
right based on� . For example,� = [3 ; 1; 2; 4]; � ! 1 =

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Figure 1.An illustration of the idea of C-MinHash. The data vector
has three non-zeros,v2 = v4 = v5 = 1 . In this example, we get
hash valueshk (v) = 3 , hk +1 (v) = 1 .

[4; 3; 1; 2]; � ! 2 = [2 ; 4; 3; 1], etc. Conceptually, we may
think of circulation as concatenating the �rst and last el-
ements of a vector to form a circle; see Figure 1 for an
illustration. We set the hash valuehk (v) as the position
of the �rst non-zero after being permuted by� ! k . Anal-
ogously, we de�ne the C-MinHash-(0; �) estimator of the
Jaccard similarityJ (v; w) as

Ĵ0;� =
1
K

KX

k=1

1f hk (v) = hk (w)g; (5)

whereh is the hash value output by Algorithm 2. In this
paper, for simplicity, we assumeK � D .

Next, we present the theoretical analysis for Algorithm 2,
in terms of the expectation (mean) and the variance of the
estimatorĴ0;� . Our results reveal that the estimation ac-
curacy depends on the initial data distribution, which may
lead to undesirable performance behaviors when real-world
datasets exhibit various structures. On the other hand, while
it is not our recommended method, the analysis serves a
preparation (and insight) for the C-MinHash-(�; �) which
will soon be described.

First, we introduce some notations and de�nitions. Given
v; w 2 f 0; 1gD , we de�nea andf as

a =
DX

i =1

1f v i = wi = 1g; f =
DX

i =1

1f v i + wi � 1g: (6)

We say that(v; w) is a(D; f; a)-data pair, whose Jaccard
similarity can be written asJ = a=f .

De�nition 2.1. Considerv; w 2 f 0; 1gD . De�ne the lo-
cation vector for v; w asx 2 f O; � ; �g D , with x i being
“O”, “ � ”, “ � ”, when v i = w i = 1 , v i + w i = 1 and
v i = w i = 0 , respectively.

The location vectorx can fully characterize a hash collision.
When a permutation� ! k is applied, the hasheshk (v) and
hk (w) would collide if after permutation, the �rst “O” is

placed before the �rst “� ” (counting from small to large);
the location of “� ” entries would not affect the collision.
This observation will be the key in our theoretical analysis.

De�nition 2.2. For A; B 2 f O; � ; �g , let f (A; B)j4g
denote the setf (i; j) : (x i ; x j) = (A; B); j � i = 4g . For
each1 � 4 � K � 1, de�ne

L 0 (4) = f (O; O)j4g ; L 1 (4) = f (O; �)g; L 2 (4) = f (O; �)g;

G0 (4) = f (� ; O)j4g ; G1 (4) = f (� ; �)g ; G2 (4) = f (� ; �)g;

H 0 (4) = f (� ; O)j4g ; H 1 (4) = f (� ; �)g; H 2 (4) = f (� ; �)g:

Remark2.3. For the ease of notation, by circulation we
write x j = x j � D whenD < j < 2D.

De�nition 2.2 measures the relative location of different
types of points in the location vector, for a speci�c pair
of data vectors. Moreover, one can easily verify that for
81 � 4 � K � 1,

jL 0j + jL 1j + jL 2j = jL 0j + jG0j + jH 0j = a;

jG0j + jG1j + jG2j = jL 2j + jG2j + jH 2j = D � f;

jH 0j + jH 1j + jH 2j = jL 1j + jG1j + jH 1j = f � a;

(7)

which is the intrinsic constraints on the size of above sets.
We are now ready to analyze the expectation and variance
of Ĵ0;� . It is easy to see that̂J0;� is still unbiased, i.e.,
E[Ĵ0;�] = J , by linearity of expectation. Lemma 2.4 pro-
vides an important quantity that leads toV ar[Ĵ0;�] which
is given in Theorem 2.5. All the missing proofs in the paper
are placed in Appendix A.

