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Abstract
Many communication-efficient methods have
been proposed for distributed learning, whereby
gradient compression is used to reduce the com-
munication cost. However, given recent advances
in large batch optimization (e.g., large batch SGD
and its variant LARS with layerwise adaptive
learning rates), the compute power of each ma-
chine is being fully utilized. This means, in mod-
ern distributed learning, the per-machine compu-
tation cost is no longer negligible compared to
the communication cost. In this paper, we pro-
pose new gradient compression methods for large
batch optimization, JOINTSPAR and its variant
JOINTSPAR-LARS with layerwise adaptive learn-
ing rates, that jointly reduce both the computation
and the communication cost. To achieve this, we
take advantage of the redundancy in the gradient
computation, unlike the existing methods com-
pute all coordinates of the gradient vector, even
if some coordinates are later dropped for com-
munication efficiency. JOINTSPAR and its vari-
ant further reduce the training time by avoiding
the wasted computation on dropped coordinates.
While computationally more efficient, we prove
that JOINTSPAR and its variant also maintain the
same convergence rates as their respective base-
line methods. Extensive experiments show that,
by reducing the time per iteration, our methods
converge faster than state-of-the-art compression
methods in terms of wall-clock time.

1. Introduction
Distributed machine learning has drawn much attention as
an important approach to scale up machine learning models.
Since machine learning model training is notoriously time
consuming, most distributed machine learning methods are
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focused on parallelizing stochastic gradient descent (SGD)
algorithms (Shalev-Shwartz & Zhang, 2013; Schmidt et al.,
2017; Johnson & Zhang, 2013). This is because SGD (and
its variants) are commonly used to train machine learning
models, including deep learning models (Sutskever et al.,
2013; Duchi et al., 2011; Kingma & Ba, 2014). In SGD, let
f(x) be the loss function that we hope to minimize, where
x ∈ RD is the parameter vector of a machine learning model.
At each iteration t, we have access to the unbiased gradient
vector gt = g(xt) such that E[g(xt)] = ∇f(xt), where
xt is the parameter vector at current iteration. A standard
SGD uses the following update rule to get xt+1 for the next
iteraiton: xt+1 = xt − αtgt, where αt is a scalar for step
size.

A common method to parallelize SGD is to use several
machines to collectively minimize f . Each machine has
one partition of the whole training dataset, and maintains
a local copy of the parameter vector xt. At each iteration,
it obtains a new gradient vector gt according to its local
parameter copy and data partition. After each iteration, all
machines broadcast their local gradient vectors to their peers,
so that gradient vectors can be aggregated to compute the
new parameter vector xt+1. This synchronization step of
aggregating gradients can also be relaxed with asynchronous
update methods (Leblond et al., 2018; Recht et al., 2011;
Nguyen et al., 2018; Liu et al., 2015). It has been observed
that gradient communication in each iteration is a significant
performance bottleneck in practical applications (Chilimbi
et al., 2014; Seide et al., 2014; Strom, 2015).

Existing Approaches. The main mechanism for alleviating
the communication overhead is to compress the gradients
before synchronously1 broadcasting them to peer machines.
There are two popular approaches to compressing the gra-
dients: one is to quantize gradients (into lower precision
representation) (De Sa et al., 2015; Alistarh et al., 2017;
Zhou et al., 2016; Wen et al., 2017; De Sa et al., 2017;
Zhang et al., 2017; Rastegari et al., 2016; De Sa et al., 2018;
Bernstein et al., 2018), and the other is to sparsify gradients
by dropping some of their coordinates (Mania et al., 2015;
Leblond et al., 2016; Aji & Heafield, 2017; Lin et al., 2017;
Chen et al., 2018a; Renggli et al., 2018; Tsuzuku et al., 2018;

1State-of-the-art gradient compression often uses synchronous
updates. We will also discuss asynchronous updates in Section 2.



Communication-efficient Distributed Learning for Large Batch Optimization

Stich et al., 2018). However, both approaches must compute
the gradients first and then apply their compression. Specif-
ically, assume a gradient vector g = [g1, · · · , gd, · · · , gD],
where the d-th coordinate gd is the gradient value with re-
spect to the d-th model parameter and D is the number of
model parameters. The compressed gradientQ(g) is usually
obtained by compressing g according to a probability vector
p = [p1, · · · , pd, · · · , pD]. The variance of Q(g) is defined
as E

∑D
d=1[Q(g)2d], and the sparsity of Q(g) is defined as

E [∥Q(g)∥0], where Q(g)d is the d-th coordinate of Q(g).
Different methods differ in the way they choose p. For ex-
ample, a popular technique, called TERNGRAD (Wen et al.,
2017), chooses each pd to be proportional to the absolute
value of gd, i.e., pd =

|gd|
∥g∥∞

, and defines Q(g) as Q(g)d =

∥g∥∞ sign(gd)Zd, where Zd is a Bernoulli random vari-
able with P(Zd = 1) = pd = |gd|/∥g∥∞. Since ∥g∥∞ is
the same for all coordinates, TERNGRAD effectively quan-
tizes each coordinate into one of the {−1, 0, 1} values. For
TERNGRAD, the variance of Q(g) is ∥g∥1∥g∥∞, and the
sparsity of Q(g) is ∥g∥1

∥g∥∞
, both of which are fixed for any

given g. Other techniques, such as GSPAR (Wangni et al.,
2018), provide the flexibility to trade off between variance
and sparsity by choosing p through solving a linear problem:
minp

∑D
d=1 pd s.t.

∑D
d=1

g2d
pd
≤ (1 + ϵ)

∑D
d=1 g

2
d, where

ϵ is the parameter that allows the user to control this tradeoff.
There are other techniques too, that apply SVD decompo-
sition to g (Wang et al., 2018a), consider multiple-level
quantization (Alistarh et al., 2017), use additional memory
to compensate for the sparsification error (Stich et al., 2018),
or extend to decentralized settings where machines commu-
nicate only with their neighbors (Tang et al., 2018; Vogels
et al., 2020).

These gradient compression methods are quite effective at
compressing the size of the gradients, and thus reducing the
communication time (i.e., the time spent on communicat-
ing the gradients with other machines over the network) in
traditional distributed learning. Recently, there has been a
surge in using large batch optimization to fully utilize the
compute power, particularly for training deep neural net-
works on large scale datasets (Goyal et al., 2017; Golmant
et al., 2018; Lin et al., 2020; Keskar et al., 2016; Smith et al.,
2017). It has been shown that using larger batch sizes with
synchronous SGD variants can significantly speed up the
training (Goyal et al., 2017; Akiba et al., 2017; You et al.,
2017; 2019). The computation time (i.e., time spent on
computing the gradients that will be sent over the network)
is no longer negligible due to large batch sizes. However,
existing gradient compression methods cannot reduce the
computation time. This is because the computation time
is mainly determined by how the gradients are computed
based on the batch of examples in each iteration. In fact, the
computation time slightly increases due to the additional
operations of compressing and uncompressing the gradi-

Table 1. Breakdown of computation time (tcomp) versus communi-
cation time (tcomm) per epoch (in seconds) for vanilla SGD versus
gradient compression methods in large batch optimization. The
results are obtained by training AlexNet on ImageNet dataset using
8 machines with P100 GPUs connected with a 100Gb/s InfiniBand
fabric (batch size is set as a large value, i.e., 1024 for each ma-
chine). While gradient compression methods (e.g., TERNGRAD

and GSPAR) reduce communication time by 2-3x, the computation
time becomes the dominant part. Note that the slight increase in
computation time of the gradient compression methods is due to
time spent compressing and uncompressing gradients.

