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Abstract
Vision-Language Pre-training (VLP) has ad-
vanced the performance for many vision-language
tasks. However, most existing pre-trained mod-
els only excel in either understanding-based tasks
or generation-based tasks. Furthermore, perfor-
mance improvement has been largely achieved
by scaling up the dataset with noisy image-text
pairs collected from the web, which is a subop-
timal source of supervision. In this paper, we
propose BLIP, a new VLP framework which trans-
fers flexibly to both vision-language understand-
ing and generation tasks. BLIP effectively uti-
lizes the noisy web data by bootstrapping the
captions, where a captioner generates synthetic
captions and a filter removes the noisy ones. We
achieve state-of-the-art results on a wide range
of vision-language tasks, such as image-text re-
trieval (+2.7% in average recall@1), image cap-
tioning (+2.8% in CIDEr), and VQA (+1.6% in
VQA score). BLIP also demonstrates strong gen-
eralization ability when directly transferred to
video-language tasks in a zero-shot manner. Code
and models are available at https://github.
com/salesforce/BLIP.

1. Introduction
Vision-language pre-training has recently received tremen-
dous success on various multimodal downstream tasks.
However, existing methods have two major limitations:

(1) Model perspective: most methods either adopt an
encoder-based model (Radford et al., 2021; Li et al., 2021a),
or an encoder-decoder (Cho et al., 2021; Wang et al., 2021)
model. However, encoder-based models are less straightfor-
ward to directly transfer to text generation tasks (e.g. image
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Figure 1. We use a Captioner (Cap) to generate synthetic captions
for web images, and a Filter (Filt) to remove noisy captions.

captioning), whereas encoder-decoder models have not been
successfully adopted for image-text retrieval tasks.

(2) Data perspective: most state-of-the-art methods (e.g.,
CLIP (Radford et al., 2021), ALBEF (Li et al., 2021a),
SimVLM (Wang et al., 2021)) pre-train on image-text pairs
collected from the web. Despite the performance gain ob-
tained by scaling up the dataset, our paper shows that the
noisy web text is suboptimal for vision-language learning.

To this end, we propose BLIP: Bootstrapping Language-
Image Pre-training for unified vision-language understand-
ing and generation. BLIP is a new VLP framework which
enables a wider range of downstream tasks than existing
methods. It introduces two contributions from the model
and data perspective, respectively:

(a) Multimodal mixture of Encoder-Decoder (MED): a new
model architecture for effective multi-task pre-training and
flexible transfer learning. An MED can operate either as
a unimodal encoder, or an image-grounded text encoder,
or an image-grounded text decoder. The model is jointly
pre-trained with three vision-language objectives: image-
text contrastive learning, image-text matching, and image-
conditioned language modeling.

(b) Captioning and Filtering (CapFilt): a new dataset boos-
trapping method for learning from noisy image-text pairs.
We finetune a pre-trained MED into two modules: a cap-
tioner to produce synthetic captions given web images, and
a filter to remove noisy captions from both the original web
texts and the synthetic texts.

We perform extensive experiments and analysis, and make
the following key observations.

• We show that the captioner and the filter work together to
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Figure 2. Pre-training model architecture and objectives of BLIP (same parameters have the same color). We propose multimodal mixture
of encoder-decoder, a unified vision-language model which can operate in one of the three functionalities: (1) Unimodal encoder is
trained with an image-text contrastive (ITC) loss to align the vision and language representations. (2) Image-grounded text encoder uses
additional cross-attention layers to model vision-language interactions, and is trained with a image-text matching (ITM) loss to distinguish
between positive and negative image-text pairs. (3) Image-grounded text decoder replaces the bi-directional self-attention layers with
causal self-attention layers, and shares the same cross-attention layers and feed forward networks as the encoder. The decoder is trained
with a language modeling (LM) loss to generate captions given images.

achieve substantial performance improvement on various
downstream tasks by bootstrapping the captions. We also
find that more diverse captions yield larger gains.

• BLIP achieves state-of-the-art performance on a wide
range of vision-language tasks, including image-text re-
trieval, image captioning, visual question answering, vi-
sual reasoning, and visual dialog. We also achieve state-of-
the-art zero-shot performance when directly transferring
our models to two video-language tasks: text-to-video
retrieval and videoQA.

2. Related Work
2.1. Vision-language Pre-training

Vision-language pre-training (VLP) aims to improve per-
formance of downstream vision and language tasks by pre-
training the model on large-scale image-text pairs. Due to
the prohibitive expense of acquiring human-annotated texts,
most methods (Chen et al., 2020; Li et al., 2020; 2021a;
Wang et al., 2021; Radford et al., 2021) use image and
alt-text pairs crawled from the web (Sharma et al., 2018;
Changpinyo et al., 2021; Jia et al., 2021), Despite the use of
simple rule-based filters, noise is still prevalent in the web
texts. However, the negative impact of the noise has been
largely overlooked, shadowed by the performance gain ob-
tained from scaling up the dataset. Our paper shows that the
noisy web texts are suboptimal for vision-language learning,
and proposes CapFilt that utilizes web datasets in a more
effective way.

