
C-MinHash: Improving Minwise Hashing with Circulant Permutation

Xiaoyun Li, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA

{lixiaoyun996, pingli98}@gmail.com

Abstract
Minwise hashing (MinHash) is an important and
practical algorithm for generating random hashes
to approximate the Jaccard (resemblance) similar-
ity in massive binary (0/1) data. The basic theory
of MinHash requires applying hundreds or even
thousands of independent random permutations
to each data vector in the dataset, in order to ob-
tain reliable results for (e.g.,) building large-scale
learning models or approximate near neighbor
search. In this paper, we propose Circulant Min-
Hash (C-MinHash) and provide the surprising
theoretical results that using only two indepen-
dent random permutations in a circulant manner
leads to uniformly smaller Jaccard estimation vari-
ance than that of the classical MinHash with K
independent permutations. Experiments are con-
ducted to show the effectiveness of the proposed
method. We also propose a more convenient C-
MinHash variant which reduces two permutations
to just one, with extensive numerical results to
validate that it achieves essentially the same esti-
mation accuracy as using two permutations.

1. Introduction
Given two D-dimensional binary vectors v,w ∈ {0, 1}D,
the Jaccard similarity is defined as

J(v,w) =

∑D
i=1 1{vi = wi = 1}∑D
i=1 1{vi +wi ≥ 1}

, (1)

which is a commonly used similarity metric in machine
learning and web search applications. The vectors v and
w can also be viewed as two sets of items (which repre-
sent the locations of non-zero entries), where the Jaccard

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

similarity can be equivalently viewed as the size of set inter-
section over the size of set union. In large-scale search and
learning, directly calculating the pairwise Jaccard similarity
among the sample points becomes too costly as the sample
size grows. The well-known method of “minwise hash-
ing” (MinHash) (Broder, 1997; Broder et al., 1997; 1998;
Li and Church, 2005; Li and König, 2011) is a standard
technique for computing/estimating the Jaccard similarity in
massive binary datasets, with numerous applications in near
neighbor search, duplicate detection, malware detection,
clustering, large-scale learning, social networks, computer
vision, etc. (Charikar, 2002; Fetterly et al., 2003; Henzinger,
2006; Das et al., 2007; Buehrer and Chellapilla, 2008; Ga-
mon et al., 2008; Bendersky and Croft, 2009; Chierichetti
et al., 2009; Najork et al., 2009; Pandey et al., 2009; Lee
et al., 2010; Li et al., 2011; Deng et al., 2012; Chum and
Matas, 2012; Li et al., 2012; Shrivastava and Li, 2012; He
et al., 2013; Tamersoy et al., 2014; Shrivastava and Li, 2014;
Zamora et al., 2016; Ondov et al., 2016; Zhu et al., 2017;
Nargesian et al., 2018; Wang et al., 2019; Lemiesz, 2021;
Tseng et al., 2021; Feng and Deng, 2021; Jia et al., 2021).

1.1. A Review of Minwise Hashing (MinHash)

Algorithm 1 Minwise-hashing (MinHash)
Input: Binary data vector v ∈ {0, 1}D;

K independent permutations π1, ..., πK : [D]→ [D]

Output: K hash values h1(v), ..., hK(v)

For k = 1 to K

hk(v)← mini:vi ̸=0 πk(i)

End For

We first recap the method of minwise hashing. For simplic-
ity, Algorithm 1 considers just one vector v ∈ {0, 1}D. In
order to generate K hash values for v, we assume K inde-
pendent permutations: π1, ..., πK : [D] 7→ [D]. For each
permutation, the hash value is the first non-zero location in
the permuted vector, i.e., hk(v) = mini:vi ̸=0 πk(i), ∀k =
1, ...,K. Similarly, for another binary vector w ∈ {0, 1}D,

C-MinHash: Improving Minwise Hashing with Circulant Permutation

using the same K permutations, we can also obtain K hash
values, hk(w). The estimator of J(v,w) is simply

ĴMH(v,w) =
1

K

K∑
k=1

1{hk(v) = hk(w)}, (2)

where 1{·} is the indicator function. By fundamental prob-
ability and the independence among the permutations, it is
easy to show that

E[ĴMH] = J, V ar[ĴMH] =
J(1− J)

K
. (3)

How large is K? The answer depends on the application
domains. For example, for training large-scale machine
learning models, it appears that K = 512 or K = 1024
might be sufficient (Li et al., 2011). However, for approxi-
mate near neighbor search using many hash tables (Indyk
and Motwani, 1998), it is likely that K might have to be
much larger than 1024 (Shrivastava and Li, 2012; 2014).

In the early work of MinHash (Broder, 1997; Broder et al.,
1997), actually only one permutation was used by storing
the first K non-zero locations after the permutation. Later,
Li and Church (2005) proposed better estimators to improve
the estimation accuracy. The major drawback of the original
scheme was that the hashed values did not form a metric
space (e.g., satisfying the triangle inequality) and hence
could not be used in many algorithms/applications. We
believe this was the main reason why the original authors
moved to using K permutations (Broder et al., 1998).

1.2. Hashing for Non-binary Data

We believe the idea of using randomness circulantly, as
studied in our paper, might be helpful in broader applica-
tions. For example, minwise hashing can also be extended
to the non-binary data. For two non-negative data vectors
v, w ∈ RD

+ , the weighted Jaccard similarity is defined as∑D
i=1 min(vi,wi)∑D
i=1 max(vi,wi)

, (4)

which obviously becomes Eq. (1) in binary data. Consis-
tent weighted sampling (CWS) (Manasse et al., 2010; Ioffe,
2010) is the standard hashing method for the weighted Jac-
card in massive data. In general, CWS can be applied to the
scenarios where MinHash is found useful, and in many cases
CWS might be more feasible as real-valued data typically
contains more information than binary. As an algorithm,
CWS is considerably much more complex than MinHash
and essentially reduces to MinHash in binary data. Recently,
Li et al. (2021) developed a family of new algorithms for
hashing weighted Jaccard based on extremal processes. Li
and Zhang (2017) generalized (4) to datasets with negative
entries and Li and Zhao (2022) reported their efforts on
using CWS and variants for training deep neural networks.

1.3. Outline of Main Results

From K Permutations to two. Using K independent per-
mutations in MinHash has been widely used as the standard
approach in textbooks and industry for over two decades.
The main idea of this work, is to replace the independent per-
mutations in MinHash with “circulant” permutations. Thus,
we name the proposed framework C-MinHash (circulant
MinHash). The “circulant” trick was used in the literature of
random projections. For example, Yu et al. (2017) showed
that using circulant projections hurts the estimation accu-
racy, but not by too much when the data are sparse. In
Section 3, we present some (perhaps surprising) theoretical
findings that we just need 2 permutations in MinHash and
the results (estimation variances) are even more accurate.
Basically, with the initial permutation (denoted by σ), we
randomly shuffle the data to break whatever structure which
might exist in the original data, and then the second per-
mutation (denoted by π) is applied and re-used K times
to generate K hash values, via circulation. This method
is called C-MinHash-(σ, π). Before that, in Section 2, we
analyze a simpler variant C-MinHash-(0, π) without initial
permutation σ. Although it is not our recommended method,
our analysis for C-MinHash-(0, π) provides the necessary
preparation for later methods and the intuition to understand
the need for the initial permutation.

From two permutations to one. Section 5 provides a conve-
nient variant C-MinHash-(π, π) that only needs one permu-
tation π for both pre-processing and hashing. The resultant
estimator is no longer unbiased but the bias is extremely
small and has essentially no impact on the estimation accu-
racy, as verified by extensive numerical experiments.

2. C-MinHash-(0, π) Without Initial
Permutation

Algorithm 2 C-MinHash-(0, π)

Input: Binary data vector v ∈ {0, 1}D;
Permutation vector π: [D]→ [D]

Output: Hash values h1(v), ..., hK(v)

For k = 1 to K

Shift π circulantly rightwards by k units: πk = π→k

hk(v)← mini:vi ̸=0 π→k(i)

End For

As shown in Algorithm 2, the C-MinHash-(0, π) algorithm
has similar operations as MinHash. The difference lies in
the permutations used in the hashing process. To generate
each hash hk(v), we permute the data vector using π→k,
which is the permutation shifted k units circulantly towards
right based on π. For example, π = [3, 1, 2, 4], π→1 =

C-MinHash: Improving Minwise Hashing with Circulant Permutation

𝟑

Circular

Shift
𝟏𝟔

𝝅→𝒌 = {𝟓, 𝟖, 𝟏, 𝟕, 𝟑, 𝟒, 𝟔, 𝟐}

𝟏

𝟖

𝒗𝟖
𝟔

𝟕

𝟑

𝟓

𝝅→𝒌+𝟏 = {𝟐, 𝟓, 𝟖, 𝟏, 𝟕, 𝟑, 𝟒, 𝟔}

𝟒

𝟐

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒
𝒗𝟓

𝒗𝟔

𝒗𝟕

𝒗𝟖
𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒
𝒗𝟓

𝒗𝟔

𝒗𝟕

𝟓

𝟖

𝟕𝟒

𝟐

Figure 1. An illustration of the idea of C-MinHash. The data vector
has three non-zeros, v2 = v4 = v5 = 1. In this example, we get
hash values hk(v) = 3, hk+1(v) = 1.

[4, 3, 1, 2], π→2 = [2, 4, 3, 1], etc. Conceptually, we may
think of circulation as concatenating the first and last el-
ements of a vector to form a circle; see Figure 1 for an
illustration. We set the hash value hk(v) as the position
of the first non-zero after being permuted by π→k. Anal-
ogously, we define the C-MinHash-(0, π) estimator of the
Jaccard similarity J(v,w) as

Ĵ0,π =
1

K

K∑
k=1

1{hk(v) = hk(w)}, (5)

where h is the hash value output by Algorithm 2. In this
paper, for simplicity, we assume K ≤ D.

Next, we present the theoretical analysis for Algorithm 2,
in terms of the expectation (mean) and the variance of the
estimator Ĵ0,π. Our results reveal that the estimation ac-
curacy depends on the initial data distribution, which may
lead to undesirable performance behaviors when real-world
datasets exhibit various structures. On the other hand, while
it is not our recommended method, the analysis serves a
preparation (and insight) for the C-MinHash-(σ, π) which
will soon be described.

First, we introduce some notations and definitions. Given
v,w ∈ {0, 1}D, we define a and f as

a =

D∑
i=1

1{vi = wi = 1}, f =

D∑
i=1

1{vi + wi ≥ 1}. (6)

We say that (v,w) is a (D, f, a)-data pair, whose Jaccard
similarity can be written as J = a/f .

Definition 2.1. Consider v,w ∈ {0, 1}D. Define the lo-
cation vector for v,w as x ∈ {O,×,−}D, with xi being
“O”, “×”, “−”, when vi = wi = 1, vi + wi = 1 and
vi = wi = 0, respectively.

The location vector x can fully characterize a hash collision.
When a permutation π→k is applied, the hashes hk(v) and
hk(w) would collide if after permutation, the first “O” is

placed before the first “×” (counting from small to large);
the location of “−” entries would not affect the collision.
This observation will be the key in our theoretical analysis.

Definition 2.2. For A,B ∈ {O,×,−}, let {(A,B)|△}
denote the set {(i, j) : (xi,xj) = (A,B), j − i = △}. For
each 1 ≤ △ ≤ K − 1, define

L0(△) = {(O,O)|△}, L1(△) = {(O,×)}, L2(△) = {(O,−)},

G0(△) = {(−, O)|△}, G1(△) = {(−,×)} ,G2(△) = {(−,−)},

H0(△) = {(×, O)|△}, H1(△) = {(×,×)}, H2(△) = {(×,−)}.

Remark 2.3. For the ease of notation, by circulation we
write xj = xj−D when D < j < 2D.