Method tcomp tcomm tcomp/tcomm

SGD 1021 1156 0.88
TERNGRAD 1205 446 2.70

GSPAR 1079 519 2.08

ents. This is why in many real life settings, the computation
time is reported to be much larger than the communication
time (Akiba et al., 2017). For example, as shown in Table 1,
when training AlexNet (Krizhevsky et al., 2012) on the Im-
ageNet dataset (Deng et al., 2009) with existing gradient
compression methods (e.g., TERNGRAD and GSPAR), the
computation time is at least twice the communication time.
Therefore, to achieve the best of both worlds and reduce the
total training time, we need to reduce the computation while
retaining the benefits of gradient compression techniques.

Our Approach. In this paper, we propose a new gradient
compression method, JOINTSPAR, that aims to additionally
reduce the computation time while keeping the goal of re-
ducing the communication time. Our key insight is that our
method can take advantage of the redundancy in gradient
computation in existing methods. Specifically, all existing
methods need to compute all coordinates in a gradient vector
at each iteration before sparsifying it, even though some co-
ordinates might be dropped by sparsification. The training
time could be further reduced if only the coordinates that
would be communicated were computed. JOINTSPAR inte-
grates sparsity in the gradient computation, thereby avoiding
redundant gradient computation and achieving joint sparsifi-
cation of gradient computation and communication.

Specifically, rather than recomputing the probability vector
at each iteration, we maintain a probability distribution p
over all coordinates which is being updated across training
iterations. The optimal solution to the probability distribu-
tion at each iteration requires us to compute the gradient
value for each coordinate, which is exactly what we aim
to avoid in the first place. We cast the problem of learning
an optimal probability distribution as an adversarial multi-
armed bandit problem. We use a multi-armed bandit method
to update the distribution p, based on the partial informa-
tion available at each iteration (i.e., the gradient values for
coordinates that will not be dropped). The bandit method
for learning p is embedded into the parallelized SGD that
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minimizes the loss function with respect to x, so that their
iterations are synchronized. At each iteration, JOINTSPAR
performs one update step for parallelized SGD with respect
to x, and one update step for the bandit method with respect
to p. The gradient coordinates are chosen according to the
current value of p at the beginning of every iteration, and
only the chosen coordinates are computed and communi-
cated. This joint sparsification of gradient computation and
communication greatly reduces the end-to-end training time
of JOINTSPAR. In addition, JOINTSPAR also provides users
with the flexibility to choose the sparsity budget. As with
GSPAR, this can be used to trade off variance and sparsity.
We prove that JOINTSPAR achieves the same convergence
rate in iteration numbers as existing state-of-the-art meth-
ods for communication-efficient distributed learning (Bern-
stein et al., 2018; Tang et al., 2018). We empirically verify
that, compared to state-of-the-art methods, JOINTSPAR con-
verges faster in terms of wall-clock time, because it requires
less time per iteration.

In summary, we make the following contributions:

• We observe that, for large batch optimization, the com-
putation time is no longer negligible, responsible for a
significant fraction of their total training time. We pro-
pose new gradient compression method for large batch
optimization, JOINTSPAR and its variant JOINTSPAR-
LARS, which jointly sparsify both computation and
communication of the gradients. Similar to state-of-
the-art (Wangni et al., 2018; Wang et al., 2018a), our
methods provide users the flexibility to trade off vari-
ance and sparsity.

• We prove that JOINTSPAR has the same convergence
rate in terms of the number of iterations as the state-
of-the-art methods for SGD-based distributed learn-
ing (Bernstein et al., 2018; Tang et al., 2018), namely
O( 1√

T
), where T is the number of iterations. We also

prove that when applied to recently proposed large
batch optimizer with layerwise adaptive learning rates
LARS, the variant JOINTSPAR-LARS enjoys the same
convergence rate as the original LARS.

• Our extensive experiments on several benchmark
datasets (e.g., MNIST, CIAF10, CIFAR100 and Ima-
geNet) using various models (e.g., convolutional neural
networks, and residual neural networks) show that our
methods spend significantly less time per iteration, and
converge faster than state-of-the-art methods in terms
of wall-clock time.

2. Related Work

Training Efficiency. For efficient model training, espe-
cially in the single machine setting, weight compression
techniques whereby the precision of the weights are reduced

to save compute and memory overheads have been shown
very effective (Micikevicius et al., 2017; Sakr et al., 2019).
This is because memory usage can be decreased by using
fewer bits to store the same number of values, and compute
time can also be reduced on processors that offer higher
throughput for reduced precision arithmetic operations. For
example, recent work has successfully trained deep neural
networks using 8-bit floating point numbers without sacri-
ficing accuracy (Wang et al., 2018b). Another line of work
has shown that sampling techniques can be used to acceler-
ate model training (Zhao & Zhang, 2015; Katharopoulos &
Fleuret, 2018). For example, Adam with bandit sampling
is proved to converge faster than the original Adam when
the feature distribution in the training set is skewed (e.g.,
exponentially faster in terms of the size of the training set
when the feature follows a doubly heavy-tailed distribu-
tion) (Liu et al., 2020). The key idea is that, by sampling
those important examples more often, the training process
can be accelerated due to improved sample efficiency. Re-
cent works (Clark et al., 2020; Liu & Mozafari, 2022) have
shown that improving sample efficiency is also useful for
efficiently training transformer-based language models (De-
vlin et al., 2018). Our focus in this paper is on efficient
model training in a distributed setting through reducing both
computation and communication costs.

Communication Efficiency. In the distributed setting
where we use multiple machines to collectively train a
model, frequent communication happens among these ma-
chines to exchange information that is local at each machine.
The most studied type of communication is aggregating lo-
cal gradients to get the global gradient which is needed for
updating the model parameters at each training iteration,
because distributed training in the data parallel fashion is
widely adopted (Li et al., 2014). In this paper, we also fo-
cus on this type of communication (i.e., aggregating local
gradients). There has been significant progress on using
various compression techniques to reduce the communica-
tion cost. The convergence rate of these methods under
different assumptions has been studied in the literature (Al-
istarh et al., 2018; Koloskova et al., 2019; Vogels et al.,
2019; Lin et al., 2017; Zheng et al., 2019; Yu et al., 2018;
Xu et al., 2020; Chen et al., 2018b; Liu et al., 2019; Wu
et al., 2018; Tang et al., 2019; 2021). Some specialized
systems have also been developed that can support efficient
communication for gradient aggregation based on various
compression methods (Fei et al., 2020; Renggli et al., 2019;
Li et al., 2020). In addition to gradient compression meth-
ods, asynchronous updates provide an alternative means
of alleviating the communication overhead (Leblond et al.,
2018; Recht et al., 2011; Lian et al., 2015). Asynchronous
updates are particularly useful in heterogeneous clusters,
where some machines are considerably slower than others.
These relatively slow machines are called stragglers. Asyn-
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Table 2. Notation summary.
Symbol Description Symbol Description
M the total number of machines/processes pmt probability vector for machine m at iteration t
f loss function pmt,d d-th coordinate of probability vector pmt
x parameter vector Zmt selector vector for machine m at iteration t
X space of the parameter vector Smt active set for machine m at iteration t
D number of blocks of the parameter vector Q(gmt ) sparsified version of gmt
T total number of training iterations Q(gmt )d d-th block of Q(gmt )
gmt full gradient vector for machine m at iteration t s sparsity budget, i.e., E [∥Q(gmt )∥0]
gmt,d d-th block of gradient vector gmt Sd smoothness constant for xd
gmt,[d] zero vector with gmt,d at d-th block L upper bound on ∥gmt,[d]∥,∀t, d,m

chronous updates can introduce additional noise if there
are too many stragglers. To avoid asynchronous noise and
mitigate stragglers, an alternative solution is to use syn-
chronous updates with backup workers (Chen et al., 2016)
proposed to use. Although asynchronous updates could in
principle be combined with gradient compression, state-of-
the-art gradient compression methods still use synchronous
updates (Wang et al., 2018a; Alistarh et al., 2017; Bernstein
et al., 2018; Wen et al., 2017). This is primarily to avoid
the additional asynchronous noise, especially that stragglers
are not a major concern. Thus, to be consistent with state-
of-the-art gradient compression methods, we also focus on
synchronous updates in the rest of this paper. It is worth
noting that there are other types of communication, such
as passing neural activation values across machines due to
model parallelism (Shazeer et al., 2018; Liu et al., 2022;
Gupta et al., 2021). Other techniques such as a dropout
variant called Gating Dropout (Liu et al., 2022) have been
proposed to reduce the cost of other communication types.

