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Abstract
We study sequential decision-making with known
rewards and unknown constraints, motivated
by situations where the constraints represent
expensive-to-evaluate human preferences, such
as safe and comfortable driving behavior. We
formalize the challenge of interactively learning
about these constraints as a novel linear bandit
problem which we call constrained linear
best-arm identification. To solve this problem,
we propose the Adaptive Constraint Learning
(ACOL) algorithm. We provide an instance-
dependent lower bound for constrained linear
best-arm identification and show that ACOL’s
sample complexity matches the lower bound
in the worst-case. In the average case, ACOL’s
sample complexity bound is still significantly
tighter than bounds of simpler approaches. In
synthetic experiments, ACOL performs on
par with an oracle solution and outperforms
a range of baselines. As an application, we
consider learning constraints to represent human
preferences in a driving simulation. ACOL is
significantly more sample efficient than alterna-
tives for this application. Further, we find that
learning preferences as constraints is more robust
to changes in the driving scenario than encoding
the preferences directly in the reward function.

1. Introduction
Often, (sequential) decision-making problems are formal-
ized as maximizing an unknown reward function that cap-
tures an expensive-to-evaluate objective, for example, user
preferences (see Chapter 1 of Lattimore & Szepesvári (2020)
for examples). However, in many practical situations, it can
be more natural to model problems with a known reward
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function and unknown, expensive-to-evaluate constraints.

For example, a cookie manufacturer might want to create
a low-calorie cookie.4 The cookie should have the lowest
amount of calories possible, but at least 95% of customers
should like it. To evaluate this constraint, the manufacturer
has to produce specific cookies and test them with customers.
The reward, i.e., the amount of calories for a recipe, is easy
to evaluate without producing a cookie. Because customer
trials are expensive, the cookie manufacturer wants to find
the best constrained solution with as few trials as possible.

As a second example, consider finding safe control
parameters for an autonomous car. A car manufacturer
might have a set of controllers to choose from that perform
a specific task, such as reaching a target destination as
quickly as possible. The ideal controller achieves this
task well and drives safely and comfortably. Whereas the
objective – travel time – is easy to specify as a reward
function, the constraints – perceived safety and comfort –
may require feedback from human drivers and passengers.
Similarly as in the previous example, the manufacturer’s
goal is to find the best, safe controller with as few trials that
involve human feedback as possible. We assume that the
controllers are evaluated in a simulation, so it is acceptable
to evaluate an unsafe controller during training; however,
the constraints have to be satisfied during deployment.

In both examples, the decision-making problem is naturally
characterized by an easy-to-evaluate part (the reward) and
an expensive-to-evaluate part (the constraint). Additionally,
we observe that constraints are more robust to changes
in the environment and can be transferred to selecting
controllers for different goals, in contrast to encoding
the constraints as a penalty in the reward function (see
Figure 1). Hence, in this paper, we study learning about
unknown, expensive-to-evaluate constraints.

Specifically, we propose a two-phase approach to solving
problems with unknown constraints. In the first phase, we
learn to estimate the expensive-to-evaluate constraint func-
tion well enough for solving the constraint optimization
problem. In the second phase, we recommend a solution.

4Example adapted from Gelbart et al. (2014).
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Figure 1. We want to select a controller for driving the orange car. In the base scenario (left image), the car should drive at velocity v,
which we encode as reward. We model other driving rules, like “usually drive in a lane” or “don’t get too close to other cars”, either as
a penalty on the reward function (in (a)) or as a constraint (in (b)). In the “different reward” scenario (middle image), the car should
pull over to the right of the street instead of keeping the velocity. If we reuse the same reward penalty for this task, the controller does
not achieve the task because the penalty is too strong. So, we would have to tune the penalty for this new task, whereas the constrained
controller still completes the new task safely without any tuning. In the “different environment” scenario (right image), the goal of driving
at a target velocity remains the same, but the environment changes. In this changed environment, three vehicles block the road. Here, the
penalized controller trades off the penalty with achieving high reward and tries to go through the cars to keep the velocity, which is too
dangerous. On the other hand, the constraint formulation does not allow violating a constraint such as “don’t get too close to other cars”
which makes the orange car stop before the street is blocked. In Section 4.3, we study this example in more detail.

Constraint violations are allowed in the first phase, but the
final recommendation has to satisfy the constraints.

Contributions. We formalize learning about unknown
constraints to find the best constrained solution as a novel lin-
ear bandit problem (Section 3) which we call constrained lin-
ear best-arm identification (CBAI). We provide an instance-
dependent sample complexity lower bound (Section 3.1)
and propose Adaptive Constraint Learning (ACOL), an al-
gorithm that almost matches this lower bound (Section 3.3).
Our empirical evaluation shows that ACOL gets close to
the performance of an oracle solution that has access to
the true constraint function while outperforming a range
of simpler baselines (Section 4.1). As a concrete applica-
tion, we consider learning driving behavior in a simulation,
where the constraints represent human preferences about
driving behavior (Section 4.3). We demonstrate empirically
that ACOL can learn these constraints and propose heuristic
variants of the algorithm that empirically improve sample
efficiency. Additionally, we quantify the observation that
learning driving preferences as constraints instead of re-
wards increases the robustness and transferability of the
learned preferences.

2. Related Work
Learning constraints is similar to actively classifying arms
as “feasible” or “infeasible”; but, in contrast to typical ac-
tive learning (Settles, 2012), we do not need to classify all
arms. Instead, we only want to find the best feasible arm,

which can require fewer samples than classifying all arms.
Our problem formalization as a linear multi-armed bandit
best-arm identification problem (Audibert et al., 2010) is
similar to Soare et al. (2014) in the unconstrained setting,
but focused on learning constraints.

Much prior work on constraints in multi-armed bandits
considers other notions of constraints than we do. For
example, constraints holding in expectation rather than with
high probability (Pacchiano et al., 2021), or constraints
in the form of a lower bound (threshold) on the reward
(Locatelli et al., 2016; Kazerouni et al., 2017; Kano et al.,
2019; Khezeli & Bitar, 2020).

Amani et al. (2019) and Moradipari et al. (2021) consider a
linear bandit setting with a separate (linear) constraint func-
tion. Both differ from our work in three important ways: (1)
they assume an unknown reward function whereas we as-
sume the reward to be known, (2) they focus on cumulative
regret minimization whereas we focus on best-arm identi-
fication, and (3) they require the constraints to be satisfied
during exploration whereas we only require them to be satis-
fied for the final recommendation. These works adapt bandit
algorithms based on upper confidence bounds (Amani et al.,
2019) or Thompson sampling (Moradipari et al., 2021) to
minimize regret in the constraint setting. To enable safe
exploration, they need to assume a convex and compact set
of arms; we do not require this assumption.

Wang et al. (2022) also study best-arm identification with
linear constraints. In contrast to our work, they assume
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unknown rewards and focus on safety constraints that must
be satisfied during exploration. To make this possible, they
need to make more assumptions about the structure of the
set of arms. In particular, they assume that the decision
maker can only query in each dimension independently.
Because of this, their algorithm cannot be applied to our
setting without significant changes.

Our algorithm is conceptually similar to other bandit algo-
rithms based on the principle of eliminating sub-optimal
arms step-by-step. Our theoretical analysis employs simi-
lar tools as that used for best-arm-identification in uncon-
strained linear bandits (Soare et al., 2014; Fiez et al., 2019).

Some works in Bayesian optimization (BO) also study the
problem of exploring to find the best constrained solution to
a problem with an expensive-to-evaluate constraint function.
Common approaches heuristically extend BO methods to
incorporate an unknown constraint function (Gardner et al.,
2014; Hernández-Lobato et al., 2016; Perrone et al., 2019).
In contrast to this line of work, we obtain sample complex-
ity guarantees by focusing on linear constraint functions.
Similar to the bandit literature, most work on BO with con-
straints focuses on the setting where safety constraints must
hold during exploration (e.g., Sui et al., 2015).

We apply our algorithm to the problem of learning from
human preferences, which is essential for building systems
with hard-to-specify goals, e.g., in robotics (Daniel et al.,
2014). We use an environment by Sadigh et al. (2017) who
model human preferences as rewards rather than constraints.

3. The Linear Constrained Best-Arm
Identification Problem

We seek to find the best constrained solution from a discrete
set of options represented by feature vectors x ∈ X ⊂ Rd.
We assume that both the known reward function and the
unknown constraint function are linear in x.

Definition 1. A constrained linear best-arm identification
(CBAI) problem ν = (X , θ, ϕ, τ) consists of a finite action
set X ⊂ Rd, a reward parameter θ ∈ Rd, a constraint
parameter ϕ ∈ Rd, and threshold τ ∈ R. The decision-
maker knows X and θ, but not ϕ and τ . In each iteration,
the decision-maker selects an arm x ∈ X and observes
ϕTx+ ηx, where ηx is sub-Gaussian noise. Their goal is to
identify a constrained optimal arm

x∗ ∈ argmax
x∈X ,ϕT x≤τ

θTx

within as few iterations as possible.

In our initial example, X contains all potential cookie
recipes. θTx encodes the amount of calories for recipe
x, which the decision-maker knows and wants to minimize.

