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Abstract

With the fast development of algorithmic gover-
nance, fairness has become a compulsory prop-
erty for machine learning models to suppress
unintentional discrimination. In this paper, we
focus on the pre-processing aspect for achiev-
ing fairness, and propose a data reweighing ap-
proach that only adjusts the weight for samples
in the training phase. Different from most previ-
ous reweighing methods which usually assign a
uniform weight for each (sub)group, we granu-
larly model the influence of each training sample
with regard to fairness-related quantity and pre-
dictive utility, and compute individual weights
based on influence under the constraints from
both fairness and utility. Experimental results
reveal that previous methods achieve fairness at
a non-negligible cost of utility, while as a signifi-
cant advantage, our approach can empirically re-
lease the tradeoff and obtain cost-free fairness for
equal opportunity. We demonstrate the cost-free
fairness through vanilla classifiers and standard
training processes, compared to baseline meth-
ods on multiple real-world tabular datasets. Code
available at https://github.com/brandeis-machine-
learning/influence-fairness.

1. Introduction
For artificial intelligence technology deployed in high-stakes
applications like welfare distribution or school admission, it
is essential to regulate algorithms and prevent unaware dis-
crimination and unfairness in decision making (Barocas &
Selbst, 2016; Goodman & Flaxman, 2017; Ferguson, 2017;
Civil Rights Act, 1964). Even though general data-driven al-
gorithms are not designed to be unfair, the outcomes can still
violate the AI principle of equality unintentionally (Choulde-
chova, 2017). Typically learning from historically biased
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data, the learner can retain or even amplify the inherent bias
if there is no proper constraint on data or algorithms. As
a consequence, the decisions from these algorithms may
disadvantage users in certain sensitive groups (e.g. female
and African Americans), therefore raising societal concerns.

To mitigate unfairness algorithmically, solutions can be
divided into three main categories: pre-processing, in-
processing, and post-processing. Pre-processing approaches
adjust the input data or training sample weights, and expect
a vanilla learner can deliver fair results from the fair data
transformation (Kamiran & Calders, 2012; Krasanakis et al.,
2018; Calmon et al., 2017; Jiang & Nachum, 2020; Feld-
man et al., 2015; Yan et al., 2020; Zemel et al., 2013; Raste-
garpanah et al., 2019; Chhabra et al., 2021). In-processing
approaches insert fair constraints or penalties into the train-
ing pipeline, so the fair performance can be generalized to
inference as achieved during training (Zhang et al., 2018;
Agarwal et al., 2018; Zhao et al., 2019; Zafar et al., 2017;
Jiang et al., 2020; Kearns et al., 2018; Goh et al., 2016;
Li et al., 2020; 2021; Song et al., 2021). As a drawback,
adding non-convex constraints or balancing the additional
fair penalties with the primary training objective could
rise optimization complexity, and sometimes incur instabil-
ity (Cotter et al., 2019; Roth et al., 2017). Post-processing
approaches calibrate the outcomes independently from a
model (Hardt et al., 2016; Pleiss et al., 2017), but would
result in sub-optimal solutions (Woodworth et al., 2017) and
request sensitive attributes during the inference stage.

In this work, we advocate the pre-processing category since
it directly diagnoses and corrects the source of bias, and
can be easily adapted to existing data analytic pipelines.
Pre-processing approaches can be further divided into two
subcategories. The first one modifies original data or injects
extra antidote data (Calmon et al., 2017; Feldman et al.,
2015), but will expose to the risk of learning from falsifica-
tion which could be legally questionable (Barocas & Selbst,
2016; Krasanakis et al., 2018). Conservatively, we consider
sample reweighing, the second subcategory that purely ad-
justs the weights for samples in the training objective, and
intend to achieve fairness through vanilla classifiers.

To prevent the model from disadvantaging a certain sensitive
group and violating group-level fairness (Dwork et al., 2012;
Hardt et al., 2016), most previous reweighing methods statis-
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tically identify the unprivileged groups from a heuristic or a
learning process. Then, they assign an identical weight to all
samples in a sensitive (sub)group, where the group member-
ship is conditional on both sensitive attributes and the target
label (Kamiran & Calders, 2012; Jiang & Nachum, 2020).
The philosophy is to amplify the error from an underrepre-
sented group in training, so optimization can equally update
a model for different groups. Differently, we hypothesize
the inherent bias in data can be traced to a biased and uncon-
fident labeling function (Chen et al., 2018; Jiang & Nachum,
2020). The labeling might be unconsciously affected by
sensitive attributes and therefore lead some training samples
to be assigned with an improper label. By this means, some
unqualified samples are assigned with positive labels, cam-
ouflaging themselves to be privileged, and correspondingly,
some qualified samples are labeled as negative, inducing
their groups to be unprivileged. Instead of equally treat-
ing every sample, we believe that an ideal pre-processing
method is to downweight the mislabeled samples in training
while keeping other good samples unchanged to preserve
the predictive utility.

To this end, we propose a one-pass data reweighing method
that granularly computes a weight for every sample in the
training set. We use influence function (Cook & Weisberg,
1980; Hampel et al., 2011; Koh & Liang, 2017; Giordano
et al., 2019) from robust statistics to estimate the effect of
changing the weight of one sample without explicitly re-
training the model. Specifically, we measure the sample
influence in terms of both fairness and predictive utility,
and theoretically prove that in a general case on influen-
tial approximation, a soft downweighting over some train-
ing samples can always enhance fairness while avoiding a
cost in utility. We realize our findings through a proposed
reweighing algorithm that estimates the individual weight
through linear programming under both utility and fairness
constraints. On multiple tabular datasets and in most cases,
our empirical results achieve good group fairness at no util-
ity cost compared to vanilla classifiers with original training
data. We deem fairness at no utility cost as a significant
advantage since it could help to popularize fair algorithms
for extensive utility-driven products.