3. Joint Sparsification of Gradient
Computation and Communication

Consider the following nonconvex 2 optimization problem:
minx∈X f(x) , where X is the parameter space. The goal
in distributed learning is to solve this problem using M
machines/processes3, where each machine stores a partition
of the entire training dataset. Without loss of generality, as-
sume parameter vector x can be decomposed into D blocks,
i.e., x = [x1, · · · , xd, · · · , xD] where D is the total number
of parameter blocks. The reason that this is without loss of
generality is because, in neural network models, their layer-
wise architecture provides a natural block decomposition,
i.e., all the paramaters from one layer form a block. For
the rest of this paper, we consider this layerwise formula-
tion rather than the coordinate-based formulation, because

2Due to space constraint, here we focus on nonconvex objective
functions, which are the case for neural network models. Please
refer to the appendix for our results on a tigher bound on convex
objective functions.

3We use machine and process interchangeably in this paper.

(1) it is to be consistent with the recently proposed large
batch optimizers with layerwise adaptive learning rates (You
et al., 2017; 2019) (see Section 3.2), (2) it allows efficient
implementation on top of modern deep learning frameworks
such as PyTorch (see Section 3.3). Suppose the full gradi-
ent of f with respect to x for machine m at iteration t is
gmt , and gmt,d is the gradient of f with respect to xd. De-
note gmt,[d] = [0, · · · , gmt,d, · · · , 0], where all entries are zero

except gmt,d at the d-th block. Thus, gmt =
∑D
d=1 g

m
t,[d].

Our goal in this paper is to compress gmt by integrating spar-
sity in the gradient computation. To this end, we maintain
a probability distribution pmt = [pmt,1, · · · , pmt,d, · · · , pmt,D]
over the gradient blocks. To sparsify (i.e., compress) the
gradient, we keep gmt,d with probability pmt,d, and drop it with
probability 1− pmt,d. The sparsified gradient vector is then

represented as Q(gmt ) =
∑D
d=1

gmt,[d]
pmt,d

Zmt,d, where Zmt,d is a

Bernoulli random variable with P(Zmt,d = 1) = pmt,d, for
all 1 ≤ d ≤ D. We can verify that Q(gmt ) is unbiased:
E[Q(gmt )d] =

gmt,d
pmt,d

E[Zmt,d] =
gmt,d
pmt,d

pmt,d = gmt,d.

To avoid redundant gradient computations, at the beginning
of each iteration, we instantiate the random variable Zmt,d
by setting Zmt,d = 1 with probability pmt,d and Zmt,d = 0
with probability 1− pmt,d. Since we will drop any gradient
block d for which Zmt,d = 0 during the communication,
we also skip computing these dropped blocks. In other
words, we only compute gmt,d where d ∈ Smt = {d : Zt,d =
1,∀1 ≤ d ≤ D}. We call the set Smt the active set as it
indicates the gradient blocks that we will actively compute
and communicate. The key notations used in this paper are
listed in Table 2. Because gradient computation accounts
for a significant portion of the time spent in each iteration,
computing only the necessary gradient blocks will be hugely
advantageous. For our analysis, we make the following
common assumptions (Beck & Teboulle, 2003; Darzentas,
1984; You et al., 2019).

Assumption 1. (1) The objective function f is Sd-smooth
with respect to xd; (2) The gradient gmt,[d] is upper bounded
by L, i.e., L ≥ ∥gmt,[d]∥,∀t, d,m; (3) For all x, y ∈ X ,
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we have B(x, y) ≤ R2, where B(x, y) is the Bregman
divergence between x and y.

We use S = [S1, S2, · · · , SD] to denote the D-dimensional
vector of Lipschitz smoothness constants. Let S∞ =
maxd Sd. For simplicity, we also assume the function value
at the initial point is upper bounded byR2, i.e., f(x1) ≤ R2.
The probability distribution pmt will govern how many gradi-
ent blocks are computed and communicated. A good choice
of pmt should place high probability values on those blocks
that have the largest impact on the ultimate convergence of
the model. Before we discuss how to determine pmt,d, let us
assume that there is an oracle that provides some arbitrary
value for pmt,d. We call this ideal method as ORACLESPAR.
Its pseudocode is the same as Algorithm 2 except that line 9
should be replaced by using an oracle to get pmt+1,d. Then,
we have the following theorem4 regarding its convergence
rate.
Theorem 1. Under Assumption 1, ORACLESPAR achieves

E
T∑
t=1

D∑
d=1

∥f ′
d(xt)∥2

≤R
2

αx
+
S∞αx
2M2

M∑
m=1

T∑
t=1

E

[
D∑
d=1

∥gmt,[d]∥2

pmt,d

] (1)

where f ′(xt) = [f ′1(xt), · · · , f ′d(xt), · · · , f ′D(xt)] is the
gradient of f with respect to xt and αx is the step size.

According to Theorem 1, the second term on the right hand
side of Equation 1 depends on the values of probabilities
pmt,d. For a fast convergence rate, we wish to choose the pmt,d
values such that the second term is minimized. Interestingly,
the second term is the same as the gradient variance in exist-
ing methods (Wangni et al., 2018; Wang et al., 2018a). It can
be shown that, for every iteration t, the optimal distribution
pmt,[d] is proportional to the gradient value of individual co-
ordinate (Needell et al., 2014; Alain et al., 2015). Formally
speaking, for any t, the optimal solution to the problem

arg min∑D
d=1 pt,d=1

D∑
d=1

∥gt,[d]∥2

pt,d
(2)

is pt,d =
∥gt,[d]∥∑D

d=1 ∥gt,[d]∥
,∀d. However, it is computationally

prohibitive to get the optimal solution, because we need to
compute the gradient values for all blocks (thus all coordi-
nates), which is exactly what we aim to avoid in the first
place. Instead, we use a multi-armed bandit method (McMa-
han & Blum, 2004; Dani et al., 2008) to learn this distri-
bution from the partial information that is available during
training. Here, partial information is the gradient values
for blocks in the active set Smt . The multi-armed bandit
method maintains the distribution over all blocks, and keeps
updating this distribution at every training iteration.

4All omitted proofs can be found in the appendix of this paper.