ϕTx encodes the unknown customer preferences, which
the decision-maker must infer from as few experiments as
possible. In the following, we assume w.l.o.g. τ = 0 but
generalization to τ ̸= 0 is straightforward. If τ is unknown,
we can simply model it as a constant shift in the const To
simplify notation, we omit τ and talk about a CBAI problem
ν = (X , θ, ϕ).

3.1. Lower Bounds

We first provide a lower bound on the sample complexity
of solving a given CBAI problem. The following theorem
states how many samples are necessary to distinguish a
given CBAI instance from the closest instance with a differ-
ent solution, which is necessary to solve an instance.

Theorem 1 (CBAI lower bound). Assume ηx ∼ N (0, 1)
for all x ∈ X . For any CBAI problem ν = (X , θ, ϕ), there
exists another CBAI problem ν′ = (X , θ, ϕ′) with the same
set of actions X and reward parameter θ but a different con-
straint parameter and optimal arm, such that the expected
number of iterations τ needed by any allocation strategy
that can distinguish between ν and ν′ with probability at
least 1− δ is lower bounded as

E[τ ] ≥ 2 log

(
1

2.4δ

)
max

x∈X≥
θ (x∗

ν)

∥x∥2
A−1

λ

(ϕTx)2
,

where λ is a probability distribution over arms which the
allocation strategy follows, i.e., λ(x) is the probability that
it pulls arm x, Aλ =

∑
x λ(x)xx

T is the design matrix,
X≥

θ (x∗
ν) = {x′ ∈ X |θTx′ ≥ θTx∗

ν} is the set of all arms
with reward no less than x∗

ν , the optimal arm for problem ν.

The proof in Appendix A.1 uses a proof strategy similar
to that for lower bounds for standard linear bandits (Soare
et al., 2014; Soare, 2015; Fiez et al., 2019). We consider the
log-likelihood ratio of making a series of observations in
instance ν compared to ν′ and consider how we can choose
ν′ to have a different solution but a small log-likelihood
ratio, i.e., the decision-maker makes similar observations
as if they were in ν. In contrast to the standard linear bandit
case, we need to carefully reason about the constraints
when ensuring that ν′ has a different solution than ν. We
distinguish the case that the solution of ν is infeasible in ν′

and the case that an arm with larger reward is feasible in ν′

but not ν. Reasoning about these two cases yields the result.

Our lower bound has a similar form as those for best-arm
identification in linear bandits (Soare et al., 2014). In par-
ticular, we have the same uncertainty term in the numerator.
Instead of a suboptimality gap in the denominator, we get the
distance to the constraint boundary: the problem is harder
if arms are closer to the constraint boundary. However, our
maximization is over individual arms instead of directions,
i.e., pairs of arms, and the set X≥

θ (x∗
ν) does not appear in
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the linear bandit case.

We want to characterize the sample complexity of different
algorithms for solving the CBAI problem. To this end, let us
define the sample complexity of a given problem instance
using the lower bound we just derived.

Definition 2 (CBAI sample complexity). We define the
sample complexity of a CBAI problem ν as

HCLB(ν) := min
λ

max
x∈X≥

θ (x∗
ν)

∥x∥2
A−1

λ

(ϕTx)2

This describes the best sample complexity that any algo-
rithm can achieve on CBAI problem ν. It will also be
helpful to have a worst-case upper bound on HCLB(ν) as a
point of comparison, which the next proposition provides.

Proposition 1. For any CBAI problem ν, we have
HCLB(ν) ≤ d/(C+

min)
2, where C+

min = minx∈X |ϕTx|.
This bound is tight, i.e, there is an instance ν, such that we
have HCLB(ν) = d/(C+

min)
2.

This results indicates that a CBAI problem is harder if it has
a larger dimension d, or if the distance of the arm that is clos-
est to the constraint boundary (C+

min) is smaller. This worst
case bound corresponds to situations where all arms are
linearly independent and pulling one arm does not provide
any information about any other arm.

Oracle solution. We can make the definition of sample
complexity more concrete by considering an oracle solu-
tion that has access to the true constraint value to select
which arms to query. The oracle selects arms by explicitly
minimizing HCLB:

λ⋆ ∈ argmin
λ

max
x∈X≥

θ (x∗
ν)

∥x∥2
A−1

λ

(ϕTx)2
.

The oracle prefers arms with high uncertainty (high ∥x∥2
A−1

λ

)

and arms close to the constraint boundary (low (ϕTx)2).
Moreover, it focuses on reducing the uncertainty about arms
that have higher reward than the true optimal arm (arms
in X≥

θ (x∗
ν)). In Appendix B.1, we show that this oracle

solution has sample complexity on order HCLB(ν), i.e., it
is indeed optimal.

3.2. Confidence Intervals for Linear Regression

Our algorithms rely on high probability confidence inter-
vals on the linear constraints constructed from observations.
Hence, let us briefly review how to construct such confi-
dence intervals from observations with sub-Gaussian noise.

Suppose, an algorithm queried a sequence of arms xt =
(x1, . . . , xt). For a given xi, it observed ỹi = ϕTxi + ηxi ,

where ϕ is the true constraint parameter, and ηxi
is sub-

Gaussian noise. We now aim to find confidence intervals
such that ϕTx ∈ [ltϕ(x), u

t
ϕ(x)] with probability at least

1 − δ, where ltϕ(x) = ϕ̂Tx − √βt∥x∥A−1
xt

and ut
ϕ(x) =

ϕ̂Tx +
√
βt∥x∥A−1

xt
. Based on these confidence intervals,

we can decide whether a given arm is likely feasible or not.

If the queries follow a distribution that does not depend on
the observations, it is straightforward to derive confidence in-
tervals (e.g., Chapter 20 in Lattimore & Szepesvári (2020)).

Proposition 2. Let xt = (x1, . . . , xt) be a sequence of
arms from a fixed allocation for which we have observed
ϕTxi + ηxi

where ηxi
is independent sub-Gaussian noise.

If we estimate ϕ̂ from the observations using least-squares
regression and choose βt =

√
2 log(|X |/δ) then we have

P (∃x ∈ X : ϕTx /∈ [ltϕ(x), u
t
ϕ(x)]) ≤ δ.

However, in sequential decision-making we usually want
to adapt our strategy after making observations. In this
case, we need to be more careful in constructing confidence
intervals, as observed by Abbasi-Yadkori et al. (2011). Un-
fortunately, the resulting confidence intervals are weaker
than those for static allocations by a factor of

√
d.

Proposition 3 (Theorem 2 by Abbasi-Yadkori et al. (2011)).
Let xt = (x1, . . . , xt) be a sequence of points selected
with a possibly adaptive strategy for which we have ob-
served ϕTxi + ηxi where ηxi is independent sub-Gaussian
noise. Assume, that ∥ϕ∥2 ≤ S and ∥x∥2 ≤ L for all
x ∈ X . If we estimate ϕ̂ from the observations using
least-squares regression, then for every x ∈ Rd and for
all t ≥ 0: P (∃x ∈ X : ϕTx /∈ [ltϕ(x), u

t
ϕ(x)]) ≤ δ with

βt =
√

d log ((1 + tL2/λ)/δ) +
√
λS.

3.3. Algorithms Using Static Confidence Intervals

To design an algorithm for solving CBAI problems, we need
to decide (1) which arms to pull during exploration and
(2) when we can stop the algorithm and return the correct
arm with high probability. First, let us address the second
question and then get back to the first one.

Stopping condition. Using the past observations, we can
define confidence intervals for the constraint value of each
arm. Let ltϕ(x) and ut

ϕ(x) be such that we know with
high probability (w.h.p.) ϕTx ∈ [ltϕ(x), u

t
ϕ(x)]. Now we

can also determine w.h.p. that all arms with ltϕ(x) > 0

are infeasible, and all arms with ut
ϕ(x) ≤ 0 are feasible.

Moreover, we can identify suboptimal arms by considering
r̄ = maxut

ϕ(x)≤0 θ
Tx. The solution to this optimization

problem are the highest-reward arms that are feasible w.h.p.
Therefore, all arms with reward less than r̄ are clearly sub-
optimal. Combining these observations, we can define a set
of arms that we are uncertain about, i.e., that could still be
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optimal:

Ut = {x ∈ X |ltϕ(x) ≤ 0 and ut
ϕ(x) > 0 and θTx > r̄}

Note, that if Ut is empty, we can stop and return an arm in
argmaxut

ϕ(x)≤0 θ
Tx. This arm will be optimal w.h.p.

Arm selection criterion. In each iteration, we have to
decide which arm to pull. We could, e.g., combine the above
stopping condition with querying uniformly random arms.
This algorithm would return the correct optimal arm with
high probability. However, random querying will usually
not be the most sample efficient approach. Another natural
approach is to select the arms that we are most uncertain
about, which is sometimes called uncertainty sampling. We
could, e.g., choose a fixed allocation

λG ∈ argmin
λ

max
x∈X
∥x∥A−1

λ
.