Lemma 2.4. For any1 � s < t � K with t � s = 4 , we
have that

E�
�
1f hs(v) = hs(w)g1f ht (v) = ht (w)g

�

=
jL 0(4)j + (jG0(4)j + jL 2(4)j)J

f + jG0(4)j + jG1(4)j
;

where the sets are de�ned in De�nition 2.2 andhs, ht are
the hash values output by Algorithm 2.

Theorem 2.5. For C-MinHash-(0; �), the variance of
Ĵ0;� is given by

V ar[Ĵ0;�] =
J
K

+
2

P K
s=2 (s � 1)� K � s+1

K 2 � J 2;

where� 4 , E �
�
1f hs(v) = hs(w)g1f ht (v) = ht (w)g

�

as in Lemma 2.4 with anyt � s = 4 .

Proof. We use1s to denote1f hs(v) = hs(w)g, 81 � s �
K . By the expansion of variance formula, sinceE[12

s] =
E[1s] = J , we have

V ar[Ĵ0;�] =
J
K

+

P K
s=1

P K
t 6= s E[1s1t]

K 2 � J 2:

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Note here that for8t > s , thet-th hash sample uses� t as
the permutation, which is shifted rightwards by4 = t � s
from � s. Thus, we haveE[1s1t] = E[1s� i 1t � i] for 80 <
i < s ^ t, which impliesE[1s1t] = E[111t � s+1], 8s < t .
Since by assumptionK � D , we have

KX

s

KX

t 6= s

E[1s1t]

= 2E
�
(1112 + 1113 + ::: + 111K)

+ (1213 + ::: + 121K) + ::: + 1K � 11K
�

= 2
KX

s=2

(s � 1)E[111K � s+2] , 2
KX

s=2

(s � 1)� K � s+1 :

The result then follows.

From Theorem 2.5, we see that the variance ofĴ0;� depends
ona, f , and the sizes of setsL 's andG's as in De�nition 2.1,
which are determined by the location vectorx . Since we use
the original data vectors without randomly permuting the
entries beforehand,V ar[Ĵ0;�] is called “location-dependent”
as it is dependent on the location of non-zero entries of the
original data. Consequently, as will also be shown in our
numerical study,V ar[Ĵ0;�] may be either smaller or larger
than that of MinHash estimatêJMH up to different structure
of the data vectors.

3. C-MinHash-(�; �) with Independent Initial
Permutation

Algorithm 3 C-MinHash-(�; �)

Input: Binary data vectorv 2 f 0; 1gD ;
Permutation vectors� and� : [D] ! [D]

Output: Hash valuesh1(v); :::; hK (v)

Initial permutation:v0 = � (v)

For k = 1 to K

Shift � circulantly rightwards byk units: � k = � ! k

hk (v) min i :v0
i 6=0 � ! k (i)

End For

Next, we present an improved algorithm by eliminating the
“location-dependennce” of C-MinHash-(0; �) as analyzed
above. The method C-MinHash-(�; �) is summarized in
Algorithm 3, which is very similar to Algorithm 2. This time,
as pre-processing, we apply an initial permutation� j= � on
the data to break whatever structures which might exist.
Analogously, we de�ne the C-MinHash-(�; �) estimator as

Ĵ �;� =
1
K

KX

k=1

1f hk (v) = hk (w)g; (8)

wherehk 's are the hash values output by Algorithm 3. In the
remaining part of this section, we will present our detailed
theoretical analysis and the main result (Theorem 3.4). First,
by linearity of expectation and the fact that� and � are
independent, it is easy to verify that̂J �;� is still an unbiased
estimator ofJ . Based on Theorem 2.5, in the following we
provide the exact variance formula ofĴ �;� .

Theorem 3.1. Leta; f be de�ned as in (6). When0 < a <
f � D (J =2 f 0; 1g), we have

V ar[Ĵ �;�] =
J
K

+
(K � 1) ~E

K
� J 2; (9)

wherel = max(0 ; D � 2f + a), and

~E =
X

�

�
l0

f + g0 + g1
+

a(g0 + l2)
(f + g0 + g1)f

�
D � f � 1X

s= l

� D � f
s

�

� D � a � 1
D � f � 1

� �

� f � a � 1
D � f � s� 1

�� s
n 1

�� D � f � s
n 2

�� D � f � s
n 3

�� f � a � (D � f � s)
n 4

�� a� 1
a � l 1 � l 2

�

� D � 1
a

�

!

