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Abstract
A popular paradigm in robotic learning is to train
a policy from scratch for every new robot. This
is not only inefficient but also often impractical
for complex robots. In this work, we consider the
problem of transferring a policy across two differ-
ent robots with significantly different parameters
such as kinematics and morphology. Existing
approaches that train a new policy by matching
the action or state transition distribution, includ-
ing imitation learning methods, fail due to op-
timal action and/or state distribution being mis-
matched in different robots. In this paper, we
propose a novel method named REvolveR of us-
ing continuous evolutionary models for robotic
policy transfer implemented in a physics simu-
lator. We interpolate between the source robot
and the target robot by finding a continuous evo-
lutionary change of robot parameters. An expert
policy on the source robot is transferred through
training on a sequence of intermediate robots that
gradually evolve into the target robot. Experi-
ments on a physics simulator show that the pro-
posed continuous evolutionary model can effec-
tively transfer the policy across robots and achieve
superior sample efficiency on new robots. The
proposed method is especially advantageous in
sparse reward settings where exploration can be
significantly reduced. Code is released at https:
//github.com/xingyul/revolver.

1. Introduction
A popular paradigm in learning robotic skills is to leverage
reinforcement learning (RL) algorithms to train a policy for
every new robot in every new environment from scratch.
This is not only inefficient in terms of sample efficiency
but also often impractical for complex robots due to an
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Figure 1. Continuous robot evolution model allows policy to be
transferred from one robot to another robot. Upper row: an Ant
robot continuously grow additional legs from the tip of its feet.
Middle row: a Humanoid robot continuously changes the length
and mass of its legs. Lower row: a dexterous gripper continuously
shrink three of its fingers to evolve to a two-finger gripper. We
show the robots at evolution parameters of 0.0, 0.2, 0.4, 0.6, 0.8
and 1.0 respectively from left to right in each row.

extremely large exploration space. How can one transfer a
well-trained policy on one robot to another robot?

Past endeavors have explored two main directions for trans-
ferring policy between robots. Statistic matching Imitation
learning (IL) methods train a new policy on the target robot
with the aim of matching the behavior of the policy on a
source robot. Methods that optimize to match the distribu-
tion of actions (Ross et al., 2011), state rollouts (Liu et al.,
2019; Radosavovic et al., 2020), or reward function (Ng
et al., 2000; Ho & Ermon, 2016) have been successful on
robotic learning tasks on robot with similar dynamics. How-
ever, these methods are unable to deal with cases with very
large difference in robot parameters and dynamics, since
when mapped to the same state and action space, the robots
could have very different optimal distributions of states or
actions. An alternative to imitation learning is to learn the
robot hardware dynamics together with the policy by en-
coding the robot hardware specifics with neural networks
(Chen et al., 2018; Huang et al., 2020). However, to train
such hardware-aware policies, it usually requires training
diverse tasks on a huge number of robots in advance, which
could be computationally prohibitive.

https://github.com/xingyul/revolver
https://github.com/xingyul/revolver
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In this paper, we propose a new paradigm for policy transfer
between robots. Our framework, named REvolveR, is based
on defining a continuous evolution of robots, where both the
robot morphology and kinematics are continually adjusted
to allow transforming one robot (source) to another robot
(target), as illustrated in Figure 1.

Specifically, the continuous evolutionary model interpolates
two different robots by producing an infinite number of
intermediate robots whose parameters are represented in
continuous space. These intermediate robots act as the
“bridge” for transferring the policy from the source robot to
the target robot. We are able to evaluate any robot along
this continuum using physics simulation. Then the policy is
progressively trained on a sequence of intermediate robots
whose robot parameters gradually evolve towards the target
robot. Since the change of the evolved robot parameters and
hardware dynamics is small enough, it is typically easy for
the policy to adapt to the new robots. By the joint gradual
evolution of robot hardware dynamics and the policy, we
decompose the difficult robot-to-robot policy transfer prob-
lem into a sequence of policy fine-tuning problems that are
much easier to solve.

Additionally, we propose several approaches that improve
sample efficiency and stabilize training during the robot-to-
robot policy transfer. To stabilize training, we propose a
local randomized evolution strategy where in each training
epoch, we randomly sample a set of robots over a small con-
tinuous range of robot agents. Over time, the set of robots
gradually transform into the target robot. This allows the
policy to adapt to a diverse set of robot transition dynam-
ics within a local range. To improve sample efficiency, we
propose an evolution reward shaping technique where we
enforce larger weights on the reward received from more
“evolved” robots to encourage the policy to adapt towards
the target robots. We present theoretical results to show that
this strategy improves the adaptation.

We develop the continuous robot evolution models on a
diverse set of robots and demonstrate the effectiveness of
the proposed policy transfer approach with three different
RL algorithms. We showcase our REvolveR on three Mu-
JoCo Gym environments (Brockman et al., 2016) with dense
reward. Our method achieves significantly higher perfor-
mance than direct policy transfer and imitation learning
baselines. We also experiment on Hand Manipulation Suite
tasks (Rajeswaran et al., 2018) in sparse rewards setting.
While methods for learning from human demonstration com-
pletely fails, our method can still transfer the policy in the
challenging sparse reward setting.