2. Characterizing Sample Influence
In this section, we introduce preliminaries on influence func-
tion (Cook & Weisberg, 1980; Hampel et al., 2011; Koh &
Liang, 2017; Giordano et al., 2019). Influence function from
robust statistics is to quantitatively measure the impact of an
infinitesimal fraction of samples to an estimator. Consider a
classifier with parameters θ ∈ RD mapping instances from
input space x ∈ X to output space y ∈ Y . The model is
trained on a training set T = {zi = (xi, yi)}NT

i=1 with some
loss function ℓ : X × Y × Θ → R through empirical risk

minimization on the training set:

θ̂(1) = argmin
θ

∑
i

ℓ(zi; θ). (1)

The all-one vector 1 indicates an equal assignment of a unit
weight to every training sample. A reweighing of samples
followed by a retraining can be expressed as

θ̂(1−w) = argmin
θ

∑
i

(1− wi)ℓ(zi; θ), (2)

where wi denotes the deviation from a unit weight for zi,
and w ∈ RNT . Note that here (1− wi) is the weight of zi,
rather than wi. A larger wi indicates its less importance of
zi to the model training, and wi = 1 is equivalents to an
entire removal of zi from the training set.

It is of high interest and value to know in a counterfactual
how the model will change with regard to some typical
measurements, e.g. fairness or utility, if there is a reweigh-
ing. The actual influence derived from a reweighing can be
expressed as follows:

I∗f (w) = f(θ̂(1−w))− f(θ̂(1)), (3)

where the function f : RD → R evaluates the quantity of in-
terest. In the next section, we shall realize f with functions
describing utility and fairness, and study the correlations
between these two influences. To compute I∗, one can al-
ways separately train the model two times with and without
the reweighing. However, to reach an ideal value in f , re-
training is a brute force approach and can be prohibitively
expensive to find the optimal w. To this end, a first-order
approximation called influence function helps to estimate
the actual influence I∗ while getting rid of retraining (Cook
& Weisberg, 1980; Hampel et al., 2011).

Influence function measures the effect of changing an in-
finitesimal weight from samples in w, then linearly ex-
trapolates to complete all of w. It assumes ℓ to be twice-
differentiable and strictly convex in θ, and f to be differen-
tiable as well. These assumptions are mild and feasible for
many pipelines involving classifiers like logistic regression
to process tabular data. Having θ(1) and θ(1 − w) satis-
fied their first-order optimality conditions, and by taking a
Taylor approximation, the actual influence I∗f (w) can be
approximated by an estimation

If (w) = ∇θf(θ̂(1))
⊤
[
d

dt
θ(1− tw)|t=0

]
= ∇θf(θ̂(1))

⊤H−1

θ̂(1)

[∑
i

wi∇θℓ(zi; θ̂(1))

]
,

(4)

where Hθ̂(1) =
∑NT

i=1∇2
θℓ(zi; θ̂(1)) is the Hessian matrix

of ℓ, and the convexity ensures its invertibility. Influence
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function has been empirically proofed to be valid for rep-
resenting the actual influence obtained by model retraining
when the above assumptions are satisfied or violated by a
small degree (Koh & Liang, 2017). The additivity of If (w)
regarding a set of w should follow the additivety of f . A
negative value of If (w) instructs a reduction in f if the
model θ̂(1) is retrained with the weight w by Equation (2).

3. Fairness at No Utility Cost
We consider group fairness in this work. Group fairness ar-
ticulates the equality of some statistics like predictive rate or
true positive rate between certain groups. And here a group
is specifically constructed based on some sensitive attributes
like gender or race. Consider a binary classification prob-
lem Y = {0, 1}, where predictions are affected by a binary
sensitive attribute a ∈ {0, 1}. The sensitive attribute divides
samples into a privileged group and an unprivileged group.
An initial notion of group fairness is called Demographic
Parity (Dwork et al., 2012), requesting equality on the rate
of positive predictions:

Pr(ŷ | a = 0) = Pr(ŷ | a = 1). (5)

Demographic Parity enforces a group fairness on the out-
comes regardless of the gap in base rate, i.e. Pr(y | a =
0) ̸= Pr(y | a = 1). If sensitive groups have a gap in the
base rate, there will always be a tradeoff between DP and
utility for any classifier. To this end, another notion called
Equal Opportunity (Hardt et al., 2016) has been raised to
measure the equality on true positive rate:

Pr(ŷ | a = 0, y = 1) = Pr(ŷ | a = 1, y = 1). (6)

Other notions (Mehrabi et al., 2021) also help to characterize
the fairness problem including Equalized Odds (equality on
both true positive rate and true negative rate), Accuracy Par-
ity (equality on the predictive error rate), Predictive Equality
(equality on the false positive rate), etc. We focus on Equal
Opportunity and Demographic Parity while the rest notions
could be incremental extensions to our framework.