This approach is also called G-Allocation in the experi-
mental design literature. We show in Appendix B.2 that
G-Allocation matches the worst-case lower bound in Propo-
sition 1. However, we can do better by focusing on arms
that we cannot yet exclude as being certainly feasible, infea-
sible, or suboptimal. Concretely, we modify G-Allocation
to reduce uncertainty only about arms in Ut:

λACOL ∈ argmin
λ

max
x∈Ut

∥x∥A−1
λ

Rounding. All algorithms implementing a static alloca-
tion require a rounding procedure to translate an allocation λ
into a finite sequence of arms x1, . . . , xn. The experimental
design literature provides various efficient rounding proce-
dures that are ε-approximate. We use a standard procedure
described in Chapter 12 of Friedrich (2006).
Adaptive Constraint Learning (ACOL). Algorithm 1
shows the full algorithm we call Adaptive Constraint Learn-
ing (ACOL). The algorithm proceeds in rounds. In each
round t it pulls arms to reduce the uncertainty about arms in
Ut, then updates Ut, and decides if it can stop and return a
recommendation. The round length Nt is chosen carefully
to allow us to provide a tight sample complexity result.

The following theorem – the main theoretical result of our
paper – establishes that ACOL returns the correct optimal
solution to any CBAI problem and provides an upper bound
on the number of samples necessary.
Theorem 2 (ACOL sample complexity). Assume Algo-
rithm 1 is implemented with an ε-approximate rounding
strategy. Then, after N iterations the algorithm returns an
optimal arm with probability at least 1− δ, and we have:

N ≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

min
λ

max
x∈Ut

∥x∥2
A−1

λ

(ϕTx)2
+ t̄

≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄

Algorithm 1 Adaptive Constraint Learning (ACOL).
1: Input: significance δ
2: U1 ← X (uncertain arms)
3: F1 ← ∅ (feasible arms)
4: t← 1 (round)
5: while Ut ̸= ∅ do
6: δt ← δ2/t2

7: λ∗
t ← argminλ maxx∈Ut

∥x∥2
A−1

λ

8: ρ∗t ← minλ maxx∈Ut
∥x∥2

A−1
λ

9: Nt ← max
{⌈

22t+3 log
(

|X |
δt

)
(1 + ε)ρ∗t

⌉
, r(ε)

}
10: xNt

← Round(λ∗
t , Nt)

11: Pull arms x1, . . . , xNt
and observe constraint values

12: t← t+ 1
13: Update ϕ̂t and A based on new data
14: ltϕ(x)← ϕ̂T

t x−
√
βt∥x∥A−1 for all arms x

15: ut
ϕ(x)← ϕ̂T

t x+
√
βt∥x∥A−1 for all arms x

16: Ft ← Ft−1 ∪ {x|ut
ϕ(x) ≤ 0}

17: r̄ ← maxx∈Ft θ
Tx

18: Ut ← Ut−1 \ {x|ltϕ(x) > 0} \ {x|ut
ϕ(x) ≤ 0}

\{x|θTx < r̄}
19: end while
20: return x∗ ∈ argmaxx∈Ft

θTx

where H̄CLB(ν) = minλ maxx∈X ∥x∥2A−1
λ

/(ϕTx)2, and

t̄ =
⌈
− log2 C

+
min

⌉
. Moreover, H̄CLB(ν) ≤ d/(C+

min)
2

We prove the theorem in Appendix A. The key step uses
Proposition 2 to show that the confidence intervals shrink
exponentially. This implies that in a logarithmic number
of rounds, the largest confidence interval will be less than
C+

min; and once this is the case, Ut is empty and the algo-
rithm returns the correct solution. Combining this with the
round lengths of Nt allows us to prove the result.

The sample complexity of ACOL is of order H̄CLB(ν), ex-
cept for logarithmic factors. Also, we show that H̄CLB ≤
d/(C+

min)
2, so the bound matches the lower bound of Propo-

sition 1 for worst-case instances, but it is much tighter for
benign instances. In particular, the bound in Theorem 2 con-
tains the same min-max problem as the instance dependent
sample complexity HCLB(ν), only with the maximization
being over different sets, namely Ut instead of X≥

θ (x∗
ν).

Note, that we cannot expect a practical algorithm to only ex-
plore arms in X≥

θ (x∗
ν) because we do not know x∗

ν a priori.
Instead, ACOL explores in Ut, a conservative estimate of
X≥

θ (x∗
ν) that shrinks over time given the knowledge so far.

Theorem 2 does not exactly match the instance dependent
lower bound, but the difference only depends on how well
Ut approximates the set of relevant arms.
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Algorithm 2 Greedy Adaptive Constraint Learning (G-
ACOL).

1: Input: βt, λ
2: initialize Ŝ1(ϕ̂), U1 ← X , F1 ← ∅, A← λI , t← 1
3: while Ut ̸= ∅ do
4: x∗ ← maxx∈Ut

∥x∥2A−1

5: Pull arm x∗ and observe constraint value
6: t← t+ 1, A← A+ xxT

7: ltϕ(x)← ϕ̂T
t x−

√
βt∥x∥A−1 for all arms x

8: ut
ϕ(x)← ϕ̂T

t x+
√
βt∥x∥A−1 for all arms x

9: Ft ← Ft−1 ∪ {x|ut
ϕ(x) ≤ 0}

10: r̄ ← maxx∈Ft θ
Tx

11: Ut ← Ut−1 \ {x|ltϕ(x) > 0} \ {x|ut
ϕ(x) ≤ 0}

\{x|θTx < r̄}
12: end while
13: return x∗ ∈ argmaxx∈Ft

θTx

3.4. Algorithms Using Adaptive Confidence Intervals

Whereas the algorithm we just introduced comes with a
strong sample complexity guarantee, it is impractical in var-
ious ways, primarily because of the round-based structure.
In particular, the algorithm requires a rounding procedure
to determine a sequence of actions; it then follows this
sequence for a predefined round length and can not stop
before finishing a round. Also, in between rounds, the algo-
rithm discards all previously made observations, which is
necessary to apply Proposition 2.

Next, we present an alternative version of this algorithm
that uses the adaptive confidence intervals of Proposition 3.
This allows us to remove the round-based structure in favor
of a greedy algorithm that does not have the same limi-
tation. This algorithm, which we call Greedy Adaptive
Constraint Learning (G-ACOL), is shown in Algorithm 2.
Unfortunately, for G-ACOL, we can only provide signifi-
cantly weaker sample complexity guarantees; but we find it
performs well empirically.

Since the adaptive confidence intervals hold for all t > 0
simultaneously, we can now check the stopping condition
after each sample. Instead of determining a static alloca-
tion that reduces uncertainty about the uncertain arms, we
now greedily select the arm to pull that reduces uncertainty
within Ut the most. Thanks to Proposition 3, this algo-
rithm still stops and returns the correct solution. However,
it achieves worse sample complexity due to the additional
factor of

√
d in Proposition 3.

Heuristic modifications. There is a variety of heuristic
modifications that we can make to G-ACOL to improve its
practical performance at the cost of losing some theoreti-
cal guarantees. First, we could use a different query rule
within the set of uncertain arms, such as uniformly random
querying, which reduces computational cost. Second, the

βt resulting from Proposition 3 tends to be very large. In
practice, we can try to tune βt to get good confidence inter-
vals that are much smaller than the ones suggested by the
theory. Third, we can turn the algorithm into an “anytime”
algorithm by defining a recommendation rule, such as rec-
ommending the best arm that is certainly feasible. Then, we
can stop the algorithm after an a priori unknown budget of
queries and receive a best guess for the optimal arm.

4. Experiments
We perform three experiments. First, in Section 4.1, we
consider synthetic CBAI instances to evaluate ACOL
and compare it to natural baselines. Additionally, we
investigate the effect of various heuristic modifications to
the algorithm. Second, in Section 4.2, we compare ACOL
to algorithms that safely minimize regret. And, third, in
Section 4.3, we consider learning constraints that represent
human preferences in a simulated driving scenario. This
experiment illustrates how to model preference learning
problems as CBAI problems. In the driving simulation,
we also demonstrate the benefits of learning constraints in
terms of robustness and transferability.

We provide more details on the experiments in Appendix C
and we provide the full source code to reproduce our ex-
periments.1 For all experiments we use a significance of
δ = 0.05 and, if not stated differently, observations have
Gaussian noise with σ = 0.05.

4.1. Synthetic Experiments

We consider two synthetic CBAI instances and a range of
baselines and multiple variants of ACOL/ G-ACOL.

Instance 1 – Irrelevant dimensions. First, we consider
CBAI instances which contain a number of dimensions
that are irrelevant for learning the correct constraint bound-
ary. The problems have dimension d, and d + 1 arms:
x1, . . . , xd+1. For each i = 1, . . . , d− 1, we have xi = ei,
whereas xd = (1− ε)ed, and xd+1 = (1 + ε)ed, for some
ε > 0. ei denotes the i-th unit vector. The reward and
constraint parameter are both θ = ϕ = ed. We define a
threshold τ = 1; hence, x1, . . . , xd−1 are feasible but sub-
optimal, xd is optimal and xd+1 is infeasible. Importantly,
the arms x1, . . . , xd−1 are “irrelevant” to finding the correct
constraint boundary between xd and xd+1. An ideal algo-
rithm would focus its queries primarily on xd and xd+1. We
can vary the problem difficulty by changing ε (more difficult
for small values), and d (more difficult for large values).

