Deep Neural Network Fusion via Graph Matching with Applications to
Model Ensemble and Federated Learning

Chang Liu' Chenfei Lou' Runzhong Wang' Alan Yuhan Xi? Li Shen® Junchi Yan'*

Abstract

Model fusion without accessing training data in
machine learning has attracted increasing inter-
est due to the practical resource-saving and data
privacy issues. During the training process, the
neural weights of each model can be randomly
permuted, and we have to align the channels of
each layer before fusing them. Regrading the
channels as nodes and weights as edges, aligning
the channels to maximize weight similarity is a
challenging NP-hard assignment problem. Due to
its quadratic assignment nature, we formulate the
model fusion problem as a graph matching task,
considering the second-order similarity of model
weights instead of previous work merely formulat-
ing model fusion as a linear assignment problem.
For the rising problem scale and multi-model con-
sistency issues, we propose an efficient graduated
assignment-based model fusion method, dubbed
GAMF, which iteratively updates the matchings
in a consistency-maintaining manner. We apply
GAMEF to tackle the compact model ensemble task
and federated learning task on MNIST, CIFAR-
10, CIFAR-100, and Tiny-Imagenet. The perfor-
mance shows the efficacy of our GAMF compared
to state-of-the-art baselines.

1. Introduction

If we have two or more independently trained neural net-
works, how should we utilize them with the best accuracy?
(Utans, 1996) propose the model fusion problem, which
aims at fusing several neural networks into a single network
without accessing the training data. Compared to the tradi-
tional prediction-based model ensemble, the advantage of
fusing multiple networks into one is to save memory and

"Department of Computer Science and Engineering, and MoE
Key Lab of Al Shanghai Jiao Tong University University of Wis-
consin Madison *JD Explore Academy *Shanghai AI Laboratory.
Correspondence to: Junchi Yan <yanjunchi@sjtu.edu.cn>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Figure 1: Left: Connection between model fusion and graph
matching; Right: For federated learning, the performance
boost and convergence speed up of GAMF on CIFAR-10.

inference time, as the prediction ensemble needs to maintain
all individual models. Also, it can be applied to privacy-
intensive federated learning (FL), where how to efficiently
aggregate all locally-trained models remains open.

A vanilla strategy is to simply average the weights, assum-
ing that the channels of different networks do not need any
alignment. However, due to the randomness and orthogo-
nal invariance of deep neural networks, the channels from
different networks are always randomly permuted. The pre-
vious study (Singh & Jaggi, 2020) has demonstrated the
harmfulness if the channels are not aligned in model fusion
because the effective components of the network will be
interfered with and canceled by each other.

Recent works (Singh & Jaggi, 2020; Wang et al., 2020a)
raise the awareness of the importance of alignment in model
fusion. However, they simplify it into a linear assign-
ment problem, which ignore the rich edge-wise informa-
tion between channels. Graph matching (GM) (Yan et al.,
2020; Loiola et al., 2007), which aims at matching nodes to
nodes among graphs exploiting the structural information
in graphs, appears to be the natural tool for model fusion
since the network channels can be regarded as nodes and
the weights connecting channels as edges (see Fig. 1).

One step further, multi-model fusion is a more challeng-
ing yet frequently encountered scenario where more than
two networks needing to be jointly aligned. Existing solu-
tion for multiple models are relatively heuristic, e.g. OTFu-

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

sion (Singh & Jaggi, 2020) simply merges all models se-
quentially, FedMA (Wang et al., 2020a) sequentially selects
an anchor at each aggregation step, FedSpa (Huang et al.,
2022b) and DisPFL (Dai et al., 2022) fuse the multiple local
models in a low-dimensional subspace by extracting the sub-
models with sparse training (Liu et al., 2021b; 2022), and
Wang et al. (2022) adopt distributional robust optimization
approach to fuse multiple models. In contrast, multi-graph
matching (MGM) algorithms (Yan et al., 2016a; Jiang et al.,
2021; Wang et al., 2020b; Leonardos et al., 2017) are devel-
oped in the sense of cycle consistency, which ensure that the
matching of two graphs should not be violated by the match-
ings involving any third graph. Hence, MGM algorithms
can ensure a global alignment of multiple models.

Despite the appealing properties discussed above, existing
graph matching methods (Gold & Rangarajan, 1996; Cho
etal., 2010; Jiang et al., 2021; Zhou & Torre, 2016; Wang
et al., 2020b), including the state-of-the-art commercial
solver GUROBI (Optimization, 2020), can not be readily
applied in neural network model fusion, due to the memory
burden introduced by the O((dx)?)-sized affinity tensor,
especially for fusing multiple models. Here dx; is the sum
of channels of neural networks, which can be up to several
thousand for modern neural networks. Fortunately, we will
show that the affinity tensor contains certain sparse patterns,
which leaves the space for more cost-effective exploitation
via our graduated assignment technique inspired from the
classic work (Gold & Rangarajan, 1996).

In this paper, we resort to a graph matching formulation
for network model fusion method: Graduated Assignment
Model Fusion (GAMF). For scalability, we develop a new
graduated assignment algorithm under a memory-efficient
slice-and-scan procedure, enabling the feasibility of fus-
ing deep neural networks via graph matching. For multi-
model fusion, we propose a multi-model version of GAMF
by developing a cycle-consistent MGM algorithm inspired
by (Wang & et al, 2020; Solé-Ribalta & Serratosa, 2013).

GAMF is validated under two important applications: com-
pact model ensemble and federated learning. In the first
case, we follow the settings in OTFusion and GAMF outper-
forms OTFusion on both MNIST (LeCun, 1998) and CIFAR-
10 (Krizhevsky et al., 2009). In federated learning, we con-
duct the experiments on the popular open-source framework
FedML (He et al., 2020b). Compared with state-of-the-
art FL algorithms, GAMF converges faster on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and Tiny-Imagenet'.

The contributions of this paper are four-fold:

1) Unlike previous work using linear assignment problem
(LAP) for the emerging paradigm of model fusion without
accessing training data, we manage to solve it by graph

! https://www.kaggle.com/c/tiny-imageNet

matching with edge information. To our best knowledge,
we are the first to solve model fusion beyond LAP.

2) We propose a scalable graduated assignment method
named GAMF under the GM framework, with the design
of an iterative memory-efficient slice-and-scan procedure,
which is based on our key observation of the intrinsic spar-
sity characteristic of the problem because the channel match-
ing shall be restricted in the same layer.

3) We consider the cycle consistency property in multi-
model fusion to improve the proposed GAMF, which is not
studied in model fusion literature before.

4) Experiments show the effectiveness of GAMF in both
compact model ensemble and federated learning. Our
source code is available at: https://github.com/
Thinklab-SJTU/GAMF.