To formulate the fairness issue as an optimization prob-
lem, one can intuitively quantify the inequality and turn
the subjection of fairness into an objective function. For
instance, with ℓ0/1 denotes zero-one loss, the gap in Equal
Opportunity is:∣∣∣E [

ℓ0/1(z; θ)|a = 1, y = 1
]
−E

[
ℓ0/1(z; θ)|a = 0, y = 1

] ∣∣∣.
(7)

To make the function differentiable, a surrogate function is
necessary to replace ℓ0/1 and here we substitute it with the
training loss ℓ for Equal Opportunity, following previous
works (Zafar et al., 2017; Donini et al., 2018). Demographic
Parity can be derived similarly. The fair loss over a sample

set S for these two notions are:

fS
eop(θ) =

∣∣∣ES [ℓ(z; θ) | a = 1, y = 1]

− ES [ℓ(z; θ) | a = 0, y = 1]
∣∣∣,

fS
dp(θ) =

∣∣∣ES [ŷ | a = 1]− ES [ŷ | a = 0]
∣∣∣.

(8)

We now begin to elaborate on our framework. Instead of
evaluating the fairness and utility on the training set T , we
are interested in the change of this two-side performance for
the classifier on a validation set V = {zj = (xj , yj)}Nv

j=1

before and after a reweighing over T , where each sample
zj in the validation set is associated with a binary sensitive
attribute aj ∈ {0, 1}. Measuring the influence of training
samples on V towards fairness and utility can help us iden-
tify which sample has a positive impact on training, and to
be precise, in which direction and to what extent.

To clarify the source of a sample, we use i to denote the
index belonging to the training set, and j for the validation
set. Let ei stand for an all-zero vector except entry i equal
to 1. Deploying ei as a weight for retraining means a hard
removal of zi while preserving the rest samples unchanged.
The influence function on fairness can be derived by re-
alizing the function f in Equation (4) with Equation (8):

Ieop/dp(ei) = ∇θf
V
eop/dp(θ̂(1))

⊤
H−1

θ̂(1)
∇θℓ(zi; θ̂(1)), (9)

and similarly, the influence on utility is expressed as

Iutil(ei) =
∑
j

∇θℓ(zj ; θ̂(1))
⊤H−1

θ̂(1)
∇θℓ(zi; θ̂(1)). (10)

Here we use a truncated subscript ‘eop/dp’ to express the
feasibility for either functions, and in what follows we
may use fV

fair to unify fV
eop/dp. The influence function sat-

isfies additivity followed by the additivity of ∇θf
V
fair and∑

j ∇θℓ(zj ; ˆθ(1)) w.r.t. ei, i.e. w = e1 + e2 implies
I(w) = I(e1) + I(e2).

We study the correlation between Ieop/dp and Iutil over the
reweighing of T . We first state our assumption for the
remaining gradient of zi at θ̂(1).

Assumption 3.1. The gradient matrix of training samples

in T at θ̂(1):

 ∇ℓθ(z1; θ̂(1))...
∇ℓθ(zNT ; θ̂(1))

 ∈ RNT ×D has rank D.

Assumption 3.1 is easy to satisfy if NT ≫ D in a general
training case, i.e. one set a model with a proper dimension to
fit an adequate number of training samples. The assumption
is mild for large-scale data with sufficient variety.
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Theorem 3.2. If fV
eop(θ̂(1)) is not in local optimum,

∇θf
V
eop(θ̂(1)) and

∑
j ∇θℓ(zj ; θ̂(1)) are linearly indepen-

dent, then under assumptions of influence function and As-
sumption 3.1, there are conical combinations w of {ei}NT

i=1

to construct a reweighing for training samples such that
Ieop(w) < 0 and Iutil(w) ≤ 0, with ∥w∥∞ ≤ 1.

Remark 3.3. Theorem 3.2 states that, if the loss of Equal
Opportunity on V remains a space to improve, then there
exists reweighing on T to improve fV

eop but will not increase
the utility loss under some conditions. w is an element-wise
non-negative vector and have an upper bound on entries,
which is a nice property we will use in our algorithmic de-
sign in the next section. Proofs can be found in Appendix A.

Here we see a proper downweighting can be expected to
enhance fairness while keeping the utility not going worse
at the influence function level. This finding raises an op-
portunity to achieve fairness at no utility cost. Similarly,
we present a corollary that states the same conclusion for
Demographic Parity.

Corollary 3.4. If ∇θf
V
dp(θ̂(1)) ̸= 0, ∇θf

V
dp(θ̂(1)) and∑

j ∇θℓ(zj ; θ̂(1)) are linearly independent, then under as-
sumptions of influence function and Assumption 3.1 satisfied,
there are conical combinations w of {ei}NT

i=1 to construct a
reweighing for training samples such that Idp(w) < 0 and
Iutil(w) ≤ 0, with ∥w∥∞ ≤ 1.

Note that a classifier that satisfies Equal Opportunity with
an optimal predictive utility performance, might not be opti-
mal for Demographic Parity. A perfect classifier will still
encounter a tradeoff between Demographic Parity and pre-
dictive utility induced by the difference in base rate between
sensitive groups. Corollary 3.4 is not against this impossi-
bility since it only declares a cost-free improvement on fV

dp
when it is not locally optimal.