Instance 2 – Unit sphere. To create CBAI instances with
a range of different reward and constraint functions, we
sample arms x1, . . . , xn uniformly from a d-dimensional

1https://github.com/lasgroup/
adaptive-constraint-learning

https://github.com/lasgroup/adaptive-constraint-learning
https://github.com/lasgroup/adaptive-constraint-learning
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Uniform G-Allocation ACOL (ours) Oracle
Adaptive Uniform (tuned) Greedy MaxVar (tuned) G-ACOL (tuned) G-ACOL (theory)

Figure 2. For both synthetic instances, we plot the median number of iterations for finding the constrained optimal solution as a function
of different parameters of the problem instance. All methods return the correct constrained optimal solution. For “irrelevant dimensions”,
we vary ε for fixed d = 10, and d for fixed ε = 0.05. For “unit sphere”, we vary n for fixed d = 30, and d for fixed n = 30. Note that
for “unit sphere”, the instances are randomly sampled for each random seed, whereas the “irrelevant dimensions” instance stays the same.
For legibility, we only show the median computed over 30 random seeds, and omit a few of the baselines we evaluated. For plots with all
baselines that include confidence intervals, see Appendix D. Overall, ACOL is the most sample efficient approach of all algorithms that
provide theoretical guarantees. In rare cases, it even needs fewer samples than the oracle. However, this is mostly an artifact of both
algorithms using slightly different round lengths (cf. Appendix C). By “tuning” βt, we can gain several orders of magnitude in sample
efficiency at the cost of theoretical guarantees. G-ACOL remains the most sample efficient among these tuned approaches.

unit sphere. We also sample the reward parameter θ from the
unit sphere. As constraint parameter, we choose ϕ = xi−xj

where xi and xj are the two closest arms in ℓ2-distance.
We can increase the problem difficulty by increasing the
dimension d and the number of arms n.

Baselines. We compare ACOL and G-ACOL to various
baselines. The Oracle solution uses knowledge of the true
constraint parameter to choose the best possible static alloca-
tion (cf. Appendix B.1). In practice, we cannot implement
the oracle because we do not know the constraint param-
eter; but, it yields a performance upper bound to which
we can compare other algorithms. G-Allocation uses a
static allocation that uniformly reduces uncertainty (cf. Ap-
pendix B.2), whereas Uniform pulls all arms with equal
probability. We also consider variants of these algorithms
that use the adaptive confidence interval in Proposition 3.
We call the adaptive version of G-Allocation Greedy MaxVar
because it greedily selects arms with the highest uncertainty
esimate from Ut. We call uniform sampling with the adap-
tive confidence intervals Adaptive Uniform respectively. For
all algorithms that use adaptive confidence intervals, in ad-
dition to the version using Proposition 3, we test a “tuned”
version that considers βt as a numeric hyperparameter in-
stead (indicated by the name of the algorithms followed
by (tuned)). We chose βt =

1
4 , for all experiments, which

we determined from minimal tuning on the “irrelevant di-
mensions” instance for the Greedy MaxVar algorithm. For
clarity, we omit a few of the baselines that perform poorly
in our plots. Appendix D provides the full results.

Results. Figure 2 shows our results in the synthetic CBAI
instances. All algorithms find the correct solution, but their

sample efficiency varies widely. From all algorithms with
theoretical guarantees, the (unrealistic) oracle solution needs
the fewest number of iterations, as expected. But ACOL
can get close to the oracle performance and outperforms G-
Allocation and uniform sampling in all cases. For example,
if we increase the number of irrelevant dimensions in the
first experiment, G-Allocation and uniform sampling need
more samples to determine which dimension is relevant.
In contrast, both ACOL quickly focuses on the relevant
dimension. Therefore, the number of iterations it needs
does not increase when adding irrelevant dimensions to the
problem, similar to the oracle solution.

Methods that use adaptive confidence intervals with βt sug-
gested by Proposition 3 turn out to be less sample efficient
than their round-based counterparts using static confidence
intervals, including G-ACOL performing worse than ACOL.
The reason for this is that the confidence interval in Propo-
sition 3 is quite loose. We can heuristically choose smaller
confidence intervals and consider βt as a tunable hyperpa-
rameter. We find that we can achieve orders of magnitude
better sample complexity without much tuning and still al-
ways find the correct solution. Even though this approach
loses the theoretical guarantees, it could be very valuable in
practical applications.

4.2. Comparing ACOL to Regret Minimization

To highlight the difference of our constrained linear best-
arm identification setting to regret minimization with con-
straints, we perform an experiment to compare G-ACOL to
the approaches by Amani et al. (2019) and Moradipari et al.
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Figure 3. We compare G-ACOL to MaxRew-F and MaxRew-U ,
that adapt regret minimization approaches to the CBAI setting.
We focus on a simple 1-dimensional problem, where we ensure
the set of feasible arms is connected. We find that MaxRew-F is
particularly sample inefficient because it only selects arms that are
certainly feasible. MaxRew-U is also less sample efficient than
G-ACOL because it selects arms with high reward over other arms
that would be more informative during exploration.

(2021). The algorithm by Amani et al. (2019) performs
UCB and the algorithm by Moradipari et al. (2021) per-
forms Thompson sampling, both within the set of certainly
feasible arms.

We can translate both approaches to our setting with known
rewards by greedily selecting arms from Ft w.r.t. their re-
ward. Because we do not start with a known safe arm, we
add an additional phase in which we select arms randomly
until Ft is not empty. Let us call this approach MaxRew-F .
As a hybrid of this approach and ACOL, we can design
an algorithm that greedily select arms from Ut w.r.t. their
reward. Let us call this algorithm MaxRew-U .

Unfortunately, MaxRew-F gets stuck in our synthetic in-
stances because we do not make any assumptions on the
safe set such as convexity and compactness. To evaluate
these algorithms, we, therefore, consider a third synthetic
instance in which the safe set is connected. We consider
10 arms in d = 1 that are equally spaced between 0 and 1.
The reward and constraint vectors are θ = ϕ = 1, and the
threshold is τ = 0.25. Here the safe set is connected, but
we can learn the constraint boundary more efficiently if we
are allowed to violate the constraint during exploration.

We compare G-ACOL to MaxRew-F and MaxRew-U in
Figure 3. We find that G-ACOL explores much more effi-
ciently than both of the other approaches. MaxRew-F is
particularly sample inefficient, because it ensures feasibil-
ity during exploration, which is not necessary in our case.
In Appendix D, we provide results for MaxRew-U in all
of our environments. We cannot provide these results for
MaxRew-F because it gets stuck in all other environments.
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Figure 4. We quantify our finding that learning constraints is more
robust to changes in the environment than learning a penalized
reward function. We consider the three scenarios from Figure 1:
the base scenario ( ), a scenario with a different goal ( ),
and a scenario with a change in the environment ( ). We find a
policy that optimizes the reward function θTx− λϕTx and plot
the reward and the constraint of the solution for different values of
λ. In particular, we need to choose a different value of λ for each
environment to find the best solution with a constraint value below
1. The dashed horizontal lines in the reward plot show the reward a
constrained solution obtains on the corresponding instance, which
does not require any tuning. For each scenario, the smallest λ we
find to yield a feasible solution still gives a worse solution in terms
of reward than the constrained solution.

4.3. Preference Learning Experiments

We now consider the application that initially motivated us
to define the CBAI problem. As discussed in Section 1, we
are interested in situations where the reward parameter θ
describes an easy-to-specify goal or metric, and the con-
straint parameter ϕ describes expensive-to-evaluate human
preferences.

As an example of this, we consider a driving simulator,
which Sadigh et al. (2017) originally introduced to study
learning reward functions to represent human preferences
about driving behavior. Instead, we change the setting to
have the reward θ represent an easy-to-specify goal such
as “drive at velocity v”, and the constraint ϕ represent other
driving rules such as “usually drive in a lane” or “don’t get
too close to other cars”, as shown in Figure 1. Appendix C
provides more details on the environment.

The decision-maker has to select a controller to drive the
car from a set of precomputed controllers X , i.e., the set
of “arms”. The optimal controller x∗ maximizes θTx∗

and satisfies ϕTx∗ ≤ τ . The decision-maker can try out
individual controllers to get feedback on whether they
are feasible. In contrast to our previous experiments, the
feedback is binary. However, we can still model it via
a sub-Gaussian noise model by ensuring the constraint
values are in [0, 1] and interpreting them as probabilities.
Therefore, this is a CBAI problem, and we can apply the
same algorithms we applied to our synthetic problems.