There have been many attempts to unify various vision
and language tasks into a single framework (Zhou et al.,
2020; Cho et al., 2021; Wang et al., 2021). The biggest
challenge is to design model architectures that can perform
both understanding-based tasks (e.g. image-text retrieval)
and generation-based tasks (e.g. image captioning). Neither
encoder-based models (Li et al., 2021a;b; Radford et al.,
2021) nor encoder-decoder models (Cho et al., 2021; Wang
et al., 2021) can excel at both types of tasks, whereas a single
unified encoder-decoder (Zhou et al., 2020) also limits the
model’s capability. Our proposed multimodal mixture of
encoder-decoder model offers more flexibility and better
performance on a wide range of downstream tasks, in the
meantime keeping the pre-training simple and efficient.

2.2. Knowledge Distillation

Knowledge distillation (KD) (Hinton et al., 2015) aims to
improve the performance of a student model by distilling
knowledge from a teacher model. Self-distillation is a spe-
cial case of KD where the teacher and student have equal
sizes. It has been shown to be effective for image classi-
fication (Xie et al., 2020), and recently for VLP (Li et al.,
2021a). Different from mostly existing KD methods which
simply enforce the student to have the same class predic-
tions as the teacher, our proposed CapFilt can be interpreted
as a more effective way to perform KD in the context of
VLP, where the captioner distills its knowledge through
semantically-rich synthetic captions, and the filter distills
its knowledge by removing noisy captions.
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2.3. Data Augmentation

While data augmentation (DA) has been widely adopted in
computer vision (Shorten & Khoshgoftaar, 2019), DA for
language tasks is less straightforward. Recently, generative
language models have been used to synthesize examples
for various NLP tasks (Kumar et al., 2020; Anaby-Tavor
et al., 2020; Puri et al., 2020; Yang et al., 2020). Differ-
ent from these methods which focus on the low-resource
language-only tasks, our method demonstrates the advan-
tage of synthetic captions in large-scale vision-language
pre-training.

3. Method
We propose BLIP, a unified VLP framework to learn from
noisy image-text pairs. This section first introduces our new
model architecture MED and its pre-training objectives, and
then delineates CapFilt for dataset bootstrapping.

3.1. Model Architecture

We employ a visual transformer (Dosovitskiy et al., 2021)
as our image encoder, which divides an input image into
patches and encodes them as a sequence of embeddings,
with an additional [CLS] token to represent the global im-
age feature. Compared to using pre-trained object detectors
for visual feature extraction (Chen et al., 2020), using a ViT
is more computation-friendly and has been adopted by the
more recent methods (Li et al., 2021a; Kim et al., 2021).

In order to pre-train a unified model with both understanding
and generation capabilities, we propose multimodal mixture
of encoder-decoder (MED), a multi-task model which can
operate in one of the three functionalities:
(1) Unimodal encoder, which separately encodes image
and text. The text encoder is the same as BERT (Devlin et al.,
2019), where a [CLS] token is appended to the beginning
of the text input to summarize the sentence.
(2) Image-grounded text encoder, which injects visual
information by inserting one additional cross-attention (CA)
layer between the self-attention (SA) layer and the feed
forward network (FFN) for each transformer block of the
text encoder. A task-specific [Encode] token is appended
to the text, and the output embedding of [Encode] is used
as the multimodal representation of the image-text pair.
(3) Image-grounded text decoder, which replaces the bi-
directional self-attention layers in the image-grounded text
encoder with causal self-attention layers. A [Decode]
token is used to signal the beginning of a sequence, and an
end-of-sequence token is used to signal its end.

3.2. Pre-training Objectives

We jointly optimize three objectives during pre-training,
with two understanding-based objectives and one generation-

based objective. Each image-text pair only requires one for-
ward pass through the computational-heavier visual trans-
former, and three forward passes through the text trans-
former, where different functionalities are activated to com-
pute the three losses as delineated below.

Image-Text Contrastive Loss (ITC) activates the unimodal
encoder. It aims to align the feature space of the visual trans-
former and the text transformer by encouraging positive
image-text pairs to have similar representations in contrast
to the negative pairs. It has been shown to be an effective
objective for improving vision and language understand-
ing (Radford et al., 2021; Li et al., 2021a). We follow the
ITC loss by Li et al. (2021a), where a momentum encoder
is introduced to produce features, and soft labels are created
from the momentum encoder as training targets to account
for the potential positives in the negative pairs.