We expect the new problem of robot-to-robot policy transfer
as well as the proposed REvolveR framework to be the
new paradigm for inter-robot transfer learning and inspire
research in related domains.

2. Related Work
Morphological Evolution Ideas centered around evolu-
tionary mechanisms to develop complex robot morpholo-
gies dates back to the work from Von Neumman (Von Neu-
mann et al., 1966). The series of seminal work from Karl
Sims showed how genetic algorithms can be leveraged to
develop both complex morphologies as well as their con-
trollers through an evolutionary optimization process (Sims,
1994a;b). Morphological changes at evolutionary scales
have also been related to development during the life of the
organism and how are these related to each other (Clune
et al., 2012; Kriegman et al., 2018). Our work instead as-
sumes that the source and target robots are given and figures
out how to evolves latter from the former to transfer the
controller policy.

Learning Controllers for Diverse Robot Morphology It
is often difficult to design controllers for complex robots.
Learning controllers via a curriculum of robots with grad-
ually growing complexity provides a path towards control-
ling high-dimensional robot morphologies. This concept
has been used by a recent line of work that grows control
and morphology simultaneously. For instance, Pathak et al.
(2019) learns to control and develop different morphologies
simultaneously to build agents that can generalize to new
scenarios using dynamic graph neural networks. Vanilla
GNNs (Scarselli et al., 2009) have been used to control di-
verse robot morphologies in NerveNet (Wang et al., 2018)
to control different robots obtained by growing the limbs
within topology (Wang et al., 2019b; Hejna III et al., 2021)
or across topology (Gupta et al., 2021). Learning-driven
evolution could be used to improve the design as well of
the agent (Cheney et al., 2014; Ha et al., 2017; Ha, 2018;
Schaff et al., 2018; Pan et al., 2021). Similarly, one could
also evolve the environment itself too (Wang et al., 2019a).
Another rich approach to improve the design is to evolve
the robot with a predefined grammar of physical compo-
nents (Zhao et al., 2020). In contrast to these works, we do
not co-develop the controller with morphology but transfer
the policy from a source robot to target robot by simulating
an evolutionary process. Our approach can be applied to any
given robot without being limited to the robots that appear
as a biproduct of co-evolution.

Closer to ours is the line of work that tries to build con-
trollers that can work across large kind of robots. Huang
et al. (2020) leverages modularity using graph neural net-
works across limbs of robots to train agent-agnostic policies,
which have later been replaced by transformer architec-
tures (Kurin et al., 2020). Another simple way is to condi-
tion on the hardware one-hot vector if topology remains the
same (Chen et al., 2018). Hierarchical controllers have also
been shown to be effective while transferring across mor-
phologies (Hejna et al., 2020). Our work differ from these
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prior works in the sense that we assume that we are already
given a good controller for some morphology and we use
that to generate a controller for some new robot rather than
training from scratch.

Modular Robotics Another closesly related area in
robotics is that of building modular components which can
be used to build diverse robot morphologies. These modular
systems can either be self-configurable (Stoy et al., 2010;
Murata & Kurokawa, 2007) or docked manually to build
complex robotic shapes (Yim et al., 2000; Wright et al.,
2007; Romanishin et al., 2013; Gilpin et al., 2008; Daudelin
et al., 2018). Recent work in this direction uses model-based
learning to build and control these modular robots (Whitman
et al., 2021; 2020).

Our work converts discrete optimization to continuous opti-
mization. Similar ideas can be found in differentiable neural
architecture search (Zoph & Le, 2016; Liu et al., 2018)
where neural architecture is equivalent to our robot archi-
tecture. Furthermore, our work can be viewed as a domain
transfer between two MDP domains.

3. Preliminary and Problem Statement
MDP Preliminary We consider an infinite-horizon
Markov Decision Process (MDP) defined by M =
(S,A, T , R, γ), where S is the set of states, A is the set
of actions, T : S ×A× S → [0, 1] is transition dynamics
with T (s, a, s′) the probability of transitioning from state
s to s′ when action a ∈ A is taken, R : S × A → R is the
reward associated with taking action a at state s, and γ is the
discount factor. The set of all MDPs isM. We assume both
the state space S and the action space A are continuous.

A policy π is a function that maps states to a probability
distribution over actions where π(a | s) is the probability of
taking action a at state s. Given a MDP M with transition T
and policy π, let V π,M be the value function on the model
M and policy π, defined as:

V π,M (s) = E
at∼π(·|st)

st+1∼M(·|st,at)

[

∞∑
t=0

γtR(st, at) | s0 = s] (1)

The optimal policy π∗
M is the policy that maximize

the value function on MDP M , defined as π∗
M (s) =

argmaxπ V
π,M (s). The objective of MDP optimization

is to find the optimal policy under a given MDP.

Problem Statement We consider the problem of transfer-
ring a source policy trained for one robot to a new target
policy that must work on a different robot. To limit the
scope of this problem, we make the assumption that the two
robots share the same state space S , action space A, reward

functionR and discount factor γ. The main difference be-
tween the source policy and target policy is that they are
optimal for different transition dynamics.