Definition 2.2 measures the relative location of different
types of points in the location vector, for a specific pair
of data vectors. Moreover, one can easily verify that for
∀1 ≤ △ ≤ K − 1,

|L0|+ |L1|+ |L2| = |L0|+ |G0|+ |H0| = a,

|G0|+ |G1|+ |G2| = |L2|+ |G2|+ |H2| = D − f,

|H0|+ |H1|+ |H2| = |L1|+ |G1|+ |H1| = f − a,

(7)

which is the intrinsic constraints on the size of above sets.
We are now ready to analyze the expectation and variance
of Ĵ0,π. It is easy to see that Ĵ0,π is still unbiased, i.e.,
E[Ĵ0,π] = J , by linearity of expectation. Lemma 2.4 pro-
vides an important quantity that leads to V ar[Ĵ0,π] which
is given in Theorem 2.5. All the missing proofs in the paper
are placed in Appendix A.

Lemma 2.4. For any 1 ≤ s < t ≤ K with t− s = △, we
have that

Eπ

[
1{hs(v) = hs(w)}1{ht(v) = ht(w)}

]
=
|L0(△)|+ (|G0(△)|+ |L2(△)|)J

f + |G0(△)|+ |G1(△)|
,

where the sets are defined in Definition 2.2 and hs, ht are
the hash values output by Algorithm 2.

Theorem 2.5. For C-MinHash-(0, π), the variance of
Ĵ0,π is given by

V ar[Ĵ0,π] =
J

K
+

2
∑K

s=2(s− 1)ΘK−s+1

K2
− J2,

where Θ△ ≜ Eπ

[
1{hs(v) = hs(w)}1{ht(v) = ht(w)}

]
as in Lemma 2.4 with any t− s = △.

Proof. We use 1s to denote 1{hs(v) = hs(w)}, ∀1 ≤ s ≤
K. By the expansion of variance formula, since E[12

s] =
E[1s] = J , we have

V ar[Ĵ0,π] =
J

K
+

∑K
s=1

∑K
t̸=s E[1s1t]

K2
− J2.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Note here that for ∀t > s, the t-th hash sample uses πt as
the permutation, which is shifted rightwards by△ = t− s
from πs. Thus, we have E[1s1t] = E[1s−i1t−i] for ∀0 <
i < s ∧ t, which implies E[1s1t] = E[111t−s+1], ∀s < t.
Since by assumption K ≤ D, we have

K∑
s

K∑
t ̸=s

E[1s1t]

= 2E
[
(1112 + 1113 + ...+ 111K)

+ (1213 + ...+ 121K) + ...+ 1K−11K

]
= 2

K∑
s=2

(s− 1)E[111K−s+2] ≜ 2

K∑
s=2

(s− 1)ΘK−s+1.

The result then follows.

From Theorem 2.5, we see that the variance of Ĵ0,π depends
on a, f , and the sizes of sets L’s and G’s as in Definition 2.1,
which are determined by the location vector x. Since we use
the original data vectors without randomly permuting the
entries beforehand, V ar[Ĵ0,π] is called “location-dependent”
as it is dependent on the location of non-zero entries of the
original data. Consequently, as will also be shown in our
numerical study, V ar[Ĵ0,π] may be either smaller or larger
than that of MinHash estimate ĴMH up to different structure
of the data vectors.

3. C-MinHash-(σ, π) with Independent Initial
Permutation

Algorithm 3 C-MinHash-(σ, π)

Input: Binary data vector v ∈ {0, 1}D;
Permutation vectors π and σ: [D]→ [D]

Output: Hash values h1(v), ..., hK(v)

Initial permutation: v′ = σ(v)

For k = 1 to K

Shift π circulantly rightwards by k units: πk = π→k

hk(v)← mini:v′
i ̸=0 π→k(i)

End For

Next, we present an improved algorithm by eliminating the
“location-dependennce” of C-MinHash-(0, π) as analyzed
above. The method C-MinHash-(σ, π) is summarized in
Algorithm 3, which is very similar to Algorithm 2. This time,
as pre-processing, we apply an initial permutation σ |= π on
the data to break whatever structures which might exist.
Analogously, we define the C-MinHash-(σ, π) estimator as

Ĵσ,π =
1

K

K∑
k=1

1{hk(v) = hk(w)}, (8)

where hk’s are the hash values output by Algorithm 3. In the
remaining part of this section, we will present our detailed
theoretical analysis and the main result (Theorem 3.4). First,
by linearity of expectation and the fact that σ and π are
independent, it is easy to verify that Ĵσ,π is still an unbiased
estimator of J . Based on Theorem 2.5, in the following we
provide the exact variance formula of Ĵσ,π .

Theorem 3.1. Let a, f be defined as in (6). When 0 < a <
f ≤ D (J /∈ {0, 1}), we have

V ar[Ĵσ,π] =
J

K
+

(K − 1)Ẽ
K

− J2, (9)

where l = max(0, D − 2f + a), and

Ẽ =
∑
Ξ

(
l0

f + g0 + g1
+

a(g0 + l2)

(f + g0 + g1)f

)(D−f−1∑
s=l

(
D−f

s

)(
D−a−1
D−f−1

) ·
(

f−a−1
D−f−s−1

)(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

a−l1−l2

)(
D−1
a

))
.

(10)

The feasible set Ξ = {l0, l2, g0, g1} satisfies the intrinsic
constraints (7), and

n1 = g0 − (D − f − s− g1), n2 = D − f − s− g1,

n3 = l2 − g0 + (D − f − s− g1),

n4 = l1 − (D − f − s− g1).

When a = 0 or f = a (J = 0 or 1), V ar[Ĵσ,π] = 0.

As expected, since the original locational structure of the
data is broken by the initial permutation σ, V ar[Ĵσ,π] only
depends on the values of (D, f, a) but not the specific set
sizes as in Theorem 2.5, i.e., it is “location-independent”.
This would make the performance of C-MinHash-(σ, π)
consistent in different tasks. In the sequel, we investigate the
statistical properties of V ar[Ĵσ,π] in more details. Firstly,
same as MinHash, Proposition 3.2 states that given D and
f , the variance of Ĵσ,π is symmetric about J = 0.5, as
illustrated in Figure 2, which also shows that the variance of
Ĵσ,π is smaller than the variance of the original MinHash.

0 0.2 0.4 0.6 0.8 1

J

1

2

3

4

5
10

-4

MinHash 0.2

 0.8

 f/D = 1

D = 1000 K = 500

0 0.2 0.4 0.6 0.8 1

J

1

2

3
10

-4

MinHash

 0.2

 0.4

 0.6

 0.8

 f/D = 1

D = 1000 K = 800

Figure 2. V ar[Ĵσ,π] versus J , with D = 1000 and varying f .
Left: K = 500. Right: K = 800.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Proposition 3.2 (Symmetry). V ar[Ĵσ,π] is the same for the
(D, f, a)-data pair and the (D, f, f − a)-data pair, ∀0 ≤
a ≤ f ≤ D.

A rigorous comparison of V ar[Ĵσ,π] and V ar[ĴMH] ap-
pears to be a challenging task given the complicated combi-
natorial form of V ar[Ĵσ,π]. The following lemma character-
izes an important property of Ẽ in (10), that it is monotone
in D when a and f are fixed, as illustrated in Figure 3 (left).

Lemma 3.3 (Strict Increment). Let f > a > 0 and K be
arbitrary and fixed. Denote ẼD as in (10) in Theorem 3.1,
with D is a parameter. Then, ẼD+1 > ẼD for ∀D ≥ f .

Equipped with Lemma 3.3, we arrive at the following main
theoretical result of this work, on the uniform variance re-
duction of C-MinHash-(σ, π).

Theorem 3.4 (Uniform Superiority). For any two binary
vectors v,w ∈ {0, 1}D with J ̸= 0 or 1, it holds that
V ar[Ĵσ,π(v,w)] < V ar[ĴMH(v,w)].

Remark 3.5. In fact, from the proof of Lemma 3.3 and The-
orem 3.4, we can show that the collision indicator variables
1{hk(v) = hk(w)}, k = 1, ...,K, in (8) are pairwise neg-
atively correlated. This provides intuition on the source of
variance reduction.

Proof. By assumption we have 0 < a < f . To compare
V ar[Ĵσ,π] with V ar[ĴMH] = J(1−J)

K = J
K + (K−1)J2

K −
J2, it suffices to compare Ẽ with J2. When D = f , we
know that the location vector x of (v,w) contains no “−”
elements. It is easy to verify that in this case, |G0| = |G1| =
|L2| = 0, and |L0| follows hyper(f − 1, a, a − 1). By
Theorem 3.1, it follows that when D = f ,

ẼD =
1

f
E[|L0|] =

a(a− 1)

f(f − 1)
= JJ̃ < J2.

Recall the definition J̃ = a−1
f−1 , which is always smaller

than J . On the other hand, as D →∞, we have |L0| → 0,
|L2| → a, |G0| → a and |G1| → f − a. We can show that

ẼD → J2, as D →∞.

By Lemma 3.3, the sequence (Ẽf , Ẽf+1, Ẽf+2, ...) is strictly
increasing. Since it is convergent with limit J2, by the
Monotone Convergence Theorem we know that ẼD < J2,
∀D ≥ f . This completes the proof.

Theorem 3.4 says that, using merely two permutations as
in C-MinHash-(σ, π) improves the Jaccard estimation vari-
ance of standard MinHash, in all cases. That said, using two
permutations could be strictly better than using K permu-
tations in minwise hashing. How does the variance of Ĵσ,π
rely on a,f and K? First, interestingly, in Proposition 3.6,

10
1

10
2

10
3

D

10
-3

10
-2

10
-1

10
0

J = 0.1

J = 0.3

J = 0.5

J = 0.9

f = 10

0 0.2 0.4 0.6 0.8 1

K/D

10
0

10
1

10
2

V
a

ri
a

n
c
e

 R
a

ti
o

f/D = 0.1

0.7

0.9

 f/D = 1
D = 1000

Figure 3. Left: Theoretical Ẽ , f = 10 fixed. Each dash line
represents the corresponding J2. Right: Variance ratio V ar[ĴMH]

V ar[Ĵσ,π]
,

D = 1000. This plot holds for all a value (by Proposition 3.6).

we show that the relative variance reduction of C-MinHash-
(σ, π) over MinHash is the same for any a value for given f
and K, i.e., the relative improvement is independent of the
Jaccard value J at a given sparsity level.

Proposition 3.6 (Consistent Improvement). Suppose f is
fixed. In terms of a, the variance ratio V ar[ĴMH(v,w)]

V ar[Ĵσ,π(v,w)]
is a

constant for any 0 < a < f .

To investigate the influence of sparsity f and number of
hashes K on the variance, in Figure 3 (right), we plot the
variance ratio V ar[ĴMH]

V ar[Ĵσ,π]
with different f and K. The results

in Figure 3 again verify Theorem 3.4, as the variance ratio
is always greater than 1. We see that the improvement in
variance increases both with K (i.e., more hashes) and f
(i.e., more non-zero entries). Note that, by Proposition 3.6,
here we do not need to consider a since it does not affect
the variance ratio.

4. Numerical Experiments
In this section, we provide numerical experiments to validate
our theoretical findings and demonstrate that C-MinHash
can indeed lead to smaller Jaccard estimation errors.