Image-Text Matching Loss (ITM) activates the image-
grounded text encoder. It aims to learn image-text multi-
modal representation that captures the fine-grained align-
ment between vision and language. ITM is a binary clas-
sification task, where the model uses an ITM head (a lin-
ear layer) to predict whether an image-text pair is positive
(matched) or negative (unmatched) given their multimodal
feature. In order to find more informative negatives, we
adopt the hard negative mining strategy by Li et al. (2021a),
where negatives pairs with higher contrastive similarity in a
batch are more likely to be selected to compute the loss.

Language Modeling Loss (LM) activates the image-
grounded text decoder, which aims to generate textual de-
scriptions given an image. It optimizes a cross entropy loss
which trains the model to maximize the likelihood of the
text in an autoregressive manner. We apply a label smooth-
ing of 0.1 when computing the loss. Compared to the MLM
loss that has been widely-used for VLP, LM enables the
model with the generalization capability to convert visual
information into coherent captions.

In order to perform efficient pre-training while leveraging
multi-task learning, the text encoder and text decoder share
all parameters except for the SA layers. The reason is that
the differences between the encoding and decoding tasks are
best captured by the SA layers. In particular, the encoder
employs bi-directional self-attention to build representations
for the current input tokens, while the decoder employs
causal self-attention to predict next tokens. On the other
hand, the embedding layers, CA layers and FFN function
similarly between encoding and decoding tasks, therefore
sharing these layers can improve training efficiency while
benefiting from multi-task learning,

3.3. CapFilt

Due to the prohibitive annotation cost, there exist a lim-
ited number of high-quality human-annotated image-text
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Figure 3. Learning framework of BLIP. We introduce a captioner to produce synthetic captions for web images, and a filter to remove
noisy image-text pairs. The captioner and filter are initialized from the same pre-trained model and finetuned individually on a small-scale
human-annotated dataset. The bootstrapped dataset is used to pre-train a new model.

pairs {(Ih, Th)} (e.g., COCO (Lin et al., 2014)). Recent
work (Li et al., 2021a; Wang et al., 2021) utilizes a much
larger number of image and alt-text pairs {(Iw, Tw)} that
are automatically collected from the web. However, the
alt-texts often do not accurately describe the visual content
of the images, making them a noisy signal that is suboptimal
for learning vision-language alignment.

We propose Captioning and Filtering (CapFilt), a new
method to improve the quality of the text corpus. Figure 3
gives an illustration of CapFilt. It introduces two modules:
a captioner to generate captions given web images, and a
filter to remove noisy image-text pairs. Both the captioner
and the filter are initialized from the same pre-trained MED
model, and finetuned individually on the COCO dataset.
The finetuning is a lightweight procedure.

Specifically, the captioner is an image-grounded text de-
coder. It is finetuned with the LM objective to decode texts
given images. Given the web images Iw, the captioner gen-
erates synthetic captions Ts with one caption per image.
The filter is an image-grounded text encoder. It is finetuned
with the ITC and ITM objectives to learn whether a text
matches an image. The filter removes noisy texts in both
the original web texts Tw and the synthetic texts Ts, where
a text is considered to be noisy if the ITM head predicts it
as unmatched to the image. Finally, we combine the filtered
image-text pairs with the human-annotated pairs to form a
new dataset, which we use to pre-train a new model.

4. Experiments and Discussions
In this section, we first introduce pre-training details. Then
we provide a detailed experimental analysis on our method.
More ablation study can be found in the appendix.

4.1. Pre-training Details

Our models are implemented in PyTorch (Paszke et al.,
2019) and pre-trained on two 16-GPU nodes. The im-
age transformer is initialized from ViT pre-trained on Ima-
geNet (Touvron et al., 2020; Dosovitskiy et al., 2021), and
the text transformer is initialized from BERTbase (Devlin
et al., 2019). We explore two variants of ViTs: ViT-B/16
and ViT-L/16. Unless otherwise specified, all results re-
ported in this paper as “BLIP” uses ViT-B. We pre-train the
model for 20 epochs using a batch size of 2880 (ViT-B) /
2400 (ViT-L). We use AdamW (Loshchilov & Hutter, 2017)
optimizer with a weight decay of 0.05. The learning rate
is warmed-up to 3e-4 (ViT-B) / 2e-4 (ViT-L) and decayed
linearly with a rate of 0.85. We take random image crops of
resolution 224× 224 during pre-training, and increase the
image resolution to 384 × 384 during finetuning. We use
the same pre-training dataset as Li et al. (2021a) with 14M
images in total, including two human-annotated datasets
(COCO and Visual Genome (Krishna et al., 2017)), and
three web datasets (Conceptual Captions (Changpinyo et al.,
2021), Conceptual 12M (Changpinyo et al., 2021), SBU cap-
tions (Ordonez et al., 2011)). We also experimented with an
additional web dataset, LAION (Schuhmann et al., 2021),
which contains 115M images with more noisy texts1. More
details about the datasets can be found in the appendix.