:

(10)

The feasible set� = f l0; l2; g0; g1g satis�es the intrinsic
constraints (7), and

n1 = g0 � (D � f � s � g1); n2 = D � f � s � g1;

n3 = l2 � g0 + (D � f � s � g1);

n4 = l1 � (D � f � s � g1):

Whena = 0 or f = a (J = 0 or 1), V ar[Ĵ �;�] = 0 .

As expected, since the original locational structure of the
data is broken by the initial permutation� , V ar[Ĵ �;�] only
depends on the values of (D; f; a) but not the speci�c set
sizes as in Theorem 2.5, i.e., it is“location-independent”.
This would make the performance of C-MinHash-(�; �)
consistent in different tasks. In the sequel, we investigate the
statistical properties ofV ar[Ĵ �;�] in more details. Firstly,
same as MinHash, Proposition 3.2 states that givenD and
f , the variance ofĴ �;� is symmetric aboutJ = 0 :5, as
illustrated in Figure 2, which also shows that the variance of
Ĵ �;� is smaller than the variance of the original MinHash.

Figure 2.V ar[Ĵ �;�] versusJ , with D = 1000 and varyingf .
Left: K = 500. Right: K = 800.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Proposition 3.2(Symmetry). V ar[Ĵ �;�] is the same for the
(D; f; a)-data pair and the(D; f; f � a)-data pair,80 �
a � f � D .

A rigorous comparison ofV ar[Ĵ �;�] andV ar[ĴMH] ap-
pears to be a challenging task given the complicated combi-
natorial form ofV ar[Ĵ �;�]. The following lemma character-
izes an important property of~E in (10), that it is monotone
in D whena andf are �xed, as illustrated in Figure 3 (left).

Lemma 3.3(Strict Increment). Let f > a > 0 andK be
arbitrary and �xed. Denote~ED as in(10) in Theorem 3.1,
with D is a parameter. Then,~ED +1 > ~ED for 8D � f .

Equipped with Lemma 3.3, we arrive at the following main
theoretical result of this work, on the uniform variance re-
duction of C-MinHash-(�; �).

Theorem 3.4(Uniform Superiority). For any two binary
vectorsv; w 2 f 0; 1gD with J 6= 0 or 1, it holds that
V ar[Ĵ �;� (v; w)] < V ar [ĴMH (v; w)].

Remark3.5. In fact, from the proof of Lemma 3.3 and The-
orem 3.4, we can show that the collision indicator variables
1f hk (v) = hk (w)g, k = 1 ; :::; K , in (8) arepairwise neg-
atively correlated. This provides intuition on the source of
variance reduction.

Proof. By assumption we have0 < a < f . To compare
V ar[Ĵ �;�] with V ar[ĴMH] = J (1 � J)

K = J
K + (K � 1)J 2

K �
J 2, it suf�ces to compare~E with J 2. WhenD = f , we
know that the location vectorx of (v; w) contains no “� ”
elements. It is easy to verify that in this case,jG0j = jG1j =
jL 2j = 0 , and jL 0j follows hyper(f � 1; a; a � 1). By
Theorem 3.1, it follows that whenD = f ,

~ED =
1
f

E[jL 0j] =
a(a � 1)
f (f � 1)

= J ~J < J 2:

Recall the de�nition ~J = a� 1
f � 1 , which is always smaller

thanJ . On the other hand, asD ! 1 , we havejL 0j ! 0,
jL 2j ! a, jG0j ! a andjG1j ! f � a. We can show that

~ED ! J 2; asD ! 1 :

By Lemma 3.3, the sequence(~Ef ; ~Ef +1 ; ~Ef +2 ; :::) is strictly
increasing. Since it is convergent with limitJ 2, by the
Monotone Convergence Theorem we know that~ED < J 2,
8D � f . This completes the proof.