4.1. Sanity Check: a Simulation Study

A simulation study is conducted on synthetic data to verify
the theoretical variances given by Theorem 2.5 and Theo-
rem 3.1. We simulate D = 128 dimensional binary vector
pairs (v,w) with different f and a, which have a special
locational structure that the location vector x is such that
a “O”’s are followed by (f − a) “×”’s and then followed
by (D − f) “−”’s sequentially. We plot the empirical and
theoretical mean square errors (MSE = variance + bias2) in
Figure 4, and we observe:

• The theoretical variance matches the empirical results,
confirming Theorem 2.5 and Theorem 3.1. The vari-
ance reduction effect becomes more significant with
more number of hashes K.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

1 20 40 60 80 100 120

K

10
-4

10
-3

10
-2

10
-1

M
S

E

(D,f,a) = (128,8,1)

Simulation

(0,) Theory

(,) Theory

MinHash

1 20 40 60 80 100 120

K

10
-3

10
-2

10
-1

M
S

E

(D,f,a) = (128,8,2)

Simulation

(0,) Theory

(,) Theory

MinHash

1 20 40 60 80 100 120

K

10
-3

10
-2

10
-1

10
0

M
S

E

(D,f,a) = (128,8,4)

Simulation

(0,) Theory

(,) Theory

MinHash

1 20 40 60 80 100 120

K

10
-4

10
-3

10
-2

10
-1

M
S

E

(D,f,a) = (128,64,2)

Simulation

(0,) Theory

(,) Theory

MinHash

1 20 40 60 80 100 120

K

10
-4

10
-3

10
-2

10
-1

M
S

E

(D,f,a) = (128,64,8)

Simulation

(0,) Theory

(,) Theory

MinHash

1 20 40 60 80 100 120

K

10
-6

10
-4

10
-2

10
0

M
S

E

(D,f,a) = (128,128,16)

Simulation

(0,) Theory

(,) Theory

MinHash

Figure 4. Empirical vs. theoretical variance of Ĵ0,π (C-MinHash-
(0, π)) and Ĵσ,π (C-MinHash-(σ, π)), on synthetic binary data
vector pairs with different data statistics.

• V ar[Ĵσ,π] is always smaller than V ar[ĴMH], as stated
by Theorem 3.4. In contrast, V ar[Ĵ0,π] (C-MinHash-
(0, π)) varies significantly depending on different data
structures, as discussed in Section 2.

4.2. Jaccard Estimation on Text and Image Datasets

We test C-MinHash on four public datasets, including two
text datasets: the NIPS full paper dataset from UCI reposi-
tory (Dua and Graff, 2017), the BBC News dataset (Greene
and Cunningham, 2006), and two popular image datasets:
the MNIST dataset (LeCun et al., 1998) with hand-written
digits, and the CIFAR dataset (Krizhevsky, 2009) containing
natural images. All the datasets are processed to be binary.
For image data, we first transform the images to gray-scale,
then binarize the samples by thresholding at 0.5. For each
dataset with n data vectors, there are in total n(n − 1)/2
data vector pairs. We estimate the Jaccard similarities for
all the pairs and report the mean absolute errors (MAE). All
the results are averaged over 10 independent repetitions. We
report the MAE in Figure 5, from which we see that:

• The MAE of C-MinHash-(σ, π) is consistently smaller
than that of MinHash, demonstrating the practical merit
of variance reduction (Theorem 3.4) to improve the Jac-
card estimation accuracy. The improvements become

 2
8

 2
9

2
10

2
11

2
12

K

0.4

0.6

0.8

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

10
-2

BBC

MinHash

C-MinHash-(0,)

C-MinHash-(,)

 2
8

 2
9

2
10

2
11

2
12

K

0.5

1

1.5

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

10
-2

NIPS

MinHash

C-MinHash-(0,)

C-MinHash-(,)

2
5

2
6

2
7

2
8

2
9

K

10
-2

10
-1

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

MNIST

MinHash

C-MinHash-(0,)

C-MinHash-(,)

 2
6

 2
7

 2
8

 2
9

2
10

K

10
-2

10
-1

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

CIFAR

MinHash

C-MinHash-(0,)

C-MinHash-(,)

Figure 5. Mean Absolute Error (MAE) of pairwise Jaccard estima-
tion: MinHash vs. C-MinHash on four real-world datasets.

more substantial with larger K, which is consistent
with Figure 3 and Figure 4.

• Without the initial permutation σ, the accuracy of C-
MinHash-(0, π) depends by the distribution/structure
of the original data, and it is worse than C-MinHash-
(σ, π) on all these four datasets. In addition, the per-
formance of C-MinHash-(0, π) on image data seems
much worse than that on text data, which we believe is
because the image datasets contain more structural pat-
terns. This again suggests that the initial permutation
σ might be needed in practice.

In summary, the simulation study has verified the correct-
ness of our theoretical findings in Theorem 2.5 and Theo-
rem 3.1. The experiments with Jaccard estimation on four
real-world datasets confirm that C-MinHash is more accu-
rate than the original MinHash, and the initial permutation
σ is recommended.

5. C-MinHash-(π, π): Practically Reducing to
One Permutation

In this section, we propose a more convenient variant, C-
MinHash-(π, π), which only requires one permutation. That
is, π is used for both pre-processing and circulant hashing.
The procedure is the same as Algorithm 3, except that the
initial permutation σ is replaced by π. Denote the corre-
sponding Jaccard estimator as Ĵπ,π. The complicated de-
pendency between π (for initial permutation) and π→k (for
hashing) makes the estimator no longer unbiased. Never-
theless, we found through extensive numerical experiments
that, the MSE of Ĵπ,π is essentially the same as Ĵσ,π .

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

K

10
-3

10
-2

10
-1

M
S

E

(128,8,2)

1 Perm

2 Perm Theo.

10
0

10
1

10
2

K

10
-3

10
-2

10
-1

10
0

M
S

E

(128,8,4)

1 Perm

2 Perm Theo.

10
0

10
1

10
2

K

10
-4

10
-3

10
-2

10
-1

M
S

E

(128,64,8)

1 Perm

2 Perm Theo.

10
0

10
1

10
2

K

10
-6

10
-4

10
-2

10
0

M
S

E

(128,128,16)

1 Perm

2 Perm Theo.

Figure 6. Estimator MSE on simulated data pairs. “1 Perm” is
C-MinHash-(π, π), and “2 Perm Theo.” is the theoretical variance
of C-MinHash-(σ, π) (Theorem 3.1).

Figure 6 compares the empirical MSE of C-MinHash-(π, π)
with the theoretical variances of C-MinHash-(σ, π) on sim-
ulated data vector pairs. In Figure 7, we present the MAE
comparison on real datasets, where we see that the curves
for these two estimators (Ĵσ,π and Ĵπ,π) match well.

To illustrate the bias and variance of specific data pairs
in more details, we test C-MinHash-(π, π) on the “Words”
dataset (Li and Church, 2005). For each data point, the
i-th 0/1 entry indicates whether a word appears in the i-
th document, for a total of D = 216 documents. See the
key statistics of the 120 selected word pairs in Table 1.
Those pairs of words are more or less randomly selected
except that we make sure they cover a wide spectrum of data
distributions. Denote d as the number of non-zero entries
in the vector. Table 1 reports the density d̃ = d/D for
each word vector, ranging from 0.0006 to 0.6. The Jaccard
similarity J ranges from 0.002 to 0.95.

In Figures 8 - 15 (also see Appendix B), we plot the empiri-
cal MSE along with the empirical bias2 for Ĵπ,π , as well as
the empirical MSE for Ĵσ,π . From the results in the Figures,
we can observe

• For all the data pairs, the MSE of C-MinHash-(π, π)
estimator overlaps with the empirical MSE of C-
MinHash-(σ, π) estimator for all K from 1 up to 4096.

• The bias2 of C-MinHash-(π, π) is several orders of
magnitudes smaller than the MSE, in all data pairs.
This demonstrates that the bias of Ĵπ,π is extremely
small and can be safely neglected in practice.

In all figures, the overlapping curves validate our claim that
in practice, we just need one permutation π in C-MinHash.

 2
6

 2
7

 2
8

 2
9

2
10

2
11

2
12

K

0.5

1

1.5

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

10
-2

BBC

2 Perm

1 Perm

 2
8

 2
9

2
10

2
11

2
12

K

0.5

1

1.5

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

10
-2

NIPS

2 Perm

1 Perm

2
5

2
6

2
7

2
8

2
9

K

10
-2

10
-1

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

MNIST

1 Perm

2 Perm

 2
6

 2
7

 2
8

 2
9

2
10

K

10
-2

10
-1

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

CIFAR

2 Perm

1 Perm

Figure 7. MAE of Jaccard estimation on four datasets. “1 Perm” is
C-MinHash-(π, π), and “2 Perm” is C-MinHash-(σ, π).

6. Discussion and Conclusion
The method of minwise hashing (MinHash), from the sem-
inal works of Broder and his colleagues, has become stan-
dard in industrial practice. One fundamental reason for its
wide applicability is that the binary (0/1) high-dimensional
representation is convenient and suitable for a wide range
of practical scenarios. To estimate the Jaccard similarity
on binary data, the standard MinHash requires to use K
independent permutations, where K, the number of hashes,
can be several hundreds or even thousands in practice.

We have proposed Circulant MinHash (C-MinHash) and
present the surprising theoretical results that, with merely
2 permutations, we still obtain an unbiased estimate of the
Jaccard similarity with the variance strictly smaller than
that of the original MinHash, as confirmed by numerical
experiments on simulated and real datasets. The initial per-
mutation is applied to break whatever structure the original
data may exhibit. The second permutation is re-used K
times in a circulant shifting fashion. Moreover, we propose
a more convenient C-MinHash variance which uses only 1
permutation for both pre-processing and circulant hashing.
We validate through extensive experiments that it does not
result in loss of accuracy in practice.

Practically speaking, our theoretical results may reveal a use-
ful direction for designing hashing methods. For example,
in many applications, using permutation vectors of length
(e.g.,) 230 might be sufficient. While it is perhaps unrealis-
tic to store (e.g.,) K = 1024 such permutation vectors in
the memory, one can afford to store two such permutations
(even in GPU memory). Using perfectly random permuta-
tions in lieu of approximate permutations would simplify the
design and analysis of randomized algorithms and ensure
that the practical performance strictly matches the theory.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Table 1. 120 selected word pairs from the Words dataset (Li and Church, 2005). For each pair, we report the density d̃ (number of non-zero
entries divided by D = 216) for each word as well as the Jaccard similarity J . Both d̃ and J cover a wide range of values.

