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Abstract
We study sequential decision-making with known
rewards and unknown constraints, motivated
by situations where the constraints represent
expensive-to-evaluate human preferences, such
as safe and comfortable driving behavior. We
formalize the challenge of interactively learning
about these constraints as a novel linear bandit
problem which we call constrained linear
best-arm identification. To solve this problem,
we propose the Adaptive Constraint Learning
(ACOL) algorithm. We provide an instance-
dependent lower bound for constrained linear
best-arm identification and show that ACOL’s
sample complexity matches the lower bound
in the worst-case. In the average case, ACOL’s
sample complexity bound is still significantly
tighter than bounds of simpler approaches. In
synthetic experiments, ACOL performs on
par with an oracle solution and outperforms
a range of baselines. As an application, we
consider learning constraints to represent human
preferences in a driving simulation. ACOL is
significantly more sample efficient than alterna-
tives for this application. Further, we find that
learning preferences as constraints is more robust
to changes in the driving scenario than encoding
the preferences directly in the reward function.

1. Introduction
Often, (sequential) decision-making problems are formal-
ized as maximizing an unknown reward function that cap-
tures an expensive-to-evaluate objective, for example, user
preferences (see Chapter 1 of Lattimore & Szepesvári (2020)
for examples). However, in many practical situations, it can
be more natural to model problems with a known reward
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function and unknown, expensive-to-evaluate constraints.

For example, a cookie manufacturer might want to create
a low-calorie cookie.4 The cookie should have the lowest
amount of calories possible, but at least 95% of customers
should like it. To evaluate this constraint, the manufacturer
has to produce specific cookies and test them with customers.
The reward, i.e., the amount of calories for a recipe, is easy
to evaluate without producing a cookie. Because customer
trials are expensive, the cookie manufacturer wants to find
the best constrained solution with as few trials as possible.

As a second example, consider finding safe control
parameters for an autonomous car. A car manufacturer
might have a set of controllers to choose from that perform
a specific task, such as reaching a target destination as
quickly as possible. The ideal controller achieves this
task well and drives safely and comfortably. Whereas the
objective – travel time – is easy to specify as a reward
function, the constraints – perceived safety and comfort –
may require feedback from human drivers and passengers.
Similarly as in the previous example, the manufacturer’s
goal is to find the best, safe controller with as few trials that
involve human feedback as possible. We assume that the
controllers are evaluated in a simulation, so it is acceptable
to evaluate an unsafe controller during training; however,
the constraints have to be satisfied during deployment.

In both examples, the decision-making problem is naturally
characterized by an easy-to-evaluate part (the reward) and
an expensive-to-evaluate part (the constraint). Additionally,
we observe that constraints are more robust to changes
in the environment and can be transferred to selecting
controllers for different goals, in contrast to encoding
the constraints as a penalty in the reward function (see
Figure 1). Hence, in this paper, we study learning about
unknown, expensive-to-evaluate constraints.

Specifically, we propose a two-phase approach to solving
problems with unknown constraints. In the first phase, we
learn to estimate the expensive-to-evaluate constraint func-
tion well enough for solving the constraint optimization
problem. In the second phase, we recommend a solution.

4Example adapted from Gelbart et al. (2014).
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Figure 1. We want to select a controller for driving the orange car. In the base scenario (left image), the car should drive at velocity v,
which we encode as reward. We model other driving rules, like “usually drive in a lane” or “don’t get too close to other cars”, either as
a penalty on the reward function (in (a)) or as a constraint (in (b)). In the “different reward” scenario (middle image), the car should
pull over to the right of the street instead of keeping the velocity. If we reuse the same reward penalty for this task, the controller does
not achieve the task because the penalty is too strong. So, we would have to tune the penalty for this new task, whereas the constrained
controller still completes the new task safely without any tuning. In the “different environment” scenario (right image), the goal of driving
at a target velocity remains the same, but the environment changes. In this changed environment, three vehicles block the road. Here, the
penalized controller trades off the penalty with achieving high reward and tries to go through the cars to keep the velocity, which is too
dangerous. On the other hand, the constraint formulation does not allow violating a constraint such as “don’t get too close to other cars”
which makes the orange car stop before the street is blocked. In Section 4.3, we study this example in more detail.

Constraint violations are allowed in the first phase, but the
final recommendation has to satisfy the constraints.

Contributions. We formalize learning about unknown
constraints to find the best constrained solution as a novel lin-
ear bandit problem (Section 3) which we call constrained lin-
ear best-arm identification (CBAI). We provide an instance-
dependent sample complexity lower bound (Section 3.1)
and propose Adaptive Constraint Learning (ACOL), an al-
gorithm that almost matches this lower bound (Section 3.3).
Our empirical evaluation shows that ACOL gets close to
the performance of an oracle solution that has access to
the true constraint function while outperforming a range
of simpler baselines (Section 4.1). As a concrete applica-
tion, we consider learning driving behavior in a simulation,
where the constraints represent human preferences about
driving behavior (Section 4.3). We demonstrate empirically
that ACOL can learn these constraints and propose heuristic
variants of the algorithm that empirically improve sample
efficiency. Additionally, we quantify the observation that
learning driving preferences as constraints instead of re-
wards increases the robustness and transferability of the
learned preferences.

2. Related Work
Learning constraints is similar to actively classifying arms
as “feasible” or “infeasible”; but, in contrast to typical ac-
tive learning (Settles, 2012), we do not need to classify all
arms. Instead, we only want to find the best feasible arm,

which can require fewer samples than classifying all arms.
Our problem formalization as a linear multi-armed bandit
best-arm identification problem (Audibert et al., 2010) is
similar to Soare et al. (2014) in the unconstrained setting,
but focused on learning constraints.

Much prior work on constraints in multi-armed bandits
considers other notions of constraints than we do. For
example, constraints holding in expectation rather than with
high probability (Pacchiano et al., 2021), or constraints
in the form of a lower bound (threshold) on the reward
(Locatelli et al., 2016; Kazerouni et al., 2017; Kano et al.,
2019; Khezeli & Bitar, 2020).

Amani et al. (2019) and Moradipari et al. (2021) consider a
linear bandit setting with a separate (linear) constraint func-
tion. Both differ from our work in three important ways: (1)
they assume an unknown reward function whereas we as-
sume the reward to be known, (2) they focus on cumulative
regret minimization whereas we focus on best-arm identi-
fication, and (3) they require the constraints to be satisfied
during exploration whereas we only require them to be satis-
fied for the final recommendation. These works adapt bandit
algorithms based on upper confidence bounds (Amani et al.,
2019) or Thompson sampling (Moradipari et al., 2021) to
minimize regret in the constraint setting. To enable safe
exploration, they need to assume a convex and compact set
of arms; we do not require this assumption.

Wang et al. (2022) also study best-arm identification with
linear constraints. In contrast to our work, they assume