Theorem 3.4 says that, using merely two permutations as
in C-MinHash-(�; �) improves the Jaccard estimation vari-
ance of standard MinHash, in all cases. That said, using two
permutations could be strictly better than usingK permu-
tations in minwise hashing. How does the variance ofĴ �;�

rely ona,f andK ? First, interestingly, in Proposition 3.6,

Figure 3.Left: Theoretical ~E, f = 10 �xed. Each dash line
represents the correspondingJ 2 . Right: Variance ratioV ar [Ĵ MH]

V ar [Ĵ �;�]
,

D = 1000. This plot holds for alla value (by Proposition 3.6).

we show that the relative variance reduction of C-MinHash-
(�; �) over MinHash is the same for anya value for givenf
andK , i.e., the relative improvement is independent of the
Jaccard valueJ at a given sparsity level.

Proposition 3.6(Consistent Improvement). Supposef is

�xed. In terms ofa, the variance ratioV ar [Ĵ MH (v ;w)]
V ar [Ĵ �;� (v ;w)]

is a

constant for any0 < a < f .

To investigate the in�uence of sparsityf and number of
hashesK on the variance, in Figure 3 (right), we plot the

variance ratioV ar [Ĵ MH]
V ar [Ĵ �;�]

with differentf andK . The results

in Figure 3 again verify Theorem 3.4, as the variance ratio
is always greater than 1. We see that the improvement in
variance increases both withK (i.e., more hashes) andf
(i.e., more non-zero entries). Note that, by Proposition 3.6,
here we do not need to considera since it does not affect
the variance ratio.

4. Numerical Experiments

In this section, we provide numerical experiments to validate
our theoretical �ndings and demonstrate that C-MinHash
can indeed lead to smaller Jaccard estimation errors.

4.1. Sanity Check: a Simulation Study

A simulation study is conducted on synthetic data to verify
the theoretical variances given by Theorem 2.5 and Theo-
rem 3.1. We simulateD = 128 dimensional binary vector
pairs(v; w) with different f anda, which have a special
locational structure that the location vectorx is such that
a “O”'s are followed by(f � a) “ � ”'s and then followed
by (D � f) “ � ”'s sequentially. We plot the empirical and
theoretical mean square errors (MSE = variance + bias2) in
Figure 4, and we observe:

• The theoretical variance matches the empirical results,
con�rming Theorem 2.5 and Theorem 3.1. The vari-
ance reduction effect becomes more signi�cant with
more number of hashesK .

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Figure 4.Empirical vs. theoretical variance of̂J0;� (C-MinHash-
(0; �)) and Ĵ �;� (C-MinHash-(�; �)), on synthetic binary data
vector pairs with different data statistics.

• V ar[Ĵ �;�] is always smaller thanV ar[ĴMH], as stated
by Theorem 3.4. In contrast,V ar[Ĵ0;�] (C-MinHash-
(0; �)) varies signi�cantly depending on different data
structures, as discussed in Section 2.

4.2. Jaccard Estimation on Text and Image Datasets

We test C-MinHash on four public datasets, including two
text datasets: the NIPS full paper dataset from UCI reposi-
tory (Dua and Graff, 2017), the BBC News dataset (Greene
and Cunningham, 2006), and two popular image datasets:
the MNIST dataset (LeCun et al., 1998) with hand-written
digits, and the CIFAR dataset (Krizhevsky, 2009) containing
natural images. All the datasets are processed to be binary.
For image data, we �rst transform the images to gray-scale,
then binarize the samples by thresholding at0:5. For each
dataset withn data vectors, there are in totaln(n � 1)=2
data vector pairs. We estimate the Jaccard similarities for
all the pairs and report the mean absolute errors (MAE). All
the results are averaged over 10 independent repetitions. We
report the MAE in Figure 5, from which we see that:

• The MAE of C-MinHash-(�; �) is consistently smaller
than that of MinHash, demonstrating the practical merit
of variance reduction (Theorem 3.4) to improve the Jac-
card estimation accuracy. The improvements become

Figure 5.Mean Absolute Error (MAE) of pairwise Jaccard estima-
tion: MinHash vs. C-MinHash on four real-world datasets.

more substantial with largerK , which is consistent
with Figure 3 and Figure 4.