4.2. Effect of CapFilt

In Table 1, we compare models pre-trained on different
datasets to demonstrate the efficacy of CapFilt on down-
stream tasks, including image-text retrieval and image cap-
tioning with finetuned and zero-shot settings.

1We only download images whose shorter edge is larger than
256 pixels from the original LAION400M. Due to the large size of
LAION, we only use 1/5 of it each epoch during pre-training.
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Pre-train
dataset

Bootstrap Vision
backbone

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
C F TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

COCO+VG
+CC+SBU
(14M imgs)

✗ ✗

ViT-B/16

78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
✗ ✓B 79.1 61.5 94.1 82.8 38.1 128.2 102.7 14.0
✓B ✗ 79.7 62.0 94.4 83.6 38.4 128.9 103.4 14.2
✓B ✓B 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

COCO+VG
+CC+SBU
+LAION
(129M imgs)

✗ ✗
ViT-B/16

79.6 62.0 94.3 83.6 38.8 130.1 105.4 14.2
✓B ✓B 81.9 64.3 96.0 85.0 39.4 131.4 106.3 14.3
✓L ✓L 81.2 64.1 96.0 85.5 39.7 133.3 109.6 14.7

✗ ✗ ViT-L/16 80.6 64.1 95.1 85.5 40.3 135.5 112.5 14.7
✓L ✓L 82.4 65.1 96.7 86.7 40.4 136.7 113.2 14.8

Table 1. Evaluation of the effect of the captioner (C) and filter (F) for dataset bootstrapping. Downstream tasks include image-text retrieval
and image captioning with finetuning (FT) and zero-shot (ZS) settings. TR / IR@1: recall@1 for text retrieval / image retrieval. ✓B/L:
captioner or filter uses ViT-B / ViT-L as vision backbone.

𝑇!: “from bridge 
near my house”

𝑇": “a flock of birds 
flying over a lake at 
sunset”

𝑇!: “in front of a house 
door in Reichenfels, 
Austria” 

𝑇": “a potted plant sitting 
on top of a pile of rocks”

𝑇!: “the current castle was 
built in 1180, replacing a 9th 
century wooden castle”

𝑇": “a large building with a lot 
of windows on it” 

Figure 4. Examples of the web text Tw and the synthetic text Ts. Green texts are accepted by the filter, whereas red texts are rejected.

Generation
method

Noise
ratio

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

None N.A. 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
Beam 19% 79.6 61.9 94.1 83.1 38.4 128.9 103.5 14.2
Nucleus 25% 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 2. Comparison between beam search and nucleus sampling for synthetic caption generation. Models are pre-trained on 14M images.

Layers shared #parameters Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

All 224M 77.3 59.5 93.1 81.0 37.2 125.9 100.9 13.1
All except CA 252M 77.5 59.9 93.1 81.3 37.4 126.1 101.2 13.1
All except SA 252M 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
None 361M 78.3 60.5 93.6 81.9 37.8 127.4 101.8 13.9

Table 3. Comparison between different parameter sharing strategies for the text encoder and decoder during pre-training.

When only the captioner or the filter is applied to the dataset
with 14M images, performance improvement can be ob-
served. When applied together, their effects compliment
each other, leading to substantial improvements compared
to using the original noisy web texts.

CapFilt can further boost performance with a larger dataset
and a larger vision backbone, which verifies its scalability
in both the data size and the model size. Furthermore, by
using a large captioner and filter with ViT-L, performance
of the base model can also be improved.

In Figure 4, we show some example captions and their
corresponding images, which qualitatively demonstrate the
effect of the captioner to generate new textual descriptions,

and the filter to remove noisy captions from both the original
web texts and the synthetic texts. More examples can be
found in the appendix.

4.3. Diversity is Key for Synthetic Captions

In CapFilt, we employ nucleus sampling (Holtzman et al.,
2020) to generate synthetic captions. Nucleus sampling is
a stochastic decoding method, where each token is sam-
pled from a set of tokens whose cumulative probability
mass exceeds a threshold p. Our experiments show that
p = {0.85, 0.9, 0.95} give similar pre-training results,
hence we set p = 0.9 for CapFilt. In Table 2, we com-
pare it with beam search, a deterministic decoding method
which aims to generate captions with the highest probability.
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Captioner &
Filter

Noise
ratio

Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

Share parameters 8% 79.8 62.2 94.3 83.7 38.4 129.0 103.5 14.2
Decoupled 25% 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 4. Effect of sharing parameters between the captioner and filter. Models are pre-trained on 14M images.