Formally, we consider two robots represented by two MDP
MS (source) and MT (target) respectively. We assume the
state and action space of MS and MT are shared. Given a
well-trained expert policy πMS on a source robot MS, the
goal is to find the optimal policy π∗

MT
on a target robot MT.

Though an ordinary reinforcement learning algorithm could
be used to find π∗

MT
, we would like to investigate using the

information in π∗
MS

to improve the sample efficiency as well
as the final performance of πMT .

4. Method
In general, transferring the policy of one robot (source)
to a different robot (target) can be challenging, especially
when there is a large mismatch in the dynamics of the two
robots (e.g., different number of joints or limbs, extreme
difference in limb length). However, when the difference
between the dynamics of two robots is sufficiently small,
we also hypothesize that it may be easier to directly transfer
the policy of the source robot to the target robot. If this
hypothesis is true, it stands to reason that by defining a
sequence of micro-evolutionary changes of the source robots
into the new dynamics of the target robot, we should be able
to transfer the policy of the source robot to the target robot
through incremental policy updates over that sequence.

Motivated by this hypothesis, our strategy is to define an
evolutionary sequence of dynamics models that connects the
source dynamics to the target dynamics. Then we will incre-
mentally optimize the source policy by interacting with each
model in the sequence until the policy is able to act (near)
optimally under the target dynamics. With multiple steps of
robot change and training, the robot could eventually evolve
to the target robot and transfer the policy. However, the
maximum amount of changes that can preserve sufficient
task completion rate and reward is unknown and could be
arbitrarily small. An overlarge change to the robot could
bring it to a “trap” where it never receive enough reward
again and completely fail in transferring the policy.

Our solution is to develop a continuous evolution model
from the source to the target robot. The continuous model
allows arbitrarily small changes towards the target robot
to be made and hence transfer the policy with a smoothly
developed curriculum. The overall idea is in Algorithm 1.

4.1. Continuous Robot Model Evolution

Given the source robot MS and target robot MT, we define a
continuous function E : [0, 1]→M such that E(0) = MS
and E(1) = MT. The function E returns an interpolation
between two MDPs. Since we assume the same state, action
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and reward for the source and target robots, the function
E essentially produces a newly interpolated transition dy-
namics model. For any evolution parameter α ∈ (0, 1),
E(α) is an intermediate robot between MS and MT. In
general, interpolating two different robots requires both the
morphology matching and kinematics interpolation.

Morphology Matching The first step of robot interpola-
tion is two match the morphology of the two robots. The
body and joint connection of a robot can be described by
a kinematic tree. This step essentially finds the topologi-
cal matching of the kinematic trees of the two robots. By
determining the root nodes of both kinematic trees and if
necessary, creating the missing nodes and/or edges, we can
always find an one-to-one correspondence of node and edges
between the two robots. The procedure is illustrated in Fig-
ure 2. In practice, however, to minimize the gap between
source and target robots, we choose root nodes so that the
adding of new nodes is minimal. For example, a two-finger
robot gripper could be mapped to a five-finger dexterous
hand by attaching three zero sized fingers and joints to the
palm node. Creating new nodes and edges usually changes
the state space S and action space A with zero insertions
in the state and action vectors so that the original MDP
transition dynamics T is not changed.

Kinematic Interpolation Given the correspondence in
bodies and joints, the source and target robots may still
have mismatch in other kinematics parameters that affects
the physical dynamics, such as size and inertial of the bod-
ies, and motor and damping of the joints etc. Suppose the
morphology of source and target robots is matched and
the kinematic parameters of the source and target robots
are mapped to the same space. Function E(α) can define
an interpolated robot by interpolation between all pairs of
kinematics parameters. Formally, suppose the kinematic
parameters of source and target robots are θS and θT in
the same space. The parameter of the interpolated robot
Mα = E(α) is

θ(α) = (1− f(α))θS + f(α)θT (2)

where f : [0, 1] → [0, 1] is a continuous function and
f(0) = 0, f(1) = 1 to ensure θ(0) = θS and θ(1) = θT
so that M0 = MS and M1 = MT. In this paper, we
choose to use a simple linear interpolation of f(α) = α,
though a more sophisticated interpolation strategy can also
be adopted.

The above morphology matching and kinematic interpola-
tion steps can be easily implemented by editing the robots’
URDF or MJCF files in physics simulation engines such as
MuJoCo (Brockman et al., 2016) and pyBullet (Coumans &
Bai, 2016). Note that evolution parameter α not only rep-
resents the evolution of robot hardware specifics described

Robot 1 Robot 2Morphology
Matched Robot

Figure 2. Morphology matching of two robots. Though the two
robots may be different in morphology (i.e. kinematic tree topol-
ogy), by properly choosing a root node (e.g. the yellow node), we
can always add new nodes and edges to the kinematic tree of the
robot(s) to match their morphology.

by a real scalar, but also can describe the continuous change
of more complex hardware specifics, such as the progress
of continuous mesh deformation if the shapes of the two
corresponding robot bodies are different.

