REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

Xingyu Liu' Deepak Pathak! Kris M. Kitani !

Abstract

A popular paradigm in robotic learning is to train
a policy from scratch for every new robot. This
is not only inefficient but also often impractical
for complex robots. In this work, we consider the
problem of transferring a policy across two differ-
ent robots with significantly different parameters
such as kinematics and morphology. Existing
approaches that train a new policy by matching
the action or state transition distribution, includ-
ing imitation learning methods, fail due to op-
timal action and/or state distribution being mis-
matched in different robots. In this paper, we
propose a novel method named REvolveR of us-
ing continuous evolutionary models for robotic
policy transfer implemented in a physics simu-
lator. We interpolate between the source robot
and the target robot by finding a continuous evo-
lutionary change of robot parameters. An expert
policy on the source robot is transferred through
training on a sequence of intermediate robots that
gradually evolve into the target robot. Experi-
ments on a physics simulator show that the pro-
posed continuous evolutionary model can effec-
tively transfer the policy across robots and achieve
superior sample efficiency on new robots. The
proposed method is especially advantageous in
sparse reward settings where exploration can be
significantly reduced. Code is released at ht tps:
//github.com/xingyul/revolver.

1. Introduction

A popular paradigm in learning robotic skills is to leverage
reinforcement learning (RL) algorithms to train a policy for
every new robot in every new environment from scratch.
This is not only inefficient in terms of sample efficiency
but also often impractical for complex robots due to an

The Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213, USA. Correspondence to: Xingyu Liu
<xingyul3@cs.cmu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

\<=M? >

.} ﬂﬂ?(
.} ‘ﬂﬁ?(
] ﬂﬂ?(
} ‘:’ﬁS(

/
\

. =«&zc >o
\)

X /)

\)

/)

\)

- /)

\)

)

W)

o O

s ¢
]

Figure 1. Continuous robot evolution model allows policy to be
transferred from one robot to another robot. Upper row: an Ant
robot continuously grow additional legs from the tip of its feet.
Middle row: a Humanoid robot continuously changes the length
and mass of its legs. Lower row: a dexterous gripper continuously
shrink three of its fingers to evolve to a two-finger gripper. We
show the robots at evolution parameters of 0.0, 0.2, 0.4, 0.6, 0.8
and 1.0 respectively from left to right in each row.

extremely large exploration space. How can one transfer a
well-trained policy on one robot to another robot?

Past endeavors have explored two main directions for trans-
ferring policy between robots. Statistic matching Imitation
learning (IL) methods train a new policy on the target robot
with the aim of matching the behavior of the policy on a
source robot. Methods that optimize to match the distribu-
tion of actions (Ross et al., 2011), state rollouts (Liu et al.,
2019; Radosavovic et al., 2020), or reward function (Ng
et al., 2000; Ho & Ermon, 2016) have been successful on
robotic learning tasks on robot with similar dynamics. How-
ever, these methods are unable to deal with cases with very
large difference in robot parameters and dynamics, since
when mapped to the same state and action space, the robots
could have very different optimal distributions of states or
actions. An alternative to imitation learning is to learn the
robot hardware dynamics together with the policy by en-
coding the robot hardware specifics with neural networks
(Chen et al., 2018; Huang et al., 2020). However, to train
such hardware-aware policies, it usually requires training
diverse tasks on a huge number of robots in advance, which
could be computationally prohibitive.

https://github.com/xingyul/revolver
https://github.com/xingyul/revolver

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

In this paper, we propose a new paradigm for policy transfe2. Related Work

between robots. Our framework, nameEvolveRis based) i

on de ning a continuous evolution of robots, where both the MOrPhological Evolution Ideas centered around evolu-
robot morphology and kinematics are continually adjusteot',Onary mechanisms to develop complex robot morpholo-

to allow transforming one robot (source) to another robotd'®S dates back to the work from von N'eumman (Von Neu-
(target), as illustrated in Figure 1 mann et al., 1966). The series of seminal work from Karl