Discussion on Fairness-Utility Tradeoff There is litera-
ture theoretically discussing the intrinsic tradeoff between
fairness and utility, and such a tradeoff has been empirically
revealed in many experiments. Zhao & Gordon (2019) point
out the tradeoff between Demographic Parity and the joint
error rate across sensitive groups, and Menon & Williamson
(2018) also characterize the accuracy-fairness tradeoff hold-
ing for an arbitrary classifier. However, they discuss under
the context of a given fixed distribution that does not corre-
spond with us. Our findings, from a reweighing perspective,
match with the conclusion in Dutta et al. (2020) that charac-
terizing with Chernoff information from information theory,
there exists an ideal distribution where fairness and util-
ity are in accord. However, they do not consider a more
practical model learning and inference setting, but primarily
restrict to likelihood ratio detectors with synthetic experi-
ments. Our data reweighing via influence function lets us
move beyond a bias distribution and release the tradeoff.

4. Fairness via Data Reweighing
The foregoing theoretical analysis raises an opportunity to
mitigate the unfairness towards different notions while pre-
serving the predictive utility. In this section, we concretize
this idea and convert it into an algorithm to find the optimal
weights w∗ through linear programming.

Having Ifair(ei) and Iutil(ei) in hands, the ideal reweighing
is to completely close the gap towards a fairness notion, e.g.
Equal Opportunity, or reach a user-defined threshold, while
preserving the utility not decrease. The searching for w∗

can be cast into a linear program as follows:

minimize
∑
i

wi

subject to
∑
i

wiIfair(ei) = −fV
fair,∑

i

wiIutil(ei) ≤ 0,

wi ∈ [0, 1].

(11)

Equation (11) tends to minimize the total amount of per-
turbation from an initially uniform weight. This prevents
downweighting too many samples, thus keeping the gen-
eralization capacity from the validation set to the test set.
The first subjection is to find the weights that perfectly close
the fairness gap in Equation (8), where the minimum of
an absolute value is zero or it can also be set to a user-
defined threshold. The second subjection is to keep the
utility loss non-increasing. In the last subjection we set
a range for wi from 0 to 1, inheriting the property of w
in Theorem 3.2. We set the lower bound as 0 to ensure
all the reweighing is downweighting instead of upweight-
ing. Here an upweighting is definitely practicable which
emphasizes some particular samples and could achieve the
same effect as downweighting on other samples. For the
simultaneous upweighting and downweighting, it leads the
objective function to be the sum of a set of absolute values
between wi and 1. The linear programming problem with
absolute values needs to be transformed into a standard one
by introducing additional variables (Dantzig, 2016). Also,
we do not observe a conspicuous benefit from introducing
upweighting in practice. For simplicity and efficiency, we
only consider the downweighting for data reweighing. The
upper bound of weights prevents the linear programming
from turning a sample into a negative sample which affords
negative loss. This is for training stability concerns and
avoids the reweighing overly concentrating on one sample.

However, Equation (11) may not offer a feasible solution
since there might exist a case that minw

∑
i wiIfair(ei) >

−fV
fair with the rest constraints held. In this case, we sub-

stitute Equation (11) with Equation (12) stated as follow:
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minimize
∑
i

wiIfair(ei)

subject to
∑
i

wiIutil(ei) ≤ 0,∑
i

wi ≤ αNT ,

wi ∈ [0, 1],

(12)

with α ∈ (0, 1]. Equation (12) rotates the first constraint
to its objective function and replenishes a constraint on
the quantity of perturbation w.r.t the total number of train-
ing samples. α here is a hyperparameter indicating the
proportion of weights to be changed. Note that we set a
higher priority of Equation (11) over Equation (12), since if
minw

∑
i wiIfair(ei) < −fV

fair, the objective values goes to
negative and cause unfairness again, i.e., it flips the original
unprivileged group into a privileged group. If one wants
to support Equation (12) as the priority, a lower bound of
−fV

fair should be added to the objective function but that can
cause dual degeneracy for a minimization problem in LP.

In practice, although the solution seems to be optimal in
terms of influential approximation, w∗ cannot imply abso-
lute fairness at no utility cost. The error comes from two
sides. (1) Even though influence function is almost precise
for the removal of an individual sample, transferring the
influence function to the actual influence still suffers some
additional errors related to the quantity of perturbation. Koh
et al. (2019) empirically reveal that when removing a group
of samples from the training set, influence function tends
to underestimate or overestimate the actual influence, but
still keeps a high correlation. Colloquially, the larger the
group removed from the training set, the more imprecision
can be expected. (2) There is a gap between the surrogate
function (for differentiable purpose) and the real value of
Equal Opportunity gap or Demographic Parity gap, as well
as the utility. As a remedy, we complement some extra hy-
perparameters in the constraints of Equation (11) to alleviate
such errors, and we restate it as follows:

minimize
∑
i

wi

subject to
∑
i

wiIfair(ei) ≤ −(1− β)ℓVfair,∑
i

wiIutil(ei) ≤ γ(min
v

∑
i

viIutil(ei)),

wi ∈ [0, 1].
(13)

We linearly tighten or relax the constraint with hyperparam-
eters β and γ since influence function under group effect
could enlarge the scale of deflection but still under a high
correlation. If there is a deflection, we can observe it on
the validation set and regulate the objectives to compensate

Algorithm 1 No Utility-Cost Fairness via Data Reweighing

1: Input: Training set T = {zi}NT
i=1 , validation set V =

{zj , aj}NV
j=1.