3.1. Bandit Method for Distribution Learning

Algorithm 1 Distribution update for pmt
1: Function: update (pmt , S

m
t , {gmt,[d]}d∈Sm

t
)

2: for d← 1 to D do
3: if d ∈ Smt then
4: l̃mt,d = −

∥gmt,[d]∥
2

(pmt,d)
2 + L2

p2min
;

5: else
6: l̃mt,d = 0;
7: end if
8: wmt,d = pmt,d exp(−αp l̃mt,d/pmt,d);
9: end for

10: pmt+1 = argminq∈P Dkl(q∥wmt );
11: Return: pmt+1

Our goal is to minimize
∑T
t=1 E

[∑D
d=1

∥gmt,[d]∥
2

pmt,d

]
by using

a multi-armed bandit method on each machine m. We use
a bandit method based on EXP3 (Auer et al., 2002) but
extended to handle multiple actions at every iteration. The
pseudocode is described in Algorithm 1. Note that L is
assumed to be the upper bound on the gradient norm (see
Assumption 1). In addition, we define the set P as P =
{p ∈ RD :

∑D
d=1 pd = s, pd ≥ pmin,∀1 ≤ d ≤ D},

where s is the sparsity budget and pmin is a constant lower
bound. Both s and pmin are parameters directly controlled
by the user, where 0 < s ≤ D and 0 < pmin ≤ 1. The
sparsity budget s serves as a knob for the user to gradually
transition from no gradient computation (i.e., when s = 0)
to full gradient computation (i.e., when s = D). In line
10, Dkl(q∥w) is the Kullback-Leibler divergence between
q and w.

To further illustrate the distribution update algorithm from
the perspective of the bandit setting, the number of arms
is D, where each arm corresponds to a parameter block.
Selecting an active set Smt of blocks for which gradient
computation and communication will be performed, is the
same as choosing |Smt | arms to pull. At iteration t, the loss
of pulling the arm d is l̃mt,d, which is defined in line 4 of
Algorithm 1. Each time we update the distribution, we only
pull these arms from the set Smt , which are blocks for which
gradient computation and communication will be performed.
From the definition of l̃mt,d as in line 4 of Algorithm 1, we can
see that the loss l̃mt,d is always nonnegative, and is inversely
correlated with ∥gmt,[d]∥. This implies that a block with small
gradient norm will receive large loss value, resulting in its
weight getting decreased. In other words, blocks with larger
gradient norms are more likely to be selected in the active
set. This aligns with existing gradient compression methods
in the sense that blocks with small gradient norms tend to get
dropped to reduce the communication cost. Using a sum tree
structure to store these weights, we can efficiently update
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pmt in O(|Smt | logD) time (Namkoong et al., 2017). With
the logarithm dependence on D, the overhead of the bandit
method is small even for a large neural network model.
Theorem 2. Under Assumption 1, if we set the step size

αp =

√
2R2p4min

DTL4 , Algorithm 1 achieves the following con-
vergence rate:

E
T∑
t=1

l(pmt )−min
p∈P

E
T∑
t=1

l(p) ≤ RL2

p2min

√
2DT (3)

where l(pmt ) =
∑D
d=1

∥gmt,[d]∥
2

pmt,d
.

Using a bandit method to keep updating the distribution
pmt (which is initialized uniformly, i.e., pm1 = s

D ) as in
Algorithm 1, we can now introduce our distributed learning
algorithm that jointly sparsifies gradient computation and
communication. We call our algorithm JOINTSPAR, which
is presented in Algorithm 2.

Algorithm 2 Our distributed learning method JOINTSPAR
(for each worker m)

1: for t = 1, · · · , T do
2: Instantiate the value for Zmt,d, where Zmt,d is a

Bernoulli random variable with P(Zmt,d = 1) = pmt,d,
for all 1 ≤ d ≤ D;

3: Determine active set Smt ={d : Zt,d=1, ∀1≤d≤D};
4: Compute gradient gmt,d for all d ∈ Smt ;
5: Correct the gradients to make them unbiased with

ĝmt,d =
gmt,d
pmt,d

;

6: Construct sparsified gradient Q(gmt ) = [q1,· · · ,qD],
where qd = ĝmt,d if d ∈ Smt , otherwise qd = 0;

7: Encode Q(gmt ) in sparse format and broadcast it to
other peer machines;

8: Receive Q(gm
′

t ) from peer machines 1 ≤ m′ ≤
M , and update the parameter vector xt+1 = xt −
αx

1
M

∑M
m′=1Q(gm

′

t );
9: pmt+1,d = update (pmt , S

m
t , {gmt,[d]}d∈Sm

t
);

10: end for

Combining both Theorem 1 and 2, we can prove the conver-
gence rate of JOINTSPAR, as stated in Theorem 3.
Theorem 3. Under Assumption 1, JOINTSPAR achieves

T∑
t=1

D∑
d=1

E∥f ′
d(xt)∥2 ≤ RLD

√
S∞T

2Ms
+

R

LD

√
S∞s

2MT
R̄∗+

R2L

p2min

√
S∞s

MD
(4)

where

R̄∗ = max
m

min
p∈P

E

[
T∑
t=1

D∑
d=1

∥gmt,[d]∥2

pd

]
. (5)

We now further bound Equation 5 to show that our conver-
gence rate is O( 1√

T
). Since we have assumed the upper

bound on gradient L ≥ ∥gmt,[d]∥,∀t, d,m, we could get the
following upper bound on R̄∗.

Lemma 1. Under Assumption 1, then we have

R̄∗ = max
m

min
p∈P

E

[
T∑
t=1

D∑
d=1

∥gmt,[d]∥2

pd

]
≤ O(

TL2D2

s
). (6)

Theorem 4. Under Assumption 1, our distributed learning
method JOINTSPAR has the following convergence rate

1

T

T∑
t=1

D∑
d=1

E∥f ′
d(xt)∥2 ≤ O

(
RLD

√
2S∞

MsT

)
(7)

where f is the convex objective function and s is the sparsity
budget .

This theorem implies that the average convergence rate of
JOINTSPAR isO( 1√

T
), which is the same as the state-of-the-

art methods for distributed learning (Bernstein et al., 2018;
Tang et al., 2018). As we increase the sparsity budget s, the
right hand side of Equation 7 becomes smaller, implying a
faster convergence rate. This is expected, as a larger value
of s allows our method to communicate gradient vectors
that are less sparsified, hence carrying more information
at each iteration of the gradient communication. On the
other hand, computing and communicating less sparsified
gradient vectors will be more expensive in practice in terms
of wall-clock time. This tradeoff can be directly controlled
by the user, via setting the s value.

3.2. Large Batch Optimizer Variant with Layerwise
Adaptive Learning Rates

Our method JOINTSPAR as shown in Algorithm 2 is based
on synchronous SGD. Combined with some tricks such
as linear scaling and warmup, synchronous SGD was able
to drastically reduce the training time of ImageNet train-
ing with ResNet-50 from 29 hours to 1 hour using a large
batch size (up to 8192) (Goyal et al., 2017) . To further
increase the batch size without compromising the test accu-
racy, layerwise adaptive learning rates have been recently
introduced for large batch optimizers. The most promi-
nent optimizers are LARS and LAMB (You et al., 2017;
2019). In this section, we dicuss a variant of JOINTSPAR
by applying our bandit-based compression method to LARS
and show that the same convergence rate as with the orig-
inal LARS can still be achieved 5. We call this variant
JOINTSPAR-LARS. Its pseudocode is the same with Al-
gorithm 2, except that the parameter update rule in line 8

becomes xt+1,d = xt,d − αx ϕ∥xt,d∥
∥mt,d∥mt,d for 1 ≤ d ≤ D.