d̃1 d̃2 J d̃1 d̃2 J

ABOUT - INTO 0.302 0.125 0.258 NEW - WEB 0.291 0.194 0.224
ABOUT - LIKE 0.302 0.140 0.281 NEWS - LIKE 0.168 0.140 0.172
ACTUAL - DEVELOPED 0.017 0.030 0.071 NO - WELL 0.220 0.120 0.244
ACTUAL - GRABBED 0.017 0.002 0.016 NOT - IT 0.281 0.295 0.437
AFTER - OR 0.103 0.356 0.220 NOTORIOUSLY - LOCK 0.0006 0.006 0.004
AND - PROBLEM 0.554 0.044 0.070 OF - THEN 0.570 0.104 0.168
AS - NAME 0.280 0.144 0.204 OF - WE 0.570 0.226 0.361
AT - CUT 0.374 0.242 0.052 OPPORTUNITY - COUNTRIES 0.029 0.024 0.066
BE - ONE 0.323 0.221 0.403 OUR - THAN 0.244 0.125 0.245
BEST - AND 0.136 0.554 0.228 OVER - BACK 0.148 0.160 0.233
BRAZIL - OH 0.010 0.031 0.019 OVER - TWO 0.148 0.121 0.289
BUT - MANY 0.167 0.116 0.340 PEAK - SHOWS 0.006 0.033 0.026
CALLED - BUSINESSES 0.016 0.018 0.043 PEOPLE - BY 0.121 0.425 0.228
CALORIES - MICROSOFT 0.002 0.045 0.0003 PEOPLE - INFO 0.121 0.138 0.117
CAN - FROM 0.243 0.326 0.444 PICKS - BOOST 0.007 0.005 0.007
CAN - SEARCH 0.243 0.214 0.237 PLANET - REWARD 0.013 0.003 0.018
COMMITTED - PRODUCTIVE 0.013 0.004 0.029 PLEASE - MAKE 0.168 0.141 0.195
CONTEMPORARY - FLASH 0.011 0.021 0.013 PREFER - PUEDE 0.010 0.003 0.0001
CONVENIENTLY - INDUSTRIES 0.003 0.011 0.009 PRIVACY - FOUND 0.126 0.136 0.053
COPYRIGHT - AN 0.218 0.290 0.209 PROSECUTION - MAXIMIZE 0.002 0.003 0.006
CREDIT - CARD 0.046 0.041 0.285 RECENTLY - INT 0.028 0.007 0.014
DE - WEB 0.117 0.194 0.091 REPLY - ACHIEVE 0.013 0.012 0.023
DO - GOOD 0.174 0.102 0.276 RESERVED - BEEN 0.172 0.141 0.108
EARTH - GROUPS 0.021 0.035 0.056 RIGHTS - FIND 0.187 0.144 0.166
EXPRESSED - FRUSTRATED 0.010 0.002 0.024 RIGHTS - RESERVED 0.187 0.172 0.877
FIND - HAS 0.144 0.228 0.214 SCENE - ABOUT 0.012 0.301 0.029
FIND - SITE 0.144 0.275 0.212 SEE - ALSO 0.138 0.166 0.291
FIXED - SPECIFIC 0.011 0.039 0.054 SEIZE - ANYTHING 0.0007 0.037 0.012
FLIGHT - TRANSPORTATION 0.011 0.018 0.040 SHOULDERS - GORGEOUS 0.003 0.004 0.028
FOUND - DE 0.136 0.117 0.039 SICK - FELL 0.008 0.008 0.085
FRANCISCO - SAN 0.025 0.049 0.476 SITE - CELLULAR 0.275 0.006 0.010
GOOD - BACK 0.102 0.160 0.220 SOLD - LIVE 0.018 0.064 0.055
GROUPS - ORDERED 0.035 0.011 0.034 SOLO - CLAIMS 0.010 0.012 0.007
HAPPY - CONCEPT 0.029 0.013 0.054 SOON - ADVANCE 0.040 0.017 0.057
HAVE - FIRST 0.267 0.151 0.320 SPECIALIZES - ACTUAL 0.003 0.017 0.008
HAVE - US 0.267 0.284 0.349 STATE - OF 0.101 0.570 0.165
HILL - ASSURED 0.020 0.004 0.011 STATES - UNITED 0.061 0.062 0.591
HOME - SYNTHESIS 0.365 0.002 0.003 TATTOO - JEANS 0.002 0.004 0.035
HONG - KONG 0.014 0.014 0.925 THAT - ALSO 0.301 0.166 0.376
HOSTED - DRUGS 0.016 0.013 0.013 THIS - CITY 0.423 0.123 0.132
INTERVIEWS - FOURTH 0.012 0.011 0.031 THEIR - SUPPORT 0.165 0.117 0.189
KANSAS - PROPERTY 0.017 0.045 0.052 THEIR - VIEW 0.165 0.103 0.151
KIRIBATI - GAMBIA 0.003 0.003 0.712 THEM - OF 0.112 0.570 0.187
LAST - THIS 0.135 0.423 0.221 THEN - NEW 0.104 0.291 0.192
LEAST - ROMANCE 0.046 0.007 0.019 THINKS - LOT 0.007 0.040 0.079
LIME - REGISTERED 0.002 0.030 0.004 TIME - OUT 0.189 0.191 0.366
LINKS - TAKE 0.191 0.105 0.134 TIME - WELL 0.189 0.120 0.299
LINKS - THAN 0.191 0.125 0.141 TOP - AS 0.140 0.280 0.217
MAIL - AND 0.160 0.554 0.192 TOP - COPYRIGHT 0.140 0.218 0.149
MAIL - BACK 0.160 0.160 0.132 TOP - NEWS 0.140 0.168 0.192
MAKE - LIKE 0.141 0.140 0.297 UP - AND 0.200 0.554 0.334
MANAGING - LOCK 0.010 0.006 0.010 UP - HAS 0.200 0.228 0.312
MANY - US 0.116 0.284 0.210 US - BE 0.284 0.323 0.335
MASS - DREAM 0.016 0.017 0.048 VIEW - IN 0.103 0.540 0.153
MAY - HELP 0.184 0.156 0.206 VIEW - PEOPLE 0.103 0.121 0.138
MOST - HOME 0.141 0.365 0.207 WALKED - ANTIVIRUS 0.006 0.002 0.002
NAME - IN 0.144 0.540 0.207 WEB - GO 0.194 0.111 0.138
NEITHER - FIGURE 0.011 0.016 0.085 WELL - INFO 0.120 0.138 0.110
NET - SO 0.101 0.154 0.112 WELL - NEWS 0.120 0.168 0.161
NEW - PLEASE 0.291 0.168 0.205 WEEKS - LONDON 0.028 0.032 0.050

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

WELL - INFO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E ABOUT - INTO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

ABOUT - LIKE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

WELL - NEWS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

ACTUAL - DEVELOPED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

ACTUAL - GRABBED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

AFTER - OR

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

AND - PROBLEM

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
AS - NAME

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

AT - CUT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

BE - ONE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E BEST - AND

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

BRAZIL - OH

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

BUT - MANY

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

CALLED - BUSINESSES

2 Perm

1 Perm

Bias
2

Figure 8. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

References
Michael Bendersky and W. Bruce Croft. Finding text

reuse on the web. In Proceedings of the Second Interna-
tional Conference on Web Search and Web Data Mining
(WSDM), pages 262–271, Barcelona, Spain, 2009.

Andrei Z. Broder. On the resemblance and containment of
documents. In Proceedings of the Conference on Com-
pression and Complexity of SEQUENCES, pages 21–29,
Positano, Amalfitan Coast, Salerno, Italy, 1997.

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig. Syntactic clustering of the web.
Comput. Networks, 29(8-13):1157–1166, 1997.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent permu-
tations. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing (STOC), pages
327–336, Dallas, TX, 1998.

Gregory Buehrer and Kumar Chellapilla. A scalable pattern
mining approach to web graph compression with commu-
nities. In Proceedings of the International Conference
on Web Search and Web Data Mining (WSDM), pages
95–106, Stanford, CA, 2008.

Moses S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing (STOC), pages
380–388, Montreal, Canada, 2002.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael
Mitzenmacher, Alessandro Panconesi, and Prabhakar
Raghavan. On compressing social networks. In Proceed-
ings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages
219–228, Paris, France, 2009.

Ondrej Chum and Jiri Matas. Fast computation of min-hash
signatures for image collections. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3077–3084, 2012.

Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyam-
sundar Rajaram. Google news personalization: scalable
online collaborative filtering. In Proceedings of the 16th
International Conference on World Wide Web (WWW),
pages 271–280, Banff, Alberta, Canada, 2007.

Fan Deng, Stefan Siersdorfer, and Sergej Zerr. Efficient
jaccard-based diversity analysis of large document col-
lections. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management
(CIKM), pages 1402–1411, Maui, HI, 2012.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Weiqi Feng and Dong Deng. Allign: Aligning all-pair
near-duplicate passages in long texts. In Proceedings of
the International Conference on Management of Data
(SIGMOD), pages 541–553, Virtual Event, China, 2021.

Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L.
Wiener. A large-scale study of the evolution of web
pages. In Proceedings of the Twelfth International World
Wide Web Conference (WWW), pages 669–678, Budapest,
Hungary, 2003.

Michael Gamon, Sumit Basu, Dmitriy Belenko, Danyel
Fisher, Matthew Hurst, and Christian König. BLEWS:
using blogs to provide context for news articles. In Pro-
ceedings of the Second International Conference on We-
blogs and Social Media (ICWSM), Seattle, WA, 2008.

Derek Greene and Padraig Cunningham. Practical solutions
to the problem of diagonal dominance in kernel document
clustering. In Proceedings of the Twenty-Third Interna-
tional Conference on Machine Learning (ICML), pages
377–384, Pittsburgh, PA, 2006.

Kaiming He, Fang Wen, and Jian Sun. K-means hashing:
An affinity-preserving quantization method for learning
binary compact codes. In Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2938–2945, Portland, OR, 2013.

Monika Rauch Henzinger. Finding near-duplicate web
pages: a large-scale evaluation of algorithms. In Pro-
ceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR), pages 284–291, Seattle, WA, 2006.

Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing (STOC), pages 604–613,
Dallas, TX, 1998.

Sergey Ioffe. Improved consistent sampling, weighted min-
hash and L1 sketching. In Proceedings of the 10th IEEE
International Conference on Data Mining (ICDM), pages
246–255, Sydney, Australia, 2010.

Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan
Qi, Min Hu, Chao Deng, and Xiaohong Guan. Bidirec-
tionally densifying LSH sketches with empty bins. In
Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 830–842, Virtual, 2021.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

David C. Lee, Qifa Ke, and Michael Isard. Partition min-
hash for partial duplicate image discovery. In Proceedings
of the 11th European Conference on Computer Vision
(ECCV), Part I, pages 648–662, Heraklion, Greece, 2010.

Jakub Lemiesz. On the algebra of data sketches. Proc.
VLDB Endow., 14(9):1655–1667, 2021.

Ping Li and Kenneth Ward Church. Using sketches to es-
timate associations. In Proceedings of the Conference
on Human Language Technology and the Conference
on Empirical Methods in Natural Language Process-
ing (HLT/EMNLP), pages 708–715, Vancouver, Canada,
2005.

Ping Li and Arnd Christian König. Theory and applications
of b-bit minwise hashing. Commun. ACM, 54(8):101–
109, 2011.

Ping Li and Cun-Hui Zhang. Theory of the GMM kernel.
In Proceedings of the 26th International Conference on
World Wide Web (WWW), pages 1053–1062, Perth, Aus-
tralia, 2017.

Ping Li and Weijie Zhao. GCWSNet: Generalized consis-
tent weighted sampling for scalable and accurate training
of neural networks. arXiv preprint arXiv:2201.02283,
2022.

Ping Li, Anshumali Shrivastava, Joshua Moore, and
Arnd Christian König. Hashing algorithms for large-scale
learning. In Advances in Neural Information Processing
Systems (NIPS), pages 2672–2680, Granada, Spain, 2011.

Ping Li, Anshumali Shrivastava, and Arnd Christian König.
GPU-based minwise hashing. In Proceedings of the 21st
World Wide Web Conference (WWW), pages 565–566,
Lyon, France, 2012.

Ping Li, Xiaoyun Li, Gennady Samorodnitsky, and Weijie
Zhao. Consistent sampling through extremal process. In
Proceeding of the Web Conference (WWW), pages 1317–
1327, Virtual Event / Ljubljana, Slovenia, 2021.

Mark Manasse, Frank McSherry, and Kunal Talwar. Con-
sistent weighted sampling. Technical Report MSR-TR-
2010-73, Microsoft Research, 2010.

Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy.
Less is more: sampling the neighborhood graph makes
salsa better and faster. In Proceedings of the Second Inter-
national Conference on Web Search and Web Data Mining
(WSDM), pages 242–251, Barcelona, Spain, 2009.

Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J.
Miller. Table union search on open data. Proc. VLDB
Endow., 11(7):813–825, 2018.

Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B
Mallonee, Nicholas H Bergman, Sergey Koren, and
Adam M Phillippy. Mash: fast genome and metagenome
distance estimation using minhash. Genome biology, 17
(1):1–14, 2016.

Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja
Josifovski, Ravi Kumar, and Sergei Vassilvitskii. Nearest-
neighbor caching for content-match applications. In Pro-
ceedings of the 18th International Conference on World
Wide Web (WWW), pages 441–450, Madrid, Spain, 2009.

Anshumali Shrivastava and Ping Li. Fast near neighbor
search in high-dimensional binary data. In Proceed-
ings of the European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML-PKDD),
pages 474–489, Bristol, UK, 2012.

Anshumali Shrivastava and Ping Li. In defense of minhash
over simhash. In Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), pages 886–894, Reykjavik, Iceland, 2014.

Acar Tamersoy, Kevin A. Roundy, and Duen Horng Chau.
Guilt by association: large scale malware detection by
mining file-relation graphs. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 1524–1533,
New York, NY, 2014.

Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel
index-based structural graph clustering and its approxi-
mation. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 1851–1864,
Virtual Event, China, 2021.

Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai,
Chenxu Wang, John C. S. Lui, and Xiaohong Guan. A
memory-efficient sketch method for estimating high sim-
ilarities in streaming sets. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pages 25–33, 2019.

Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao
Gong, and Shih-Fu Chang. On binary embedding us-
ing circulant matrices. J. Mach. Learn. Res., 18:150:1–
150:30, 2017.

Juan Zamora, Marcelo Mendoza, and Héctor Allende.
Hashing-based clustering in high dimensional data. Ex-
pert Syst. Appl., 62:202–211, 2016.

Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J.
Miller. Interactive navigation of open data linkages. Proc.
VLDB Endow., 10(12):1837–1840, 2017.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

A. Proofs of Technical Results
We first recall the notations and definitions that will be used in our proof.

Notations. In our analysis, for simplicity we will use 1s to denote 1{hs(v) = hs(w)} for ∀1 ≤ s ≤ K, where h is the hash
value. Given two data vectors v,w ∈ {0, 1}D. Recall in (6) that a =

∑D
i=1 1{vi = 1 and wi = 1}, f =

∑D
i=1 1{vi =

1 or wi = 1}. Thus, the Jaccard similarity is J = a/f . We also define J̃ = (a− 1)/(f − 1).

Definition A.1. Let v,w ∈ {0, 1}D. Define the location vector as x ∈ {O,×,−}D, with xi being “O”, “×”, “−” when
vi = wi = 1, vi +wi = 1 and vi = wi = 0, respectively.

Definition A.2. For A,B ∈ {O,×,−}, let {(i, j) : (A,B)|△} denote a pair of indices {(i, j) : (xi,xj) = (A,B), j− i =
△}. Define

L0(△) = {(i, j) : (O,O)|△}, L1(△) = {(i, j) : (O,×)|△}, L2(△) = {(i, j) : (O,−)|△},
G0(△) = {(i, j) : (−, O)|△}, G1(△) = {(i, j) : (−,×)|△} ,G2(△) = {(i, j) : (−,−)|△},
H0(△) = {(i, j) : (×, O)|△}, H1(△) = {(i, j) : (×,×)|△}, H2(△) = {(i, j) : (×,−)|△}.

Remark A.3. For the ease of notation, by circulation we write xj = xj−D when D < j < 2D.

One can easily verify that given fixed a, f,D, it holds that for ∀1 ≤ △ ≤ K − 1,

|L0(△)|+ |L1(△)|+ |L2(△)| = |L0(△)|+ |G0(△)|+ |H0(△)| = a,

|G0(△)|+ |G1(△)|+ |G2(△)| = |L2(△)|+ |G2(△)|+ |H2(△)| = D − f,

|H0(△)|+ |H1(△)|+ |H2(△)| = |L1(△)|+ |G1(△)|+ |H1(△)| = f − a.

(11)

We will refer this as the intrinsic constraints on the sizes of above sets.

A.1. Proof of Lemma 2.4

Lemma 2.4. For any 1 ≤ s < t ≤ K with t− s = △, we have

Eπ

[
1{hs(v) = hs(w)}1{ht(v) = ht(w)}

]
=
|L0(△)|+ (|G0(△)|+ |L2(△)|)J

f + |G0(△)|+ |G1(△)|
,

where the sets are defined in Definition 2.2 and hs, ht are the hash values output by Algorithm 2.

Proof. To check whether a hash sample generated by C-MinHash collides (under some permutation π), it suffices to look at
the permuted location vector x. If a collision happens if only if the first type “O” point appears before the first “×” point
after being permuted by π. That said, the minimal permutation index of “O” elements must be smaller than that of “×”
elements. If the hash sample does not collide, then the first “×” must appear before the first “O”. Note that “−” points does
not affect the collision. This observation will be the key to our analysis.

To compute the variance of the C-MinHash-(0, π) estimator, it suffices to compute E[1s1t]. Let L, G and H denote the
union of L’s, G’s andH’s, respectively. In the following, we say that an index i belongs to a set if i is the first term of an
element in that set, e.g., {1} belongs to L if x1 = O. We have

|L| = a, |H| = f − a, |G| = D − f.

One key observation is that, for a pair (i, j) with |j − i| = △ = t− s in above sets, the hash index πs(i) will be the hash
index of πt(j). We begin by decomposing the expectation of interest into

E[1s1t] = P [collision s, collision t]

=
∑
i∗s∈L

P [collision s at i∗s, collision t]

=

2∑
p=0

∑
i∗s∈Lp

P [collision s at i∗s, collision t]. (12)

C-MinHash: Improving Minwise Hashing with Circulant Permutation

where i∗s is the location of the original “O” in vector x that collides for the s-th hash sample. Note that it is different from
the exact location of collision in x(πs). Also, the permutation is totally random, so the location of collision is independent
of 1s, and uniformly distributed among all type “O” pairs. We consider the following cases.

1) When i∗s ∈ L0. In this case, the minimum index of the type “O” pair in x(πs), πs(i
∗
s), is shifted to another type “O” pair

in x(πt). Therefore, the indices of pairs with the first element being “O” or “×” originally in x(πs) will still be greater than
πt(i

∗
s). If sample s collides at i∗s , hash sample t will collide when

1. All the points in G1, after permutation πs, is greater than πs(i
∗
s). In this case, regardless of the permuted G0, hash t will

always collide.

2. There exist points in G1 after permutation πs that are smaller than πs(i
∗
s), and also points in G0 that is smaller than the

minimum of permuted G1.

Consequently, we have for i∗s ∈ L0,

P [collision s at i∗s, collision t]

= P [πs(i
∗
s) < πs(i),∀i ∈ H ∪ L/i∗s, and min

j∈G1

πs(j) > πs(i
∗
s)]

+ P [πs(i
∗
s) < πs(i),∀i ∈ H ∪ L/i∗s, and min

j∈G0

πs(j) < min
j∈G1

πs(j) < πs(i
∗
s)]

=
1

a
· a

f + |G1|
+

|G0|
f + |G0|+ |G1|

· |G1|
f + |G1|

· a
f
· 1
a

=
1

f + |G1|
+

|G0| · |G1|
(f + |G0|+ |G1|)(f + |G1|)f

. (13)

This probability holds for ∀i∗s ∈ L0.

2) When i∗s ∈ L1. Similarly, we consider the condition where i∗s ∈ L1, and both hash samples collide. In this case, πs(i
∗
s)

would be shifted to a “×” pair in x(πt). That is, the indices of pairs with the first element being “O” or “×” originally in
x(πs) will all be greater than πs(i

∗
s), which now is the location of a “×” pair in x(πt). Thus, to make hash t collide, we need:

• At least one point from G0 is smaller than any other points inH ∪ L ∪ G1 after permutation πs.

Therefore, for any i∗s ∈ L1,

P [collision s at i∗s, collision t]

= P [πs(i
∗
s) < πs(i),∀i ∈ H ∪ L/i∗s, and min

j∈G0

πs(j) < min{πs(i
∗
s),min

j∈G1

πs(j)}]

=
|G0|

f + |G0|+ |G1|
· a
f
· 1
a

=
|G0|

(f + |G0|+ |G1|)f
, (14)

which is true for ∀i∗s ∈ L1.

3) When i∗s ∈ L2.

In this scenario, πs(i
∗
s) would be shifted to a “−” pair in x(πt). Therefore, if hash s collides, hash t will also collide when:

• After applying πs, the minimum of L0 ∪H0 ∪ G0 is smaller than the minimum of L1 ∪H1 ∪ G1.

Thus, we obtain that for any i∗s ∈ L2,

P [collision s at i∗s, collision t]

= P [πs(i
∗
s) < πs(i),∀i ∈ H ∪ L/i∗s, and min

j∈L0∪G0∪H0

πs(j) < min
j∈L1∪G1∪H1

πs(j)]

≜ P [Ω].

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Let 1s,i∗s
denote the event {πs(i

∗
s) < πs(i),∀i ∈ H ∪ L/i∗s}. Then Ω can be separated into the following cases:

1. Ω1: 1s,i∗s
, minj∈L0∪H0

πs(j) < minj∈L1∪H1
πs(j), and minj∈L0∪H0

πs(j) < minj∈G1
πs(j).

2. Ω2: 1s,i∗s
, minj∈L0∪H0

πs(j) < minj∈L1∪H1
πs(j), and minj∈L0∪H0

πs(j) > minj∈G1
πs(j) > minj∈G0

πs(j) >
πs(i

∗
s).

3. Ω3: 1s,i∗s
, minj∈L0∪H0

πs(j) < minj∈L1∪H1
πs(j), and minj∈L0∪H0

πs(j) > minj∈G1
πs(j) > πs(i

∗
s) >

minj∈G0
πs(j).

4. Ω4: 1s,i∗s
, minj∈L0∪H0

πs(j) < minj∈L1∪H1
πs(j), and minj∈L0∪H0

πs(j) > πs(i
∗
s) > minj∈G1

πs(j) >
minj∈G0

πs(j).

5. Ω5: 1s,i∗s
, minj∈L0∪H0

πs(j) > minj∈L1∪H1
πs(j), and πs(i

∗
s) < minj∈G0

πs(j) < minj∈L1∪H1∪G1
πs(j).

6. Ω6: 1s,i∗s
, minj∈L0∪H0 πs(j) > minj∈L1∪H1 πs(j), and minj∈G0 πs(j) < πs(i

∗
s) < minj∈L1∪H1∪G1 πs(j).

We can compute the probability of each event as

P [Ω1] =
1

a
· a

f + |G1|
· |L0|+ |H0|
|L0|+ |H0|+ |L1|+ |H1|+ |G1|

,

=
a− |G0|

(f − |G0|)(f + |G1|)
,

P [Ω2] =
1

a
· a

f + |G0|+ |G1|
· |G0|
|G0|+ |G1|+ |L0|+ |H0|+ |L1|+ |H1|

· |G1|
|L0|+ |H0|+ |L1|+ |H1|+ |G1|

· |L0|+ |H0|
|L0|+ |H0|+ |L1|+ |H1|

=
1

f + |G0|+ |G1|
· |G0|

f
· |G1|
f − |G0|

· a− |G0|
f − |G0| − |G1|

=
|G0| · |G1| · (a− |G0|)

(f + |G0|+ |G1|)(f − |G0|)(f − |G0| − |G1|)f
,

P [Ω3] =
|G0|

f + |G0|+ |G1|
· 1

f + |G1|
· |G1|
|L0|+ |H0|+ |L1|+ |H1|+ |G1|

· |L0|+ |H0|
|L0|+ |H0|+ |L1|+ |H1|

=
|G0| · |G1| · (a− |G0|)

(f + |G0|+ |G1|)(f + |G1|)(f − |G0|)(f − |G0| − |G1|)
,

P [Ω4] =
|G0|

f + |G0|+ |G1|
· |G1|
f + |G1|

· 1
f
· |L0|+ |H0|
|L0|+ |H0|+ |L1|+ |H1|

=
|G0| · |G1| · (a− |G0|)

(f + |G0|+ |G1|)(f + |G1|)(f − |G0| − |G1|)f
,

P [Ω5] =
1

f + |G0|+ |G1|
· |G0|
|G0|+ |G1|+ |L0|+ |H0|+ |L1|+ |H1|

· |L1|+ |H1|
|L0|+ |H0|+ |L1|+ |H1|

=
|G0| · (f − a− |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)f
,

P [Ω6] =
|G0|

f + |G0|+ |G1|
· 1
f
· |L1|+ |H1|
|L0|+ |H0|+ |L1|+ |H1|

=
|G0| · (f − a− |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)f
.