2: Train θ̂(1) = argminθ
∑

i ℓ(zi; θ) by Equation (1);
3: Compute fV

fair by Equation (8);
4: Compute

∑
j ∇θℓ(zj ; θ̂(1));

5: Compute Hessian vector product H−1

θ̂(1)
∇θℓ(zi; θ̂(1))

for every training sample i ∈ T ;
6: Compute Ifair(ei) and Iutil(ei) for every training sam-

ple i ∈ T by Equations (9) and (10);
7: Solve the linear programming problem in Equation (13);
8: if Equation (13) is infeasible then
9: Solve the linear programming problem in Equa-

tion (12);
10: end if
11: Retrain the model with w∗ by Equation (2) and obtain

θ̂(1−w∗);
12: Evaluate the test set with θ̂(1−w∗).

for the group effect. We conduct a grid search for β and
γ on the validation set, and demonstrate the performance
on the test set. We summarize the algorithmic pipeline in
Algorithm 1 and show its property of feasibility.

Corollary 4.1. If assumptions in Theorem 3.2 and Corol-
lary 3.4 are satisfied, then Algorithm 1 could reach a feasi-
ble and non-trivial solution.

Remark 4.2. A trivial solution means the solved w = 0 that
does not reweigh any training samples.

5. Related Work
We chronologically review the pre-processing methods for
algorithmic fairness, and introduce related works on influ-
ence function. We include many of these pre-processing
methods in experimental comparison.

Fair Algorithms with Pre-processing Previous works de-
velop pre-processing techniques to ensure a nice property
that the fairness-oriented improvement is independent of
existing learning pipelines. Kamiran & Calders (2012) pro-
pose several reweighing and label flipping approaches based
on data statistics to expand the underrepresented group or
benefit the unprivileged group. Some of these approaches
further consider the original predictive confidence. Zemel
et al. (2013) learn a fair intermediate representation for data
towards both group and individual fairness. Feldman et al.
(2015) satisfy Demographic Parity by transforming the input
data into fair features while preserving their original rank.
Calmon et al. (2017) follow the data fair transformation and
optimize the transformation with individual least distance
constraints. Krasanakis et al. (2018) and Jiang & Nachum
(2020) introduce reweighing approaches and update weights
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iteratively through a continuous learning process. The it-
erative update asks for retraining the model within each
learning iteration. Wang et al. (2019) use a descent algo-
rithm to learn a counterfactual distribution from data to
close the fairness gap for a black-box predictor, and build
the pre-processing via optimal transport. Yan et al. (2020)
and Lahoti et al. (2020) focus on a case where the sensitive
attribute is missing. Yan et al. (2020) use clustering to find
out underrepresented groups and complements them with
nearest neighbor searching. Lahoti et al. (2020) considers
Rawlsian Max-Min Fairness with a special interest in the
worst-case accuracy. Many works consider fairness sub-
jecting to predictive utility constraints in design, and the
intention to preserve the utility helps to popularize fair algo-
rithms. Our algorithmic design considers both fairness and
predictive utility via a one-pass reweighing approach that
is friendly for subsequent learning pipelines which might
be time-consuming. We granularly characterize each train-
ing sample using their fairness and utility influence, and
compute individual weights by solving linear programs.

Influence Function Influence function originates from di-
agnostic in statistics (Cook, 1977; Cook & Weisberg, 1980).
It approximates the actual effect brought by the removal
of training points from models or other perturbations on
data. Influence function in machine learning has been used
to study model robustness (Christmann & Steinwart, 2004;
Hampel et al., 2011; Liu et al., 2014). Recently, Koh &
Liang (2017) extend influence function to various large-
scale machine learning models, and introduce its applica-
tions in adversarial attack, data interpretation, and label
fixing. More works follow up to develop this statistical tool.
Giordano et al. (2019) provides finite-sample error bounds
on the leave-k-out case of the asymptotic results. Koh et al.
(2019) characterize the error when removing a group of
data and provide interesting empirical findings. They re-
veal that when influence function is measuring the effect
of removing a random or a certain group of samples, the
absolute and relative error will be large, but still correlates
well with the actual influence. In this work, we consider an
innovative application of influence function in considering
both algorithmic fairness and utility.

6. Experiment
6.1. Dataset

We use the following real-world tabular datasets for exper-
iments (Dua & Graff, 2017). We provide statistics in Ap-
pendix B. Adult. The Adult dataset (Kohavi & Becker)
contains 45,222 census personal records. It includes 14
attributes such as age, education, race, etc. The goal is
to predict if the personal annual income exceeds 50k. We
set gender as the sensitive attribute. Compas. The Com-
pas dataset (Julia Angwin & Kirchner, 2016) records in-

formation like criminal history, jail and prison time, de-
mographic, etc. The dataset is to predict a recidivism risk
score for defendants. We set race as the sensitive attribute.
Communities and Crime. The Communities and Crime
dataset (Redmond & Baveja, 2002) describes communities
with the percent of the population considered urban, the
median family income, etc. The goal is to predict violent
crimes and we set the percentage of the black population
as the sensitive attribute. German Credit. The German
Credit dataset (Hofmann) classifies people as good or bad
credit risks using their profile and history. We set age as the
sensitive attribute with a threshold at 30.