Sims showed how genetic algorithms can be leveraged to
Speci cally, the continuous evolutionary model interpolates develop both complex morphologies as well as their con-
two different robots by producing an in nite number of trollers through an evolutionary optimization process (Sims,
intermediate robots whose parameters are represented 1994a;b). Morphological changes at evolutionary scales
continuous space. These intermediate robots act as thave also been related to development during the life of the
“bridge” for transferring the policy from the source robot to organism and how are these related to each other (Clune
the target robot. We are able to evaluate any robot alongt al., 2012; Kriegman et al., 2018). Our work instead as-
this continuum using physics simulation. Then the policy issumes that the source and target robots are given and gures
progressively trained on a sequence of intermediate robotsut how to evolves latter from the former to transfer the
whose robot parameters gradually evolve towards the targefontroller policy.

robot. Since the change of the evolved robot parameters and

hardware dynamics is small enough, itis typically easy fon ¢5ming Controllers for Diverse Robot Morphology It
the po_l|cy to adapt o the new robot_s. By the joint gradualis often dif cult to design controllers for complex robots.
evolution of robot hardware dynamics and the policy, We| ¢4rning controllers via a curriculum of robots with grad-

decompose the dif cult robot-to-robot policy transfer prob- |,y growing complexity provides a path towards control-
lem into a sequence of policy ne-tuning problems that areyi, " high_dimensional robot morphologies. This concept
much easier to solve. has been used by a recent line of work that grows control

Additionally, we propose several approaches that imprové&nd morphology simultaneously. For instance, Pathak et al.
sample ef ciency and stabilize training during the robot-to-(2019) learns to control and develop different morphologies
robot policy transfer. To stabilize training, we propose asimultaneously to build agents that can generalize to new
local randomized evolution strategy where in each trainingscenarios using dynamic graph neural networks. Vanilla
epoch, we randomly sample a set of robots over a small co$sNNs (Scarselli et al., 2009) have been used to control di-
tinuous range of robot agents. Over time, the set of robot¥erse robot morphologies in NerveNet (Wang et al., 2018)
gradually transform into the target robot. This allows theto control different robots obtained by growing the limbs
policy to adapt to a diverse set of robot transition dynamwithin topology (Wang et al., 2019b; Hejna Ill et al., 2021)
ics within a local range. To improve sample ef ciency, we Or across topology (Gupta et al., 2021). Learning-driven
propose an evolution reward shaping technique where wevolution could be used to improve the design as well of
enforce larger weights on the reward received from mordhe agent (Cheney et al., 2014; Ha et al., 2017; Ha, 2018;
“evolved” robots to encourage the policy to adapt towardsSchaff et al., 2018; Pan et al., 2021). Similarly, one could
the target robots. We present theoretical results to show th&lso evolve the environment itself too (Wang et al., 2019a).
this strategy improves the adaptation. Another rich approach to improve the design is to evolve

the robot with a prede ned grammar of physical compo-

We develop the continuous robot evolution models on g,ontq (7hao et al., 2020). In contrast to these works, we do
diverse set of robots and demonstrate the effectiveness ﬂfot co-develop the controller with morphology but transfer

the proposed policy transfer approach with three diﬁeren{he policy from a source robot to target robot by simulating

RL algorithms. We showcase our REvolveR on three Muy, o01utionary process. Our approach can be applied to any

JoCo Gym environments (Brockman etal., 2016) with densey; e, ropot without being limited to the robots that appear
reward. Our method achieves signi cantly higher perfor-aS a biproduct of co-evolution.

mance than direct policy transfer and imitation learning

baselines. We also experiment on Hand Manipulation Suité-loser to ours is the line of work that tries to build con-
tasks (Rajeswaran et al., 2018) in sparse rewards settirigollers that can work across large kind of robots. Huang
While methods for learning from human demonstration comet al. (2020) leverages modularity using graph neural net-

pletely fails, our method can still transfer the policy in the works across limbs of robots to train agent-agnostic policies,
challenging sparse reward setting. which have later been replaced by transformer architec-

h bl b b i tures (Kurin et al., 2020). Another simple way is to condi-
We expect the new problem of robot-to-robot policy transferyjo, o the hardware one-hot vector if topology remains the

as well as the proposed REvolveR framework t0 be the e (chen et al., 2018). Hierarchical controllers have also
new paradigm for inter-robot transfer learning and inspir€,een shown to be effective while transferring across mor-
research in related domains. phologies (Hejna et al., 2020). Our work differ from these