• Without the initial permutation� , the accuracy of C-
MinHash-(0; �) depends by the distribution/structure
of the original data, and it is worse than C-MinHash-
(�; �) on all these four datasets. In addition, the per-
formance of C-MinHash-(0; �) on image data seems
much worse than that on text data, which we believe is
because the image datasets contain more structural pat-
terns. This again suggests that the initial permutation
� might be needed in practice.

In summary, the simulation study has veri�ed the correct-
ness of our theoretical �ndings in Theorem 2.5 and Theo-
rem 3.1. The experiments with Jaccard estimation on four
real-world datasets con�rm that C-MinHash is more accu-
rate than the original MinHash, and the initial permutation
� is recommended.

5. C-MinHash-(�; �): Practically Reducing to
One Permutation

In this section, we propose a more convenient variant, C-
MinHash-(�; �), which only requires one permutation. That
is, � is used for both pre-processing and circulant hashing.
The procedure is the same as Algorithm 3, except that the
initial permutation� is replaced by� . Denote the corre-
sponding Jaccard estimator asĴ �;� . The complicated de-
pendency between� (for initial permutation) and� ! k (for
hashing) makes the estimator no longer unbiased. Never-
theless, we found through extensive numerical experiments
that, the MSE ofĴ �;� is essentially the same aŝJ �;� .

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Figure 6.Estimator MSE on simulated data pairs. “1 Perm” is
C-MinHash-(�; �), and “2 Perm Theo.” is the theoretical variance
of C-MinHash-(�; �) (Theorem 3.1).

Figure 6 compares the empirical MSE of C-MinHash-(�; �)
with the theoretical variances of C-MinHash-(�; �) on sim-
ulated data vector pairs. In Figure 7, we present the MAE
comparison on real datasets, where we see that the curves
for these two estimators (̂J �;� andĴ �;�) match well.

To illustrate the bias and variance of speci�c data pairs
in more details, we test C-MinHash-(�; �) on the “Words”
dataset (Li and Church, 2005). For each data point, the
i -th 0/1 entry indicates whether a word appears in thei -
th document, for a total ofD = 2 16 documents. See the
key statistics of the 120 selected word pairs in Table 1.
Those pairs of words are more or less randomly selected
except that we make sure they cover a wide spectrum of data
distributions. Denoted as the number of non-zero entries
in the vector. Table 1 reports the density~d = d=D for
each word vector, ranging from 0.0006 to 0.6. The Jaccard
similarity J ranges from 0.002 to 0.95.

In Figures 8 - 15 (also see Appendix B), we plot the empiri-
cal MSE along with the empirical bias2 for Ĵ �;� , as well as
the empirical MSE forĴ �;� . From the results in the Figures,
we can observe

• For all the data pairs, the MSE of C-MinHash-(�; �)
estimator overlaps with the empirical MSE of C-
MinHash-(�; �) estimator for allK from 1 up to 4096.

• The bias2 of C-MinHash-(�; �) is several orders of
magnitudes smaller than the MSE, in all data pairs.
This demonstrates that the bias ofĴ �;� is extremely
small and can be safely neglected in practice.

In all �gures, the overlapping curves validate our claim that
in practice, we just need one permutation� in C-MinHash.

Figure 7.MAE of Jaccard estimation on four datasets. “1 Perm” is
C-MinHash-(�; �), and “2 Perm” is C-MinHash-(�; �).

6. Discussion and Conclusion
The method ofminwise hashing(MinHash), from the sem-
inal works of Broder and his colleagues, has become stan-
dard in industrial practice. One fundamental reason for its
wide applicability is that the binary (0/1) high-dimensional
representation is convenient and suitable for a wide range
of practical scenarios. To estimate the Jaccard similarity
on binary data, the standard MinHash requires to useK
independent permutations, whereK , the number of hashes,
can be several hundreds or even thousands in practice.