6.2. Implementation and Protocol

For fair classification, we consider pre-processing base-
lines: Massaging, Reweigh, Preferential from Kamiran &
Calders (2012), and Disparate Impact Remover (Dis. Re-
mover) (Feldman et al., 2015), Label Bias (Jiang & Nachum,
2020), and Adversarial Reweighted Learning (ARL) (Lahoti
et al., 2020). We also involve two in-processing adversar-
ial training methods: Adversarial Debiasing (Adv.) (Zhang
et al., 2018) and Conditional Adversarial Debiasing (Cond.
Adv.) (Zhao et al., 2019). For comprehensiveness, we con-
sider two kinds of base models: Logistic Regression and
two-layer non-linear Neural Networks, where we use Logis-
tic Regression for all four datasets and use Neural Networks
for the Adult and Compas datasets due to their large sample
sizes. Most pre-processing approaches work independently
of the base model and can be wrapped on both Logistic
Regression and Neural Networks, while adversarial training
methods only work for Neural Networks. We equip our
methods to Neural Networks by only computing the influ-
ence to the last layer of Neural Networks and retraining
this part of weights, thus the convexity is guaranteed. The
specific parameters of base models and input data are used
exactly the same across all baselines and our methods. Input
data are standardized by removing the mean and scaling
to unit variance. For methods with a hyperparameter to
directly control the fairness-utility tradeoff, we tune the hy-
perparameter and show the Pareto curve in figures. Linear
programs in Algorithm 1 are solved using Gurobi (Gurobi
Optimization, LLC, 2021) under an academic license. We
divide all the datasets into training set (60%), validation set
(20%), and test set (20%), except for the Adult dataset that
has a pre-defined split on training/validation/test set. More
details are reported in Appendix C.

We explicitly compute the Hessian matrix and its inverse to
get the influence function. A typical complexity for comput-
ing Hessian is O(nd2), where n and d are the numbers of
samples and model dimension, and its inversion takesO(d3).
To address high-dimensional models, we can apply conju-
gate gradients or stochastic estimation of Hessian-vector
products, resulting in O(nd) (Koh & Liang, 2017).
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Figure 1. Experimental results of five pre-processing and two in-processing fair classification methods on the Adult and Compas datasets.
For each figure, we indicate the corresponding base model, experimental dataset, fairness metric, and evaluation set in the left and top
header (EOP→ Equal Opportunity, DP→ Demographic Parity). Y-axis for fairness is inverted and shows the absolute value of the gap
in fairness between the privileged and unprivileged groups (the higher position means the smaller fairness metric value and the better
performance towards fairness), while X-axis shows the predictive accuracy. According to the utility and fairness performance of the base
model LogReg (Logistic Regression) or NN (Neural Networks), we plot a horizontal and a vertical line in each figure and divide the
space by fairness and utility results into four regions, where the space in green means a fairer and more accurate model compared to the
base model. A point closer to the top right indicates better performance in both utility and fairness. The values of some points by the
Preferential method are out of the current scale of these figures; for better visualization, we put these points at the boundary of a figure.
We do not observe randomness for the Logistic Regression model, while we plot the standard deviation for Neural Networks with results
obtained by five random seeds. For methods with a hyperparameter to control the tradeoff between fairness and utility, the line connecting
the same method indicates the monotonously increased change on the hyperparameter. For details please refer to Appendix C.
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Figure 2. Studies on influence function and its actual effect. All results are obtained on the Adult dataset. A and B: Predictive influence
v.s. actual influence by leave-one-out retraining in terms of utility and Equal Opportunity loss; C: Actual influence of utility loss v.s.
Equal Opportunity loss by leave-one-out retraining. A, B and C are conducted on 500 randomly selected training samples; D and E:
Influence function v.s. actual effect by leave-group-out retraining in terms of utility and Equal Opportunity loss with a group size equal to
250. F: Actual influence of Equal Opportunity loss by target label flip and retraining v.s. reweighing and retraining from our algorithm.
‘Rho’ indicates Pearson correlation coefficient in figures.

6.3. Experimental Comparison

We present our experimental results on the Adult and Com-
pas datasets in Figure 1, and defer other results to Ap-
pendix D. Through experiments we have several findings:
(1) In general, except in Figure G where the majority of
these fair classifiers deliver simultaneous and non-trivial
improvements in both fairness and utility, the experimental
results of baseline methods are mainly located at the top left
region, indicating that their improved fairness is achieved
at a non-negligible cost of utility. (2) Specifically, heuris-
tic pre-processing methods including Massaging, Reweigh,
and Preferential fail to guarantee a stable improvement over
fairness, and sometimes even decrease Equal Opportunity.
The learning approaches Disparate Impact Remover and
Label Bias induce a tradeoff between fairness and utility,
and unfortunately lead to either unsatisfied fairness or an
unacceptable utility cost in many cases. The adversarial
approaches Adversarial Debiasing and Conditional Adver-
sarial Debiasing also bring an obligatory tradeoff so that
they need careful tuning. Moreover, they induce a large
variance in Neural Networks model. (3) In most cases (See
A-I), our method is able to improve fairness while keeping
the utility unchanged or even slightly improved. This nice
property and its pre-processing fashion can play a significant
advantage in popularizing fair algorithms. These empirical

results also verify our theoretical findings. It is worthy to
note that our method cannot escape the upper bound of De-
mographic Parity at no utility cost since this scenario resists
the impossibility from the difference in the base rate. In a
few cases (See J-K), our method sacrifices a little utility to
greatly improve the fairness. Due to the nature of influence
approximation, when removing a group of samples from the
training set, there exists a gap between actual and predicted
influence. There is still some deviation even though we add
hyperparameters to fulfill the gap in Equation (13).