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

prior works in the sense that we assume that we are alreadynctionR and discount factor. The main difference be-
given a good controller for some morphology and we usdween the source policy and target policy is that they are
that to generate a controller for some new robot rather thaoptimal for different transition dynamics.

training from scratch. Formally, we consider two robots represented by two MDP

M (sourcg andM 1 (targef) respectively. We assume the
Modular Robotics Another closesly related area in state and action space Mifs andM are shared. Given a
robotics is that of building modular components which canye||-trained expert policy . on a source robd¥l s, the
be used to build diverse robot morphologies. These modulagog) is to nd the optimal policy v ON a target robow .
systems can either be self-con gurable (Stoy et al., 20107hough an ordinary reinforcement learning algorithm could
Murata & Kuro.kawa, 2007) or docked manually to build pe ysed to nd w,» we would like to investigate using the
complex robotic shapes (Yim et al., 2000; Wright et al.,information in ,,_ to improve the sample ef ciency as well
2007; Romanishin et al., 2013; Gilpin et al., 2008; Daudelingg the nal perforsmance ofu ;.
etal., 2018). Recent work in this direction uses model-based
learning to build and control these modular robots (Whitman
etal., 29021; 2020). (4. Method

Our work converts discrete optimization to continuous optiln general, transferring the policy of one robot (source)
mization. Similar ideas can be found in differentiable neuralt© & different robot (target) can be challenging, especially
architecture search (Zoph & Le, 2016; Liu et al., 2018)when there is a large mismatch in the dynamics of the two
where neural architecture is equivalent to our robot architoPots €.g, different number of joints or limbs, extreme

tecture. Furthermore, our work can be viewed as a domaififference in limb length). However, when the difference
transfer between two MDP domains. between the dynamics of two robots is suf ciently small,

we also hypothesize that it may be easier to directly transfer
I the policy of the source robot to the target robot. If this
3. Preliminary and Problem Statement hypothesis is true, it stands to reason that by de ning a

MDP Preliminary We consider an in nite-horizon S€guence of micro-evolutionary changes of the source robots

Markov Decision Process (MDP) dened byl = into the new dynamics of the target robot, we should be able
(S;A;T:R;), whereS is the set of states is the set 0 transfer the policy of the source robot to the target robot
ofactionsT :S A S! [0; 1] is transition dynamics through incremental policy updates over that sequence.

with T (s; a; ") the probability of transitioning from state pjotivated by this hypothesis, our strategy is to de ne an
stos’whenactiorn 2 A istakenR:S A! Risthe eyolutionary sequence of dynamics models that connects the
reward associated with taking actiart states, and isthe source dynamics to the target dynamics. Then we will incre-
discount factor. The set of all MDPsh . We assume both - mentally optimize the source policy by interacting with each
the state spac® and the action spad are continuous. model in the sequence until the policy is able to act (near)

A policy is a function that maps states to a probability °Ptimally under the target dynamics. With multiple steps of
distribution over actions where(a j s) is the probability of robot change and training, the robot could eventually evolve

taking actiora at states. Given a MDPM with transitionT to the target robot and transfer the policy. However, the
and policy , letV ™ be the value function on the model Maximum amount of changes that can preserve suf cient

M and policy , de ned as: task completion rate and reward is unknown and could be
arbitrarily small. An overlarge change to the robot could
bring it to a “trap” where it never receive enough reward

vM(s)= . E(jS) ['R(si;a)jso=s] (1) againand completely fail in transferring the policy.
t t —
sa M(jsia) 0 Our solution is to develop a continuous evolution model
from the source to the target robot. The continuous model
allows arbitrarily small changes towards the target robot
to be made and hence transfer the policy with a smoothly
developed curriculum. The overall idea is in Algorithm 1.

The optimal policy ,, is the policy that maximize
the value function on MDRM, dened as ,,(s) =
argmax VM (s). The objective of MDP optimization
isto nd the optimal policy under a given MDP.

. 4.1. Continuous Robot Model Evolution
Problem Statement We consider the problem of transfer-

ring asourcepolicy trained for one robot to a netarget ~ Given the source robdd s and target robotl 1, we de ne a
policy that must work on a different robot. To limit the continuous functiorfE : [0;1]! M such thaE (0) = Mg

scope of this problem, we make the assumption that the tw@NdE (1) = M+. The functionE returns an interpolation
robots share the same state Spﬁcaction Spac@, reward between two MDPs. Since we assume the same state, action

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

and reward for the source and target robots, the function
E essentially produces a newly interpolated transition dy-
namics model. For any evolution parameter2 (0O; 1),

E() is an intermediate robot betwedhs andM+. In
general, interpolating two different robots requires both the
morphology matching and kinematics interpolation.