4.2. Policy Transfer on Continuously Evolving Robots

Suppose a well-trained policy πE(0) for source robot E(0)
is given. Instead of directly transferring πE(0) to robot
E(1), we decompose the problem into K phases of policy
optimization. In k-th phase, the policy is trained on robot
E(αk) with evolution parameter αk =

∑k
i=1 li, where li is

a small positive real number representing the progression
of evolution parameter in i-th phase. The optimization
objective in the (k + 1)-th phase is

πE(αk+1) = argmax
π

E
at∼π(·|st)

st+1∼Mαk+1
(·|st,at)

∑
t

γtrt (3)

where Mαk+1
= E(αk+1) is the next evolved robot and π

is initialized to be πE(αk) at the start of the optimization.
By definition of the problem, we have αK =

∑K
i=1 li = 1.

The K and lk values are set such that lk is small enough so
that during the policy optimization in Equation (3), there
exists sufficient amount of positive reward in the rollouts
to allow policy training. Ideally, lk values are maximized
so that the number of optimization phases K and the total
number of RL iterations can minimized.

However, it is not possible to foresee the maximum allowed
lk before training the policy on robot E(

∑k
i=1 li). In fact,

there is a dilemma of trade-off between the value of lk
and the total number of RL iterations: with large lk and
aggressive progression of αk, the policy may not receive
enough positive reward from the new robot to be trained
and adapted, and with small lk and conservative progression
of αk, the policy may waste RL iterations on tiny robot
changes.
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Algorithm 1 Continuous Robot Evolution Policy Transfer

1: Notation Summary:
2: α ∈ [0, 1]: robot evolution parameter
3: E : [0, 1]→M: continuous robot evolution model
4: πE(0): expert policy on the source robot E(0)
5: R: replay buffer buffer
6: ξ ∈ R+: range of sampling of evolution parameters
7: lk ∈ R+: progression of α in phase k, where lk < ξ
8: h ∈ R+: evolution reward shaping factor

9: // initialize evolution parameter, policy and replay buffer
10: α← 0, π ← πE(0),R ← ∅
11: while α < 1 do
12: for epoch in 0, 1, . . . , Ne do
13: // sample an intermediate robot
14: β ∼ Uniform(α,min{α+ ξ, 1})
15: Mβ ← E(β)

16: sβ0 ∼ s0 // initial state distribution
17: for t = 0, 1, . . . , N do
18: // execute current policy on the sampled robot

and store the transition tuple to replay buffer
19: aβt ∼ π(· | sβt )
20: (sβt+1, r

β
t ) ∼Mβ(· | sβt , a

β
t )

21: // local reward shaping
22: r′t

β ← rβt · exp(h · β)
23: R ← R∪ {(sβt , a

β
t , s

β
t+1, r

′
t
β
)}

24: sample {(s, a, s′, r′)} ∼ R
25: train π with {(s, a, s′, r′)} using RL
26: end for
27: end for
28: // progress evolution parameter
29: α← α+ lk
30: // clean up replay buffer
31: R ← {(sβt , a

β
t , s

β
t+1, r

′
t
β
) ∈ R,∀β ∈ [α, α+ ξ]}

32: end while
33: return π

Local Randomized Evolution Progression We propose
a randomized approach to address the above problem. At
phase k+1, instead of repetitively choosing a deterministic
progressed αk+1, we uniformly sample progressed evolu-
tion parameter β from a local neighborhood [αk, αk + ξ]
where ξ ∈ R+ and ξ > lk, and train policy on the rollouts of
robot Mβ = E(β). The optimization objective in Equation
(3) is updated to be

πE(αk+1) = argmax
π

E
β∼U(αk,αk+ξ)

Mβ=E(β)

E
at∼π(·|st)

st+1∼Mβ(·|st,at)

∑
t

γtrt

(4)

where U(p, q) denotes the uniform distribution over [p, q] ⊂
R. The above randomized progression strategy allows the
policy to be trained on sampled robots with small evolution

to maintain sufficient sample efficiency and ensure adapta-
tion, while also giving the policy a chance to risk on the
robots with large evolution to improve the efficiency of pol-
icy transfer. Note that we choose the neighborhood size ξ
to be larger than the progression step size lk, which enables
the policy to experience and explore more evolved robots
with probability in advance. As shown in Section 5, the
local randomized progression strategy improves the stability
of training and achieves significantly higher performance.

We point out that the similar idea of domain randomization,
i.e. fine-tuning neural networks on randomized domains,
can also be seen in the literatures on Sim2Real domain
transfer such as (Tobin et al., 2017) and (Sadeghi & Levine,
2016). Our robot-to-robot evolution approach can be also
viewed as a series of mini robot domain randomization
where the domain window [αk, αk + ξ] is gradually shifting
from the source robot E(0) towards the target robot E(1).