6.4. Sample Influence and Actual Effect

We investigate the influence function and its actual influence
in Figure 2. In A and B, we visualize influence function
and corresponding actual change after leave-one-out retrain-
ing, and show that influence function can predict the actual
influence with high precision for both utility and fairness.
In C, we show the distribution of actual influence for in-
dividual samples. Some parts of points are located at the
green regions, meaning that removing or downweighting
these points can simultaneously improve fairness and utility.
This is well in accord with our Theorem 3.2. In D and E,
we show how the influence function differs from removing
an individual sample to removing a group of samples. The
influence function still remains a high correlation but re-
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sults in a larger error. The imprecision justifies our design
in Equation (13) where we use hyperparameters to mitigate
this effect. In F, we compare the influence of removing sam-
ples to target label flipping, complementing the label bias
hypothesis in the introduction. Flipping the label can incur a
larger change in loss value compared to simply reweighing
them.

7. Conclusion
We proposed a data reweighing approach for improving
algorithmic fairness and utility. We granularly measured
the influence of every training sample towards fairness and
utility on a validation set. We demonstrated that under some
mild assumptions, there exists some reweighing on training
samples that can improve fairness at no utility cost. We
solved the reweighing strategy through linear programming
with constraints of both fairness and utility, and guaranteed
its feasibility. We empirically verified our algorithms on
multiple tabular datasets and showed that the traditional
fairness-utility tradeoff could be released in most cases.
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A. Proof and Discussion

Assumption 3.1. The gradient matrix of training samples in T at θ̂(1):

 ∇ℓθ(z1; θ̂(1))...
∇ℓθ(zNT ; θ̂(1))

 ∈ RNT ×D has rank D.

We discuss the feasibility of the assumption here. The assumption requires that we have training samples such that the
gradient vector matrix has full rank. This is a mild assumption for a large training dataset with sufficient sample diversity
and a proper model dimension. The assumption could be violated when (1). the model has a very large and improper
dimension such that some parameters are not even activated by the training data, and (2). there are very limited training
points. For the second scenario, consider an extreme case if we only have one training sample for the model, therefore we
cannot reweight this sample to change the model’s parameter, but luckily it is not likely to happen in general cases. In Figure
C from Figure 2 we show some hard removals of samples are bringing positive impact to both utility and fairness, which
confirm our theorem and the feasibility of this assumption.

Theorem 3.2. If fV
eop(θ̂(1)) is not in local optimum, ∇θf

V
eop(θ̂(1)) and

∑
j ∇θℓ(zj ; θ̂(1)) are linearly independent, then

under assumptions of influence function and Assumption 3.1, there are conical combinations w of {ei}NT
i=1 to construct a

reweighing for training samples such that Ieop(w) < 0 and Iutil(w) ≤ 0, with ∥w∥∞ ≤ 1.

Proof. For completeness, we restate the Equal Opportunity loss over the validation set V in Equation (8) as follows:

fV
eop(θ̂(1)) = |EV [ℓ(z; θ̂(1)) | a = 1, y = 1]− EV [ℓ(z; θ̂(1)) | a = 0, y = 1]|

= | 1

|Va=1,y=1|
∑

j:aj=1,yj=1

ℓ(zj ; θ̂(1))−
1

|Va=0,y=1|
∑

j:aj=0,yj=1

ℓ(zj ; θ̂(1))| > 0,
(14)

where Va=1 denotes the set conditional on a = 1, and |V| is the cardinality of set V . We have ∇θf
V
eop(θ̂(1)) ̸= 0 since

θfV
eop(θ̂(1)) is not in local optimum, and would guarantees∇θf

V
eop(θ̂(1))

⊤
H−1

θ̂(1)
̸= 0 in Ieop.

Now let G =

 ∇ℓθ(z1; θ̂(1))...
∇ℓθ(zNT ; θ̂(1))

 ∈ RNT ×D with full rank D (Assumption 3.1), we can write the influence function

towards Equal Opportunity and utility in Equation (9) and Equation (10) as follows:

Ieop(w) = (∇θf
V
eop(θ̂(1))

⊤
H−1

θ̂(1)
)(G⊤w),

Iutil(w) = (
∑
j

∇θℓ(zj ; θ̂(1))
⊤H−1

θ̂(1)
)(G⊤w).

(15)

Since ∇θf
V
eop(θ̂(1)) and

∑
j ∇θℓ(zj ; θ̂(1)) are linearly independent, we have ∇θf

V
eop(θ̂(1))

⊤
H−1

θ̂(1)
and∑

j ∇θℓ(zj ; θ̂(1))
⊤H−1

θ̂(1)
to be linearly independent, since H−1

θ̂(1)
is non-singular. Because G has rank D, so the

gradient vectors in G span RD, thus we can always find w on NT training samples such that Ieop(w) < 0 and Iutil(w) ≤ 0.

Recall the first-order optimality
∑

i∇ℓ(zi; θ̂(1)) = 0→ 1⊤G = 0 for the model. Once we have w satisfy Ieop(w) < 0
and Iutil(w) ≤ 0 on NT , we should have

Ieop(w) = (∇θf
V
eop(θ̂(1))

⊤
H−1

θ̂(1)
)(G⊤(w + c1)) < 0,

Iutil(w) = (
∑
j

∇θℓ(zj ; θ̂(1))
⊤H−1

θ̂(1)
)(G⊤(w + c1)) ≤ 0,

(16)

where c is an arbitrary real number. If w has negative entries, let c = −mini wi and w ← (w + c1) helps to convert all
entries into non-negative. A normalization w← w/∥w∥ helps to bound ∥w∥∞ ≤ 1, hence completing the proof.
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Corollary 3.4. If ∇θf
V
dp(θ̂(1)) ̸= 0, ∇θf

V
dp(θ̂(1)) and

∑
j ∇θℓ(zj ; θ̂(1)) are linearly independent, then under assumptions

of influence function and Assumption 3.1 satisfied, there are conical combinations w of {ei}NT
i=1 to construct a reweighing

for training samples such that Idp(w) < 0 and Iutil(w) ≤ 0, with ∥w∥∞ ≤ 1.