Method Pre-train COCO (5K test set) Flickr30K (1K test set)
# Images TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER (Chen et al., 2020) 4M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VILLA (Gan et al., 2020) 4M - - - - - - 87.9 97.5 98.8 76.3 94.2 96.8
OSCAR (Li et al., 2020) 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
UNIMO (Li et al., 2021b) 5.7M - - - - - - 89.4 98.9 99.8 78.0 94.2 97.1
ALIGN (Jia et al., 2021) 1.8B 77.0 93.5 96.9 59.9 83.3 89.8 95.3 99.8 100.0 84.9 97.4 98.6
ALBEF (Li et al., 2021a) 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100.0 85.6 97.5 98.9

BLIP 14M 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100.0 87.2 97.5 98.8
BLIP 129M 81.9 95.4 97.8 64.3 85.7 91.5 97.3 99.9 100.0 87.3 97.6 98.9
BLIPCapFilt-L 129M 81.2 95.7 97.9 64.1 85.8 91.6 97.2 99.9 100.0 87.5 97.7 98.9

BLIPViT-L 129M 82.4 95.4 97.9 65.1 86.3 91.8 97.4 99.8 99.9 87.6 97.7 99.0

Table 5. Comparison with state-of-the-art image-text retrieval methods, finetuned on COCO and Flickr30K datasets. BLIPCapFilt-L pre-trains
a model with ViT-B backbone using a dataset bootstrapped by captioner and filter with ViT-L.

Nucleus sampling leads to evidently better performance, de-
spite being more noisy as suggested by a higher noise ratio
from the filter. We hypothesis that the reason is that nucleus
sampling generates more diverse and surprising captions,
which contain more new information that the model could
benefit from. On the other hand, beam search tends to gen-
erate safe captions that are common in the dataset, hence
offering less extra knowledge.

4.4. Parameter Sharing and Decoupling

During pre-training, the text encoder and decoder share all
parameters except for the self-attention layers. In Table 3,
we evaluate models pre-trained with different parameter
sharing strategies, where pre-training is performed on the
14M images with web texts. As the result shows, sharing all
layers except for SA leads to better performance compared
to not sharing, while also reducing the model size thus
improveing training efficiency. If the SA layers are shared,
the model’s performance would degrade due to the conflict
between the encoding task and the decoding task.

During CapFilt, the captioner and the filter are end-to-end
finetuned individually on COCO. In Table 4, we study the
effect if the captioner and filter share parameters in the same
way as pre-training. The performance on the downstream
tasks decreases, which we mainly attribute to confirmation
bias. Due to parameter sharing, noisy captions produced by
the captioner are less likely to be filtered out by the filter, as
indicated by the lower noise ratio (8% compared to 25%).

Method Pre-train Flickr30K (1K test set)
# Images TR IR

R@1 R@5 R@10 R@1 R@5 R@10
CLIP 400M 88.0 98.7 99.4 68.7 90.6 95.2
ALIGN 1.8B 88.6 98.7 99.7 75.7 93.8 96.8
ALBEF 14M 94.1 99.5 99.7 82.8 96.3 98.1

BLIP 14M 94.8 99.7 100.0 84.9 96.7 98.3
BLIP 129M 96.0 99.9 100.0 85.0 96.8 98.6
BLIPCapFilt-L 129M 96.0 99.9 100.0 85.5 96.8 98.7

BLIPViT-L 129M 96.7 100.0 100.0 86.7 97.3 98.7

Table 6. Zero-shot image-text retrieval results on Flickr30K.

5. Comparison with State-of-the-arts
In this section, we compare BLIP to existing VLP methods
on a wide range of vision-language downstream tasks2. Next
we briefly introduce each task and finetuning strategy. More
details can be found in the appendix.

5.1. Image-Text Retrieval

We evaluate BLIP for both image-to-text retrieval (TR) and
text-to-image retrieval (IR) on COCO and Flickr30K (Plum-
mer et al., 2015) datasets. We finetune the pre-trained model
using ITC and ITM losses. To enable faster inference speed,
we follow Li et al. (2021a) and first select k candidates
based on the image-text feature similarity, and then rerank
the selected candidates based on their pairwise ITM scores.
We set k = 256 for COCO and k = 128 for Flickr30K.

2we omit SNLI-VE from the benchmark because its test data
has been reported to be noisy (Do et al., 2020)
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Method Pre-train
#Images

NoCaps validation COCO Caption
in-domain near-domain out-domain overall Karpathy test
C S C S C S C S B@4 C

Enc-Dec (Changpinyo et al., 2021) 15M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1 - 110.9
VinVL† (Zhang et al., 2021) 5.7M 103.1 14.2 96.1 13.8 88.3 12.1 95.5 13.5 38.2 129.3
LEMONbase† (Hu et al., 2021) 12M 104.5 14.6 100.7 14.0 96.7 12.4 100.4 13.8 - -
LEMONbase† (Hu et al., 2021) 200M 107.7 14.7 106.2 14.3 107.9 13.1 106.8 14.1 40.3 133.3

BLIP 14M 111.3 15.1 104.5 14.4 102.4 13.7 105.1 14.4 38.6 129.7
BLIP 129M 109.1 14.8 105.8 14.4 105.7 13.7 106.3 14.3 39.4 131.4
BLIPCapFilt-L 129M 111.8 14.9 108.6 14.8 111.5 14.2 109.6 14.7 39.7 133.3