Morphology Matching The rst step of robot interpola-
tion is two match the morphology of the two robots. The
body and joint connection of a robot can be described b1v:, .

a kinematic tree. This step essentially nds the topologi- igure 2.Morphology matching of two robots. Though the two

. . . robots may be different in morphology (i.e. kinematic tree topol-
cal matching of the kinematic trees of the two robots. Byogy), by properly choosing a root node (e.g. the yellow node), we

determining the _rOOt nOd?S Pf both kinematic trees and it:an always add new nodes and edges to the kinematic tree of the
necessary, creating the missing nodes and/or edges, we Cafho(s) to match their morphology.

always nd an one-to-one correspondence of node and edges

between the two robots. The procedure is illustrated in Fig-

ure 2. In practice, however, to minimize the gap betweerby a real scalar, but also can describe the continuous change
source and target robots, we choose root nodes so that te more complex hardware speci cs, such as the progress
adding of new nodes is minimal. For example, a two- nger of continuous mesh deformation if the shapes of the two
robot gripper could be mapped to a ve- nger dexterous corresponding robot bodies are different.

hand by attaching three zero sized ngers and joints to the

palm node. Creating new nodes and edges usually changasy. policy Transfer on Continuously Evolving Robots

the state spac® and action spacA with zero insertions

in the state and action vectors so that the original MDPSUPPOse a well-trained policy: () for source robok (0)

E (1), we decompose the problem irfo phases of policy

Kinematic Interpolation Given the correspondence in ©Ptimization. Ink-th phase, the po“B/l:S trained on robot
bodies and joints, the source and target robots may stiff (k) with evolution parameterx =, li, wherel; is
have mismatch in other kinematics parameters that affect Small positive real number representing the progression
the physical dynamics, such as size and inertial of the bo®f evolution parameter in-th phase. The optimization
ies, and motor and damping of the joints etc. Suppose thebjective in the(k + 1) -th phase is

morphology of source and target robots is matched and X

the kinematic parameters of the source and target robots g(,,,) = arg max E try 3

are mapped to the same space. Fundii¢n) can de ne Siut a,\‘,l (’S('j)st a ! 3)
+ K+1 ’

an interpolated robot by interpolation between all pairs of
kinematics parameters. Formally, suppose the kinemati\ﬁ/hereM = E(ys1) is the next evolved robot and
K+l +

parameters of source and target robots_ @and 1in e initialized to be E() atthe start of thepoptimization.
the same space. The parameter of the interpolated robot

M =E()is By de nition of the problem, we havex = iKzl i =1.
TheK andly values are set such tHatis small enough so
()=@ () s+f() T 2) that during the policy optimization in Equatid8), there

exists suf cient amount of positive reward in the rollouts
wheref : [0;1] ! [0;1] is a continuous function and to allow policy training. Ideally|, values are maximized
f(0)=0,f(1)=1toensure (0) = sand (1) = 7 so that the number of optimization phasesand the total
so thatMy = MsandM; = Mr. In this paper, we number of RL iterations can minimized.
choose to use a simple linear interpolationf ¢f) =
though a more sophisticated interpolation strategy can als
be adopted.

However, it is not possible to foresee tt}; maximum allowed
ﬁ)(before training the policy on robd (:‘:1 li). In fact,
there is a dilemma of trade-off between the valudof
The above morphology matching and kinematic interpolaand the total number of RL iterations: with largeand
tion steps can be easily implemented by editing the robotsiggressive progression of, the policy may not receive
URDF or MJCF les in physics simulation engines such asenough positive reward from the new robot to be trained
MuJoCo (Brockman et al., 2016) and pyBullet (Coumans &and adapted, and with smélland conservative progression
Bai, 2016). Note that evolution parametenot only rep- of , the policy may waste RL iterations on tiny robot
resents the evolution of robot hardware speci cs describec¢hanges.