2. Related Works

Model Fusion in this paper, specifically refers to merg-
ing two pretrained networks into a single network without
accessing to training data, which can be more effective
than traditional model ensembles (Breiman, 1996; Wolpert,
1992; Schapire, 1999) that average the predictions of each
network. (Leontev et al., 2020) formulate model fusion as
linear assignment and solve it approximately. However, the
assumptions in these methods are very strict, e.g., the origi-
nal models have to share a part of the training history (Smith
& Gashler, 2017; Utans, 1996) or rely on SGD for periodic
averaging (Malinovskiy et al., 2020). Regrettably, they can
not ensure overhead vanilla averaging (Leontev et al., 2020).
Note that there are a large number of works concerning the
fusion of model computing and results during the inference
stage from multi-model (Du et al., 2017), while the fusion in
our paper refers to the fusion of trained model parameters.

The most related work to ours is OTFusion (Singh & Jaggi,
2020), which notices the weights alignment nature inside
model fusion. It formulates model fusion as a linear as-
signment problem and solves it via Wasserstein barycenters,
which is the first model fusion work for improving vanilla
averaging, however, it degenerates the problem by ignor-
ing the second-order similarity of weights. In contrast to
OTFusion, GAMF solves a quadratic model fusion problem.

Federated Learning is a paradigm that allows local clients
to collaboratively train a shared global model. In its stan-
dard pipeline, each local client train the local model with
their own datasets, and the global server gathers all local
models and merge them into a shared global model. Re-
cently researchers (Kairouz et al., 2019; Wang et al., 2021a)
have given insights into a wide range of methods for FL per-
formance improvements (Fraboni et al., 2021; Chen et al.,
2020; He et al., 2020a; Wu & Gong, 2020; Dinh et al., 2020;

https://www.kaggle.com/c/tiny-imageNet
https://github.com/Thinklab-SJTU/GAMF
https://github.com/Thinklab-SJTU/GAMF

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Deng et al., 2020; Peterson et al., 2019; Liu et al., 2021a;
Acar et al., 2020; He et al., 2021a;b; Huang et al., 2022a; Yu
et al., 2021). The efforts on improving the performance of
federated learning can be summarized into two categories:
(i) improving the local optimizer, e.g. FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2018), SCAFFOLD (Karim-
ireddy et al., 2020), and Moon (Li et al., 2021) (ii) boosting
the model aggregation in server, e.g., FedFTG (Zhang et al.,
2022), FedMA (Wang et al., 2020a) and its predecessor
PFNM (Yurochkin et al., 2019). Moon is the state-of-the-art
federated learning algorithm that adds a contrastive loss
in the training epochs of local clients. We emphasize that
all these local training type methods are orthogonal to our
GAME, which can serve as a strong plugin to enhance their
performance. On the other hand, FedMA uses a similar
assignment formulation as OTFusion and proposes an itera-
tive method, which is the most relative federated learning
algorithm to ours. Our GAMF falls in line with FedMA in
that we all focus on the alignment of different local models.

Graph Matching aims to find node correspondence by con-
sidering both node features and edge attributes, which is
known NP-hard in its general form (Loiola et al., 2007). By
regarding neural channel and parameter weights as node and
edge attributes, we can formulate the model fusion problem
to a graph matching task that aims to find the best corre-
spond of model parameters. Classic methods mainly resort
to different optimization heuristics ranging from random
walk (Cho et al., 2010), spectral matching (Leordeanu &
Hebert, 2005), path-following algorithm (Zhou & Torre,
2016), graduated assignment (Gold & Rangarajan, 1996),
to SDP relaxation (Schellewald & Schnorr, 2005) etc. In
recent years, deep graph matching has become an emerging
paradigm (Wang et al., 2019; 2021b; Yu et al., 2020; Rolinek
et al., 2020; Liu et al., 2020). Readers are referred to the sur-
veys for a detailed review of traditional graph matching (Yan
et al., 2016b) and deep GM (Yan et al., 2020).

However, standard graph matching often deals with general
images with dozens of key points (Yan et al., 2020), while
the scalability of model fusion is at least thousands of neural
channels in modern networks. In our attempt, even the com-
mercial solvers can not handle such a large scale efficiently,
e.g. GUROBI (Optimization, 2020).

3. Formulation and Methodology

We first formulate the model fusion problem as graph match-
ing, then we devise our graduated assignment approach to
tackle fusing two and multiple models .

3.1. Graph Matching Formulation of Model Fusion

During network training, due to the randomness in stochas-
tic gradient descent and the difference of training sets for

different models, the permutation of the channels may be
shuffled among different models, which calls for channel
alignment for model fusion as studied in (Smith & Gashler,
2017; Leontev et al., 2020; Malinovskiy et al., 2020) with
early work dating back to (Utans, 1996). In this paper, we
show that graph matching is a natural formulation for model
fusion. For simplicity, we discuss the GM formulation re-
garding with fusing two fully-connected networks with two
hidden layers without bias?® (see Fig. 2a):

X1 = 5(XOW1);X2 = 5(X1W2);X3 = (5(X2W3), (1)

where X is the input, x3 is the output, each contains n data
points. x; € R™*9 represents the data after i-th layer with
dimension d; and W; € R%-1%% is the weight matrix of
the neural network. § represents the activation (e.g. ReLU).

In the following, we distinguish different models by super-
script with brackets. Model fusion is to find a reasonable per-
mutation (i.e. shuffle) of the channels, which is equivalent to
permuting Wg), Wél), Wél) to fit Wgz)’ Wgz)’ Wéz) and
can be formulated and handled by graph matching. When
fusing two fully-connected networks with 2 hidden layers,
we have the following graph matching formulation (the
other elements of P are O since cross-layer matchings are
meaningless, therefore the structure of P is very sparse):

ds—1ds—1ds—1ds—1

max D> D> D PuiKigenPus @

i=0 j=0 a=0 b=0

d1—1 d1—1
st.Py=LPs=LVj > Py =1Vi» Py =1
i=0 =0
dz—l d2—1

Vi) Poig = 1.Vi) Poy =1
i=0 j=0

where we denote the indices start from 0, ds; = dg+d;+do+
ds, and the definition of Py, P, P2, P3 are from Fig. 2b.
Note that for Eq. (2): P encodes the permutations of two
hidden layers, and the channels of input/output layers need
not to be permuted (see Fig. 2a). The constraints ensure
one-to-one mapping between the channels within the same
layer. In graph matching formulation, K € RdsXdsxdsxds
is a 4-dimensional affinity tensor whose element K{; ; 4 4)
measures the affinity between the edges (¢,a) and (j,b),
which is the similarity between the elements of weight ma-
trices in the model fusion problem. We adopt the Gaussian
kernel as the similarity measure which is widely applied by
GM methods (Yan et al., 2016a; Cho et al., 2010):

. A 2
— Hel7a Ue]>b |F>) (3)

where e; , denotes the network’s weight corresponding to
edge (i,a), and o is a configurable hyperparameter.

Kiijap = €xp <

2Qur formulation can naturally generalize to networks with
more layers or bias, and convolutional neural networks.