4.3. Evolution Reward Shaping

During local randomized evolution, to better adapt the policy
towards the goal of the target robot, it is helpful to encour-
age the policy to give more weight to robots with larger
α. To implement this, we devise a strategy to reshape the
reward by making it a function of the evolution parameter α.
Specifically, we scale the reward rt received from rollouts
on robot α to be

r′t = rt · exp(h · α) (5)

where the evolution reward shaping factor h ∈ R≥0 controls
the weight applied to the reward. The optimization objective
in Equation (4) is then updated to be

πE(αk+1) = argmax
π

E
β∼U(αk,αk+ξ)

Mβ=E(β)

E
at∼π(·|st)

st+1∼Mβ(·|st,at)

∑
t

γtr′t

(6)

How should one use the h to control the weight on more
evolved robots in practice? Under reasonable assumptions,
we show the relation between the evolution reward shaping
factor h and the resulted change of optimization objective
with the following theorem.
Theorem 4.1. Suppose the policy that optimizes the objec-
tive in Equation (6) with evolution reward shaping factor
of h is the optimal policy π∗

Mφ
on robot Mφ = E(φ), φ ∈

[αk, αk + ξ], i.e.

argmax
π

E
β∼U(αk,αk+ξ)

Mβ=E(β)

E
at∼π(·|st)

st+1∼Mβ(·|st,at)

∑
t

γtrt exp(h · β)

= π∗
Mφ

= argmax
π

E
at∼π(·|st)

st+1∼Mφ(·|st,at)

∑
t

γtrt

(7)

Then when ξ → 0, φ = αk + 1
2ξ +

1
4hξ

2 + o(ξ2).
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The proof of Theorem 4.1 is in the Section A. Theorem 4.1
shows that a positive evolution reward shaping factor shifts
the objective of policy optimization towards the direction of
the target robot compared to setting h = 0. This allows the
policy to give more weight to the experiences gained with
“more evolved” robots, without sacrificing sample efficiency
due to changes in the sampling distribution.

4.4. Other Implementation Details

Adaptive Training Scheduling From the description so
far, the training scheduling of robot evolution parameters αk

has been fixed. Moreover, the number of epochs trained in
each evolution phase (i.e. Ne in Algorithm 1) is also fixed.
In practice, however, we can dynamically schedule the train-
ing by changing both hyperparameters on the fly, especially
when the difficulty of each transfer phase is different. Deter-
mining the progression step size lk or the next αk is usually
hard since the training results are usually not predictable.
A more practical strategy is to fix all lk while setting the
initial value of Ne to be small in each phase. When the
training of policy struggles during the current phase, e.g.
the reward or success rate drops significantly compared to
previous phases, we iteratively increase Ne until the policy
performance is sufficient to move on to the next phase. We
adopted this strategy in the experiments in Section 5.2.

Replay Buffer Cleaning As the policy optimization
moves on to the next phase, the past transition sampled
from less evolved robots in previous phases are outdated
and should no longer be used. To implement this, we remove
transition tuples that are older than the current interpolation
range from the replay buffer upon entering the next phase.

5. Experiments
The design of our REvolveR framework is motivated by the
hypothesis that compared to directly transferring the policy
from source to target robot, transferring the policy through a
sequence of micro-evolutionary changes of robot dynamics
is an easier task and achieves better sample efficiency and
performance. To show this, we apply our REvolveR to two
sets of robotic control tasks: MuJoCo Gym environments
(Brockman et al., 2016), and Hand Manipulation Suite (Ra-
jeswaran et al., 2018). We compare the performance to a
variety of baselines including training policy from scratch,
direct policy transfer, and imitation learning methods.

5.1. MuJoCo Gym Environments

Environments and Rewards We adopt the default Ant-
v2 and Humanoid-v2 robots from MuJoCo Gym (Brockman
et al., 2016) as our source robots. We construct three en-
vironments where the target robots are created by continu-
ously modifying some properties of the source robots. In

Ant-length-mass and Humanoid-length-mass
environments, the mass and lengths of all leg bodies are
changed; In Ant-leg-emerge environment, new legs
and joints grow from the tip of the toe. The robot evolution
is illustrated Figures 1 and 3(a)(c)(e).

Reward Function In all three environments, the robot
agents get rewarded by the distance they moved forward.
Specially, in Humanoid-length-mass environment,
the robot agents are heavily penalized for falling down.
The reward function is the same for source, target and all
intermediate robots.

RL Algorithms We use two state-of-the-art actor-critic
reinforcement learning algorithms, TD3 (Fujimoto et al.,
2018) and SAC (Haarnoja et al., 2018), in our experiments.
We first train both RL algorithms on the source robots until
convergence and use the well-trained policy as the expert
policy to be transferred to target robot. During transfer, both
the actor and critic are updated. Note that the expert policy
performance will be different for the two source robots
because Ant-leg-emerge robots have an additional leg
and therefore different state space.

Baselines We compare our method with the following
baselines for learning a policy on the target robot.

• From Scratch: we train policy on the target robot from
scratch with the RL algorithm.

• Direct Transfer: we initialize the target robot policy with
the expert policy on source robot and fine-tune the policy
on the target robot.

• State-only Imitation Learning (SOIL) (Radosavovic et al.,
2020): SOIL is an imitation learning method. It trains an
inverse dynamics model to match the distribution of the
next state between the student and teacher agents. Then
it augments the policy gradient with a term that aims to
maximize the probability of the predicted actions from
inverse dynamics. In our experiments, the source robot
is the teacher and the target robot is the student.