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

Algorithm 1 Continuous Robot Evolution Policy Transfer to maintain suf cient sample ef ciency and ensure adapta-

1: Notation Summary: tion, while also giving the policy a chance to risk on the
2. 2 [0;1]: robot evolution parameter robots with large evolution to improve the ef ciency of pol-
3. E:[0;1]!'M : continuous robot evolution model icy transfer. Note that we chqose the r)eigh_borhood size
4: £ (: expert policy on the source rob&t(0) to be Ia_rger than th_e progression step $izevhich enables

5. R: replay buffer buffer th_e policy to experience and explore more evolyed robots
6: 2 R*: range of sampling of evolution parameters with probabllllty in advanc_e. As shovv_n in Section 5, tr_u_a
7: Iy 2 R* : progression of in phasek, wherely < local randomized progression strategy improves the stability
8: h 2 R*: evolution reward shaping factor of training and achieves signi cantly higher performance.

We point out that the similar idea of domain randomization,

9: /linitialize evolution parameter, policy and replay buffer j e ne-tuning neural networks on randomized domains,
100 0 EQR can also be seen in the literatures on Sim2Real domain
11: while < 1do transfer such as (Tobin et al., 2017) and (Sadeghi & Levine,
12: for epochin 0;1;:::;Ne do 2016). Our robot-to-robot evolution approach can be also
13: /' sample an intermediate robot viewed as a series of mini robot domain randomization
14: Uniform(; minf + ; 1g) where the domain windo «; +]is gradually shifting
15: M E() from the source robdg (0) towards the target robd (1).

16: Sy So //initial state distribution
17 fort=0;1:::;N do 4.3. Evolution Reward Shaping
18: /I execute current policy on the sampled robot)))
and store the transition tuple to replay buffer ~During local randomized evolution, to better adapt the policy
19: a, (js) towards the goal of the target robot, it is helpful to encour-
20 . M (is - age the policy to give more weight to robots with larger
: (St+13T¢) (Jscia) To imol hi devi h h
21 // local reward shaping - To implement this, we devise a strategy to reshape the
20 [0 r, explh) reward by making it a function of the evolution parameter
: ! t S 0 Speci cally, we scale the rewand received from rollouts
23: ROR[T - (S;a:Sure)9 on robot to be
24: samplef (s;a;s%r%g R
25: train with f (s; a;s% r9gusing RL rd=r, exph) (5)
;s en?f?)rfor where the evolution reward shaping fadto?2 R o controls
: . the weight applied to the reward. The optimization objective
28: /l progress evolution parameter in Equation (4) is then updated to be
29: + |k X
30: // clean up replay buffer E(1) = argmax E E ‘rto
3L R f (St;at;st"'l;rto) ZR’S 2 [' +]g l\l/IJ(ZkE;(k;)S:+1a‘M ((ljsé:);at)
32: end while)
33: return

How should one use the to control the weight on more
_ _ _ evolved robots in practice? Under reasonable assumptions,
Local Randomized Evolution Progression We propose we show the relation between the evolution reward shaping

a randomized approach to address the above problem. Adctorh and the resulted change of optimization objective
phasek + 1, instead of repetitively choosing a deterministic with the following theorem.

progressed k.1 , we uniformly sample progressed evolu-heqrem 4.1. Suppose the policy that optimizes the objec-

tion parameter from a local neighborhoofl «; i + tive in Equation(6) with evolution reward shaping factor
where 2 R and >1 g, and train policy on the rollouts of ¢, is the optimal policy ,, onrobotM. = E(");* 2
robotM = E(). The optimization objective in Equation [v+ Lie M- ;

(3) is updated to be X
X arg max E E ‘reexpth)
E(a1) — &rgmax E E I U(ks kt) ar (jst) t
U(ks k+) ar (jst) t M =E() sSta M (ISH%{)
M =E() st+s1 M (jstar) t
= . =argmax E re
“) M a (js)
. . L . Sst+1 M- (jst;ar)

whereU (p;) denotes the uniform distribution ovgs; q] @)

R. The above randomized progression strategy allows the

policy to be trained on sampled robots with small evolutionThenwhen ! 0," = + 3 + th 2+ o 2).