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

P;=1 do dy d. ds

mm COT . DO R

(mzzé‘:::;:,iQ Q 6/5 I} O\Q egeReles

Hidden layer 1
1ma(chednad s)

Input layer
(fixed nodes)

Model 1 Model 2 T

(a) Model fusion as graph matching. ~ (b) P’s structure.
Figure 2: Left: Illustration of the graph matching formu-
lation of fusing two networks with 2 hidden layers. The
channels of the hidden layers are regarded as nodes to be
matched and the permutations of input/output layers are
fixed. The weights connecting different channels of differ-
ent layers are regarded as edges. Right: The permutation
(sparse) matrix P can be decomposed as Py, Py, Py, Ps.

Though the formulation of model fusion illustrated in Fig. 2a
is the basic fully connected layers, it has been proved in
previous work (Singh & Jaggi, 2020; Wang et al., 2020a)
that several commonly used layers including convolutional
layers can also be fused in such formulation.

3.2. Intrinsic Sparsity of the Model Fusion Task

The problem of Eq. (2) is known (Yan et al., 2020) NP-hard
and a special case of Lawler’s Quadratic Assignment Prob-
lem (Lawler, 1963) whose memory cost can be O((dsx)*)
in general cases, where dy; is the sum of channels of all
layers. For deep networks with thousands of channels con-
sidered in model fusion, it seems intractable, and in fact we
empirically find that the commercial solver GUROBI (Opti-
mization, 2020) cannot handle such a memory burden.

Fortunately, it is worth noting that though the scales of the
matrix K and P are very large, the components of the two
matrices are relatively sparse. As shown in Fig. 2b, it is
important to realize for network model fusion, components
other than Py, P1, Py, P3 are O since the cross-layer match-
ings are meaningless. Suppose the number of layers is [, the
optimal upper bound of costis O(E£(£2)*) = O (% #(dx)*).
which is at one-thousandth of the original O((dx)*) cost for
a 10-layer network. Therefore, we aim to explore the sparse
structure for efficiently solving the problem.

3.3. Graduated Assignment for Model Fusion

Based on the above analysis to the inherent sparsity of the
problem, we resort to the classic idea of graduated assign-
ment (Gold & Rangarajan, 1996), which repeatedly opti-
mizes the first-order Taylor series of Eq. (2) and then maps
it to the (relaxed) feasible space with gradually tightened
constraints. Our proposed algorithm, namely Graduated
Assignment for Model Fusion (GAMF), exploits the un-
derlying sparse structure of K and P, thus resolves the
computational and memory burden, and can scale up to
networks like VGG11 in experiments.

Graduated Assignment Model Fusion. Given a feasible
permutation matrix P°, we denote the objective in Eq. (2)
as J. Inspired by (Gold & Rangarajan, 1996), it can be
rewritten by its Taylor series:

ds—1ds—1ds—1ds—1

J=303 > > Pl KijanPlyt

i=0 j=0 a=0 b=0

ds—1ds—1 (4)
> Z Rji ;) (Ppi) — PRy +
=0 j=
& d 1 d 1
and Ry ;) = G5lp_po = o 2ico KiijanPly-

By only considering the zero and first order Taylor series
of Eq. (2), it equals to maximizing the following objective
because all the other elements are constants:

ds—1ds—1

i=0 j=0

[i,j] S-t- constraints in Eq. (2). (5)

The above constrained optimization problem is a linear as-
signment problem, which can be solved to optimal by pro-
jecting the real-valued square matrix R to a 0/1 permutation
matrix by Hungarian algorithm (Kuhn, 1955) in polynomial
time. Moreover, a relaxed projection can be achieved by
Sinkhorn algorithm, which firstly normalizes the regulariza-
tion factor 7: S = exp(R/7), and then performs row- and
column-wise normalization alternatively:

D, =diag(S1),S=D;!S;D.=diag(S'1),S=SD_!,

where diag(-) means building a diagonal matrix from a vec-
tor, 1 is a column vector whose elements are all 1. When
the above algorithm converges, S is a doubly-stochastic
matrix whose elements are continuous and all of its rows
and columns sum to 1, which is a relaxed version of the per-
mutation matrix. 7 controls the gap between the Sinkhorn
algorithm and the Hungarian algorithm: given a smaller
7, the result of the Sinkhorn algorithm becomes closer to
Hungarian algorithm, at the cost that it takes more iterations
to converge. The graduated assignment algorithm works
by firstly randomly initializing P°, computing R., and then
computing S by Sinkhorn algorithm, and repeating these
steps. 7 of the Sinkhorn algorithm gradually shrinks at each
step. This framework is developed and adopted by (Gold &
Rangarajan, 1996; Wang & et al, 2020) to efficiently tackle
hard combinatorial problems like graph matching.

Efficient Adaption to Model Fusion. By analyzing K,
P in Fig. 2, these two matrices contain sparse structures
because only the nodes and edges from the same layer are
effective when computing the objective score in Eq. (2). To
save memory, we introduce the memory-efficient graduated
assignment algorithm for model fusion as follows. For
the example in Fig. 2, the weights of two neural networks

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Algorithm 1: Graduated Assignment for Model Fu-
sion (of Two Neural Networks)

Algorithm 2: Graduated Assignment for Model Fu-
sion (of Multiple Neural Networks)

Input: weights {WEI)}, {WEZ)}; initial annealing 7o;
descent factor «; minimum 7,,:»; Gaussian kernel o.

Randomly initialize {P;}; projector <— Sinkhorn; 7 <— 7o;

while True do

while {P;} not converged do

Vi=1,2,..:

Rijay =

2
@ W)W,
Zj exp <_| i - (3,]| 4

(1) (2) 2
_ |(wi+1Pi+1>[avj]7w’i+1[b,j]’) .

>, exp =

| P; = projector(R;, 7);

graduated assignment control

if projector == Sinkhorn AND T > Tuin then
L T« TX7;

else if projector == Sinkhorn AND 7 < Tyin, then
| projector «— Hungarian;

else
| break;

Output: The set of permutation matrices {P; }.

are denoted as Wﬁl), Wél), Wél) and WgQ), WéQ), W§2),
respectively. R; at layer ¢ can be obtained via fusing the
information from layer ¢ — 1 and 7 4 1. It can be viewed as
replacing the original computation of R by a slide-and-scan
procedure which is more memory efficient. Our GAMF for
two models is summarized in Alg. 1. In theory, the space
complexity of GAMF is only O(c x [* d2,,,,.) since we use
an iterative slice-and-scan procedure, where c is the client
amount, [is the number of layers, and d,;, 4, is the maximum
number of channels across all the layers. It makes GAMF
a memory-efficient method that has no risk of exceeding
memory or accidental crashing.