LEMONlarge† (Hu et al., 2021) 200M 116.9 15.8 113.3 15.1 111.3 14.0 113.4 15.0 40.6 135.7
SimVLMhuge (Wang et al., 2021) 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
BLIPViT-L 129M 114.9 15.2 112.1 14.9 115.3 14.4 113.2 14.8 40.4 136.7

Table 7. Comparison with state-of-the-art image captioning methods on NoCaps and COCO Caption. All methods optimize the cross-
entropy loss during finetuning. C: CIDEr, S: SPICE, B@4: BLEU@4. BLIPCapFilt-L is pre-trained on a dataset bootstrapped by captioner
and filter with ViT-L. VinVL† and LEMON† require an object detector pre-trained on 2.5M images with human-annotated bounding
boxes and high resolution (800×1333) input images. SimVLMhuge uses 13× more training data and a larger vision backbone than ViT-L.

As shown in Table 5, BLIP achieves substantial performance
improvement compared with existing methods. Using the
same 14M pre-training images, BLIP outperforms the pre-
vious best model ALBEF by +2.7% in average recall@1
on COCO. We also perform zero-shot retrieval by directly
transferring the model finetuned on COCO to Flickr30K.
The result is shown in Table 6, where BLIP also outperforms
existing methods by a large margin.

5.2. Image Captioning

We consider two datasets for image captioning: No-
Caps (Agrawal et al., 2019) and COCO, both evaluated
using the model finetuned on COCO with the LM loss. Sim-
ilar as Wang et al. (2021), we add a prompt “a picture of”
at the beginning of each caption, which leads to slightly
better results. As shown in Table 7, BLIP with 14M pre-
training images substantially outperforms methods using
a similar amount of pre-training data. BLIP with 129M
images achieves competitive performance as LEMON with
200M images. Note that LEMON requires a computational-
heavy pre-trained object detector and higher resolution
(800×1333) input images, leading to substantially slower
inference time than the detector-free BLIP which uses lower
resolution (384×384) input images.

5.3. Visual Question Answering (VQA)

VQA (Antol et al., 2015) requires the model to predict an an-
swer given an image and a question. Instead of formulating
VQA as a multi-answer classification task (Chen et al., 2020;
Li et al., 2020), we follow Li et al. (2021a) and consider it as
an answer generation task, which enables open-ended VQA.
As shown in Figure 5(a), during finetuning, we rearrange the
pre-trained model, where an image-question is first encoded
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Figure 5. Model architecture for the downstream tasks. Q: ques-
tion; C: caption; QA: question-answer pair.

into multimodal embeddings and then given to an answer
decoder. The VQA model is finetuned with the LM loss
using ground-truth answers as targets.

The results are shown in Table 8. Using 14M images,
BLIP outperforms ALBEF by +1.64% on the test set. Us-
ing 129M images, BLIP achieves better performance than
SimVLM which uses 13× more pre-training data and a
larger vision backbone with an additional convolution stage.
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Method Pre-train
#Images

VQA NLVR2

test-dev test-std dev test-P

LXMERT 180K 72.42 72.54 74.90 74.50
UNITER 4M 72.70 72.91 77.18 77.85
VL-T5/BART 180K - 71.3 - 73.6
OSCAR 4M 73.16 73.44 78.07 78.36
SOHO 219K 73.25 73.47 76.37 77.32
VILLA 4M 73.59 73.67 78.39 79.30
UNIMO 5.6M 75.06 75.27 - -
ALBEF 14M 75.84 76.04 82.55 83.14
SimVLMbase† 1.8B 77.87 78.14 81.72 81.77

BLIP 14M 77.54 77.62 82.67 82.30
BLIP 129M 78.24 78.17 82.48 83.08
BLIPCapFilt-L 129M 78.25 78.32 82.15 82.24

Table 8. Comparison with state-of-the-art methods on VQA and
NLVR2. ALBEF performs an extra pre-training step for NLVR2.
SimVLM† uses 13× more training data and a larger vision back-
bone (ResNet+ViT) than BLIP.

5.4. Natural Language Visual Reasoning (NLVR2)

NLVR2 (Suhr et al., 2019) asks the model to predict whether
a sentence describes a pair of images. In order to enable rea-
soning over two images, we make a simple modification to
our pre-trained model which leads to a more computational-
efficient architecture than previous approaches (Li et al.,
2021a; Wang et al., 2021). As shown in Figure 5(b), for
each transformer block in the image-grounded text encoder,
there exist two cross-attention layers to process the two in-
put images, and their outputs are merged and fed to the FFN.
The two CA layers are intialized from the same pre-trained
weights. The merge layer performs simple average pooling
in the first 6 layers of the encoder, and performs concate-
nation followed by a linear projection in layer 6-12. An
MLP classifier is applied on the output embedding of the
[Encode] token. As shown in Table 8, BLIP outperforms
all existing methods except for ALBEF which performs an
extra step of customized pre-training. Interestingly, perfor-
mance on NLVR2 does not benefit much from additional
web images, possibly due to the domain gap between web
data and downstream data.