Robustness of learning constraints. First, we want to
quantify the observation of Figure 1 that constraints can be



Interactively Learning Preference Constraints in Linear Bandits

A
C

O
L

G
-A

C
O

L

G
-A

llocation

M
axR

ew
-U

G
reed

y
M

axV
ar

U
n

iform

A
d

ap
tive

U
n

iform

0

2

4

6
nu

m
b

er
of

sa
m

p
le

s
×106

5 10√
βt

102

104

nu
m

b
er

of
sa

m
p

le
s

5 10√
βt

0.0

0.5

1.0

so
lu

ti
on

co
rr

ec
t

Adaptive Uniform Greedy MaxVar
MaxRew-U G-ACOL

Figure 5. The left chart shows the number of iterations that all algorithms with theoretical guarantees need to find the correct solution in
the driving scenario. ACOL is the fastest, but it still needs ∼ 105 samples. Instead, we can use heuristic confidence intervals where we
consider βt as a hyperparameter instead of choosing the values suggested by theory. The two right plots shows the number of iterations
and the percentage of the times the methods return a correct solution as a function of βt. None of these algorithms is guaranteed to return
the correct solution. But, empirically, we find that for

√
βt beyond the vertical line, the algorithms always return the correct solution. This

again shows that tuning βt can drastically improve the sample efficiency while still returning the correct solution empirically.

a particularly robust representation of human preferences.
Specifically, using constraints to represent human prefer-
ences can increase robustness to changes in the environment
and allow to transfer the constraints to different reward func-
tions. Constraints are more robust than modeling the same
preferences as a penalty on the reward function. Figure 4
quantifies this by directly comparing the two options in
terms of the reward and constraint values they achieve. In
particular, we find that the magnitude of the reward penalty
often has to be updated if the environment changes, whereas
the constraint formulation is robust to such changes.

Results of learning constraints. We consider the driving
scenario as a CBAI problem and study learning the con-
straint function. Here, we only report results for the base
scenario in Figure 1. Appendix D contains similar results
for the other two scenarios which are qualitatively similar.
In Figure 5, we compare the performance of ACOL and
other algorithms with theoretical correctness guarantees to
versions of these algorithms with heuristic confidence inter-
vals. In both cases ACOL or G-ACOL is the most sample
efficient algorithm. By choosing the heuristic confidence
intervals, we can reduce the number of samples necessary
by two orders of magnitude from ∼ 105 to ∼ 103, at the
cost of theoretical guarantees. In all cases, using ACOL
is preferable over alternatives because it finds the correct
solution with fewer queries about the constraint function.

5. Conclusion
It is natural to formalize sequential decision-making prob-
lems in many practical situations as optimizing a known
reward function subject to unknown, expensive-to-evaluate

constraints. We studied constrained linear best-arm identi-
fication (CBAI), a linear bandit setting to learn about con-
straints efficiently, and proposed Adaptive Constraint Learn-
ing (ACOL) to efficiently solve this problem.

Limitations and future work. Our theoretical analysis is
limited to a single constraint function, which might not be
appropriate for applications where the constraints are non-
additive. It should be possible to extend the same theoretical
ideas to multiple linear constraints that all have to be satis-
fied, which would allow to apply ACOL to such situations.
From the empirical perspective, we found that modelling
human preferences as constraints rather than rewards can be
more robust. Future work should study using constraints to
model human preferences in more practical applications.

Broader impact. Sample efficient methods to learn about
human preferences could help to avoid misspecified objec-
tives in ML (Amodei et al., 2016). By focusing on learning
constraints, it might be possible to make preference learning
more robust and interpretable. Of course, such algorithms
could be misused, but we are optimistic that robust methods
to learn from humans will lead to safer ML methods overall.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Locatelli, A., Gutzeit, M., and Carpentier, A. An optimal al-
gorithm for the thresholding bandit problem. In Proceed-
ings of International Conference on Machine Learning
(ICML), 2016.

Moradipari, A., Amani, S., Alizadeh, M., and Thram-
poulidis, C. Safe linear Thompson sampling with side
information. IEEE Transactions on Signal Processing,
2021.

Pacchiano, A., Ghavamzadeh, M., Bartlett, P., and Jiang,
H. Stochastic bandits with linear constraints. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

Perrone, V., Shcherbatyi, I., Jenatton, R., Archambeau, C.,
and Seeger, M. Constrained bayesian optimization with
max-value entropy search. In NeurIPS 2019 Workshop
on Metalearning, 2019.

Rubinstein, R. Y. and Kroese, D. P. The cross-entropy
method: a unified approach to combinatorial optimiza-
tion, Monte-Carlo simulation, and machine learning.
Springer, 2004.

Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A.
Active preference-based learning of reward functions. In
Proceedings of Robotics: Science and Systems (RSS),
2017.

Settles, B. Active learning. Morgan & Claypool Publishers,
2012.

Soare, M. Sequential resource allocation in linear stochas-
tic bandits. PhD thesis, Université Lille 1-Sciences et
Technologies, 2015.

Soare, M., Lazaric, A., and Munos, R. Best-arm identifica-
tion in linear bandits. In Advances in Neural Information
Processing Systems, 2014.

Sui, Y., Gotovos, A., Burdick, J., and Krause, A. Safe
exploration for optimization with Gaussian processes.
In Proceedings of International Conference on Machine
Learning (ICML), 2015.



Interactively Learning Preference Constraints in Linear Bandits

Wang, Z., Wagenmaker, A., and Jamieson, K. Best arm
identification with safety constraints. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2022.

Wen, M. and Topcu, U. Constrained cross-entropy method
for safe reinforcement learning. IEEE Transactions on
Automatic Control, 2020.



Interactively Learning Preference Constraints in Linear Bandits

A. Proofs
This section provides the full proofs of our key results of the paper: the sample complexity lower bound for CBAI problems
(Appendix A.1) and the sample complexity of ACOL (Appendix A.2).

A.1. Lower Bounds

Theorem 1 (CBAI lower bound). Assume ηx ∼ N (0, 1) for all x ∈ X . For any CBAI problem ν = (X , θ, ϕ), there exists
another CBAI problem ν′ = (X , θ, ϕ′) with the same set of actions X and reward parameter θ but a different constraint
parameter and optimal arm, such that the expected number of iterations τ needed by any allocation strategy that can
distinguish between ν and ν′ with probability at least 1− δ is lower bounded as

E[τ ] ≥ 2 log

(
1

2.4δ

)
max

x∈X≥
θ (x∗

ν)

∥x∥2
A−1

λ

(ϕTx)2
,

where λ is a probability distribution over arms which the allocation strategy follows, i.e., λ(x) is the probability that it pulls
arm x, Aλ =

∑
x λ(x)xx

T is the design matrix, X≥
θ (x∗

ν) = {x′ ∈ X |θTx′ ≥ θTx∗
ν} is the set of all arms with reward

no less than x∗
ν , the optimal arm for problem ν.

Proof. Our proof has a similar structure to the proof of Theorem 3.1 by Soare (2015). Let us denote the optimal arm of
problem ν with x∗

ν and the optimal arm of ν′ with x∗
ν′ . Let A be a δ-PAC algorithm to solve constrained linear bandit

problems, and let A be the event that A recommends x∗
ν as the optimal arm. If we denote by Pν(A) the probability of A

happening for instance ν, and by Pν′(A) the probability for instance ν′, we have Pν(A) ≥ 1− δ and Pν′(A) ≤ δ.

Let ε̃ = ϕ′ − ϕ, and let τ be the stopping time of A. Let (x1, . . . , xτ ) be the sequence of arms A pulls and (z1, . . . , zt) the
corresponding observed noisy constraint values zi = xT

i ϕ+ ηxi
with ηxi

∼ N (0, 1) being independent Gaussian noise.

Now, consider the log-likelihood ratio of these observations under algorithm A:

Lτ = log

(
τ∏

s=1

Pν(zs|xs)

Pν′(zs|xs)

)
=

τ∑
s=1

log

(
Pν(zs|xs)

Pν′(zs|xs)

)
=

τ∑
s=1

log

(
Pν(ηs)

Pν′(η′s)

)
=

τ∑
s=1

log

(
exp(−η2s/2)
exp(−η′2s /2)

)

=

τ∑
s=1

1

2
((zs − xT

s ϕ
′)2 − (zs − xT

s ϕ)
2) =

τ∑
s=1

1

2
(z2s − 2zsx

T
s ϕ

′ + (xT
s ϕ

′)2 − z2s + 2zsx
T
s ϕ− (xT

s ϕ)
2)

=

τ∑
s=1

1

2
(2zsx

T
s (ϕ− ϕ′) + (xT

s ϕ
′ − xT

s ϕ)(x
T
s ϕ

′ + xT
s ϕ)) =

τ∑
s=1

1

2
(−2zsxT

s ε̃+ xT
s ε̃(x

T
s ϕ+ xT

s ε̃+ xT
s ϕ))

=

τ∑
s=1

(xT
s ε̃)
−2zs + 2xT

s ϕ+ xT
s ε̃

2
=

τ∑
s=1

(xT
s ε̃)

(
xT
s ε̃

2
− ηs

)

Taking the expectation of this log-likelihood ratio gives:

Eν [Lτ ] = Eν

[
τ∑

s=1

(xT
s ε̃)

(
xT
s ε̃

2
− ηs

)]
=

1

2
Eν

[
τ∑

s=1

(xT
s ε̃)

2

]
− Eν [ηs]︸ ︷︷ ︸

=0

=
1

2
Eν

[
τ∑

s=1

ε̃Txsx
T
s ε̃

]
=

1

2
Eν

[∑
x∈X

Eν [τ ]λ(x)ε̃
TxxT ε̃

]

=
1

2
Eν [τ ]Eν

[∑
x∈X

λ(x)ε̃TxxT ε̃

]
=

1

2
Eν [τ ]ε̃

TAλε̃

Next, we can apply Lemma 19 from Kaufmann et al. (2016):

Eν [Lτ ] =
1

2
Eν [τ ]ε̃

TAλε̃ ≥ KL(Pν(A), Pν′(A)) ≥ log
1

2.4δ



Interactively Learning Preference Constraints in Linear Bandits

Eν [τ ] ≥ 2 log

(
1

2.4δ

)
1

ε̃TAλε̃
(1)

To obtain a lower bound, we now aim to find the smallest ε̃ such that ν and ν′ have different constrained optimal arms.