Fusing Multiple Models by Multi-Graph Matching. The
multi-graph matching problem (Yan et al., 2016a; Jiang
et al., 2021; Shi et al., 2016) is a natural extension from
the classic two-graph matching problem where more than
two graphs need to be jointly handled, by enforcing the
multi-graph regularization namely cycle consistency. The
cycle consistency property ensures that the permutation
results do not violate any two pairs of graphs, which is
appealing to the model fusion problem. In this paper, we
extend Alg. 1 with GAMGM (Wang & et al, 2020) for fusing
multiple models: P; in Alg. 1 is replaced by ng), where

Ul(ll)Ul(-Q)T denotes the permutation of layer 7 for model 1
and model 2. The information from multiple graphs is also
fused in the same manner under the special condition of two
graphs. The model fusion algorithm for multiple models is
in Alg. 2. Additionally, the weights of different models are
set equally in multiple model fusion, since we assume that
the importance of each model is the same.

Input: weight matrices {ng)}; initial annealing 7o; descent
factor ~; minimum 7y, ; Gaussian kernel o.

Random initial {UZ(-M }; projector <— Sinkhorn; 7 < 7o;

while True do

while {ng)} not converged do

graduated assignment control

if projector == Sinkhorn AND 7T > T.in then
L 7T TX7;

else if projector == Sinkhorn AND 7 < Tin then
| projector «— Hungarian;

else
| break;

Output: The set of permutation matrices { U™ }.

Connections and Differences with OTFusion. Comparing
our method with OTFusion (Singh & Jaggi, 2020), a similar
step is also encountered in our pipeline when computing
the first-order Taylor series of the objective score. However,
the major drawback of OTFusion is that the second-order
information is underutilized, and OTFusion can be viewed
as a special and simple case of our algorithm by taking a
single iteration. In contrast, we are capable of handling
the second-order information in graph matching by optimiz-
ing the quadratic objective score in Eq. (2) by a multi-step
pipeline. Meanwhile, we introduce the multi-graph match-
ing algorithms that can be readily integrated into the com-
mon scenario of fusing multiple neural networks. Moreover,
we successfully apply our model fusion method GAMF in
federated learning, which is not considered in (Singh &
Jaggi, 2020). More importantly, we discover that OTFusion
fails in the federated learning experiments in Section 4.3.

Overall, our contributions beyond existing work are three
folds: First, we non-trivially generalize the model fusion
problem from 1st-order to 2nd-order, formulate it as a GM
problem, and achieve performance gain. Second, we adapt
GAMF to the emerging FL field and show GAMF can also
handle FL, but OTFusion cannot work well. Third, our work
extends graph matching to model fusion area beyond classic
image matching, which is a different problem, and espe-
cially, the problem scale raises from tens of key points to
thousands of points. To solve the scalability issue, we design
GAMF with a novel three-layer slicing-window scheme.

Vi=1,2,..;Vk=1,2,...:
(k) _
Ri[a,b] -
i ’ 3 2
s I O W) =T W)
exp | —
K 2k| 7 7
’ ’ N 2
‘(UgifTWEif)[a‘j]*(Ugi)1TW§i)1>[b,j])
Zj exp | — P B
| ng) = projector(ng),T);

+

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

4. Experiments
4.1. Protocols

Datasets We strictly follow the model fusion (Singh &
Jaggi, 2020; Li et al., 2021; Wang et al., 2020a) literature,
by using the same image classification datasets: MNIST,
CIFAR-10, CIFAR-100, and Tiny-Imagenet. We adopt the
data (image) augmentation settings in OTFusion. For the
detailed dataset and augmentation settings, refer to the open-
source repository of OTFusion®.

We consider two data partition settings for different local
models/clients: 1) Homogeneous data partition denotes that
each client acquires data from an IID, and ends up including
a nearly equal proportion of the data from each class. 2)
Heterogeneous data partition denotes each client acquires
data from a non-IID. Following the settings in (Wang et al.,
2020a; Li et al., 2021), we sample p;, ~ Diry(8) and
allocate a py, ; proportion of the instances of class k to client
j, where Dir(8) denotes the Dirichlet distribution with a
concentration parameter 5 = 0.5 by default.

Backbone Models and Training Settings We use three
different network architectures. For MNIST, we choose a
small convolution neural network (denoted by Convnet’);
We use the same hyperparameters but remove the dropout
layer. In addition, we try the classic LeNet (LeCun et al.,
1998). For CIFAR-10/100 and Tiny-ImageNet, we adopt the
popular VGG11 (Simonyan & Zisserman, 2014), with the
same modifications as in OTFusion (Singh & Jaggi, 2020).

1) Compact ensemble. The ensemble experiments basically
follow the protocol of the open-source OTFusion. For the
Convnet in MNIST, we use the Adam optimizer with the
learning rate of 0.0005 and train the network for 20 epochs
with the batch size of 64. For the LeNet and VGGI11 in the
CIFAR-10, we set the learning rate as 0.001, batch size as
256, and train for 100 epochs. For the finetune process, we
set 100 epochs for the homogeneous experiments and 20
epochs for the heterogeneous experiments.

2) Federated learning. In the federated learning experi-
ments, we use the open-source federated learning framework
FedML (He et al., 2020b) , which is a research-oriented fed-
erated learning library and benchmark for a fair comparison.
By default, we set the learning rate as 0.0005, the batch
size as 256, the local epochs as 10, and the communication
rounds as 55. We test the performance of the federated
learning algorithms with 5 and 10 local clients, respectively.

Implementation Details We use Pytorch (Paszke et al.,
2019) to implement our proposed GAMEF, and the hyperpa-
rameters are: initialization 7 = 0.05, max iteration rounds
200, v = 0.9, and 7,5, = 0.005 for the Sinkhorn algorithm.

https://keras.io/examples/vision/mnist_convnet/

accuracy (%)
accuracy (%)

OTFusion
701 — GUROBI
— GAMF

65 60
00 01 02 03 04 05 06 07 08 09 1.0

651 — GUROBI
— GAMF

00 01 02 03 04 05 06 0.7 08 09 10
proportion proportion

(a) Homogeneous (b) Heterogeneous
Figure 3: Comparison of ensemble methods in MNIST.
“pred” denotes the direct prediction ensemble. Horizontal
axis denotes the proportion of the second model in fusion.

We empirically set ¢ = 2. We stop the GAMF algorithm
once the 2-norm of the total change of permutation matrix

is sufficiently small, i.e., >y, > v Ul(-k) ‘ ‘F < 0.002.

We conduct our experiments on the open-source GitHub
repositories OTFusion* and FedML?, which leads to a fair
comparison. Experiments run on AMD Ryzen Threadripper
3970X 32-Core Processor and 3 GTX 3090 GPUs. Our
experiments can be easily reproduced based on the open-
source code by providing the configurations.

Compared Methods FedAvg (Vanilla) (McMahan et al.,
2017). This method direct averages parameters of the local
models, which is a simple but efficient algorithm. It is called
Vanilla in the compact model ensemble experiments.

OTFusion (Singh & Jaggi, 2020). As aforementioned, it
formulates the model fusion problem as a linear assignment
problem and utilizes the Wasserstein barycenter to solve it.