5.5. Visual Dialog (VisDial)

VisDial (Das et al., 2017) extends VQA in a natural con-
versational setting, where the model needs to predict an
answer not only based on the image-question pair, but also
considering the dialog history and the image’s caption. We
follow the discriminative setting where the model ranks a
pool of answer candidates (Gan et al., 2019; Wang et al.,
2020; Murahari et al., 2020). As shown in Figure 5(c), we
concatenate image and caption embeddings, and pass them
to the dialog encoder through cross-attention. The dialog
encoder is trained with the ITM loss to discriminate whether
the answer is true or false for a question, given the entire dia-
log history and the image-caption embeddings. As shown in

Method MRR↑ R@1↑ R@5↑ R@10↑ MR↓
VD-BERT 67.44 54.02 83.96 92.33 3.53
VD-ViLBERT† 69.10 55.88 85.50 93.29 3.25
BLIP 69.41 56.44 85.90 93.30 3.20

Table 9. Comparison with state-of-the-art methods on VisDial v1.0
validation set. VD-ViLBERT† (Murahari et al., 2020) pre-trains
ViLBERT (Lu et al., 2019) with additional VQA data.

Method R1↑ R5↑ R10↑ MdR↓
zero-shot

ActBERT (Zhu & Yang, 2020) 8.6 23.4 33.1 36
SupportSet (Patrick et al., 2021) 8.7 23.0 31.1 31
MIL-NCE (Miech et al., 2020) 9.9 24.0 32.4 29.5
VideoCLIP (Xu et al., 2021) 10.4 22.2 30.0 -
FiT (Bain et al., 2021) 18.7 39.5 51.6 10
ALPRO (Li et al., 2022) 24.1 44.7 55.4 8
BLIP 43.3 65.6 74.7 2

finetuning

ClipBERT (Lei et al., 2021) 22.0 46.8 59.9 6
VideoCLIP (Xu et al., 2021) 30.9 55.4 66.8 -
ALPRO (Li et al., 2022) 33.9 60.7 73.2 3

Table 10. Comparisons with state-of-the-art methods for text-to-
video retrieval on the 1k test split of the MSRVTT dataset.

Method MSRVTT-QA MSVD-QA

zero-shot

VQA-T (Yang et al., 2021) 2.9 7.5
BLIP 19.2 35.2

finetuning

HME (Fan et al., 2019) 33.0 33.7
HCRN (Le et al., 2020) 35.6 36.1
VQA-T (Yang et al., 2021) 41.5 46.3
ALPRO (Li et al., 2022) 42.1 45.9

Table 11. Comparisons with state-of-the-art methods for video
question answering. We report top-1 test accuracy on two datasets.

Table 9, our method achieves state-of-the-art performance
on VisDial v1.0 validation set.

5.6. Zero-shot Transfer to Video-Language Tasks

Our image-language model has strong generalization ability
to video-language tasks. In Table 10 and Table 11, we per-
form zero-shot transfer to text-to-video retrieval and video
question answering, where we directly evaluate the models
trained on COCO-retrieval and VQA, respectively. To pro-
cess video input, we uniformly sample n frames per video
(n = 8 for retrieval and n = 16 for QA), and concatenate
the frame features into a single sequence. Note that this
simple approach ignores all temporal information.

Despite the domain difference and lack of temporal mod-
eling, our models achieve state-of-the-art performance on
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both video-language tasks. For text-to-video retrieval, zero-
shot BLIP even outperforms models finetuned on the target
video dataset by +9.4% in recall@1. Further performance
improvement can be achieved if the BLIP model is used to
initialize a video-language model with temporal modeling
(e.g. replace our ViT with a TimeSformer (Bertasius et al.,
2021)) and finetuned on video data.

6. Conclusion
We propose BLIP, a new VLP framework with state-
of-the-art performance on a wide range of downstream
vision-language tasks, including understanding-based and
generation-based tasks. BLIP pre-trains a multimodal mix-
ture of encoder-decoder model using a dataset bootstrapped
from large-scale noisy image-text pairs by injecting diverse
synthetic captions and removing noisy captions. Our boot-
strapped dataset will be released to facilitate future vision-
language research.