Let X≥
θ (x) = {x′ ∈ X |θTx′ ≥ θTx} be the set of arms with higher reward than x. There are two ways we can modify ν to

change its optimal arm. We can change ϕ to ϕ′ such that either, Case (i), the previous optimum x∗
ν becomes infeasible in ν′,

or, Case (ii), a solution x∗
ν ∈ X≥

θ (x∗
ν) that was infeasible in ν is now feasible in ν′. We will consider both cases separately,

and aim to find an ε̃ for each case that minimizes ε̃TAλε̃.

Case (i). We want to find ε̃ that minimizes 1
2ε

TAλε such that ϕ′Tx∗
ν > 0, i.e., the previously optimal arm becomes

infeasible. We can write this constraint equivalently as

ϕ′Tx∗
ν > 0⇔ ϕTx∗

ν − ϕ′Tx∗
ν < ϕTx∗

ν ⇔ εTx∗
ν < ϕTx∗

ν ⇔ εTx∗
ν − ϕTx∗

ν < 0

Which results in the following optimization problem:

min
ε

1

2
εTAλε s.t. εTx∗

ν − ϕTx∗
ν + α ≤ 0,

where α > 0. The Lagrangian is L(ε, γ) = 1
2ε

TAλε− γ(εTx∗
ν − ϕTx∗

ν + α), and requiring ∂L
∂ε = ∂L

∂γ = 0 yields:

∂L

∂ε
= Aλε− γx∗

ν = 0⇔ Aλε = γx∗
ν ⇔ A

1
2

λ ε = γA
− 1

2

λ x∗
ν

∂L

∂γ
= εTx∗

ν − ϕTx∗
ν + α = 0⇔ εTx∗

ν = ϕTx∗
ν − α

From the first equation, it follows that

x∗
ν
T ε = x∗

ν
TA

− 1
2

λ A
1
2

λ ε = γx∗
ν
TA−1

λ x∗
ν = γ∥x∗

ν∥2A−1
λ

x∗
ν
T ε = x∗

ν
TA

− 1
2

λ A
1
2

λ ε =
1

γ
εTAλε =

1

γ
∥ε∥2Aλ

and therefore

x∗
ν
T ε = ∥x∗

ν∥A−1
λ
∥ε∥Aλ

= ϕTx∗
ν − α

∥ε∥Aλ
=

ϕTx∗
ν − α

∥x∗
ν∥A−1

λ

>
ϕTx∗

ν

∥x∗
ν∥A−1

λ

where the last inequality follows because α > 0 and Aλ is positive definite.

Case (ii). We want to find ε̃ that minimizes 1
2ε

TAλε such that there exists an x ∈ X for which θTx > θTx∗
ν and ϕ′Tx ≤ 0,

i.e., x has higher reward than x∗
ν and it is feasible in ν′. We can write these constraints as

θTx > θTx∗
ν ⇔ θT (x∗

ν − x) + α ≤ 0

ϕ′Tx ≤ 0⇔ εTx+ ϕTx ≤ 0

with α > 0. This results in the following optimization problem:

min
ε

1

2
εTAλε

s.t. ∃x : θT (x∗
ν − x) + α ≤ 0

εTx+ ϕTx ≤ 0

The Lagrangian of this problem is

L(ε, γ, δ) =
1

2
εTAλε− γ(θT (x∗

ν − x) + α)− δ(εTx+ ϕTx)
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Requiring ∂L
∂ε = ∂L

∂δ = 0 results in

∂L

∂ε
= Aλε− δx = 0⇔ Aλε = δx⇔ A

1
2

λ ε = δA
− 1

2

λ x

∂L

∂δ
= εTx+ ϕTx = 0⇔ εTx = −ϕTx

It follows that

xT ε = xTA
− 1

2

λ A
1
2

λ ε = δxTA−1
λ x = δ∥x∥2

A−1
λ

xT ε = xTA
− 1

2

λ A
1
2

λ ε =
1

δ
εTAλε =

1

δ
∥ε∥2Aλ

and therefore

xT ε = ∥x∥A−1
λ
∥ε∥Aλ

= ϕTx ⇒ ∥ε∥Aλ
=

ϕTx

∥x∥A−1
λ

Combining this result with the remaining constraint θTx > θTx∗
ν which implies x ∈ X≥

θ (x∗
ν), we can conclude

∥ε∥Aλ
≥ min

x∈X≥
θ (x∗

ν)

ϕTx

∥x∥A−1
λ

Combining cases (i) and (ii). We can conclude that the ε that minimizes ∥ε∥2Aλ
while still ensuring that ν′ has a different

solution than ν, satisfies:

∥ε∥Aλ
≥ min

[ ϕTx∗
ν

∥x∗
ν∥A−1

λ︸ ︷︷ ︸
Case (i)

, min
x∈X≥

θ (x∗
ν)

ϕTx

∥x∥A−1
λ︸ ︷︷ ︸

Case (ii)

]

But because x∗
ν ∈ X≥

θ (x∗
ν), it is simply

∥ε∥Aλ
≥ min

x∈X≥
θ (x∗

ν)

ϕTx

∥x∥A−1
λ

Combining this result with eq. (1), gives the final bound:

Eν [τ ] ≥ 2 log

(
1

2.4δ

)
1(

min
x∈X≥

θ (x∗
ν)

ϕT x
∥x∥

A
−1
λ

)2 = 2 log

(
1

2.4δ

)
max

x∈X≥
θ (x∗

ν)

∥x∥2
A−1

λ

(ϕTx)2

Next, we derive the worst case bound on the quantity making up the CBAI lower bound.

Proposition 1. For any CBAI problem ν, we have HCLB(ν) ≤ d/(C+
min)

2, where C+
min = minx∈X |ϕTx|. This bound is

tight, i.e, there is an instance ν, such that we have HCLB(ν) = d/(C+
min)

2.

Proof.

HCLB(ν) = min
λ

max
x∈X≥

θ (x∗
ν)

∥x∥2
A−1

λ∗

(ϕTx)2
≤ 1

C+
min

2 min
λ

max
x∈X≥

θ (x∗
ν)

∥x∥2
A−1

λ∗
≤ d

C+
min

2

where the last inequality uses the well-known result by Kiefer & Wolfowitz (1960). Equality holds, for example, if all
x ∈ X are linearly independent and have the same constraint value C+

min.
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A.2. Adaptive Constraint Learning

In this section, we analyse the sample complexity of ACOL and prove our main result.

Theorem 2 (ACOL sample complexity). Assume Algorithm 1 is implemented with an ε-approximate rounding strategy.
Then, after N iterations the algorithm returns an optimal arm with probability at least 1− δ, and we have:

N ≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

min
λ

max
x∈Ut

∥x∥2
A−1

λ

(ϕTx)2
+ t̄

≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄

where H̄CLB(ν) = minλ maxx∈X ∥x∥2A−1
λ

/(ϕTx)2, and t̄ =
⌈
− log2 C

+
min

⌉
. Moreover, H̄CLB(ν) ≤ d/(C+

min)
2

Proof. Let Et := {Ut ⊆ St} where St := {x ∈ X |ut
ϕ(x) − ltϕ(x) ≤ 2−t}. So, Et is the event that all arms in Ut have

confidence interval smaller than 2−t. We will first show that P (E1) ≥ 1− δ1 and P (Et|Et−1) ≥ 1− δt, which ensures that
the set of arms we are uncertain about shrinks exponentially in the rounds t.

Let x ∈ Ut. Then, using Proposition 2, and the ε-approximate rounding strategy, it holds with probability at least 1− δt that:

ut
ϕ(x)− ltϕ(x) ≤ 2

√
2 log

( |X |
δt

)
1 + ε

Nt
∥x∥A−1

λ∗
t

Using the length of a round Nt =
⌈
22t+3 log

(
|X |
δt

)
(1 + ε)ρ∗t

⌉
, and that we select arms to reduce uncertainty in Ut, we get

ut
ϕ(x)− ltϕ(x) ≤ 2−t

√(
min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

)−1

∥x∥A−1
λ∗
t

≤ 2−t

√(
min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

)−1(
min
λ

max
x̃∈Ut

∥x̃∥A−1
λ

)
≤ 2−t

Note, that x can only be in Ut if ut
ϕ(x) > 0 and ltϕ(x) ≤ 0. It follows that P (Et|Et−1) ≥ 1− δt.

Now consider round t̄ :=
⌈
log2

1
C+

min

⌉
. We show P (Ut̄ = ∅|Et̄) = 1. Assume Et̄, i.e., Ut ⊆ St. Let x ∈ Ut̄, then:

|ϕTx| ≤ 2−t̄ ≤ 2− log2 1/C+
min = C+

min

which is a contradiction because otherwise x would have a smaller constraint value than C+
min. Consequently, the set of

uncertain arms Ut̄ is empty and the algorithm returns the correct solution given Et̄. Lemma 1 shows that the unconditional
probability of the algorithm returning the correct solution after round t̄ is at least 1− δ.