5Due to space limit, we omit discussion on LAMB. But similar
analysis can be extended to LAMB.
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Here, momentum mt,d is updated by mt,d = β1mt−1,d +

(1 − β1)
(

1
M

∑M
m′=1Q(gm

′

t )
)

, where initial momentum
m0 = 0 and β1 is a hyperparameter taking value in (0, 1).
ϕ(·) is a rescaling function. As with (You et al., 2019),
we assume ϕ(z) = min{max{z, αl}, αu}, where αl and
αu are constant values. We have the following theorem
regarding the convergence rate of JOINTSPAR-LARS6.

Theorem 5. Under Assumption 1, let αx =√
2(f(x1)−f(x∗))

α2
u∥S∥1T

, batch size B = T . Then for xt

generated using JOINTSPAR-LARS, we have the following
bound (

E

[
1√
D

D∑
d=1

∥f ′
d(xa)∥

])2

≤

O

(
(f(x1)− f(x∗))∥S∥1

TD
+
L2D2

MsT

)
,

(8)

where x∗ = argminx∈X f(x) and xa is an iterate uni-
formly randomly chosen from {x1, · · · , xT }.

This theorem implies that the convergence rate of
JOINTSPAR-LARS is O( 1

T ) in term of the number of it-
erations, which is the same as the original LARS (see The-
orem 2 in (You et al., 2019)). We empirically show that
JOINTSPAR-LARS has a faster convergence rate than exist-
ing methods in terms of wall-clock time.

3.3. Implementation Details

We discuss how our methods are efficiently implemented
on top of PyTorch. We treat each parameter tensor from
the PyTorch framework as a parameter block in our im-
plementation. This could also help us achieve highly ef-
ficient execution on GPU. Specifically, to skip gradient
computation for a parameter block, we use the PyTorch
API: param_tensor.requires_grad_(False) to
turn off the gradient computation for its corresponding ten-
sor param_tensor. For example, the param_tensor
could be the kernel matrix of some convolutional layer,
the bias vector at some linear layer and so on. This
eliminates the need to break the matrix computation on
GPUs while we still benefit from skipping some gradient
computations. Note that the gradient is turned off (i.e.,
requires_grad_(False)) before both the forward
pass as well as the backward pass. Because of the way
auto-differentiation works in PyTorch (Paszke et al., 2017),
backpropagation will stop at some intermediate layer if the
gradients for all previous layers have been turned off. This
has often been the case across all our experiments, which
certainly does save a lot more than half of the computation
during backpropagation. However, turning off the gradient
compuation on the whole weight matrix on linear layers

6As with (You et al., 2019), we analyze the case where β1 = 0.

could greatly slow down the training process. To gain finer-
grained control over gradient computation for linear layers,
we implemented a new nn.Linear layer that splits each
column of its original weight matrix into an independent
submatrix. In this way, the gradient computation of each
column can be independently turned off.

Modern deep learning frameworks, such as PyTorch, sup-
port overlapping communication and computation by send-
ing gradients as soon as they are available (Li et al., 2020).
This can accelerate training by avoiding the additional de-
lay of waiting for all the gradients. To take advantage
of the overlapping characteristic, many gradient compres-
sion methods are implemented in the layer-wise way, i.e.,
the compression is independently applied to the gradi-
ent vector of each layer (Dutta et al., 2020). Although
our compression methods are not layer-wise, they can
still enjoy the acceleration benefits provided by the over-
lapping characteristic. Simply speaking, this is because
our methods still allow gradient vector of each layer to
be sent as soon as it is computed. More specifically, at
each iteration, our methods decide which layers should not
send their gradient vectors even before the forward pass
starts. We instantiate this decision in PyTorch via setting
param_tensor.requires_grad_(False). Then
the procedure of the forward pass and backward pass starts
with no involvement from our methods. In other words,
each gradient vector is sent as soon as it is ready if overlap-
ping communication and computation is supported by the
framework.

4. Experiments
We conduct extensive experiments to evaluate the effective-
ness and efficiency of our method. Due to space limit, we
focus on JOINTSPAR-LARS because optimizers with layer-
wise adaptive learning rates are more effective in the large
batch setting (You et al., 2017; 2019). More experiments
on JOINTSPAR and other SGD-based compression methods
can be found in the appendix.

4.1. Setup

Baselines. We compare our method, JOINTSPAR-LARS
against the full precision version of LARS (no compres-
sion used) and the following state-of-the-art gradient com-
pression methods for distributed learning: QSGD (Alis-
tarh et al., 2017), TERNGRAD (Wen et al., 2017), and
ATOMO (Wang et al., 2018a). All the gradient compression
baseline methods are applied to LARS in our experiments.
Note that all of these baseline compression methods must
compute all coordinates in a gradient vector before com-
pressing it to reduce communication cost. To the best of
our knowledge, our method JOINTSPAR-LARS is the first to
jointly sparsify gradient computation and communication.
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Figure 1. Convergence in terms of wall-clock time, confirming our method JOINTSPAR-LARS’s faster convergence than baselines.

Datasets and Implementations. We use several bench-
mark datasets in our experiments: MNIST, Fashion-MNIST,
SVHN, CIFAR10, CIFAR100 and ImageNet. Different neu-
ral network models are trained on these datasets. We use
PyTorch (Paszke et al., 2019) to implement models and
learning methods, and use mpi4py (Dalcin et al., 2011) as
the communication framework in the distributed setting.
In traditional distribution learning, the global batch size
is usually fixed and evenly divided among multiple ma-
chines (Wang et al., 2018a; Alistarh et al., 2017). In our
experiments, however, we fix the local batch size at each
machine, which is the common practice in large batch opti-
mization (Goyal et al., 2017). All experiments are run on
a computer cluster with up to 16 nodes. Each node has 20
physical CPU cores with clock speed up to 4 GHz, and 4
NVIDIA P100 GPUs. Nodes are connected via a 100Gb/s
InfiniBand fabric.

FullPrecision
TernGrad

QSGD
ATOMO

Avg over baselines

Avg over datasets
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Figure 2. Speedup of JOINTSPAR-LARS against baseline methods,
computed as the ratio of the wall-clock time spent by each baseline
to that by JOINTSPAR when achieving the same testing loss.

4.2. Convergence Comparison

We compare the end-to-end convergence performance on dif-
ferent datasets and models trained with JOINTSPAR-LARS
and all baselines, with respect to the number of epochs and
wall-clock time. We use LeNet (Wen et al., 2017; LeCun
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Figure 3. Convergence comparison for training AlexNet (with 62
million parameters) on ImageNet dataset. JOINTSPAR-LARS con-
verges faster than baseline methods.

et al., 1998) on MNIST, and ResNet-18 (He et al., 2016) on
CIFAR10 and CIFAF100. We use 8 processes to collectively
train each model and the local batch size is set to 1024. As
with Wang et al. (2018a), for those methods that allow users
to control the sparsity budget, we tune the sparsity budget
to choose among 10%, 30%, 50%, 80% of the full gradient
size. The convergence rates in terms of the wall-clock time
are shown in Figure 1, where x-axis and y-axis are the wall-
clock time and testing accuracy, respectively. In terms of
wall-clock time, Figure 1 demonstrates that JOINTSPAR-
LARS speeds up the model training significantly, thanks to
spending less time per iteration than baselines.