The above baseline methods are trained on the target robots
for three million RL iterations on the Ant-length-mass
and Humanoid-length-mass tasks and one million it-
erations on the Ant-leg-emerge task. We train our RE-
volveR for the same RL iterations as the baselines in total,
not only on the target robot but on all intermediate robots
during evolution. All methods are trained with five differ-
ent random seeds. The experiment results are illustrated in
Tables 3(b)(d)(f) 1.

1We did not use the standard bold-line/shaded-area curves to
illustrate the policy performance, because unlike ordinary RL al-
gorithms that are trained on a single robot and have performance
vs. time results, our REvolveR is only able to deliver valid target
robot performance at the end of the policy transfer.
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→

(a) Ant-length-mass environment.

TD3 SAC
Expert on Source 6826.52 6985.90
From Scratch 4644.09 ± 502.05 5908.51 ± 339.81
Direct Transfer 4903.77 ± 801.12 6194.55 ± 165.82
SOIL 4891.67 ± 819.18 6061.32 ± 1102.58
Ours 5903.28 ± 416.07 6473.21 ± 207.98
(b) Ant-length-mass policy transfer experiment results.

→

(c) Humanoid-length-mass environment.

TD3 SAC
Expert on Source 6663.25 8271.70
From Scratch 5824.07 ± 233.46 6468.60 ± 157.26
Direct Transfer 6256.15 ± 253.63 7639.61 ± 278.02
SOIL 6414.25 ± 505.79 6970.15 ± 659.32
Ours 7386.44 ± 151.24 7986.97 ± 129.21

(d) Humanoid-length-mass policy transfer experiment results.

→

(e) Ant-leg-emerge environment.

TD3 SAC
Expert on Source 6591.832 6431.32
From Scratch 2551.30 ± 316.95 3845.69 ± 243.92
Direct Transfer 3579.40 ± 118.06 6031.27 ± 320.81
SOIL 1703.62 ± 351.83 4533.09 ± 578.32
Ours 4688.68 ± 270.51 6612.78 ± 264.50

(f) Ant-leg-emerge policy transfer experiment results.

Figure 3. Experiments on source-to-target policy transfer on the MuJoCo Gym environments. All methods are trained for three
million iterations with five different seeds. Mean and standard deviation of the reward of an epoch are reported. Our approach outperforms
the baselines across different policy optimization schemes and across environments.

Results and Analysis Our REvolveR framework outper-
forms all related baselines by a notable margin in terms
of episode reward, especially on Ant-leg-emerge and
Humanoid-length-mass.

On Ant-leg-emerge environment, an interesting find-
ing is that the performance of SOIL is even worse than
directly transferring the policy. An explanation is that the
emerging legs of the source robot have length and mass
close to zero and show random behaviors with expert pol-
icy. Though the random behavior does not affect the source
robot, it causes it to struggle at the start of training when
directly transferred to target robot.

On Humanoid-length-mass environment, the expert
policy is able to control the source humanoid robot to both
stand and jog for higher rewards. However, due to dynamics
mismatch, source expert policy cannot support target hu-
manoid robot to stand. When directly trained on the target
robot, even with source expert policy provided, all the base-
line methods learned to discard jogging to learn standing
first due to heavy penalty on falling down. As a comparison,
when transferring the policy through continuously evolving
intermediate robots with our REvolveR, both standing and
jogging skills can be kept and smoothly transferred, which
highlights the advantage of our method.

5.2. Hand Manipulation Suite

Robot Evolution We adopt the five-finger dexterous hand
provided in the ADROIT platform (Kumar et al., 2013) as
our source robot and follow Rajeswaran et al. (2018) for the
environment settings. The robot evolve to the target robot
of a two-finger gripper by gradually shrinking three fingers
except the thumb and index finger. The robot evolution is
illustrated Figures 1 and 4.

Task and Reward Function We use the three tasks from
the proposed suite in (Rajeswaran et al., 2018): Hammer,
Relocate and Door. In Hammer, the task is to pick
up the hammer and smash the nail into the board; in
Relocate, the task is to pick up the ball and take it to
the target position; in Door, the task is to turn the door
handle and fully open the door. In a sparse reward setting,
only task completion is rewarded. In a dense reward setting,
a distance reward is provided at every step.

The baselines compared against include From Scratch and
Direct Transfer from Section 5.1. We also compare against
DAPG (Rajeswaran et al., 2018) which is a variant of NPG
(Rajeswaran et al., 2017) with demonstration-augmented
policy gradient for learning from human demonstrations.
The expert policies for the five-finger source robot are im-
ported from (Rajeswaran et al., 2018) and used in all meth-
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Dense Reward Sparse Reward
From Scratch >100K ∞
Direct Finetune >100K ∞
DAPG 17.1K ∞
Ours - 11.9K

(a) Hammer task experiment results.

Dense Reward Sparse Reward
From Scratch >100K ∞
Direct Finetune 43.5K ∞
DAPG 23.3K ∞
Ours - 18.1K

(b) Relocate task experiment results.

Dense Reward Sparse Reward
From Scratch - ∞
Direct Finetune 7.6K ∞
DAPG 5.4K ∞
Ours - 2.6K

(c) Door task experiment results.

Table 1. Experiments on the Hand Manipulation Suite. The
evaluation metrics is the number of epochs needed to reach 90%
task success rate. Our method with sparse reward outperforms all
the baselines even with dense reward.