Finally, we can compute the total number of samples the algorithm needs to return the correct solution:

N =

t̄∑
t=1

⌈22t+3 log

( |X |
δt

)
(1 + ε)ρ∗t ⌉ ≤

t̄∑
t=1

22t+3 log

( |X |
δt

)
(1 + ε)ρ∗t + t̄

≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

(2t)2ρ∗t + t̄ = 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

(2t)2 min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

+ t̄

= 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

(2−t)2
+ t̄

(a)

≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

min
λ

max
x̃∈Ut

∥x̃∥2
A−1

λ

(ϕT x̃)2
+ t̄

(b)

≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)

t̄∑
t=1

min
λ

max
x̃∈X

∥x̃∥2
A−1

λ

(ϕT x̃)2
+ t̄ ≤ 8 log

( |X |t̄2
δ2

)
(1 + ε)t̄H̄CLB(ν) + t̄
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Algorithm 3 Round based algorithm with a generic allocation λ∗ with hyperparamater v ∈ (1, 2). For λ∗ ∈
argminλ max

x∈X≥
θ (x∗

ν)
∥x∥A−1

λ
/|ϕTx| this algorithm becomes the oracle solution. For λ∗ ∈ argminλ maxx∈X ∥x∥A−1

λ
it

becomes G-Allocation.
1: Input: static design λ∗, significance δ
2: U1 ← X (uncertain arms)
3: F1 ← ∅ (feasible arms)
4: t← 1 (round)
5: while Ut ̸= ∅ do
6: δt ← δ2/t2

7: Nt ← ⌈vt log(|X |/δt)⌉
8: xNt ← Round(λ∗, Nt)
9: Pull arms x1, . . . , xNt

and observe constraint values
10: t← t+ 1
11: Update ϕ̂t and A based on new data
12: ltϕ(x)← ϕ̂T

t x−
√
βt∥x∥A−1 for all arms x ∈ X

13: ut
ϕ(x)← ϕ̂T

t x+
√
βt∥x∥A−1 for all arms x ∈ X

14: Ft ← Ft−1 ∪ {x|ut
ϕ(x) ≤ 0}

15: r̄ ← maxx∈Ft
θTx

16: Ut ← Ut−1 \ {x|ltϕ(x) > 0} \ {x|ut
ϕ(x) ≤ 0} \ {x|θTx < r̄}

17: end while
18: return x∗ ∈ argmaxx∈Ft

θTx

where (a) follows because we showed that |ϕTx| ≤ 2−t w.h.p. for x ∈ Ut, and (b) follows simply because Ut ⊆ X . In the

last step, we defined H̄CLB(ν) = minλ maxx̃∈X
∥x̃∥2

A
−1
λ

(ϕT x̃)2

Moreover,

H̄CLB(ν) = min
λ

max
x∈X

∥x∥2
A−1

λ

(ϕTx)2
≤ 1

C+
min

2 min
λ

max
x∈X
∥x∥2

A−1
λ

≤ 1

C+
min

2 min
λ

max
x∈Rd

∥x∥2
A−1

λ

≤ d

C+
min

2

using the result by Kiefer & Wolfowitz (1960).

Lemma 1. Let E1, . . . , ET be a Markovian sequence of events such that P (E1) ≥ 1− δ1 and P (Et|Et−1) ≥ 1− δt for all
t = 2, . . . , T , where δt = δ2/t2 and δ ∈ (0, 1). Et is independent of other events conditioned on Et−1. Then P (ET ) ≥ 1− δ.

Proof.

P (ET ) =
(

T∏
t=2

P (Et|Et−1)

)
P (E1) ≥

(
t̄∏

t=2

(1− δt)

)
(1− δ1) ≥

∞∏
t=1

(
1− δ2

t2

)
=

sin(πδ)

πδ
≥ 1− δ

where the last inequality holds for 0 ≤ δ ≤ 1.

B. Alternative Algorithms
Given any static design λ∗, we can consider different round-based algorithms using the static confidence intervals from
Proposition 2. Algorithm 3 shows the general algorithm. It uses the same stopping condition as ACOL but uses a more
straightforward round length of vt log(|X |/δt) with v a hyperparameter, and a fixed static allocation. In this section, we
analyze two versions of this generic algorithm that are of particular interest: the oracle solution (Appendix B.1) and
G-Allocation (Appendix B.2).



Interactively Learning Preference Constraints in Linear Bandits

B.1. Oracle Solution

The oracle solution allocates samples according to λ∗ ∈ argminλ max
x∈X≥

θ (x∗
ν)
∥x∥A−1

λ
/|ϕTx| in Algorithm 3. Note that

this design exactly matches the term in our instance dependent lower-bound in Theorem 1. Therefore, this is the ideal
allocation to achieve good sample complexity. However, this oracle solution requires knowledge of ϕ, which we do not
know in practice.

As expected, this algorithm matches the sample complexity lower bound, i.e., it is instance-optimal apart from logarithmic
factors. The following theorem formalizes this.

Theorem 3 (Oracle sample complexity). The oracle algorithm finds the optimal solution to a constrained linear best-arm
identification problem ν = (X , θ, ϕ) within N ∝ HCLB(ν) with probability at least 1− δ.

Proof. Assuming a (1 + ε)-approximate rounding procedure, in round t we have: ∥x∥2
A−1

x∗
Nt

≤ 1+ε
Nt
∥x∥2

A−1
λ∗

. It follows,

similar to the proof of Theorem 2, that in round t, for each x ∈ X≥
θ if ϕTx > ϕTx∗

ν :

ϕTx− ltϕ(x) ≤
√
2 log(|X |/δt)∥x∥A−1

x∗
n

≤
√

2(1 + ε) log(|X |/δt)/Nt∥x∥A−1
λ∗

A similar argument gives for x∗
ν :

ut
ϕ(x

∗
ν)− ϕTx∗

ν ≤
√

2 log(|X |/δt)∥x∗
ν∥A−1

x∗
n

≤
√

2(1 + ε) log(|X |/δt)/Nt∥x∗
ν∥A−1

λ∗

Let us call the event that these confidence bounds hold Et. We have P (Et|Et−1) ≥ 1 − δt. Now, consider round
t̄ = ⌈logv (2(1 + ε)HCLB(ν))⌉ with length Nt̄ = ⌈2(1 + ε) log(|X |/δt)HCLB(ν)⌉. For all x ∈ X≥

θ if ϕTx > ϕTx∗
ν :

ϕTx− lt̄ϕ(x) ≤
√

1

HCLB(ν)
∥x∥A−1

λ∗
≤
√√√√ (ϕTx)2

∥x∥2
A−1

λ∗

∥x∥A−1
λ∗
≤ |ϕTx|

Note that x is infeasible and ϕTx, which implies lt̄ϕ(x) ≥ 0 and in turn x /∈ Ut̄. Similarly, ut̄
ϕ(x

∗
ν)− ϕTx∗

ν ≤ |ϕTx∗
ν |. x∗

ν

is feasible and ϕTx∗
ν ≤ 0. Hence, ut̄

ϕ(x
∗
ν) ≤ 0 and x∗

ν /∈ Ut̄. This implies that Ut̄ = ∅ and, conditioned on Et̄, the oracle
algorithm solves the problem in round t̄ with probability 1. We can apply Lemma 1 to conclude that, unconditionally, the
algorithm solves the problem in round t̄ with a probability of at least 1− δ.

Let us compute the total iterations necessary:

N =

t̄∑
t=1

⌈2(1 + ε) log(|X |/δt)HCLB(ν)⌉ ≤ t̄(1 + 2(1 + ε) log(|X |t̄2/δ2)HCLB(ν)) ∝ HCLB(ν)

So, N is on order HCLB(ν) except for logarithmic factors, concluding the proof.

B.2. G-Allocation

We obtain G-Allocation by choosing λ∗ ∈ argminλ maxx∈X ∥x∥A−1
λ

in Algorithm 3. G-Allocation uniformly reduce the
uncertainty about the constraint function for all arms. This is not ideal because it does not focus on which arms are plausible
optimizers according to the known reward function.

Still, the following theorem shows that G-Allocation achieves sample complexity on order d/C+
min

2
, so it matches the

worst-case lower bound in Proposition 1.

Theorem 4. G-Allocation finds the optimal arm within N ∝ d/C+
min

2
iterations with probability at least 1− δ.

Proof. As in the proof of Theorem 3, we have in round t, for each x ∈ X≥
θ if ϕTx > ϕTx∗

ν :

ut
ϕ(x)− ltϕ(x) ≤ 2

√
2 log(|X |/δt)∥x∥A−1

x∗
n

≤ 2
√

2(1 + ε) log(|X |/δt)/Nt∥x∥A−1
λ∗
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Again, we call the event that these confidence bounds hold Et, and have P (Et|Et−1) ≥ 1− δt. Now, consider round

t̄ = logv

(
8(1 + ε) argmin

λ
max
x∈X
∥x∥A−1

λ
/C+

min

2
)

Nt̄ =

⌈
8(1 + ε) log(|X |/δt) argmin

λ
max
x∈X
∥x∥A−1

λ
/C+

min

2
⌉

For all x ∈ Ut it follows that:

ut̄
ϕ(x)− lt̄ϕ(x) ≤

√√√√ C+
min

2

∥x∥A−1
λ∗

∥x∥A−1
λ∗
≤ C+

min

This implies that G-Allocation solves the problem in round t̄ with probability 1, similar to the proof of Theorem 2. We can
apply Lemma 1 to conclude that, unconditionally, the algorithm solves the problem in round t̄ with a probability of at least
1− δ.