Speedup. To get a better understanding of our speedup
against baselines, we compute the ratio of time spent by
a baseline method vs. by our method when achieving the
same target testing accuracy. We use the testing accuracy
achieved by the full precision method at convergence as the
target accuracy, as shown in Table 3. We report this ratio as
speedup of our method against the corresponding baseline
method. We use two more datasets: Fashion-MNIST and
SVHN, and train the same convolutional neural network
model as on MNIST. Figure 2 gives a detailed account of
speedups of our method against different baseline methods
on different datasets. Our method can achieve close to 2x
speedup in most cases, and as high as 4x. Note that in
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Table 3. Target accuracy when measuring the training time for speedup comparison
Dataset MNIST SVHN Fashion-MNIST CIFAR10 CIFAR100

Target Accuracy 90% 95% 91% 88% 55%

some cases such as FullPrecision on SVHN, the speedup
is as low as 1.1x. To further reduce the training time, our
method could be combined with skipping the forward pass
for the layers for which the gradient will be dropped during
the communication. The idea of skipping certain layers of
neural network models has been explored in prior papers,
which can speed up model training without compromising
the accuracy (Huang et al., 2016; Fan et al., 2019). We leave
this idea to the future work.

4.3. Convergence Comparison on ImageNet

To verify the effectiveness of our method on large mod-
els, we also train AlexNet (Krizhevsky et al., 2012) on the
ImagetNet dataset (Deng et al., 2009). As demonstrated
in (Goyal et al., 2017), using large batch size (up to 8k)
is very effective at reducing the overall training time on
the ImageNet dataset without loss of accuracy. We set the
local batch size to 1024 for each machine, and uses the
same tricks (i.e., linear scaling and warmup) as suggested
in (Goyal et al., 2017). Other experimental settings are kept
the same as in the previous subsection. From Figure 3, we
observe that JOINTSPAR-LARS converges faster than the
existing compression method RandomK, which randomly
remove K% of the gradient coordinates. We still tune K%
among 10%, 30%, 50%, 80% of the full gradient size. It
demonstrates that our method maintains its benefits for large
models.

5. Conclusion
We have observed that, in large batch optimization (e.g.,
large batch SGD and its variant LARS with layerwise adap-
tive learning rates), the per-machine computation cost is no
longer negligible compared to the communication cost. We
proposed new gradient compression methods for large batch
optimization, JOINTSPAR (corresponding to large batch
SGD) and its variant JOINTSPAR-LARS (corresponding to
LARS), that only compute gradient coordinates that will be
communicated. We formally prove that JOINTSPAR and
JOINTSPAR-LARS still enjoy the same convergence rates
(in terms of number of iterations) as their respective base-
line methods. Extensive experiments demonstrate that our
methods converge faster than existing methods.
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A. Proof of Theorem 1
For ease of presentation, we define Gt,d =

∑M
m=1 g

m
t,d, and Gt,[d] =

∑M
m=1 g

m
t,[d]. We also define Gt =

∑D
d=1Gt,[d].

According to the definition of Sd-smoothness of f with respect to xd and the update rule xt+1,d = xt,d − αxGt,d, we have

f(xt+1)− f(xt) ≤
D∑
d=1

⟨f ′d(xt), xt+1,d − xt,d⟩+
D∑
d=1

Sd
2
∥xt+1,d − xt,d∥2

≤
D∑
d=1

⟨f ′d(xt), xt+1,d − xt,d⟩+
S∞

2
∥xt+1 − xt∥2

= −αx
D∑
d=1

⟨f ′d(xt), Gt,d⟩+
S∞α

2
x

2
∥Gt∥2.

(9)

Thus, taking expectation on both sides and using the unbiasedness of the gradient, i.e., EGt,d = f ′d(xt), we have

E [f(xt+1)]− E [f(xt)] ≤ −αx
D∑
d=1

∥f ′d(xt)∥2 +
S∞α

2
x

2
E∥Gt∥2. (10)

Rearranging the order, we have

D∑
d=1

∥f ′d(xt)∥2 ≤
E [f(xt)]− E [f(xt+1)]

αx
+
S∞αx

2
E∥Gt∥2. (11)

Then,

T∑
t=1

D∑
d=1

∥f ′(xt)∥2

≤E [f(x1)]− E [f(xT+1)]

αx
+
S∞αx

2

T∑
t=1

E∥Gt∥2

≤E [f(x1)]− E [f(xT+1)]

αx
+
S∞αx
2M2

M∑
m=1

T∑
t=1

D∑
d=1

∥gmt,[d]∥
2

pmt,d

≤R
2

αx
+
S∞αx
2M2

M∑
m=1

T∑
t=1

D∑
d=1

∥gmt,[d]∥
2

pmt,d
.

(12)

B. Proof of Theorem 2
As for Algorithm 1, it corresponds to mirror descent update with ψ(p) =

∑D
d=1 pd log pd and ψ∗(u) =

∑D
d=1 exp(ud − 1).

Denote ĥmt,d =
l̃mt,dZ

m
t,d

pmt,d
. Based on Theorem 5.3 from (Bubeck et al., 2012), we have

R̄mT

=E
T∑
t=1

Lmt (pmt )−min
p

E
T∑
t=1

Lmt (p)

≤Bψ(p
m
∗ , p

m
1 )

αp
+

1

αp

T∑
t=1

E
[
Bψ∗(∇ψ(pmt )− αpĥ

m
t,d,∇ψ(pmt ))

]
.

(13)
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Furthermore, we have

R̄mT

=E
T∑
t=1

Lmt (pmt )−min
p

E
T∑
t=1

Lmt (p)

≤Bψ(p
m
∗ , p

m
1 )

αp
+

1

αp

T∑
t=1

E
[
Bψ∗(∇ψ(pmt )− αpĥ

m
t,d,∇ψ(pmt ))

]
=
Bψ(p

m
∗ , p

m
1 )

αp
+

1

αp

T∑
t=1

E

[
D∑
d=1

pmt,d(exp(−αpĥmt,d) + αpĥ
m
t,d − 1)

]
(due to inequality ez − z − 1 ≤ z2 for z ≤ 0)

≤Bψ(p
m
∗ , p

m
1 )

αp
+
αp
2

T∑
t=1

E

[
D∑
d=1

pmt,d(ĥ
m
t,d)

2

]

=
Bψ(p

m
∗ , p

m
1 )

αp
+
αp
2

T∑
t=1

E

[
D∑
d=1

pmt,d
(l̃mt,d)

2(Zmt,d)
2

(pmt,d)
2

]

=
Bψ(p

m
∗ , p

m
1 )

αp
+
αp
2

T∑
t=1

D∑
d=1

pmt,d
(l̃mt,d)

2E
[
(Zmt,d)

2
]

(pmt,d)
2

=
Bψ(p

m
∗ , p

m
1 )

αp
+
αp
2
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t=1

D∑
d=1

pmt,d
(l̃mt,d)

2pmt,d
(pmt,d)

2
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Bψ(p

m
∗ , p

m
1 )

αp
+
αp
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t=1

D∑
d=1

(l̃mt,d)
2.

(14)

Since l̃mt,d = −∥Gm
t,[d]∥

2

(pmt,d)
2 + L2

p2min
, we have l̃mt,d ≤ L2

p2min
. Similar to Assumption 1, we also assume that Bψ(pm∗ , p

m
1 ) ≤ R2.

Thus, with choosing αp =
√

2R2p4min

DTL4 , we could get

R̄mT ≤
R2

αp
+
αp
2

T∑
t=1

D∑
d=1

L4

p4min

=
R2

αp
+
αp
2

TDL4

p4min

=
RL2

p2min

√
2DT.