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

The proof of Theorem 4.1 is in the Section A. Theorem 4.1Ant-length-mass and Humanoid-length-mass

shows that a positive evolution reward shaping factor shiftenvironments, the mass and lengths of all leg bodies are
the objective of policy optimization towards the direction of changed; InAnt-leg-emerge environment, new legs
the target robot compared to setting= 0. This allows the and joints grow from the tip of the toe. The robot evolution
policy to give more weight to the experiences gained withis illustrated Figures 1 and 3(a)(c)(e).

“more evolved” robots, without sacri cing sample ef ciency

due to changes in the sampling distribution. Reward Function In all three environments, the robot
agents get rewarded by the distance they moved forward.
4.4. Other Implementation Details Specially, in Humanoid-length-mass environment,

. - . - the robot agents are heavily penalized for falling down.
Adaptive Training Scheduling = From the description so The reward function is the same for source, target and all

far, the training scheduling of robot evolution parameters intermediate robots
has been xed. Moreover, the number of epochs trained in '
each evolution phase (i.Ble in Algorithm 1) is also xed.) »

In practice, however, we can dynamically schedule the trainRL Algorithms — We use two state-of-the-art actor-critic
ing by changing both hyperparameters on the v, eSpecimMelnforcement learning glgorlthms, TD3 (Fujimoto _et al.,
when the dif culty of each transfer phase is different. Deter-2018) and SAC (Haarmoja et al., 2018), in our experiments.
mining the progression step sikeor the next is usually We rst train both RL algorithms on the source robots until

hard since the training results are usually not predictabl&onvergence and use the well-trained policy as the expert
A more practical strategy is to x all, while setting the policy to be transferred to target robot. During transfer, both

initial value of N to be small in each phase. When the the actor and critic are updated. Note that the expert policy

training of policy struggles during the current phase, e_gperformance will be different for the two source robots
robots have an additional leg

the reward or success rate drops signi cantly compared thecausé\nt-leg-emerge
previous phases, we iteratively increaéeuntil the policy ~ 2nd therefore different state space.
performance is suf cient to move on to the next phase. We

adopted this strategy in the experiments in Section 5.2. Baselines We compare our method with the following
baselines for learning a policy on the target robot.

Replay Buffer Cleaning As the policy optimization . From Scratchwe train policy on the target robot from
moves on to the next phase, the past transition sampled gcratch with the RL algorithm.

from less evolved robots in previous phases are outdated pjrect Transfer we initialize the target robot policy with

and should no longer be used. To implement this, we remove e expert policy on source robot and ne-tune the policy

transition tuples that are older than the current interpolation 5, the target robot.

range from the replay buffer upon entering the next phase. . state-only Imitation Learning (SOIL) (Radosavovic etal.,
2020} SOIL is an imitation learning method. It trains an

5. Experiments inverse dynamics model to match the distribution of the

. .) next state between the student and teacher agents. Then
The design of our REvolveR framework is motivated by the ¢ augments the policy gradient with a term that aims to

hypothesis that compared to directly transferripg the policy maximize the probability of the predicted actions from
from source to target robot, transferring the policy througha jhverse dynamics. In our experiments, the source robot

sequence of micro-evolutionary changes of robot dynamics i the teacher and the target robot is the student.
is an easier task and achieves better sample ef ciency and

performance. To show this, we apply our REvolveR to two I e above baseline methods are trained on the target robots
sets of robotic control tasks: MuJoCo Gym environmentg©r three million RL iterations on thant-length-mass
(Brockman et al., 2016), and Hand Manipulation Suite (Ra&ndHumanoid-length-mass tasks and one million it-

jeswaran et al., 2018). We compare the performance to @rations on thé\nt-leg-emerge task. We train our RE-

direct policy transfer, and imitation learning methods. not only on the target robot but on all intermediate robots
during evolution. All methods are trained with ve differ-

5.1. MuJoCo Gym Environments ent random seeds. The experiment results are illustrated in
Tables 3(b)(d)(f}-.

Environments and Rewards We adopt the default Ant-

1 . .
v2 and Humanoid-v2 robots from MuJoCo Gym (Brockman . We did not use the standard bold-llne/sha_ded-ar_ea curves to
t al., 2016) as our source robots. We construct three ellly;trate the policy performancg, because unlike ordinary RL al-
etal,) Borlthms that are trained on a single robot and have performance

vironments where the target robots are created by continys. time results, our REvolveR is only able to deliverid target
ously modifying some properties of the source robots. Inrobot performance at the end of the policy transfer.