Let us compute the total iterations necessary:

N =

t̄∑
t=1

⌈
8(1 + ε) log(|X |/δt) argmin

λ
max
x∈X
∥x∥A−1

λ
/C+

min

2
⌉

≤ t̄

(
1 + 8(1 + ε) log(|X |/δt) argmin

λ
max
x∈X
∥x∥A−1

λ
/C+

min

2
)

≤ t̄
(
1 + 8(1 + ε) log(|X |/δt)d/C+

min

2
)
∝ d/C+

min

2

where the last inequality uses the result by Kiefer & Wolfowitz (1960).

C. Experimental Details About the Driving Environment
This section provides details on the driving environment we use in Section 4.3. We provide full source code for all of our
experiments at: https://github.com/lasgroup/adaptive-constraint-learning

We extend the Driver proposed by Sadigh et al. (2017) and Bıyık et al. (2020), to incorporate different tasks. Here, we
provide a brief description of the dynamics and features of the environment.

The Driver environment uses point-mass dynamics with a continuous state and action space. The state s = (x, y, φ, v)
consists of the agent’s position (x, y), its heading φ, and its velocity v. The actions a = (a1, a2) consist of a steering input
and an acceleration. The environment dynamics are given by

st+1 = (xt+1, yt+1, φt+1, vt+1) = (xt +∆x, yt +∆y, φt +∆φ, clip(vt +∆v,−1, 1))
(∆x,∆y,∆φ,∆v) = (v cosφ, v sinφ, va1, a2 − αv)

where α = 1 is a friction parameter, and the velocity is clipped to [−1, 1] at each timestep.

The environment represents a highway with three lanes. In addition to the agent, the environment contains a second car that
moves on a predefined trajectory. The reward and the constraint functions are linear in a set of features

f(s) = (f1(s), f2(s), f3(s), f4(s), f5(s), f6(s), f7(s), f8(s), 1)

that are described in detail in Table C.1.

The (known) rewards for the three scenarios are:

Base scenario: θ1 = (1, 0, 0, 0, 0, 0, 0, 0, 0)

Different reward: θ2 = (0, 1, 0, 0, 0, 0, 0, 0, 0)

Different environment: θ3 = (1, 0, 0, 0, 0, 0, 0, 0, 0)

https://github.com/lasgroup/adaptive-constraint-learning
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Algorithm 4 Cross-entropy method for (constrained) reinforcement learning. For more details on the cross-entropy method,
see Rubinstein & Kroese (2004), and for the application to constrained RL, see Wen & Topcu (2020).

1: Input: niter, nsamp, nelite
2: Initialize policy parameters µ ∈ Rd, σ ∈ Rd.
3: for iteration = 1, 2, . . . , niter do
4: Sample nsamp samples of ωi ∼ N (µ,diag(σ))
5: Evaluate policies ω1, . . . , ωnsamp in the environment
6: if constrained problem then
7: Sort ωi in ascending order of constraint value J(ωi)
8: Let E be the first nelite policies
9: if J(ωnelite) ≤ 0 then

10: Sort {ωi|J(ωi) ≤ 0} in descending order of return G(ωi)
11: Let E be the first nelite policies
12: end if
13: else
14: Sort ωi in descending order of return G(ωi)
15: Let E be the first nelite policies
16: end if
17: Fit Gaussian distribution with mean µ and diagonal covariance σ to E
18: end for
19: return µ

The (unknown) constraint is:

ϕ = (0, 0, 0.3, 0.05, 0.02, 0.5, 0.3, 0.8), τ = 1

Our Driver environment uses a fixed time horizon T = 20, and policies are represented simply as sequences of 20 actions
because the environment is deterministic.

C.1. Cross-Entropy Method for Constrained RL

We find policies in the Driver environment with a given reward function using the cross-entropy method (Rubinstein &
Kroese, 2004). For the constrained reinforcement learning problem, we use a modified cross-entropy method, proposed by
Wen & Topcu (2020), that takes the feasibility of solutions into account. Algorithm 4 contains pseudocode of this method.

C.2. Binary Feedback

So far, we considered numerical observations of the constraint value ϕTx+ η where η is subgaussian noise. In the driving
environment, we (more realistic) binary observations in {−1, 1}.
If we assume that all true constraint values are in [−1, 1], we can define the observation model P (y = 1|ϕ, x) = (ϕTx+1)/2.
We can consider this as bounded, sub-gaussian noise on the constraint value, and so all our analysis still applies.

C.3. Setup

To translate learning the unknown constraint function in the Driver environment into a constrained linear best arm identifica-
tion problem, we consider a set of pre-computed policies Π. This set of policies corresponds to the arms of a linear bandit
problem, and both the return G(π) of a policy and the constraint function J(π) are linear in the expected feature counts of
the policy: G(π) = f(π) · r and J(π) = f(π) · c.

For binary observations, we normalize the features of all policies such that all constraint values are between −1 and 1.

D. Additional Experimental Results
Here, we provide the additional results for the experiments discussed in the main paper. Full results are shown in Figure 6
for the bandit results and Figure 7 for the driving scenario. Table D.2 contains an overview of all algorithms and baselines
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Feature Description Type Definition θ1 θ2 θ3 ϕ

f1(s) Target velocity Numerical −(v − 0.4)2 1 0 1 0

f2(s) Target location Numerical
−(x− xr)

2

xr center of right lane 0 1 0 0

f3(s) Stay on street Binary 1 iff off street 0 0 0 0.3

f4(s) Stay in lane Numeric

1
1+exp(−bd+a) ,

d distance to closest lane center,
b = 10000, a = 10

0 0 0 0.05

f5(s)
Stay aligned
with street Numeric | cos(θ)| 0 0 0 0.02

f6(s)
Don’t drive
backwards Binary 1 iff v < 0 0 0 0 0.5

f7(s)
Stay within
speed limit Binary 1 iff v > 0.6 0 0 0 0.3

f8(s)
Don’t get too close

to other cars Numeric
exp(−b(c1d2x + c2d

2
y) + ba),

a = 0.01, b = 30,
c1 = 4, c2 = 1

0 0 0 0.8

Table C.1. Features for representing the reward and constraint function in the Driver environment. The last four columns contain the
reward weights for the three scenarios and the constraint weight that is shared.
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Name
Confidence

Intervals
Selection
Criterion

Select From
Arms

Plot
Color

Oracle static Oracle All
G-Allocation static MaxVar All
Uniform static Uniform All
ACOL static MaxVar Uncertain
Greedy MaxVar adaptive MaxVar All
Adaptive Uniform adaptive Uniform All
MaxRew-U adaptive Max Rew Uncertain
MaxRew-F adaptive Max Rew Feasible -
G-ACOL adaptive MaxVar Uncertain
G-ACOL Uniform adaptive Uniform Uncertain
Greedy MaxVar (tuned) adaptive tuned MaxVar All
Adaptive Uniform (tuned) adaptive tuned Uniform All
G-ACOL (tuned) adaptive tuned MaxVar Uncertain
G-ACOL Uniform (tuned) adaptive tuned Uniform Uncertain
MaxRew-U (tuned) adaptive tuned Max Rew Uncertain
MaxRew-F (tuned) adaptive tuned Max Rew Feasible -

Table D.2. Overview of all algorithms we evaluate.

that we evaluated.

We find that methods that select arms from U randomly (G-ACOL Uniform) or by maximizing the reward (MaxRew-U)
can perform quite well in some cases with tuned confidence intervals. Indeed, MaxRew-U outperforms G-ACOL in the
unit sphere experiment. This is not consistent across environments, and G-ACOL performs comparable or better in all
other environments. Still, in some cases, when theoretical guarantees are not required, these heuristic approaches might be
valuable alternatives.
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Uniform Adaptive Uniform Adaptive Uniform (tuned)
G-Allocation Greedy MaxVar Greedy MaxVar (tuned)
ACOL (ours) G-ACOL G-ACOL (tuned)
Oracle G-ACOL Uniform G-ACOL Uniform (tuned)

MaxRew-U MaxRew-U (tuned)

Figure 6. Similar plots to Figure 2, including some additional algorithms: the “non-tuned” versions of algorithms use the confidence
interval from Proposition 3, and G-ACOL Uniform is G-ACOL with uniform sampling instead of the maximum variance objective.
Table D.2 provides an overview of all baselines. Moreover, the plots here show the 25th and 75th percentiles over 30 random seeds. For
“irrelevant dimensions”, these are close to the median, but for “unit sphere”, there is much more randomness because the instances are
randomly generated.
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(a) “Base scenario”
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(b) “Different reward”
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(c) “Different environment”
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Figure 7. Similar plots as in Figure 5 for all three driving scenarios from Figure 1, showing G-ACOL Uniform as aan additional baseline.