(15)

C. Proof of Theorem 3
Let R̄∗ = maxmminp E

[∑T
t=1 L

m
t (p)

]
. Assume

∑D
d=1 p

m
t,d = s,∀m, t, where s is the sparsity rate. Plugging Theorem 2

into Theorem 1, and choosing αx = R
DL

√
2Ms
S∞T , we have

T∑
t=1

D∑
d=1

∥f ′(xt)∥2

≤R
2

αx
+
S∞αx
2M

(
RL2

p2min

√
2DT + R̄∗

)
=RDL

√
S∞T

2Ms
+

R

LD

√
S∞s

2MT
R̄∗ +

R2L

p2min

√
S∞s

MD
.

(16)
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D. Proof of Lemma 1
Let us now consider each iteration at each machine. First, let us prove the following inequality

min
p∈P

D∑
j=1

L2

pj
≤ O(

L2D2

s
). (17)

To prove the above inequality, the Lagrangian of the left hand side is

L(p, η, θ) =
D∑
d=1

L2

pd
− η(pT1− s)− θT (p− pmin1). (18)

Setting its first order derivative with respect to pj to 0, then we have

pj =
L√
|η + θj |

. (19)

According to complementary slackness, we have θj(pj − pmin) = 0. Bcause pmin is small, it implies that

pj =
L√
|η|
. (20)

Plugging pj’s into the equality constraint, we get

D∑
j=1

pj =
DL√
|η|

= s. (21)

It implies that √
|η| = DL

s
. (22)

Therefore, we have

min
p∈P

D∑
j=1

L2

pj
= O(

L2D2

s
). (23)

Plugging Equation 23 into R̄∗, we have

R̄∗ = max
m

min
p∈P

E

[
T∑
t=1

D∑
d=1

∥gmt,[d]∥
2

pd

]
≤ O(

TL2D2

s
). (24)

E. Proof of Theorem 4
Plugging Lemma 1 into the Theorem 4, we have

T∑
t=1

D∑
d=1

∥f ′d(xt)∥2

≤RDL
√
S∞T

2Ms
+

R

LD

√
S∞s

2MT
R̄∗ +

R2L

p2min

√
S∞s

MD

≤RDL
√
S∞T

2Ms
+

R

LD

√
S∞s

2MT

TL2D2

s
+
R2L

p2min

√
S∞s

MD

=RDL

√
S∞T

2Ms
+RDL

√
S∞T

2Ms
+
R2L

p2min

√
S∞s

MD

≤O

(
RLD

√
2S∞T

Ms

)
.

(25)
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Therefore, we have 1
T

∑D
d=1

∑T
t=1 ∥f ′d(xt)∥2 ≤ O

(
RLD

√
2S∞
MsT

)
. It implies that the average convergence rate is still

O( 1√
T
).

F. Analysis for Convex Problems for JOINTSPAR

We discuss convergence guarantee for convex problems in this section, which gives us a tighter convergence bound for
JOINTSPAR. We make the following typical assumptions for convex problems (Beck & Teboulle, 2003; Darzentas, 1984):

Assumption 2. (1) For all x, y ∈ X , we have B(x, y) ≤ R2, where B(x, y) is the Bregman divergence between x and y;
(2) L ≥ ∥gmt,[d]∥,∀t, d,m.

Under Assumption 2, ORACLESPAR achieves

E

[
T∑
t=1

f(xt)− f(x∗)

]

≤R
2

αx
+

αx
2M2

M∑
m=1

T∑
t=1

D∑
d=1

∥Gmt,[d]∥
2

pmt,d
.

(26)

Proof. This can be proven from the perspective of stochastic mirror descent (Darzentas, 1984; Beck & Teboulle, 2003),
which is a generalization of stochastic gradient descent. The specific form of stochastic mirror descent depends on the choice
of Bregman Divergence. Based on Proposition 1 from (Namkoong et al., 2017) or Theorem 4.1 from (Beck & Teboulle,
2003), we have

E

[
T∑
t=1

f(xt)− f(x∗)

]

≤R
2

αx
+
αx
2

T∑
t=1

E
[
∥Gt∥2

]
.

(27)

According to the update rule, we know Gt =
1
M

∑M
m=1Q(Gmt ). Therefore, we have

E

[
T∑
t=1

f(xt)− f(x∗)

]

=
R2

αx
+
αx
2

T∑
t=1

E

[
∥ 1

M

M∑
m=1

Q(Gmt )∥2
]

≤R
2

αx
+

αx
2M2

T∑
t=1

M∑
m=1

E
[
∥Q(Gmt )∥2

]
=
R2

αx
+

αx
2M2

T∑
t=1

M∑
m=1

E

∥∥∥∥∥
D∑
d=1

Gmt,[d]

pmt,d
Zmt,d

∥∥∥∥∥
2


≤R
2

αx
+

αx
2M2

T∑
t=1

M∑
m=1

D∑
d=1

∥Gmt,[d]∥
2

(pmt,d)
2

E
[
(Zmt,d)

2
]

=
R2

αx
+

αx
2M2

T∑
t=1

M∑
m=1

D∑
d=1

∥Gmt,[d]∥
2

pmt,d

=
R2

αx
+

αx
2M2

M∑
m=1

T∑
t=1

D∑
d=1

∥Gmt,[d]∥
2

pmt,d
.

(28)
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Under Assumption 2, JOINTSPAR achieves

E

[
T∑
t=1

f(xt)− f(x∗)

]

≤RDL
√

T

2Ms
+

R

LD

√
s

2MT
R̄∗ +

R2L

p2min

√
s

MD

(29)

where

R̄∗ = max
m

min
p∈P

E

[
T∑
t=1

D∑
d=1

∥gmt,[d]∥
2

pd

]
. (30)

Proof. Plugging the original Theorem 2 into the above Theorem F, and choosing αx = R
DL

√
2Ms
T , we have

E

[
T∑
t=1

f(xt)− f(x∗)

]

≤R
2

αx
+

αx
2M2

M∑
m=1

E

[
T∑
t=1

Lmt (pmt )

]

≤R
2

αx
+

αx
2M2

M∑
m=1

(
RL2

p2min

√
2DT + R̄∗

)
=
R2

αx
+

αx
2M

(
RL2

p2min

√
2DT + R̄∗

)
=RLD

√
T

2Ms
+

R

LD

√
s

2MT
R̄∗ +

R2L

pmin2

√
s

MD
.

(31)

Under Assumption 2, our distributed learning method JOINTSPAR has the following convergence rate

E

[
1

T

T∑
t=1

f(xt)− f(x∗)

]
≤ O

(
RLD

√
2S

MsT

)
(32)

where f is the non-convex and S-smooth objective function, and s is the sparsity budget.

Proof. Plugging the original Lemma 1 into the Theorem F, we have

E

[
T∑
t=1

f(xt)− f(x∗)

]

=RLD

√
T

2Ms
+

R

LD

√
s

2MT
R̄∗ +

R2L

pmin2

√
s

MD

≤O

(
RLD

√
T

2Ms
+

R

LD

√
s

2MT
T
L2D2

s

)

=O

(
RLD

√
2T

Ms

)
.

(33)

Therefore, we have E
[
1
T

∑T
t=1 f(xt)− f(x∗)

]
≤ O

(
RLD

√
2

MsT

)
. It implies that the average convergence rate is still

O( 1√
T
).
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G. Proof of Theorem 5

Similar to the proof for Theorem 2 from (You et al., 2019), setting αx =
√

2(f(x1)−f(x∗))
α2

u∥S∥1T
, we could obtain

1

T

T∑
t=1

E

[
1√
D

D∑
d=1

∥f ′d(xt)∥

]

≤f(x1)− f(x
∗)

Tαlαx
+
αxα

2
u

2αl
∥S∥1 +

2αu
αl

1√
DT

T∑
t=1

D∑
d=1

E [∥∆t,d∥]

(due to αx =

√
2(f(x1)− f(x∗))

α2
u∥S∥1T

)

=
αu
αl

√
2(f(x1)− f(x∗))∥S∥1

TD
+

2αu
αl

1√
DT

T∑
t=1

D∑
d=1

E [∥∆t,d∥]

(34)

where ∆t,d = Gt,d − f ′d(xt) and Gt,d = 1
MB

∑M
m=1

∑B
b=1

gm,b
t,[d]

pmt,d
Zmt,d. Note that b is the index for individual example in a

batch, and B is the batch size.