Note that

P [Ω2] + P [Ω3] + P [Ω4]

=
|G0| · |G1| · (a− |G0|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)

[
1

(f − |G0|)f
+

1

(f − |G0|)(f + |G1|)
+

1

f(f + |G1|)

]
=

|G0| · |G1| · (a− |G0|)(3f − |G0|+ |G1|)
(f + |G0|+ |G1|)(f − |G0| − |G1|)f(f − |G0|)(f + |G1|)

.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Summing up all the terms together, we obtain P [Ω] as

6∑
n=1

P [Ωn] =
f(f + |G0|+ |G1|)(f − |G0| − |G1|)(a− |G0|) + |G0||G1|(a− |G0|)(3f − |G0|+ |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)(f − |G0|)(f + |G1|)f

+
2|G0|(f − a− |G1|)(f − |G0|)(f + |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)(f − |G0|)(f + |G1|)f

=
(a− |G0|)(f + |G0| − |G1|)(f − |G0|)(f + |G1|) + 2|G0|(f − a− |G1|)(f − |G0|)(f + |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)(f − |G0|)(f + |G1|)f

=
(a+ |G0|)(f − |G0| − |G1|)(f − |G0|)(f + |G1|)

(f + |G0|+ |G1|)(f − |G0| − |G1|)(f − |G0|)(f + |G1|)f

=
a+ |G0|

(f + |G0|+ |G1|)f
, (15)

which holds for ∀i∗s ∈ L2. Now combining (13), (14), (15) with (12), we obtain

E[1s1t] =
|L0|

f + |G1|
+

|G0||G1||L0|
(f + |G0|+ |G1|)(f + |G1|)f

+
|G0||L1|

(f + |G0|+ |G1|)f
+

(a+ |G0|)|L2|
(f + |G0|+ |G1|)f

. (16)

Here, recall that the sets are associated with all 1 ≤ s < t ≤ K such that△ = t− s. Using the intrinsic constraints (11),
after some calculation we can simplify (16) as

Eπ[1s1t] =
|L0|

f + |G0|+ |G1|
+

a(|G0|+ |L2|)
(f + |G0|+ |G1|)f

=
|L0(△)|+ (|G0(△)|+ |L2(△)|)J

f + |G0(△)|+ |G1(△)|
,

which completes the proof.

A.2. Proof of Theorem 2.5

Theorem 2.5. Under the same setting as in Lemma 2.4, the variance of Ĵ0,π is

V ar[Ĵ0,π] =
J

K
+

2
∑K

s=2(s− 1)ΘK−s+1

K2
− J2,

where Θ△ ≜ Eπ

[
1{hs(v) = hs(w)}1{ht(v) = ht(w)}

]
as in Lemma 2.4 with any t− s = △.

Proof. By the expansion of variance formula, since E[12
s] = E[1s] = J , we have

V ar[Ĵ0,π] =
J

K
+

∑K
s=1

∑K
t̸=s E[1s1t]

K2
− J2. (17)

Note here that for ∀t > s, the t-th hash sample uses πt as the permutation, which is shifted rightwards by△ = t− s from
πs. Thus, we have E[1s1t] = E[1s−i1t−i] for ∀0 < i < s ∧ t, which implies E[1s1t] = E[111t−s+1], ∀s < t. Since by
assumption K ≤ D, we have

K∑
s

K∑
t̸=s

E[1s1t] = 2E
[
(1112 + 1113 + ...+ 111K) + (1213 + ...+ 121K) + ...+ 1K−11K

]
= 2E

[
(1112 + 1113 + ...+ 111K) + (1112 + ...+ 111K−1) + ...+ 1112

]
= 2

K∑
s=2

(s− 1)E[111K−s+2]

≜ 2

K∑
s=2

(s− 1)ΘK−s+1. (18)

Finally, integrating (17), (18) and Lemma 2.4 completes the proof.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

A.3. Proof of Theorem 3.1

Theorem 3.1. Let a, f be defined as in (6). When 0 < a < f ≤ D (J /∈ {0, 1}), we have

V ar[Ĵσ,π] =
J

K
+

(K − 1)Ẽ
K

− J2, (19)

where l = max(0, D − 2f + a), and

Ẽ =
∑

{l0,l2,g0,g1}

{(
l0

f + g0 + g1
+

a(g0 + l2)

(f + g0 + g1)f

)

×
D−f−1∑

s=l

(
D−f
s

)(
D−a−1
D−f−1

) (f−a−1
D−f−s−1

)(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

a−l1−l2

)(
D−1
a

) }
. (20)

The feasible set {l0, l2, g0, g1} satisfies the intrinsic constraints (7), and

n1 = g0 − (D − f − s− g1), n2 = D − f − s− g1,

n3 = l2 − g0 + (D − f − s− g1), n4 = l1 − (D − f − s− g1).

Also, when a = 0 or f = a (J = 0 or J = 1), we have V ar[Ĵσ,π] = 0.

Proof. Similar to the proof of Theorem 2.5, we denote Θ△ = Eσ,π[1s1t] with |t− s| = △. Note that now the expectation
is taken w.r.t. both two independent permutations σ and π. Since σ is random, we know that Θ1 = Θ2 = · · · = ΘK−1.
Then by the variance formula, we have

V ar[Ĵσ,π] =
J2

K
− (K − 1)Θ1

K
− J2 (21)

Hence, it suffices to consider Θ1. In this proof, we will set △ = 1 and drop the notation △ for conciseness, and denote
Ẽ = Θ1 from now on. First, we note that Lemma 2.4 gives the desired quantity conditional on σ. By the law of total
probability, we have

Ẽ = Eσ

[
|L0|

f + |G0|+ |G1|
+

a(|G0|+ |L2|)
(f + |G0|+ |G1|)f

]
, (22)

where the sizes of sets are random depending on the initial permutation σ (i.e. counted after permuting by σ). As a result,
the problem turns into deriving the distribution of |L0|, |L1|, |L2|, |G0| and |G1| under random permutation σ, and then
taking expectation of (22) with respect to this additional randomness.

When a = 0, we know that |L0| = |L2| = |G0| = 0, hence the expectation Ẽ is trivially 0. Thus, the V ar[Ĵσ,π] = 0. When
f = a, |G1| = 0, and the constraint on the sets becomes

|L0|+ |G0| = |L0|+ |L2| = f,

|L2|+ |G2| = |G0|+ |G2| = D − f.

Then (22) becomes

Ẽ = Eσ

[
|L0|

f + |G0|
+
|G0|+ |L2|
f + |G0|

]
= Eσ

[
|L0|+ |G0|+ |L2|

f + |G0|

]
≡ 1.

Therefore, when f = a, we also have V ar[Ĵσ,π] = 0.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Next, we will consider the general case where 0 < a < f ≤ D. This can be considered as a combinatorial problem
where we randomly arrange a type “O”, (f − a) type “×” and (D − f) type “−” points in a circle. We are interested in
the distribution of the number of {O,O}, {O,×}, {O,−}, {−, O} and {−,×} pairs of consecutive points in clockwise
direction. We consider this procedure in two steps, where we first place “×” and “−” points, and then place “O” points.

Step 1. Randomly place “×” and “−” points on the circle.

In this step, four types of pairs may appear: {−,−}, {−,×}, {×,×} and {×,−}. Denote C1, C2, C3 and C4 as the
collections of above pairs. Since

|C1|+ |C4| = |C1|+ |C2| = D − f,

|C2|+ |C3| = |C2|+ |C4| = f − a,

knowing the size of one set gives information on the size of all the sets. Thus, we can characterize the joint distribution by
analyzing the distribution of |C1|. First, placing (D − f) “−” points on a circle leads to (D − f) number of {−,−} pairs.
This (D−f) elements can be regarded as the borders that split the circle into (D−f) bins. Now, we randomly throw (f−a)
number of “×” points into these bins. If at least one “×” falls into one bin, then the number of {−,−} pairs (|C1|) would
reduce by 1, while |C2| and |C4| would increase by 1. If z “×” points fall into one bin, then the number of {×,×} (|C3|)
would increase by (z−1). Notice that since s ≤ D−f and D−f −s ≤ f −a, we have max(0, D−2f +a) ≤ s ≤ D−f .
Consequently, for s in this range, we have

P
{
|C1| = s

}
= P

{
|C1| = s, |C3| = f − a− (D − f − s)

}
=

(
D−f

D−f−s

)(
f−a−1

D−f−s−1

)(
D−a−1
D−f−1

)
=

(
D−f
s

)(
f−a−1

D−f−s−1

)(
D−a−1
D−f−1

) . (23)

The second line is due to the stars and bars problem that the number of ways to place n unlabeled balls in m distinct bins such
that each bin has at least one ball is

(
n−1
m−1

)
. For |C1| = s, we need n = f − a (number of “×”) and m = |C2| = D − f − s.

Moreover, the number of ways to place n balls in m distinct bins is
(
n+m−1
m−1

)
. When counting the total number of

possibilities, we have n = f − a, m = D − f . This gives the denominator. Note that (23) is a hyper-geometric distribution.

Step 2. Randomly place “O” points on the circle.

We have the probability mass function

P [Ψ] ≜ P
{
|L1| = l1, |L2| = l2, |G0| = g0, |G1| = g1

}
=

D−f−1∑
s=D−2f+a

P
{
|L1| = l1, |L2| = l2, |G0| = g0, |G1| = g1

∣∣∣|C1| = s
}
P
{
|C1| = s

}
. (24)

It remains to compute the distribution conditional on |C1|. Here we drop |L0| since it is intrinsically determined by |L1|, |L2|.
Again, given a placement of all “×” and “−” points, each consecutive pair can be regarded as a distinct bin. The problem is
hence to randomly throw a type “O” points into that (D−a) bins, given that we have placed type “×” and “−” points on the
circle with |C1| = s (thus |C2| = |C3| = D − f − s and |C4| = f − a− (D − f − s) are also determined correspondingly).
In the following, we count the number of “O” points that fall in Ci, i = 1 to 4, to make the event Ψ happen. Note that

• When at least one “O” point falls into C1 (between {−,−}), |L2| and |G0| increase by 1.

• When at least one “O” point falls into C2 (between {−,×}), |L1| and |G0| increase by 1, while |G1| decreases by 1.

• When at least one “O” point falls into C3 (between {×,−}), |L2| increases by 1.

• When at least one “O” point falls into C4 (between {×,×}), |L1| increases by 1.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

We denote the number of bins in Ci, i = 1, 2, 3, 4 that contain at least one “O” point as n1, n2, n3, n4, respectively. As a
result of above reasoning, in the event Ψ, we have

n1 + n3 = l2,

n2 + n4 = l1,

n1 + n2 = g0,

D − f − s− n2 = g1.

Solving the equations gives
n1 = g0 − (D − f − s− g1),

n2 = D − f − s− g1,

n3 = l2 − g0 + (D − f − s− g1),

n4 = l1 − (D − f − s− g1).

Note that
∑4

i=1 ni = l1 + l2. Therefore, event Ψ is equivalent to randomly picking n1, n2, n3 and n4 bins in C1,...,C4, and
then allocate a type “O” points in these (l1 + l2) bins such that each bin contains at least one “O”. Hence, we obtain

P
{
|L1| = l1, |L2| = l2, |G0| = g0, |G1| = g1

∣∣∣|C1| = s
}
=

(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

l1+l2−1

)(
D−1

D−a−1

)
=

(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

a−l1−l2

)(
D−1
a

) , (25)

which is also a multi-variate hyper-geometric distribution. Now combining (23), (24) and (25), we obtain the joint distribution
of |L0|, |L1|, |L2|, |G0| and |G1| as

P
{
|L1| = l1, |L2| = l2, |G0| = g0, |G1| = g1

}
=

D−f−1∑
s=max(0,D−2f+a)

(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

a−l1−l2

)(
D−1
a

) ·
(
D−f
s

)(
f−a−1

D−f−s−1

)(
D−a−1
D−f−1

) . (26)

Now let Ξ be the feasible set of (l0, l1, g0, g1, g2) that satisfies the intrinsic constraints (11). The desired expectation w.r.t.
both π and σ can thus be written as

Ẽ =
∑
Ξ

(
l0

f + g0 + g1
+

a(g0 + l2)

(f + g0 + g1)f

)
· D−f−1∑

s=max(0,D−2f+a)

(
s
n1

)(
D−f−s

n2

)(
D−f−s

n3

)(
f−a−(D−f−s)

n4

)(
a−1

a−l1−l2

)(
D−1
a

) ·
(
D−f
s

)(
f−a−1

D−f−s−1

)(
D−a−1
D−f−1

)
 .