FedMA (Wang et al., 2020a). This method uses a similar
problem formulation as OTFusion, then it matches and av-
erages weights of local models in a layer-wise manner. In
the implementation of FedMA, we remove some tricks for
fairness, including that FedMA requires the data distribu-
tion information over classes and needs triple local epochs
for the last layer training. Moreover, FedMA requires the
number of communication rounds is integer multiplied by
the number of layers in the neural networks (11 for VGG11).
Therefore, we run 55 communication rounds in experiments.

Moon (Li et al., 2021). It is the state-of-the-art FL. method
which adapts the contrastive learning framework in the local
training process. Since Moon focuses on the local training
while GAMF focuses on the channel alignment, GAMF and
Moon can be complementary to each other.

GUROBI (Optimization, 2020). As we formulate the model
fusion as a graph matching problem, we also try to solve
the problem by the popular commercial solver GUROBI in
compact ensemble experiments.

4https ://github.com/sidak/OTFusion
5https ://github.com/FedML-AI/FedML

https://keras.io/examples/vision/mnist_convnet/
https://github.com/sidak/OTFusion
https://github.com/FedML-AI/FedML

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Table 1: Results with the effect of finetuning the fused LeNet models on CIFAR-10. “individual models”: performance of
each individual model; “Pred”: prediction ensemble with N times cost than others to maintain all individual models.

.. #(=N) Individual Models Pred Vanilla OTFusion GAMF
Data Partition
of Models | [Acc(%) of each model, ...] || (INx cost) | (1x cost) (1x cost) (1x cost)
One-shot [61.32, 62.64] 67.28 16.85 39.04 49.79
. Homogeneous 2
Finetune [61.46, 62.94] — 62.53 63.67 65.37
One-shot [58.81, 60.70] 67.31 17.52 32.00 47.91
. Heterogeneous 2
Finetune [63.44, 63.79] — 58.73 62.29 64.15
One-shot [61.32, 62.64, 63.03, 61.58] 68.97 13.21 14.13 33.51
. Homogeneous 4
Finetune [62.02, 61.28, 62.34, 61.55] - 64.59 64.90 66.35
One-shot [56.94, 54.15, 57.55, 59.00] 67.81 12.43 27.10 41.25
. Heterogeneous 4
Finetune [63.58, 61.72, 62.98, 63.79] - 59.1 63.63 64.33

Table 2: Results for finetuning the fuse

d VGG11 models on CIFAR-10. The settings are the same with Table 1.

.. #(=N) Individual Models Pred Vanilla OTFusion GAMF
Data Partition
of Models | [Acc(%) of each model, ...] || (VX cost) | (1x cost) (1x cost) (1x cost)
One-shot [90.31, 90.50] 91.34 17.01 85.98 87.02
. Homogeneous 2
Finetune [90.29, 90.53] - 90.41 90.68 90.75
One-shot [69.29, 71.89] 75.46 9.84 9.87 36.73
. Heterogeneous 2
Finetune [71.37,75.96] - 60.34 62.08 79.40
One-shot [90.31, 90.50, 90.47, 90.56] 91.91 9.99 73.56 73.42
. Homogeneous 4
Finetune [90.29, 90.53, 90.45, 90.55] - 69.33 90.89 90.87
One-shot [73.88, 70.73, 72.50, 71.53] 79.87 9.24 9.99 12.35
. Heterogeneous 4
Finetune [76.76, 75.96, 77.25, 75.24] - 43.63 48.21 50.54
4.2. Compact Model Ensemble Experiments %01 o otrusion W‘mw so] o+ camr
In this experiment, we aim at testing the performance of the £8 N 80 2
. <70 . v ¥ < o
model fusion to generate a compact ensemble model. The 3 RN g f*
ensemble model is a combination of all local models, and the ~ § * f-:" . fes ;" &
traditional approach is to average predictions (output from * :.i&-.- o N
the last layer) of them. The prediction ensemble can always s o

reach better performance, but the cost is to maintain the
parameters of all local models. Following OTFusion (Singh
& Jaggi, 2020), we hope to find a more efficient and com-
pact way of the model ensemble, that is to maintain only
one single model instead of maintaining all. We conduct
the compact model ensemble experiments in MNIST and
CIFAR-10, with the same settings as OTFusion.

Experiments on MNIST. We try to merge two simple net-
works with the homogeneous and heterogeneous data parti-
tion, as shown in Fig. 3. We show the results with different
ensemble proportions, as the proportion of the second model
raises from 0.0 to 1.0. The model fusion is completed in
one-shot without any further finetune. As shown in Fig. 3,
we can see that in the homogeneous data partition settings,
the performance of the ensemble is not significant, since the
two models are too similar and well-trained and both GAMF
and GUROBI are close to the prediction ensemble. In the
heterogeneous data partition, GAMF reaches promising per-
formance, and even outperforms the prediction ensemble.

Experiments on CIFAR-10. We test the performance

a4 8 12 a4 8 12
first order similarity second order similarity

(a) OTFusion (b) GAMF

Figure 4: Similarity-accuracy scatter of OTFusion (1st-
order) and GAMF (2nd-order) on CIFAR-10 with VGGI11.

of model fusion in a standard image classification dataset
with modern neural networks. We choose CIFAR-10 and
LeNet/VGG11 networks in these experiments. For each
backbone neural network, we test the model fusion perfor-
mance with 2/4 models and homogeneous/heterogeneous
data partition. Please note that we do not use the baseline
GUROBI from now on, since LeNet and VGG11 are too
large for GUROBI to handle. The results are shown in Ta-
ble 1 and Table 2. Similar to (Singh & Jaggi, 2020), We
report the one-shot and finetune results for the fused model.

In the LeNet experiments, GAMF outperforms OTFusion
and Vanilla in all settings, especially in multi-model settings.
Although the one-shot performances of all methods are poor,
GAMF can still reach about 70% accuracy of the original

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

GAMF + Moon
— FedAvg
90— FedMA.
OTFusion
— Moon

70

accuracy (%)

60

50 !

--- Entire %W
80y __ GAMF

920

80

70

60

accuracy (%)

50

40

GAMF + Moon
— FedAvg
— FedMA

OTFusion
— Moon
--- Entire
— GAMF

/

/

N
S

accuracy (%)
8

n
1=

— FedAvg
— FedMA

— Moon
--- Entire
— GAMF

GAMF + Moon

OTFusion

w
S

accuracy (%)

GAMF + Moon

— FedAvg

— FedMA
OTFusion

— Moon

--- Entire

— GAMF

0 10 20 30

30
40 50

communication round

(a) CIFAR-10; 5 clients

0 10 20 30

40 50 0

communication round

(b) CIFAR-10; 10 clients

10 20 30 40
communication round

(c) CIFAR-100; 5 clients

50 0 10 20 30 40 50 60 70 80 90 100

communication round

(d) CIFAR-100; 10 clients

Figure 5: Convergence rates in four FL scenarios: training VGG11 on CIFAR-10/CIFAR-100 with 5/10 clients in total.