We have proposed Circulant MinHash (C-MinHash) and
present the surprising theoretical results that, with merely
2 permutations, we still obtain an unbiased estimate of the
Jaccard similarity with the variance strictly smaller than
that of the original MinHash, as con�rmed by numerical
experiments on simulated and real datasets. The initial per-
mutation is applied to break whatever structure the original
data may exhibit. The second permutation is re-usedK
times in a circulant shifting fashion. Moreover, we propose
a more convenient C-MinHash variance which uses only 1
permutation for both pre-processing and circulant hashing.
We validate through extensive experiments that it does not
result in loss of accuracy in practice.

Practically speaking, our theoretical results may reveal a use-
ful direction for designing hashing methods. For example,
in many applications, using permutation vectors of length
(e.g.,)230 might be suf�cient. While it is perhaps unrealis-
tic to store (e.g.,)K = 1024 such permutation vectors in
the memory, one can afford to store two such permutations
(even in GPU memory). Using perfectly random permuta-
tions in lieu of approximate permutations would simplify the
design and analysis of randomized algorithms and ensure
that the practical performance strictly matches the theory.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Table 1.120 selected word pairs from theWordsdataset (Li and Church, 2005). For each pair, we report the density~d (number of non-zero
entries divided byD = 2 16) for each word as well as the Jaccard similarityJ . Both ~d andJ cover a wide range of values.