The desired result then follows from (21).

A.4. Proof of Proposition 3.2

Proposition 3.2 (Symmetry). V ar[Ĵσ,π] is the same for the (D, f, a)-data pair and the (D, f, f − a)-data pair, for ∀0 ≤
a ≤ f ≤ D.

Proof. For fixed a, f,D, let Ẽ1 be the expectation defined in Theorem 3.1 for (v1,w1), and Ẽ2 be that for (v2,w2). From
Theorem 3.1 we know that

Ẽ1 = E(l0,l2,g0,g1)

[l0
f + g0 + g1

+
a(g0 + l2)

(f + g0 + g1)f

]
,

where (l0, l2, g0, g1) follows the distribution of (|L0|, |L2|, |G0|, |G1|) associated with the location vector x1 of (v1,v2).
For data pair (v2,w2), we can consider its location vector x2 as swapping the “O” and “×” entries of x1. Now we denote

C-MinHash: Improving Minwise Hashing with Circulant Permutation

the size of the corresponding sets (Definition 2.2) of x2 as l′is, g
′
is, h

′
is, for i = 0, 1, 2. Since σ is applied before hashing, by

symmetry there is a one-to-one correspondence between the two location vectors. More specifically, l′0 corresponds to h1,
g′0 corresponds to g1, g′1 corresponds to g0, and l′2 corresponds to h2. Therefore, in probability we can write

Ẽ2 = E(l′0,l
′
2,g

′
0,g

′
1)

[l′0
f + g′0 + g′1

+
a(g′0 + l′2)

(f + g′0 + g′1)f

]
= E(h1,h2,g0,g1)

[h1

f + g0 + g1
+

(f − a)(g1 + h2)

(f + g0 + g1)f

]
.

Consequently, we have

Ẽ1 − Ẽ2 = E(l0,l2,h1,h2,g0,g1)

[l0 − h1

f + g0 + g1
+

a(g0 + l2)− (f − a)(g1 + h2)

(f + g0 + g1)f

]
.

In the sequel, the subscript of expectation is suppressed for conciseness. Exploiting the constraints (11), we deduce that
h1 = (f − a)− l1 − g1, h2 = l0 + g0 + l1 + g1 − a and l0 + l1 = a− l2. Using these facts we obtain

Ẽ1 − Ẽ2 = E
[(l0 − (f − a) + l1 + g1)f + a(g0 + l2)− (f − a)(l0 + g0 + l1 + 2g1 − a)

(f + g0 + g1)f

]
= E

[(2a− f + g1 − l2)f + a(g0 + l2)− (f − a)(2g1 + g0 − l2)

(f + g0 + g1)f

]
= E

[2(f + g0 + g1)a− (f + g0 + g1)f

(f + g0 + g1)f

]
= 2J − 1.

Comparing the variances of Ĵσ,π(v1,w1) and Ĵσ,π(v2,w2), we derive

V ar[Ĵσ,π(v1,w1)]− V ar[Ĵσ,π(v2,w2)]

= (
J

K
+

(K − 1)Ẽ1
K

− J2)− (
1− J

K
+

(K − 1)Ẽ2
K

− (1− J)2)

= −K − 1

K
(2J − 1) +

K − 1

K
(Ẽ1 − Ẽ2) = 0.

This completes the proof.

A.5. Proof of Lemma 3.3

Lemma 3.3 (Strict Increment). Assume a > 0 and f > a are arbitrary and fixed. Denote ẼD as in (20) in Theorem 3.1, with
D treated as a parameter. Then we have ẼD+1 > ẼD for ∀D ≥ f .

Proof. The lemma basically says that Ẽ is monotonically increasing when we append more “−” entries to the data vector.
Let the probability mass function (26) parameterized by a, f and dimensionality D be Pa,f,D(l0, l2, g0, g1). Conditional on
l0, l2, g0, g1 with D elements, there are several cases for the possible values l′0, l

′
2, g

′
0, g

′
1 when adding a “−”:

• g′0 = g0 + 1, l′0 = l0, l
′
2 = l2, g

′
1 = g1. This is true when the new elements falls between a pair of (×, O), with

probability l1+l2−g0
D .

• g′1 = g1 + 1, l′0 = l0, l
′
2 = l2, g

′
0 = g0, when the new elements falls between a pair of (×,×), with probability

f−a−l1−g1
D .

• g′1 = g1 + 1, l′2 = l2 + 1, l′0 = l0, g
′
0 = g0, when the new elements falls between a pair of (O,×), with probability l1

D .

• l′0 = l0 − 1, l′2 = l2 + 1, g′0 = g0 + 1, g′1 = g1, when the new elements falls between a pair of (O,O). The probability
of this event is l0

D .

• All values unchanged, when the “−” falls between other types of pairs, with probability D−f+g0+g1
D .

C-MinHash: Improving Minwise Hashing with Circulant Permutation

Denote ΞD as the feasible set satisfying (11) with dimension D ≥ f . Above reasoning builds a correspondence between
ΞD and ΞD+1. More precisely, we have

ẼD+1 =
∑
ΞD+1

(
l′0

f + g′0 + g′1
+

a(g′0 + l′2)

(f + g′0 + g′1)f

)
Pa,f,D+1(l

′
0, l

′
2, g

′
0, g

′
1)

=
∑
ΞD

{(l0
f + g0 + g1 + 1

+
a(g0 + l2 + 1)

(f + g0 + g1 + 1)f

) l1 + l2 − g0
D

Pa,f,D(l0, l2, g0, g1)

+
(l0
f + g0 + g1 + 1

+
a(g0 + l2)

(f + g0 + g1 + 1)f

)f − a− l1 − g1
D

Pa,f,D(l0, l2, g0, g1)

+
(l0
f + g0 + g1 + 1

+
a(g0 + l2 + 1)

(f + g0 + g1 + 1)f

) l1
D
Pa,f,D(l0, l2, g0, g1)

+
(l0 − 1

f + g0 + g1 + 1
+

a(g0 + l2 + 2)

(f + g0 + g1 + 1)f

) l0
D
Pa,f,D(l0, l2, g0, g1)

+
(l0
f + g0 + g1

+
a(g0 + l2)

(f + g0 + g1)f

)D − f + g0 + g1
D

Pa,f,D(l0, l2, g0, g1)

}
.

Therefore, the increment can be computed as

δ̃D ≜ ẼD+1 − ẼD

=
∑
ΞD

{
f − g0 − g1

D

[(l0
f + g0 + g1 + 1

− l0
f + g0 + g1

)
+
(a(g0 + l2 + 1)

f + g0 + g1 + 1
− a(g0 + l2)

f + g0 + g1

)]
− l0

D(f + g0 + g1 + 1)
− a(f − a− l1 − g1)− al0

Df(f + g0 + g1 + 1)

}
Pa,f,D(l0, l2, g0, g1)

=
∑
ΞD

{
(f − g0 − g1)[a(f + g1 − l2)− fl0]

Df(f + g0 + g1)(f + g0 + g1 + 1)
− (f − a)l0 + a(f − a− l1 − g1)

Df(f + g0 + g1 + 1)

}
Pa,f,D(l0, l2, g0, g1)

=
∑
ΞD

2af(l1 + g1)− 2f(f − a)l0 − 2a(f − a)(g0 + g1)

Df(f + g0 + g1)(f + g0 + g1 + 1)
Pa,f,D(l0, l2, g0, g1)

= E
[2af(l1 + g1)− 2f(f − a)l0 − 2a(f − a)(g0 + g1)

Df(f + g0 + g1)(f + g0 + g1 + 1)

]
= E

[2af(f − a− h1)− 2f(f − a)l0 − 2a(f − a)(g0 + g1 + f − f)

Df(f + g0 + g1)(f + g0 + g1 + 1)

]
= E

[4a(f − a)

D(f + g0 + g1)(f + g0 + g1 + 1)

]
− E

[2ah1 + 2(f − a)l0
D(f + g0 + g1)(f + g0 + g1 + 1)

]
− E

[2a(f − a)

Df(f + g0 + g1 + 1)

]
≜ 4a(f − a)E0 − 2aE1 − 2(f − a)E2 − 2a(f − a)E3, (27)

where

E0 = E
[1

D(f + g0 + g1)(f + g0 + g1 + 1)

]
, E1 = E

[h1

D(f + g0 + g1)(f + g0 + g1 + 1)

]
,

E2 = E
[l0
D(f + g0 + g1)(f + g0 + g1 + 1)

]
, E3 = E

[g2
Df(f + g0 + g1 + 1)

]
.

Note that here the expectations are taken w.r.t. the set size distribution under (a, f,D). We can expand the terms of density

C-MinHash: Improving Minwise Hashing with Circulant Permutation

function (26) to derive

Pa,f,D(l0, l2, g0, g1)

=

D−f−1∑
s=max(0,D−2f+a)

(D − f − s)(D − f)!(f − a− 1)!

[D − (f + g0 + g1)]![(f + g0 + g1)−D + s]!g1!(D − f − s− g1)!

(a− 1)!

(g0 + g1 − l2)![D − s+ l2 − (f + g0 + g1)]!(f − a− l1 − g1)!(f + g1 + l1 −D + s)!l0!(a− l0 − 1)!

a!(f − a)!(D − f − 1)!

(D − 1)!
.

Denote a′ = a− 1, f ′ = f − 1, D′ = D − 1 and l′0 = l0 − 1. We have

E2 =
∑
ΞD

l0
D(f + g0 + g1)(f + g0 + g1 + 1)

Pa,f,D(l0, l2, g0, g1)

=
∑
ΞD

a(a− 1)

D − 1
· 1

D(f + g0 + g1)(f + g0 + g1 + 1)

D′−f ′−1∑
s=max(0,D′−2f ′+a′)

(D′ − f ′ − s)(D′ − f ′)!(f ′ − a′ − 1)!

[D′ − (f ′ + g0 + g1)]![(f ′ + g0 + g1)−D′ + s]!g1!(D′ − f ′ − s− g1)!

(a′ − 1)!

(g0 + g1 − l2)![D′ − s+ l2 − (f ′ + g0 + g1)]!(f ′ − a′ − l1 − g1)!(f ′ + g1 + l1 −D′ + s)!l′0!(a
′ − l′0 − 1)!

a′!(f ′ − a′)!(D′ − f ′ − 1)!

(D′ − 1)!

=
∑
ΞD−1

a(a− 1)

D − 1

1

D(f + g0 + g1)(f + g0 + g1 + 1)
Pa−1,f−1,D−1(l0, l2, g0, g1)

=
a(a− 1)

D − 1
Ea−1,f−1,D−1

[1

D(f + g0 + g1)(f + g0 + g1 + 1)

]
≜

a(a− 1)

D − 1
Ē.

Here, the subscript means that we are taking expectation w.r.t the set sizes when the numbers of “O”, “×” and “−” points
are (a− 1, f − 1, D − 1). By symmetry, it can be shown similarly that

E1 =
(f − a)(f − a− 1)

D − 1
Ea,f−1,D−1

[1

D(f + g0 + g1)(f + g0 + g1 + 1)

]
=

(f − a)(f − a− 1)

D − 1
Ē.

Substituting above results into (27), we obtain

δ̃D = 2a(f − a)[2E0 −
f − 2

D − 1
Ē − E3].