Table 3: The top-1 accuracy of the compared model fusion methods on CIFAR-10, CIFAR-100, and Tiny-Imagenet.

CIFAR-10 CIFAR-100 Tiny-Imagenet

5 clients 10 clients 5 clients 10 clients 5 clients 10 clients
FedAvg 81.01% £+ 0.31% | 69.99% £ 0.40% | 45.94% £ 0.32% | 44.42% £+ 0.13% | 22.87% £ 0.11% | 17.41% £ 0.13%
OTFusion 69.83% + 0.55% | 46.40% + 1.01% | 1.00% + 0.00% 1.00% =+ 0.00% 0.50% =+ 0.00% 0.50% =+ 0.00%
FedMA 81.46% + 0.20% | 70.29% =+ 0.69% | 47.50% =+ 0.52% | 44.95% £ 0.19% | 23.19% £+ 0.16% | 17.28% + 0.20%
Moon 82.78% + 0.57% | 72.42% + 0.45% | 48.24% + 0.28% | 46.99% £ 0.28% | 23.49% + 0.10% | 19.01% + 0.15%
GAMEF (ours) | 82.82% 4 0.58% | 72.39% =+ 0.54% | 49.80% + 0.25% | 45.99% + 0.41% | 23.96% + 0.12% | 20.42% + 0.13%
GAMF + Moon | 84.92% + 0.39% | 73.43% + 0.59% | 48.72% + 0.78% | 48.24% + 0.39% | 24.61% +0.11% | 21.51% + 0.15%

models. The finetuned performance of GAMF is better than
the original models but slightly worse than the prediction
ensemble. It is common that the fused model performs
worse than the prediction ensemble (Singh & Jaggi, 2020).
The fused model of GAMF is slightly worse in terms of
accuracy, but it enjoys 2x or 4 x efficiency.

In the VGG11 experiments, OTFusion performs in two ex-
tremes. OTFusion performs well in the homogeneous data
partition and even better than GAMF in the multi-model
settings, but it fails to converge in the heterogeneous data
partition. Our GAMF performs more stably except for the
last row. The settings of 4 models with heterogeneous data
partition seem too hard for the model fusion methods since
all methods do not work well. The finetune in this settings
is more like re-training the networks from the scratch.

Comparison of first-order and second-order similarity.
In the design of GAME, we consider the second-order sim-
ilarity instead of existing work only caring the first-order
similarity, such as OTFusion and FedMA. To show the ef-
fectiveness of second-order similarity, we conduct extra
compact ensemble experiments on CIFAR-10 with VGG11.
We randomly disturb the solved solution by OTFusion and
GAMEF, and draw the scatter plots of similarity-accuracy in
Fig. 4. We can see that the curve of GAMF is more smooth
and correlated than that of OTFusion. Therefore, we be-

lieve that second-order similarity is better than first-order
similarity in the sense of effective model fusion.

4.3. Federated Learning Experiments

We use the framework FedML (He et al., 2020b) and con-
duct the experiments on CIFAR-10/100, and Tiny-Imagenet.
Except for baselines, we report the accuracy of training with
the entire data as “Entire”, which can be the upper bound.

Experiments on the CIFAR-10. The results are shown
in Fig. 5a and 5b for 5 clients and 10 clients respectively.
GAMF and Moon reach similar final accuracy, but GAMF
converges faster than Moon. It is reasonable that GAMF
does not surpass Moon, since Moon and GAMF focus on
the different parts of federated learning to improve. Moon
aims at improving the local training while GAMF focuses
on the model fusion in communication.

For the competitive methods OTFusion and FedMA that
focus on the same part as GAMF, GAMF can outperform
them nearly all the time. People may notice that the curve
of FedMA is stair-like, which is because FedMA update
only the parameter of one layer in each communication
round, which needs 11 rounds to update all 11 layers in
VGGL11. If looking only at the lift points of the FedMA
curve, the performance of FedMA is over FedAvg. It seems
that OTFusion is not suitable for federated learning since

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Table 4: Comparison of the time consumption (in hours).

CIFAR-10 CIFAR-100 Tiny-Imagenet
Sclients | 10 clients | 5clients | 10 clients | 5clients | 10 clients
OTFusion 3.83 11.96 4.11 14.71 10.67 36.85
GAMF 5.28 18.05 6.58 20.03 18.56 59.58

Table 5: The top-1 accuracy (%) of compared methods on
the CIFAR-10 dataset.

client # FedAvg Moon GAMF GAMF+Moon
10 69.99 £0.40 | 72.42+0.45 | 7239 £0.54 | 73.43 £0.59
16 68.27 £0.46 | 71.69 028 | 71.94 £0.55 | 72.07 £ 0.47
20 65.70 £0.50 | 69.88 +0.19 | 71.37 £0.36 | 71.21 £0.31

it is under FedAvg. It proves the generalize ability of our
method GAMEF since it can work in both compact model
ensemble and federated learning experiments.

Experiments on CIFAR-100. Fig. 5c and 5d show the
results on CIFAR-100 with 5 clients and 10 clients respec-
tively. In the 5 client settings, we can see that GAMF can
outperform all baselines in the whole training process. We
admit the final accuracy is not as good as we expect, and we
consider it is because VGG11 is hard for federated learning
on CIFAR-100. Compared to FedMA, GAMF can boost the
performance of model fusion to about 3%.

In the 10 clients experiment, we add the number of com-
munication rounds from 55 to 100. As Fig. 5d shows, the
final performance of Moon is slightly over our GAMF, but
it is still within an acceptable range. The performance of
GAMF is over Moon in the middle stage of the training
process, which means the convergence speed of GAMEF is
relatively remarkable. Though under Moon, GAMF outper-
forms the other baselines FedMA, FedAvg, and OTFusion.
Regrettably, OTFusion fails to converge on CIFAR-100.

Trade off between time and accuracy. Compared to OT-
Fusion, our proposed GAMEF considers the second-order
similarities. The second-order similarities can better align
the channels, but has a clear drawback is the cost of extra
time. Therefore, we record the time consumption of OTFu-
sion and GAMF in Table 4 to intuitively see the extra time
used by GAMF due to the second-order similarities. We can
see that the time consumption of GAMF is only about 50%
higher than OTFusion. We consider this extent of extra time
is acceptable since the performance boost of GAMF is way
more than 50% compared to OTFusion.

Combination of Moon and GAMF. Moon is the state-
of-the-art FLL method that focuses on improving the local
training of each client, unlike GAMF focusing on the model
aggregation. We find the performance of Moon is similar
to our GAMF in some settings. It suggests that both Moon
and GAMF are useful for FL. The relation between Moon

and GAMF is complementary instead of competitive due
to their different focuses. Therefore, we conduct additional
experiments for combining GAMF with Moon. We show
the performance of the combined method with the same
experiment settings. The results are shown in Table 3 and
Fig. 5. It turns out the combination of GAMF and Moon
does reach a better performance compared to the single
GAMF and Moon. It also shows that model fusion is an
important factor in FL since the performance boosted by
GAMF is close or even better than that boosted by Moon.