Randomized
Evolution

Reward
Shaping Factor Reward

✗ h = 0.0 5363.89 ± 419.90
✓ h = 0.0 5844.46 ± 33.63
✓ h = 1.0 6279.35 ± 290.33

Table 2. Ablation studies on local randomized evolution and evo-
lution reward shaping. The RL algorithm used in the experiments
is SAC and the task evaluated is Ant-length-mass.

ods as needed.

For our REvolveR, we use NPG (Rajeswaran et al., 2017) as
our RL algorithm. We use the adaptive training scheduling
strategy proposed in Section 4.4 to improve training effi-
ciency. Therefore, the total number of RL iterations cannot
be set beforehand to fairly compare the performance un-
der the same number of iterations. So we instead compare
in terms of the number of RL optimization steps needed
to reach 90% success rate on the tasks. The results are
illustrated in Table 1.

Results and Analysis In sparse reward case, all baselines
never receive positive reward for improving itself and are
ineffective in solving the tasks. This is because due to dy-
namics mismatch, source expert policy cannot find a single
successful trajectory on the target robot, e.g. cannot pickup
the ball or hammer. At the same time, the exploration in
the high-dimension is too hard. As a comparison, when
transferring the policy through continuously evolving in-
termediate robots with REvolveR, the intermediate robots
maintain sufficient success rate to ensure sample efficiency

↓

(a) Hammer.

↓

(b) Relocate.

↓

(c) Door.

Figure 4. Hand Manipulation Suite tasks. (a) Hammer environ-
ment: the goal is to pick up the hammer and smash the nail into
the board; (b) Relocate environment: the goal is to pick up the
blue ball and take it to the desired site shown by the green semi-
transparent sphere; (c) Door environment: the goal is to switch
the latch and fully open the door.

and successfully transfer the policy.

We show the detailed results of comparison in Table 1. As
the results show, when trained with sparse reward, our RE-
volveR even outperforms baselines trained with dense re-
ward in terms of total number of iterations. This again high-
lights the advantage of our method in terms of improving
sample efficiency and performance in policy transfer.

5.3. Ablation Studies

We perform ablation experiments on Ant-length-mass
environment. The RL algorithm used in the experiments is
SAC (Haarnoja et al., 2018). We ablate the following two
components of our method:

Deterministic vs. Local Randomized Evolution We
study the effect of using local randomized evolution progres-
sion strategy proposed in Equation (4) and compare against
deterministic evolution in Equation (3). As illustrated in
Table 2, local randomized evolution progression not only
improves performance of transfer but also improves the ro-
bustness as shown by the decrease of standard deviation of
the episode reward.

Evolution Reward Shaping We study the effect of evolu-
tion reward shaping as proposed in Equation (5) and com-
pare against Equation (4) without reward shaping. As illus-
trated in Table 2, evolution reward shaping can effectively
improve performance as shown by the improvement of the
mean of the episode reward.
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6. Conclusion
In this paper, we propose a novel method named REvolveR
for robotic policy transfer between two different robots so
that one does not have to train a policy from scratch for every
new robot. Our method is based on continuous evolution-
ary models implemented in a physics simulator. An expert
policy on the source robot can be transferred through train-
ing on a sequence of intermediate robots that evolve into
the target robot. We conduct experiments on several tasks
on MuJoCo simulation engine and show that the proposed
method can effectively transfer the policy across robots and
achieve superior sample efficiency on new robots and is
especially advantageous in sparse reward settings.
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A. Proof of Theorem 4.1
Since E(·) is a continuous function of robot models, we assume the transition dynamics of the robot E(α) is differentiable
and locally L1-Lipschitz w.r.t. α in the sense that

∃ε > 0, ||E(α)(s, a)− E(α′)(s, a)|| ≤ L1|α− α′|,∀s ∈ S,∀a ∈ A,∀|α′ − α| < ε (8)

Moreover, we follow (Luo et al., 2018) and assume the value functions of the robot models are L2-Lipschitz w.r.t to some
norm || · || in state space in the sense that

|V π,M (s)− V π,M (s′)| ≤ L2||s− s′||,∀s, s′ ∈ S (9)

By the assumption in Equation (9) that the value functions of the robots are L2-Lipschitz, as proven in Lemma 4.1 of (Luo
et al., 2018), ∀ϕ > 0, M = E(α),M ′ = E(α+ ϕ), we have

∃ε > 0, s.t. E
s
[|V π,M (s)− V π,M ′

(s)|] ≤ γ

1− γ
L2 E

(s,a)∼π
||M(s, a)−M ′(s, a)||

=
γ

1− γ
L2 E

(s,a)∼π
||E(α)(s, a)− E(α′)(s, a)||

≤ γ

1− γ
L2L1|α− α′|,∀|α′ − α| < ε

(10)

Since the value functions are differentiable by assumption in Equation (8), suppose D = |∂V
π,E(α)

α | is the absolute value of
the derivative of V π,E(α) w.r.t. to α. According to Equation (10), D is bounded. We make a (strong) assumption that for all
φ ∈ [α, α+ ξ], policy π∗