~d1 ~d2 J ~d1 ~d2 J
ABOUT - INTO 0.302 0.125 0.258 NEW - WEB 0.291 0.194 0.224
ABOUT - LIKE 0.302 0.140 0.281 NEWS - LIKE 0.168 0.140 0.172
ACTUAL - DEVELOPED 0.017 0.030 0.071 NO - WELL 0.220 0.120 0.244
ACTUAL - GRABBED 0.017 0.002 0.016 NOT - IT 0.281 0.295 0.437
AFTER - OR 0.103 0.356 0.220 NOTORIOUSLY - LOCK 0.0006 0.006 0.004
AND - PROBLEM 0.554 0.044 0.070 OF - THEN 0.570 0.104 0.168
AS - NAME 0.280 0.144 0.204 OF - WE 0.570 0.226 0.361
AT - CUT 0.374 0.242 0.052 OPPORTUNITY - COUNTRIES 0.029 0.024 0.066
BE - ONE 0.323 0.221 0.403 OUR - THAN 0.244 0.125 0.245
BEST - AND 0.136 0.554 0.228 OVER - BACK 0.148 0.160 0.233
BRAZIL - OH 0.010 0.031 0.019 OVER - TWO 0.148 0.121 0.289
BUT - MANY 0.167 0.116 0.340 PEAK - SHOWS 0.006 0.033 0.026
CALLED - BUSINESSES 0.016 0.018 0.043 PEOPLE - BY 0.121 0.425 0.228
CALORIES - MICROSOFT 0.002 0.045 0.0003 PEOPLE - INFO 0.121 0.138 0.117
CAN - FROM 0.243 0.326 0.444 PICKS - BOOST 0.007 0.005 0.007
CAN - SEARCH 0.243 0.214 0.237 PLANET - REWARD 0.013 0.003 0.018
COMMITTED - PRODUCTIVE 0.013 0.004 0.029 PLEASE - MAKE 0.168 0.141 0.195
CONTEMPORARY - FLASH 0.011 0.021 0.013 PREFER - PUEDE 0.010 0.003 0.0001
CONVENIENTLY - INDUSTRIES 0.003 0.011 0.009 PRIVACY - FOUND 0.126 0.136 0.053
COPYRIGHT - AN 0.218 0.290 0.209 PROSECUTION - MAXIMIZE 0.002 0.003 0.006
CREDIT - CARD 0.046 0.041 0.285 RECENTLY - INT 0.028 0.007 0.014
DE - WEB 0.117 0.194 0.091 REPLY - ACHIEVE 0.013 0.012 0.023
DO - GOOD 0.174 0.102 0.276 RESERVED - BEEN 0.172 0.141 0.108
EARTH - GROUPS 0.021 0.035 0.056 RIGHTS - FIND 0.187 0.144 0.166
EXPRESSED - FRUSTRATED 0.010 0.002 0.024 RIGHTS - RESERVED 0.187 0.172 0.877
FIND - HAS 0.144 0.228 0.214 SCENE - ABOUT 0.012 0.301 0.029
FIND - SITE 0.144 0.275 0.212 SEE - ALSO 0.138 0.166 0.291
FIXED - SPECIFIC 0.011 0.039 0.054 SEIZE - ANYTHING 0.0007 0.037 0.012
FLIGHT - TRANSPORTATION 0.011 0.018 0.040 SHOULDERS - GORGEOUS 0.003 0.004 0.028
FOUND - DE 0.136 0.117 0.039 SICK - FELL 0.008 0.008 0.085
FRANCISCO - SAN 0.025 0.049 0.476 SITE - CELLULAR 0.275 0.006 0.010
GOOD - BACK 0.102 0.160 0.220 SOLD - LIVE 0.018 0.064 0.055
GROUPS - ORDERED 0.035 0.011 0.034 SOLO - CLAIMS 0.010 0.012 0.007
HAPPY - CONCEPT 0.029 0.013 0.054 SOON - ADVANCE 0.040 0.017 0.057
HAVE - FIRST 0.267 0.151 0.320 SPECIALIZES - ACTUAL 0.003 0.017 0.008
HAVE - US 0.267 0.284 0.349 STATE - OF 0.101 0.570 0.165
HILL - ASSURED 0.020 0.004 0.011 STATES - UNITED 0.061 0.062 0.591
HOME - SYNTHESIS 0.365 0.002 0.003 TATTOO - JEANS 0.002 0.004 0.035
HONG - KONG 0.014 0.014 0.925 THAT - ALSO 0.301 0.166 0.376
HOSTED - DRUGS 0.016 0.013 0.013 THIS - CITY 0.423 0.123 0.132
INTERVIEWS - FOURTH 0.012 0.011 0.031 THEIR - SUPPORT 0.165 0.117 0.189
KANSAS - PROPERTY 0.017 0.045 0.052 THEIR - VIEW 0.165 0.103 0.151
KIRIBATI - GAMBIA 0.003 0.003 0.712 THEM - OF 0.112 0.570 0.187
LAST - THIS 0.135 0.423 0.221 THEN - NEW 0.104 0.291 0.192
LEAST - ROMANCE 0.046 0.007 0.019 THINKS - LOT 0.007 0.040 0.079
LIME - REGISTERED 0.002 0.030 0.004 TIME - OUT 0.189 0.191 0.366
LINKS - TAKE 0.191 0.105 0.134 TIME - WELL 0.189 0.120 0.299
LINKS - THAN 0.191 0.125 0.141 TOP - AS 0.140 0.280 0.217
MAIL - AND 0.160 0.554 0.192 TOP - COPYRIGHT 0.140 0.218 0.149
MAIL - BACK 0.160 0.160 0.132 TOP - NEWS 0.140 0.168 0.192
MAKE - LIKE 0.141 0.140 0.297 UP - AND 0.200 0.554 0.334
MANAGING - LOCK 0.010 0.006 0.010 UP - HAS 0.200 0.228 0.312
MANY - US 0.116 0.284 0.210 US - BE 0.284 0.323 0.335
MASS - DREAM 0.016 0.017 0.048 VIEW - IN 0.103 0.540 0.153
MAY - HELP 0.184 0.156 0.206 VIEW - PEOPLE 0.103 0.121 0.138
MOST - HOME 0.141 0.365 0.207 WALKED - ANTIVIRUS 0.006 0.002 0.002
NAME - IN 0.144 0.540 0.207 WEB - GO 0.194 0.111 0.138
NEITHER - FIGURE 0.011 0.016 0.085 WELL - INFO 0.120 0.138 0.110
NET - SO 0.101 0.154 0.112 WELL - NEWS 0.120 0.168 0.161
NEW - PLEASE 0.291 0.168 0.205 WEEKS - LONDON 0.028 0.032 0.050