Experiments on larger scale. In the aforementioned exper-
iments, we test the performance of GAMF on CIFAR-10,
CIFAR-100, and Tiny-Imagenet with 5/10 clients. Here,
we conduct extra experiments with more clients to see the
scalability of GAMF. As shown in Table 5, we compare
FedAvg, Moon, GAMF, and GAMF+Moon with 10/16/20
clients on CIFAR-10, which are the common number of
clients in the experiments of federated learning papers. We
can see that our proposed GAMF can still outperform the
baselines under more client scenarios. These experiments
prove the scalability of our proposed GAMF.

5. Conclusion

In this paper, we manage to formulate model fusion as the
graph matching problem. For scalability and consistency,
we propose a graduated assignment based method named
GAMF for fusing two or multiple models, which captures
and suits the inherent sparsity of the fusion problem. On
the tasks of compact model ensemble and FL., GAMF out-
performs peer methods. Admittedly, even with our efficient
algorithm design, GAMF has extra time complexity com-
pared to OTFusion because of the higher complexity of
graph matching. However, a better fused model may be
worth such an overhead, and in FL the bottleneck is usually
the communication costs, which can be significantly cut by
our method. In the future, we will explore model fusion
with different sized models and more clients, to improve the
scalability of GAMF. Moreover, we plan to improve multi-
model fusion by multi-graph matching from traditional ap-
proaches (Jiang et al., 2020) to learning-based ones (Rolinek
et al., 2020), which is an emerging area in the intersection
of combinatorial optimization and machine learning.

Acknowledgments

This work was partly supported by National Key Research
and Development Program of China (2020AAA0107600),
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102) and NSFC (72061127003), Science
and Technology Innovation 2030 —“Brain Science and Brain-
like Research” Major Project (No. 2021ZD0201402 and
2021ZD0201405).

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

References

Acar, D. A. E., Zhao, Y., Matas, R., Mattina, M., What-
mough, P., and Saligrama, V. Federated learning based
on dynamic regularization. In ICLR, 2020.

Breiman, L. Bagging predictors. Machine learning, 24(2):
123-140, 1996.

Chen, W., Horvath, S., and Richtarik, P. = Optimal
client sampling for federated learning. arXiv preprint
arXiv:2010.13723, 2020.

Cho, M., Lee, J., and Lee, K. M. Reweighted random walks
for graph matching. In Eur. Conf. Comput. Vis., 2010.

Dai, R., Shen, L., He, F., Tian, X., and Tao, D. Dispfi:
Towards communication-efficient personalized federated
learning via decentralized sparse training. In Interna-
tional Conference on Machine Learning, 2022.

Deng, Y., Kamani, M. M., and Mahdavi, M. Adap-
tive personalized federated learning. arXiv preprint
arXiv:2003.13461, 2020.

Dinh, C. T, Tran, N. H., and Nguyen, T. D. Personalized
federated learning with moreau envelopes. arXiv preprint
arXiv:2006.08848, 2020.

Du, X., El-Khamy, M., Lee, J., and Davis, L. Fused dnn: A
deep neural network fusion approach to fast and robust
pedestrian detection. In 2017 IEEE winter conference on
applications of computer vision (WACV), pp. 953-961.
IEEE, 2017.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M. Clus-
tered sampling: Low-variance and improved representa-
tivity for clients selection in federated learning. arXiv
preprint arXiv:2105.05883, 2021.

Gold, S. and Rangarajan, A. A graduated assignment algo-
rithm for graph matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 1996.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the
edge. arXiv preprint arXiv:2007.14513, 2020a.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang,
X., Vepakomma, P., Singh, A., Qiu, H., et al. Fedml: A
research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020b.

He, C., Balasubramanian, K., Ceyani, E., Yang, C., Xie, H.,
Sun, L., He, L., Yang, L., Yu, P. S., Rong, Y., et al. Fed-
graphnn: A federated learning system and benchmark for
graph neural networks. arXiv preprint arXiv:2104.07145,
2021a.

He, C., Shah, A. D., Tang, Z., Sivashunmugam, D.
F. N., Bhogaraju, K., Shimpi, M., Shen, L., Chu, X.,
Soltanolkotabi, M., and Avestimehr, S. Fedcv: A fed-
erated learning framework for diverse computer vision
tasks. arXiv preprint arXiv:2111.11066, 2021b.

Huang, T., Lin, W., Shen, L., Li, K., and Zomaya, A. Y.
Stochastic client selection for federated learning with
volatile clients. IEEE Internet of Things Journal, 2022a.

Huang, T., Liu, S., Shen, L., He, F., Lin, W., and Tao, D.
Achieving personalized federated learning with sparse
local models. arXiv preprint arXiv:2201.11380, 2022b.

Jiang, Z., Wang, T., and Yan, J. Unifying offline and on-
line multi-graph matching via finding shortest paths on
supergraph. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

Jiang, Z., Wang, T., and Yan, J. Unifying offline and on-
line multi-graph matching via finding shortest paths on
supergraph. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(10):3648-3663, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S., and Suresh, A. T. Scaffold: Stochastic controlled
averaging for federated learning. In /CML, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kuhn, H. W. The hungarian method for the assignment
problem. In Export. Naval Research Logistics Quarterly,
pp. 83-97, 1955.

Lawler, E. L. The quadratic assignment problem. Manage-
ment Science, 1963.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Leonardos, S., Zhou, X., and Daniilidis, K. Distributed con-
sistent data association via permutation synchronization.
In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2645-2652, 2017.

Leontev, M. 1., Islenteva, V., and Sukhov, S. V. Non-iterative
knowledge fusion in deep convolutional neural networks.
Neural Processing Letters, 51(1):1-22, 2020.

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Leordeanu, M. and Hebert, M. A spectral technique for cor-
respondence problems using pairwise constraints. /CCV,
2005.

Li, Q., He, B., and Song, D. Model-contrastive federated
learning. In CVPR, pp. 10713-10722, 2021.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127, 2018.

Liu, C., Wang, R., Jiang, Z., Yan, J., Huang, L., and Lu,
P. Revocable deep reinforcement learning with affinity
regularization for outlier-robust graph matching. arXiv
preprint arXiv:2012.08950, 2020.

Liu, Q., Chen, C., Qin, J., Dou, Q., and Heng, P.-A. Feddg:
Federated domain generalization on medical image seg-
mentation via episodic learning in continuous frequency
space. In CVPR, 2021a.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou,
H., Shen, L., Pechenizkiy, M., Wang, Z., and Mocanu,
D. C. Sparse training via boosting pruning plasticity
with neuroregeneration. Advances in Neural Information
Processing Systems, 34, 2021b.