E(φ) only achieves the best expected reward on robot E(φ), so that

∀φ, β ∈ [α, α+ ξ], V π∗
E(φ),E(φ) − V π∗

E(φ),E(β) = D · |φ− β|+ o(|β − φ|2) = D · |φ− β|+ o(ξ2) (11)

From the definition, the value function of a policy π on uniformly sampled robots E(β) from β ∼ U(α, α+ ξ) is

E
β∼U(α,α+ξ)

E
(st,at)∼π,E(β)

∑
t

γtrt · exp(hβ)

= E
β∼U(α,α+ξ)

exp(hβ) E
(st,at)∼π,E(β)

∑
t

γtrt

= E
β∼U(α,α+ξ)

exp(hβ)V π,E(β)

=
1

ξ

∫ α+ξ

β=α

exp(hβ)V π,E(β) dβ

(12)

Supposed the π that optimizes Equation (12) is the policy that directly optimizes on one robot E(φ), φ ∈ [α, α + ξ], i.e.
π∗
E(φ) optimizes Equation (12), then we treat π∗

E(φ) and V π∗
E(φ),E(φ) as constants and the following variation should be zero

δ

∫ α+ξ

β=α

exp(hβ)(V π∗
E(φ),E(β) − V π∗

E(φ),E(φ)) dβ = 0 (13)

which means

0 =

∫ α+ξ

β=α

∂

∂β
[exp(hβ)(V π∗

E(φ),E(β) − V π∗
E(φ),E(φ))] dβ

≈
∫ φ

β=α

∂

∂β
[exp(hβ)D|φ− β|] dβ −

∫ α+ξ

β=φ

∂

∂β
[exp(hβ)D|φ− β|] dβ + o(ξ2)

=D

∫ φ

β=α

∂

∂β
[exp(hβ)(φ− β)] dβ −D

∫ α+ξ

β=φ

∂

∂β
[exp(hβ)(β − φ)] dβ + o(ξ2)

=
ehα

h
D[(hφ− 1)(2eh(φ−α) − 1− ehξ)+

h(α+ ξ)ehξ − ehξ − hφeh(φ−α) + eh(φ−α) − hφeh(φ−α) + eh(φ−α) + hα− 1] + o(ξ2)

=
ehα

2h
D[(αh2ξ2 + 2αhξ + 4α+ 2hξ2 + 2ξ)− (h2ξ2 + 2hξ + 4)φ] + o(ξ2)

(14)
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The last equation assumes 0 ≤ h(φ− α) ≤ hξ ≪ 1 and used second-order Taylor approximation of ey = 1 + y + 1
2y

2 +
o(y2), y ∈ R. Then we have

φ = α+
1

2
ξ +

ξ2h(2− ξh)

8 + 4ξh+ 2ξ2h2
+ o(ξ2)

= α+
1

2
ξ +

1

4
hξ2 + o(ξ2)

(15)

Therefore, if

lim
ξ→0

argmax
π

E
β∼U(α,α+ξ)
Mβ=E(β)

E
at∼π(·|st)

st+1∼Mβ(·|st,at)

∑
t

γtrt exp(hβ)


= π∗

Mφ
= argmax

π
E

at∼π(·|st)
st+1∼Mφ(·|st,at)

∑
t

γtrt,

(16)

then when ξ → 0, φ = α+ 1
2ξ +

1
4hξ

2 + o(ξ2).

B. Experiment Details
Caching Intermediate Robots In practice, frequently calling the function for generating simulation environments could
be costly. To avoid repetitively generating a new environment at the start of every epoch and to speed up the training process,
we pre-generate and cache a large number (e.g. 1,000) of environments. At the start of each epoch, we randomly sample
within the desired interpolation range and fetch a simulation environment from the cache. When the number of cached
environments is large, the above sampling behavior is a good approximation to sampling from continuous robot evolution.

Experiment Hyperparameter Setting We illustrate the hyperparameters of the neural networks used in Gym and Hand
Manipulation Suite experiments, including layer size, batch size and learning rate, in Table 3.

MuJoCo Gym Environments Hand Manipulation Suite
Actor [s, 256, 256, a] [s, 32, 32, a]
Critic [s+ a, 256, 256, 1] [s+ a, 32, 32, 1]
Batch size 256 16
Learning Rate 3× 10−4 1× 10−4

Table 3. Size of the Neural network used in the experiments. s and a represents the dimension of state space and action space respectively.

C. Qualitative Results
We show the process of transferring policy on intermediate robots on Hand Manipulation Suite tasks in Figure 5. We show
the transferred policy on the target robot of Hand Manipulation Suite tasks in Figure 6. For more details, please refer to the
supplementary video.
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Figure 5. Visualization of policy on evolving intermediate robots on Hand Manipulation Suite tasks. The three rows shows Door,
Hammer, and Relocate tasks respectively. From left to right in each row, we show a snapshot of robot at evolution parameters α at
0, 0.2, 0.4, 0.6, 0.8, 1 respectively in the six columns.

Figure 6. Qualitative results on the target robot on Hand Manipulation Suite tasks. We show the transferred policy on target robots.
The three rows shows Door, Hammer, and Relocate tasks respectively. From left to right in each row is a policy rollout on target
robot at α = 1.