Proof. The proof follows the proof for Theorem 3.2 by replacing∇θf
V
eop(θ̂(1)) with∇θf

V
dp(θ̂(1)).

Corollary 4.1. If assumptions in Theorem 3.2 and Corollary 3.4 are satisfied, then Algorithm 1 could reach a feasible and
non-trivial solution.

Proof. For any α > 0, following the results from Theorem 3.2 and Corollary 3.4, we shall always find a non-negative w∗

satisfying constraints in Equation (12) and have Ifair(w
∗) < 0. This induces the objective function value in Equation (12)

with w∗ smaller than 0. Note that a trivial solution with an all-zero w makes the objective function zero.

B. Dataset Statistics
We summarize some key statistics of four datasets we use in experiments in Table 1. For two numerical sensitive variables‘
%Black Popluation’ and ‘Age,’ we use them and set a threshold to divide the privileged and unprivileged groups. ‘Group Pos.
Rate’ calculates the proportion of samples which has a positive label in the privileged and unprivileged group, respectively.
‘ℓ2 reg.’ is L2 regularization strength for the Logistic Regression model, obtained by a grid search over the validation set.
The former number is L2 regularization normalized by the number of training samples, while the latter one is the value we
set for models. We set 1e-3 as the L2 regularization for Neural Networks as default.

Table 1. Dataset Statistics

Dataset #Sample (Train / Val. / Test) #Dim. Sensitive Attribute Group Pos. Rate ℓ2 reg. for LogReg

Adult 22,622 / 7,540 / 15,060 102 Gender - Male / Female 0.312 / 0.113 1.00e-4 → 2.26
Compas 3,700 / 1,234 / 1,233 433 Race - White / Non-white 0.609 / 0.518 1.00e-2 → 37.00
Comm. and Crime 1,196 / 399 / 399 122 %Black Popluation - 0.06 0.887 / 0.537 2.15e-2 → 25.79
German Credit 600 / 200 / 200 56 Age - 30 0.742 / 0.643 9.75e-3→ 5.85

C. Hyperparameter Selection
We use grid search on the validation to set hyperparameters in Equation (12) and Equation (13). The procedure for Equa-
tion (13) is: first, we set β = 0 and γ = 0, and observe the performance of fairness. After reaching fairness to a desirable
level, we tune γ to control the utility and try to keep its original utility on the validation set. A finer tuning on β is conducted
after we fix γ. The minimum interval of β and γ between values is 0.1, with range [0, 0.9] and [0, 0.4], respectively. For α
in Equation (12), increasing it from 0 with interval 0.01 with a maximum value of 0.15 can reach our results. The final
selections are listed as follows.

Adult: LogReg - EOP: β = 0.5, γ = 0.2; NN - EOP: β = 0.5, γ = 0.2; LogReg - DP: β = 0.8, γ = 0.3; NN - DP:
α = 0.02.

Compas: LogReg - EOP: β = 0.2, γ = 0.1; NN - EOP: β = 0.2, γ = 0.1; LogReg - DP: β = 0.3, γ = 0.1; NN - DP:
β = 0.3, γ = 0.1.

Comm.: LogReg - EOP: α = 0.1; LogReg - DP: α = 0.1.

German.: LogReg - EOP: β = 0.0, γ = 0.0; LogReg - DP: β = 0.5, γ = 0.0.

For baseline methods with a controllable tradeoff, we use the hyperparamters listed as follows: Dis. remover: repair level =
{0.25, 0.5, 0.75, 1.0}; Label bias: learning rate = {0.05, 0.1, 0.5, 1.0}; Adv. and Cond. Adv.: α = {0.1, 1.0, 5.0, 10.0}.

We show a hyperparameters tuning process on the Adult dataset with logistic regression in Figure 3.

D. Additional Results
We present experimental results for the Community and Crime dataset and the German Credit datasets in Figure 4. Our
method works consistently across all datasets, and in most cases, we obtain an improvement in fairness at no utility cost.
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Figure 3. Hyperparameters tuning for Algorithm 1. The lines between nodes show the process of tuning hyperparameters. Initially, the
model suffers from group effect of influence function, and the hyperparameters help to mitigate such effect and help the model reach the
green region.

Figure 4. Experimental results on the Communities and Crime and German Credit datasets with LogReg (Logistic Regression) as the base
model. For each figure, we indicate the corresponding base model, experimental dataset, fairness metric, and evaluation set in the left and
top header (EOP→ Equal Opportunity, DP→ Demographic Parity). Y-axis for fairness is inverted and shows the absolute value of the gap
in fairness between the privileged and unprivileged groups (the higher position means the smaller fairness metric value and the better
performance towards fairness), while X-axis shows the predictive accuracy. According to the utility and fairness performance of the base
model, we plot a horizontal and a vertical line in each figure and divide the space by fairness and utility results into four regions, where
the space in green means a fairer and more accurate model compared to the base model. A point closer to the top right indicates better
performance in both utility and fairness. For methods with a hyperparameter to control the tradeoff between fairness and utility, the line
connecting the same method indicates the monotonously increased change on the hyperparameter.