Liu, S., Chen, T., Chen, X., Shen, L., Mocanu, D. C., Wang,
Z., and Pechenizkiy, M. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for
sparse training. arXiv preprint arXiv:2202.02643, 2022.

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O.,
Hahn, P., and Querido, T. A survey for the quadratic
assignment problem. European Journal of Operational
Research, 2007.

Malinovskiy, G., Kovalev, D., Gasanov, E., Condat, L., and
Richtarik, P. From local sgd to local fixed-point methods
for federated learning. In ICML, 2020.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017.

Optimization, G. Gurobi optimizer reference manual.
http://www.gurobi.com, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS.
2019.

Peterson, D., Kanani, P., and Marathe, V. J. Private fed-
erated learning with domain adaptation. arXiv preprint
arXiv:1912.06733, 2019.

Rolinek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil,
V., and Martius, G. Deep graph matching via blackbox
differentiation of combinatorial solvers. In ECCV, 2020.

Schapire, R. E. A brief introduction to boosting. In [jcai,
volume 99, pp. 1401-1406. Citeseer, 1999.

Schellewald, C. and Schnorr, C. Probabilistic subgraph
matching based on convex relaxation. In International
Workshop on Energy Minimization Methods in CVPR,
2005.

Shi, X., Ling, H., Hu, W., Xing, J., and Zhang, Y. Tensor
power iteration for multi-graph matching. In CVPR, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. NeurlPS, 2020.

Smith, J. and Gashler, M. An investigation of how neural
networks learn from the experiences of peers through
periodic weight averaging. In ICMLA. IEEE, 2017.

Solé-Ribalta, A. and Serratosa, F. Graduated assignment al-
gorithm for multiple graph matching based on a common
labeling. IJPRAI, 2013.

Utans, J. Weight averaging for neural networks and local
resampling schemes. In Proc. AAAI-96 Workshop on
Integrating Multiple Learned Models, 1996.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and
Khazaeni, Y. Federated learning with matched averaging.
arXiv preprint arXiv:2002.06440, 2020a.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D, et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021a.

Wang, R. and et al. Graduated assignment for joint multi-
graph matching and clustering with application to unsu-
pervised graph matching network learning. In NeurIPS,
2020.

Wang, R., Yan, J., and Yang, X. Learning combinatorial
embedding networks for deep graph matching. In ICCV,
2019.

Wang, R., Yan, J., and Yang, X. Neural graph matching net-
work: Learning lawler’s quadratic assignment problem
with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021b.

http://www.gurobi.com

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

Wang, T., Jiang, Z., and Yan, J. Clustering-aware multiple
graph matching via decayed pairwise matching composi-
tion. AAAI, 2020b.

Wang, Z., Wang, X., Shen, L., Suo, Q., Song, K., Yu, D.,
Shen, Y., and Gao, M. Meta-learning without data via
wasserstein distributionally-robust model fusion. In The

38th Conference on Uncertainty in Artificial Intelligence,
2022.

Wolpert, D. H. Stacked generalization. Neural networks, 5
(2):241-259, 1992.

Wu, G. and Gong, S. Decentralised learning from inde-
pendent multi-domain labels for person re-identification.
arXiv preprint arXiv:2006.04150, 2020.

Yan, J., Cho, M., Zha, H., Yang, X., and Chu, S. Multi-
graph matching via affinity optimization with graduated
consistency regularization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2016a.

Yan, J., Yin, X.-C., Lin, W,, Deng, C., Zha, H., and Yang,
X. A short survey of recent advances in graph matching.
In ICMR, 2016b.

Yan, J., Yang, S., and Hancock, E. Learning graph match-
ing and related combinatorial optimization problems. In
1JCAI, 2020.

Yu, F., Zhang, W.,, Qin, Z., Xu, Z., Wang, D., Liu, C,,
Tian, Z., and Chen, X. Fed2: Feature-aligned federated
learning. In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining, pp.
2066-2074, 2021.

Yu, T., Wang, R., Yan, J., and Li, B. Learning deep graph
matching with channel-independent embedding and hun-
garian attention. In /CLR, 2020.

Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. Bayesian nonparametric
federated learning of neural networks. In ICML, 2019.

Zhang, L., Shen, L., Ding, L., Tao, D., and Duan, L.-Y.
Fine-tuning global model via data-free knowledge dis-
tillation for non-iid federated learning. arXiv preprint
arXiv:2203.09249, 2022.

Zhou, F. and Torre, F. D. L. Factorized graph matching.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 38:1774-1789, 2016.

Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning

In the appendix, we mainly supplemented the federated learning experiments that were not detailed discussed in the
submitted paper due to the page limit.

A. Environment

We choose FedML © (He et al., 2020b) as the environment in our federated learning experiments. FedML is an open
research library and benchmark that facilitates the development of new federated learning algorithms and fair performance
comparisons. We use the code of FedML as the framework and implement our GAMF on it.

B. Baseline Implementation

¢ FedAvg (McMahan et al., 2017). We use the standard implementation of FedAvg in FedML, which simply averages
the weights from all local clients by their amount of data. In our experiments, we assume that only the amount of data
of each local client is known by the global server.

 OTFusion (Singh & Jaggi, 2020). We use the open-source code provided by the authors in GitHub . Since OTFusion
does not include the federated learning experiments in their paper, we modify their code as an extra module for model
aggregation, juxtaposed with this FedAvg. That is, the code for modified OTFusion is the same as the FedAvg, except
for the aggregation of local clients.

» FedMA (Wang et al., 2020a). We read the code from the open-source repository ® of FedMA, and find the pipeline of
FedMA is a little different from the standard pipeline of federated learning. Instead of updating the whole model in one
communication round, FedMA only updates one layer of the model sequentially. Therefore, FedMA needs the number
of layers communication rounds for updating the whole model. Besides, we remove some unfair tricks that are used in
FedMA: 1) FedMA needs the data distribution accurate to each category of each client, but we only allow the total data
number of each client known. 2) Due to the importance of the last layer (output layer), FedMA requires to triple the
local epochs in the communication rounds, while we keep the local epochs unchanged all the time.

» Moon (Li et al., 2021). The code of Moon ° is very neat and easy to understand, so the implementation of Moon is
nothing special to mention. Here we want to introduce the combination of Moon and our proposed GAMF. As we
mentioned in the paper, Moon focuses on improving the local training process while GAMF focuses on improving the
model aggregation part. The original aggregation part of Moon is FedAvg, and we simply replace FedAvg with our
GAMEF. We understand the simple combination may not always be the optimal solution, and we think how to effectively
combine Moon and GAMEF is still worth studying and leaving for future work.

*https://github.com/FedML-AI/FedML
"https://github.com/sidak/OTFusion
$https://github.com/IBM/FedMA
*https://github.com/QinbinLi/MOON

https://github.com/FedML-AI/FedML
https://github.com/sidak/OTFusion
https://github.com/IBM/FedMA
https://github.com/QinbinLi/MOON