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

TD3 SAC

Expert on Source 6826.52 6985.90
From Scratch 4644.09 502.05| 5908.51 339.81
Direct Transfer | 4903.77 801.12| 6194.55 165.82
SOIL 4891.67 819.18| 6061.32 1102.58
Ours 5903.28 416.07| 6473.21 207.98

(b) Ant-length-mass policy transfer experiment results.

(a) Ant-length-mass environment.

TD3 SAC
Expert on Source 6663.25 8271.70
From Scratch 5824.07 233.46 | 6468.60 157.26

! Direct Transfer | 6256.15 253.63 | 7639.61 278.02
SOIL 6414.25 505.79 | 6970.15 659.32
Ours 7386.44 151.24| 7986.97 129.21

(c) Humanoid-length-mass environment. (d) Humanoid-length-mass policy transfer experiment results.

TD3 SAC
Expert on Source 6591.832 6431.32
From Scratch 2551.30 316.95| 3845.69 243.92
Direct Transfer | 3579.40 118.06 | 6031.27 320.81
SOIL 1703.62 351.83| 4533.09 578.32
Ours 4688.68 270.51| 6612.78 264.50

(f) Ant-leg-emerge policy transfer experiment results.

(e) Ant-leg-emerge environment.

Figure 3.Experiments on source-to-target policy transfer on the MuJoCo Gym environmentsAll methods are trained for three
million iterations with ve different seeds. Mean and standard deviation of the reward of an epoch are reported. Our approach outperforms
the baselines across different policy optimization schemes and across environments.

Results and Analysis Our REvolveR framework outper- 5.2. Hand Manipulation Suite
forms all related baselines by a notable margin in term
of episode reward, especially émt-leg-emerge and
Humanoid-length-mass

??obot Evolution We adopt the ve- nger dexterous hand
provided in the ADROIT platform (Kumar et al., 2013) as
our source robot and follow Rajeswaran et al. (2018) for the
On Ant-leg-emerge environment, an interesting nd- environment settings. The robot evolve to the target robot
ing is that the performance of SOIL is even worse thanof a two- nger gripper by gradually shrinking three ngers
directly transferring the policy. An explanation is that the except the thumb and index nger. The robot evolution is
emerging legs of the source robot have length and mas#ustrated Figures 1 and 4.

close to zero and show random behaviors with expert pol-

'Sg;hﬁucg;utsheesrsqgOsrgfggév;rtgZe;;ct)toaff{?;itnﬁ?]z Svtl)ﬁécq'ask and Rewarq anctlon We use the three tasks from
Y "the proposed suite in (Rajeswaran et al., 20Hmmer,
directly transferred to target robot. Relocate andDoor. In Hammer, the task is to pick
On Humanoid-length-mass environment, the expert up the hammer and smash the nail into the board; in
policy is able to control the source humanoid robot to bothRelocate , the task is to pick up the ball and take it to
stand and jog for higher rewards. However, due to dynamicshe target position; irboor , the task is to turn the door
mismatch, source expert policy cannot support target hirandle and fully open the door. In a sparse reward setting,
manoid robot to stand. When directly trained on the targebnly task completion is rewarded. In a dense reward setting,
robot, even with source expert policy provided, all the basea distance reward is provided at every step.

line methods learned to discard jogging to learn standingrhe baselines compared against incl Scratchand

ritednut? ;ﬁsr}g‘?r\.lz pﬁ]r;alt)élpcn ftah"r'gg ?}Ogjnn'tf?‘qsg Cs(l)mé)irlls'?] ":Direct Transferfrom Section 5.1. We also compare against
W "9 policy U9 INUOUSIY EVOVING 5 A p 3 (Rajeswaran et al., 2018) which is a variant of NPG

intermediate robots with our REvolveR, both standing an

S kil be ket and thiv t ferred. whi hRajeswaran et al., 2017) with demonstration-augmented
Jr?lgﬁ:gghfs 'I[hse(;aéjr:/ar?tagg oe;noursmztt)hog ransterred, whic policy gradient for learning from human demonstrations.

The expert policies for the ve- nger source robot are im-
ported from (Rajeswaran et al., 2018) and used in all meth-