To compute E0, note that with a, f and D fixed, variable g2 is distributed as hyper(D − 1, D − f,D − f − 1). For Ē, the
distribution becomes hyper(D − 2, D − f,D − f − 1). Since f + g0 + g1 = D − g2, we know that

E0 =

D−f−1∑
s=max(0,D−2f)

1

D(D − s)(D − s+ 1)

(
D−f−1

s

)(
f

D−f−s

)(
D−1
D−f

)
=

D−f−1∑
s=max(0,D−2f)

1

D(D − s)(D − s+ 1)

(D − f − 1)!f !

s!(D − f − s− 1)!(D − f − s)!(−D + 2f + s)!

(D − f)!(f − 1)!

(D − 1)!
,

C-MinHash: Improving Minwise Hashing with Circulant Permutation

and

Ē =

D−f−1∑
s=max(0,D−2f+1)

1

D(D − s)(D − s+ 1)

(
D−f−1

s

)(
f−1

D−f−s

)(
D−2
D−f

)
=

D−f−1∑
s=max(0,D−2f+1)

1

D(D − s)(D − s+ 1)

(D − f)!(f − 2)!

(D − 2)!
·

(D − f − 1)!(f − 1)!

s!(D − f − s− 1)!(D − f − s)!(−D + 2f + s− 1)!
.

For ∀D ≥ f , we have

f − 2

D − 1
Ē ≤

D−f−1∑
s=max(0,D−2f)

(f − 2)(D − 1)(−D + 2f + s)

D(D − 1)f(f − 1)(D − s)(D − s+ 1)

(D − f − 1)!f !

s!(D − f − s− 1)!(D − f − s)!(−D + 2f + s)!

(D − f)!(f − 1)!

(D − 1)!

≤ E
[(f − 2)(f − (D − f − g2))

Df(f − 1)(D − g2)(D − g2 + 1)

]
< E

[(f − g0 − g1)

Df(f + g0 + g1)(f + g0 + g1 + 1)

]
.

Consequently, we have

δ̃D > 2a(f − a)E
[2

D(f + g0 + g1)(f + g0 + g1 + 1)
− f − g0 − g1

Df(f + g0 + g1)(f + g0 + g1 + 1)

− f + g0 + g1
Df(f + g0 + g1)(f + g0 + g1 + 1)

]
= 0,

and note that this holds for ∀D ≥ K. The proof is now complete.

A.6. Proof of Theorem 3.4

Theorem 3.4 (Uniform Superiority). For any two binary vectors v,w ∈ {0, 1}D with J ̸= 0 or 1, it holds that
V ar[Ĵσ,π(v,w)] < V ar[ĴMH(v,w)].

Proof. By assumption we have 0 < a < f . To compare V ar[Ĵσ,π] with V ar[ĴMH] = J(1−J)
K = J

K + (K−1)J2

K − J2, it
suffices to compare Ẽ with J2. When D = f , we know that the location vector x of (v,w) contains no “−” elements. It is
easy to verify that in this case, |G0| = |G1| = |L2| = 0, and |L0| follows hyper(f − 1, a, a− 1). By Theorem 3.1, it follows
that when D = f ,

ẼD =
1

f
E[|L0|] =

a(a− 1)

f(f − 1)
= JJ̃ < J2.

Recall the definition J̃ = a−1
f−1 , which is always smaller than J . On the other hand, as D →∞, we have |L0| → 0, |L2| → a,

|G0| → a and |G1| → f − a. We can show that

ẼD → J2, as D →∞.

By Lemma 3.3, the sequence (Ẽf , Ẽf+1, Ẽf+2, ...) is strictly increasing. Since it is convergent with limit J2, by the Monotone
Convergence Theorem we know that ẼD < J2, ∀D ≥ f .

C-MinHash: Improving Minwise Hashing with Circulant Permutation

A.7. Proof of Proposition 3.6

Proposition 3.5 (Consistent Improvement). Suppose f is fixed. In terms of a, the variance ratio ρ(a) = V ar[ĴMH(v,w)]

V ar[Ĵσ,π(v,w)]
is

constant for any 0 < a < f .

Proof. Let Ẽ be defined as in Theorem 3.1. Assume that D and f are fixed and a is variable. Firstly, we can write the
variance ratio explicitly as

ρ(a) =
J−J2

K

J
K + (K+1)Ẽ

K − J2
=

1− J

1− J − (K − 1)(J − Ẽ
J)

.

We now show that the term J − Ẽ
J = C(1− J), where C is some constant independent of J (i.e., a). Then, for fixed D and

f , by cancellation ρ(a) would be constant for all 0 < a < f . We have

J − Ẽ
J

=
a

f
− Ea,f,D

[fl0
a(f + g0 + g1)

+
g0 + l2

f + g0 + g1

]
= E

[a2(f + g0 + g1)− f2l0 − af(g0 + l2)

af(f + g0 + g1)

]
= E

[a(a− f)(g0 + g1) + a2f + afg1 − f2l0 − afl2
af(f + g0 + g1)

]
= E

[a(a− f)(g0 + g1) + af(l0 + l1) + afg1 − f2l0
af(f + g0 + g1)

]
= E

[a(a− f)(g0 + g1) + f(a− f)l0 + af(f − a− h1)

af(f + g0 + g1)

]
, (28)

where we use the constraints (11) that l0 + l1 + l2 = a and l1 + g1 +h1 = f − a. We now study the three terms respectively.
We have

E
[a(a− f)(g0 + g1)

af(f + g0 + g1)

]
= −(1− J)E

[g0 + g1
f + g0 + g1

]
≜ −E′(1− J).

We have shown in the proof of Lemma 3.3 that

Ea,f,D

[l0
f + g0 + g1

]
=

a(a− 1)

D − 1
Ea−1,f−1,D−1

[1

f + g0 + g1

]
≜

a(a− 1)

D − 1
E∗,

and by symmetry it holds that

Ea,f,D

[h1

f + g0 + g1

]
=

(f − a)(f − a− 1)

D − 1
E∗.

Since f is fixed, (|G0|+ |G1|) is distributed independently of a. Consequently, E′ and E∗ are both independent of a. Thus,
it follows that

E
[f(a− f)l0
af(f + g0 + g1)

]
= −(1− J)

f(a− 1)

D − 1
E∗,

additionally,

E
[af(f − a− h1)

af(f + g0 + g1)

]
= (1− J)fE∗ − (1− J)

f(f − a− 1)

D − 1
E∗.

Summing up the terms and substituting into (28), we derive

J − Ẽ
J

= C(1− J),

where C = −E′ + (f − f(f−2)
D−1)E∗, which is independent of a. Taking into ρ(a), we get

ρ(a) =
1− J

1− J − (K − 1)C(1− J)
=

1

1− (K − 1)C
,

which is a constant only depending on f , D and K. This completes the proof.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

B. More Numerical Justification on C-MinHash-(π, π)
The “Words” dataset (Li and Church, 2005) (which is publicly available) contains a large number of word vectors, with the
i-th entry indicating whether this word appears in the i-th document, for a total of D = 216 documents. The key statistics of
the 120 selected word pairs are presented in Table 1. Those 120 pairs of words are more or less randomly selected except
that we make sure they cover a wide spectrum of data distributions. Denote d as the number of non-zero entries in the vector.
Table 1 reports the density d̃ = d/D for each word vector, ranging from 0.0006 to 0.6. The Jaccard similarity J ranges from
0.002 to 0.95.

In Figures 8 - 15, we plot the empirical MSE along with the empirical bias2 for Ĵπ,π , as well as the empirical MSE for Ĵσ,π .
Note that for D this large, it is numerically difficult to evaluate the theoretical variance formulas. From the results in the
Figures, we can observe

• For all the data pairs, the MSE of C-MinHash-(π, π) estimator overlaps with the empirical MSE of C-MinHash-(σ, π)
estimator for all K from 1 up to 4096.

• The bias2 is several orders of magnitudes smaller than the MSE, in all data pairs. This verifies that the bias of Ĵπ,π is
extremely small in practice and can be safely neglected.

We have many more plots on more data pairs. Nevertheless, we believe the current set of experiments on this “Words”
dataset should be sufficient to verify that, the proposed C-MinHash-(π, π) could give indistinguishable Jaccard estimation
accuracy in practice compared with C-MinHash-(σ, π).

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

CALORIES - MICROSOFT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

CAN - FROM

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

CAN - SEARCH

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

COMMITTED - PRODUCTIVE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
CONTEMPORARY - FLASH

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

CONVENIENTLY - INDUSTRIES

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

COPYRIGHT - AN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E CREDIT - CARD

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

DE - WEB

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

DO - GOOD

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

EARTH - GROUPS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

EXPRESSED - FRUSTRATED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

FIND - HAS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

FIND - SITE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

FIXED - SPECIFIC

2 Perm

1 Perm

Bias
2

Figure 9. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E FLIGHT - TRANSPORTATION

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

FOUND - DE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E FRANCISCO - SAN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

GOOD - BACK

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

GROUPS - ORDERED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

HAPPY - CONCEPT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E HAVE - FIRST

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

HAVE - US

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

HILL - ASSURED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

HOME - SYNTHESIS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E HONG - KONG

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

HOSTED - DRUGS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

INTERVIEWS - FOURTH

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

KANSAS - PROPERTY

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E KIRIBATI - GAMBIA

2 Perm

1 Perm

Bias
2

Figure 10. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

LAST - THIS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

LEAST - ROMANCE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

LIME - REGISTERED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

LINKS - TAKE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
LINKS - THAN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MAIL - AND

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MAIL - BACK

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MAKE - LIKE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MANAGING - LOCK

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MANY - US

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MASS - DREAM

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MAY - HELP

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

MOST - HOME

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NAME - IN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NEITHER - FIGURE

2 Perm

1 Perm

Bias
2

Figure 11. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NET - SO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NEW - PLEASE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NEW - WEB

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NEWS - LIKE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
NO - WELL

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NOT - IT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

NOTORIOUSLY - LOCK

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OF - THEN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OF - WE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OPPORTUNITY - COUNTRIES

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

WALKED - ANTIVIRUS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OUR - THAN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OVER - BACK

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

OVER - TWO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PEAK - SHOWS

2 Perm

1 Perm

Bias
2

Figure 12. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PEOPLE - BY

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PEOPLE - INFO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PICKS - BOOST

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PLANET - REWARD

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E PLEASE - MAKE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PREFER - PUEDE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PRIVACY - FOUND

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

PROSECUTION - MAXIMIZE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E RECENTLY - INT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E REPLY - ACHIEVE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

RESERVED - BEEN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

RIGHTS - FIND

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E RIGHTS - RESERVED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SCENE - ABOUT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E SEE - ALSO

2 Perm

1 Perm

Bias
2

Figure 13. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SEIZE - ANYTHING

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SHOULDERS - GORGEOUS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SICK - FELL

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SITE - CELLULAR

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
SOLD - LIVE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SOLO - CLAIMS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SOON - ADVANCE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

SPECIALIZES - ACTUAL

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

STATE - OF

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E STATES - UNITED

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

TATTOO - JEANS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E THAT - ALSO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THIS - CITY

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THEIR - SUPPORT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THEIR - VIEW

2 Perm

1 Perm

Bias
2

Figure 14. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

C-MinHash: Improving Minwise Hashing with Circulant Permutation

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THEM - OF

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THEN - NEW

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

THINKS - LOT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

TIME - OUT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E
TIME - WELL

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

TOP - AS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

TOP - COPYRIGHT

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

TOP - NEWS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E UP - AND

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E UP - HAS

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

US - BE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

VIEW - IN

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

VIEW - PEOPLE

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E WEB - GO

2 Perm

1 Perm

Bias
2

10
0

10
1

10
2

10
3

10
4

K

10
-8

10
-6

10
-4

10
-2

10
0

M
S

E

WEEKS - LONDON

2 Perm

1 Perm

Bias
2

Figure 15. Empirical MSEs of C-MinHash-(π, π) (“1 Perm”, red, solid) vs. C-MinHash-(σ, π) (“2 Perm”, blue, dashed) on various data
pairs from the Words dataset. We also report the empirical bias2 for C-MinHash-(π, π) to show that the bias is so small that it can be
safely neglected. The empirical MSE curves for both estimators essentially overlap for all data pairs.