There are a few potential directions that can further enhance
the performance of BLIP, which we do not explore in this
paper due to the increased computation cost from these ap-
proaches: (1) Multiple rounds of dataset bootstrapping; (2)
Generate multiple synthetic captions per image to further
enlarge the pre-training corpus; (3) Model ensemble by train-
ing multiple different captioners and filters and combining
their forces in CapFilt.
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CapFilt #Texts Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

No 15.3M 78.4 60.7 93.9 82.1 38.0 127.8 102.2 13.9
No 24.7M 78.3 60.5 93.7 82.2 37.9 127.7 102.1 14.0
Yes 24.7M 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 12. The original web texts are replicated to have the same number of samples per epoch as the bootstrapped dataset. Results verify
that the improvement from CapFilt is not due to longer training time.

Continue Retrieval-FT (COCO) Retrieval-ZS (Flickr) Caption-FT (COCO) Caption-ZS (NoCaps)
TR@1 IR@1 TR@1 IR@1 B@4 CIDEr CIDEr SPICE

Yes 80.6 63.0 94.5 84.6 38.5 129.9 104.5 14.2
No 80.6 63.1 94.8 84.9 38.6 129.7 105.1 14.4

Table 13. Continue training the pre-trained model offers less gain compared to training a new model with the bootstrapped dataset.

A. Additional Ablation Study on CapFilt
Improvement with CapFilt is not due to longer training.
Since the bootstrapped dataset contains more texts than the
original dataset, training for the same number of epochs
takes longer with the bootstrapped dataset. To verify that
the effectiveness of CapFilt is not due to longer training,
we replicate the web text in the original dataset so that it
has the same number of training samples per epoch as the
bootstrapped dataset. As shown in Table 12, longer training
using the noisy web texts does not improve performance.

A new model should be trained on the bootstrapped
dataset. The bootstrapped dataset is used to pre-train a
new model. We investigate the effect of continue training
from the previous pre-trained model, using the bootstrapped
dataset. Table 13 hows that continue training does not help.
This observation agrees with the common practice in knowl-
edge distillation, where the student model cannot be initial-
ized from the teacher.

B. Downstream Task Details
Table 14 shows the hyperparameters that we use for fine-
tuning on the downstream vision-language tasks. All tasks
uses AdamW optimizer with a weight decay of 0.05 and a
cosine learning rate schedule. We use an image resolution
of 384× 384, except for VQA where we follow Wang et al.
(2021) and use 480 × 480 images. Next we delineate the
dataset details.

Image-Text Retrieval. We use the Karpathy split (Karpathy
& Li, 2015) for both COCO and Flickr30K. COCO contains
113/5k/5k images for train/validation/test, and Flickr30K
contains 29k/1k/1k images for train/validation/test.

Image Captioning. We finetune on COCO’s Karpathy train
split, and evaluate on COCO’s Karpathy test split and No-
Caps validation split. During inference, we use beam search
with a beam size of 3, and set the maximum generation

length as 20.

VQA. We experiment with the VQA2.0 dataset (Goyal
et al., 2017), which contains 83k/41k/81k images for train-
ing/validation/test. Following Li et al. (2021a), we use
both training and validation splits for training, and include
additional training samples from Visual Genome. During
inference on VQA, we use the decoder to rank the 3,128
candidate answers (Li et al., 2021a; Kim et al., 2018).

NLVR2. We conduct experiment on the official split (Suhr
et al., 2019).

VisDial. We finetune on the training split of VisDial v1.0
and evaluate on its validation set.

Task init LR (ViT-L) batch size #epoch

Retrieval 1e−5 (5e−6) 256 6
Captioning 1e−5 (2e−6) 256 5
VQA 2e−5 256 10
NLVR2 3e−5 256 15
VisDial 2e−5 240 20

Table 14. Finetuning hyperparameters for downstream tasks.

C. Pre-training Dataset Details
Table 15 shows the statistics of the pre-training datasets.

COCO VG SBU CC3M CC12M LAION

# image 113K 100K 860K 3M 10M 115M
# text 567K 821K 860K 3M 10M 115M

Table 15. Statistics of the pre-training datasets.

D. Additional Examples of Synthetic Captions
In Figure 6, we show additional examples of images and
texts where the web captions are filtered out, and the syn-
thetic captions are kept as clean training samples.
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𝑇!: “a week spent at our 
rented beach house in 
Sandbridge”

𝑇": “an outdoor walkway 
on a grass covered hill”

𝑇!: “that's what a sign 
says over the door”

𝑇": “the car is driving 
past a small old 
building”

𝑇!: “hand held through the 
glass in my front bedroom 
window”

𝑇": “a moon against the night 
sky with a black background”

𝑇!: “stunning sky over 
walney island, lake 
district, july 2009”

𝑇": “an outdoor walkway 
on a grass covered hill”

𝑇!: “living in my 
little white house”

𝑇": “a tiny white 
flower with a bee 
in it”

𝑇!: “the pink rock 
from below”

𝑇": “some colorful
trees that are on a hill 
in the mountains”

Figure 6. Examples of the web text Tw and the synthetic text Ts. Green texts are accepted by the filter, whereas red texts are rejected.