Applying square to both sides, we have(
1

T

T∑
t=1

E

[
1√
D

D∑
d=1

∥f ′d(xt)∥

])2

≤αu
αl

2(f(x1)− f(x∗))∥S∥1
TD

+
4α2

u

α2
l

1

DT 2

(
T∑
t=1

D∑
d=1

E∥∆t,d∥

)2

≤αu
αl

2(f(x1)− f(x∗))∥S∥1
TD

+
4α2

u

α2
l

1

T

T∑
t=1

D∑
d=1

(E∥∆t,d∥)2

(due to Jensen’s inequality)

≤αu
αl

2(f(x1)− f(x∗))∥S∥1
TD

+
4α2

u

α2
l

1

T

T∑
t=1

D∑
d=1

E∥∆t,d∥2

(35)

Next, we will obtain an upper bound on
∑T
t=1

∑D
d=1 E∥∆t,d∥2. Since EGt,d = f ′d(xt), we have

T∑
t=1

D∑
d=1

E∥∆t,d∥2 =

T∑
t=1

D∑
d=1

1

M2B2

M∑
m=1

B∑
b=1

E∥
gm,bt,[d]

pmt,d
Zmt,d − f ′d(xt)∥2

=

T∑
t=1

D∑
d=1

1

M2B2

M∑
m=1

B∑
b=1

(
E∥
gm,bt,[d]

pmt,d
Zmt,d∥2 − ∥f ′d(xt)∥2

)

≤
T∑
t=1

D∑
d=1

1

M2B2

M∑
m=1

B∑
b=1

E∥
gm,bt,[d]
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(36)

From Theorem 2 and Lemma 1, we could get
T∑
t=1

D∑
d=1

∥gm,bt,[d]∥
2

pmt,d

≤RL
2

p2min

√
2DT +

TL2D2

s

(37)
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Therefore, we have
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(due to the large batch assumption that B = T )
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(38)

Plugging the above bound to Inequality 35, we finally have(
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T
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+
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)
(39)

H. More Details on Experimental Setup
We train the model on each dataset for 90 epochs with the first 5 epochs as the warmup stage as suggested in (Goyal et al.,
2017). For the learning rate schedule, we set the initial learning rate as 0.1, and shrink the learning rate by 0.1 at epoch
30, 50, 70.

I. Experiments on SGD-based JOINTSPAR

We include experimental results for JOINTSPAR which uses SGD as the base optimizer (its pseudocode in Algorithm 2).
The convergence rates in terms of the number of iterations are shown in Figure 4, where x-axis is the number of iterations,
and y-axis is the training loss. We can see that JOINTSPAR has the same convergece rate as with baselines, which verifies
Theorem 4 in the main paper. The convergence rates in terms of the wall-clock time are shown in Figure 5, where x-axis is
the wall-clock, and y-axis is the testing accuracy. We can see that JOINTSPAR in general converges faster than baselines.

J. Gradient Computation Time per Epoch
By joint sparsification of the gradient computation and communication, JOINTSPAR aims to reduce both the time spent on
computing the gradient and the time spent on communicating it, whereas state-of-the-art communication-efficient methods
focus only on the latter. We thus expect JOINTSPAR to spend less time on gradient computation per iteration. However,
the total time per iteration can vary based on the method and the number of processes used. Therefore, to ensure a fair
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Figure 4. Convergence in terms of the number of iterations, confirming that our method JOINTSPAR enjoys a similar convergence rate as
most baselines.

20 40 60 80 100
Time (in seconds)

20

40

60

80

100

Te
st

in
g 

Ac
cu

ra
cy

JointSpar
FullPrecision
QSGD
ATOMO
TernGrad

(a) MNIST

500 1000 1500 2000 2500
Time (in seconds)

10

20

30

40

50

60

70

80

Te
st

in
g 

Ac
cu

ra
cy

JointSpar
FullPrecision
QSGD
ATOMO
TernGrad

(b) CIFAR10

1000 2000 3000 4000 5000
Time (in seconds)

0

10

20

30

40

50

60

Te
st

in
g 

Ac
cu

ra
cy

JointSpar
FullPrecision
QSGD
ATOMO
TernGrad

(c) CIFAR100

Figure 5. Convergence in terms of wall-clock time, confirming our method JOINTSPAR’s faster convergence than baselines.

comparison, we compare the ratio of the computation time to the total time per iteration, as we increase the number of
processes. By examining this ratio, we are accounting for the different total time per iteration. Specifically, we measure
the total time per epoch, the communication time per epoch, and their ratio. Here, we still use the MNIST dataset, and
train a small convolutional neural network (CNN) model, i.e., LeNet (Wen et al., 2017; LeCun et al., 1998), on it. We use
M = 2, 4, 8, 16 processes to collectively train the CNN model. We set all methods to keep half of the size of a full gradient
vector, as in the previous subsection. The results are shown in Figure 6. We can see that all methods spend approximately
the same amount of time on communication, due to their identical sparsity levels. However, JOINTSPAR enjoys a much
smaller total time per epoch than the baselines. This is because JOINTSPAR reduces both the gradient computation and
communication time thanks to its joint sparsification. As the number of processes increases, the ratio of total time vs.
communication time becomes smaller. This increase in communication time is due to heavier overhead when there are more
processes involved in communication. We can see that, for baseline methods, the ratio of total time vs. communication
time is very large, i.e., at least 10 (up to 103). While being successful at reducing communication time, baseline methods
causes the gradient computation time to become dominant among the total time. This verifies our very motivation to propose
a new method that jointly performs sparsification on gradient computation and communication. From this experiment,
we empirically observe that JOINTSPAR has the smallest ratio, meaning our method can effectively reduce the gradient
computation time for each iteration.
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Figure 6. (a) Communication time per iteration of each method, (b) total time per iteration, and (c) total time to communication time ratio.
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Figure 7. Convergence rate for three different levels of sparsity budget s: low (0.1), medium (0.5), and high (0.9). Train loss is measured
in (a), and test loss is measure in (b).

K. Parameter Sensitivity
We investigate the convergence behavior of JOINTSPAR when changing the sparsity budget s. The smaller s is, the sparser
the compressed gradient is. We vary sparsity budget among 10%, 50%, 90% of the full gradient size. We use the same
LeNet on MNIST dataset. The results are shown in Figure 7, where x-axis and y-axis are number of epochs and loss value
measured at the end of each epoch, respectively. Here, we use the convergence rate in terms of the number of epochs
because we want to see effect of information change (caused by gradient sparsification) on the loss value. We observe that
when there is less sparsification (i.e., larger sparsity budget), the time for each epoch is longer. Less sparsification can
lead to faster convergence rate in training loss. This is because less compressed gradient loses less information of the full
gradient. However, the convergence rate will not gain much if we increase s from 50% to 90%, due to some redundancy in
the gradient. On the other hand, the best convergence rate in testing loss is obtained when the sparsity budget is not too
small or too large, likely because very large sparsity budget can lead to overfitting. Cross validation can be used to choose
the optimal value of s.


