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Abstract

In generative adversarial imitation learning
(GAIL), the agent aims to learn a policy from
an expert demonstration so that its performance
cannot be discriminated from the expert policy
on a certain predefined reward set. In this paper,
we study GAIL in both online and offline settings
with linear function approximation, where both
the transition and reward function are linear in
the feature maps. Besides the expert demonstra-
tion, in the online setting the agent can interact
with the environment, while in the offline setting
the agent only accesses an additional dataset col-
lected by a prior. For online GAIL, we propose
an optimistic generative adversarial policy imita-
tion algorithm (OGAPI) and prove that OGAPI
achieves Õ(

√
H4d3K +

√
H3d2K2/N1) regret.

Here N1 represents the number of trajectories
of the expert demonstration, d is the feature di-
mension, K is the number of episodes, and Õ(·)
hides logarithmic terms and constants. For offline
GAIL, we propose a pessimistic generative ad-
versarial policy imitation algorithm (PGAPI). We
also obtain the optimality gap of PGAPI, achiev-
ing the minimax lower bound in the utilization
of the additional dataset. Assuming sufficient
coverage on the additional dataset, we show that
PGAPI achieves Õ(

√
H4d2/K +

√
H4d3/N2 +√

H3d2/N1) optimality gap. Here N2 represents
the number of trajectories of the additional dataset
with sufficient coverage.
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1. Introduction
In imitation learning (IL, Hussein et al. (2017)) (a.k.a ap-
prenticeship learning), the agent remains unknown of the
reward, but can learn from an expert demonstration so that
the agent learns a policy as good as the expert one. To
solve IL problem, there exist mostly three types of methods:
behavior cloning (BC, Argall et al. (2009)), inverse rein-
forcement learning (IRL, Abbeel & Ng (2004)), and online
generative adversarial imitation learning (online GAIL). BC
regards IL as a supervised learning problem of predicting ac-
tions based on states. While appealingly simple, BC suffers
from compounding error caused by covariate shift (Ross
& Bagnell, 2010). IRL explicitly solves the true reward
function and then accordingly fully solves an RL subprob-
lem at every iteration (Abbeel & Ng, 2004; Ng & Russell,
2000). Though it has succeeded in tasks involving continu-
ous spaces (Finn et al.), IRL lacks computational efficiency
and the desired true reward function may not be unique.
To address these issues, online GAIL (Ho & Ermon, 2016)
solves IL through minimax optimization with alternating
updates to learn a policy whose performance cannot be dis-
criminated from the expert policy on a certain predefined
reward set. The alternating updates in online GAIL mirror
the training of generative adversarial networks (Goodfellow
et al., 2014; Arjovsky et al., 2017). Specifically, at every
iteration, online GAIL first minimizes the discrepancy in
expected cumulative reward between the expert policy and
the learned policy and then maximizes such a discrepancy
over a given reward function class in adversary. Online
GAIL achieves tremendous empirical success in various
fields, such as autonomous driving (Kuefler et al., 2017),
human behavior modeling (Merel et al., 2017), natural lan-
guage processing (Chen et al., 2017), and robotics control
(Tsurumine et al., 2019).

Despite the state-of-art empirical performance of online
GAIL, the agent requires a huge amount of interactions with
the environment during the training. For some practical
problems, it is inconvenient, costly, or risky to get expert
data or labeled data, especially when collecting clinical
data or developing autonomous driving. Meanwhile, it is
available to get other sources of offline data, which may
be originated from historical experiments, non-labeled data,
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and published datasets, etc. Naturally, we desire to utilize
these offline data to alleviate the shortage of expert demon-
stration and aid the agent to mimic the expert policy. To this
end, besides online GAIL, we consider the offline genera-
tive adversarial imitation learning (offline GAIL) setting. In
offline GAIL, we assume that the agent is accessible to an
additional dataset besides the expert demonstration, with-
out further interaction with the environment. Some related
works (Zolna et al., 2020; Zhang & Wu, 2021) study this
setting, providing empiricial methods.

Furthermore, previous theoretical analyses on GAIL either
focus on the tabular case (Shani et al., 2021), where the state
and action spaces are discrete, or relies on strong assump-
tions, including access to a well-explored dataset (Zhang
et al., 2020), linear-quadratic regulators (Cai et al., 2019),
or kernelized nonlinear regulators (Chang et al., 2021). The-
oretical analysis for GAIL with linear function approxima-
tion either in online or offline settings still remains an open
problem, which is crucial for the application of GAIL in
the continuous or high dimensional state and action spaces.
The cruxes of such an analysis involve: (i) Different from
RL, both online GAIL and offline GAIL are minimax op-
timization problems with respect to the policy and reward
function, especially with linear reward set. (ii) For offline
GAIL, without assuming the well-exploredness of the addi-
tional dataset, the agent may be misled by distribution shift
in the additional dataset and shares the suffering with offline
RL (Jin et al., 2021; Wang et al., 2020a); (iii) For offline
GAIL, we are incapable to update the reward function based
on the trajectory of present policy.

Hence in this paper, we aim at tackling these issues and
answering the following question:

Can we design provably efficient algorithms for online and
offline GAIL with linear function approximation?

To answer the above question, we present a unified frame-
work and specialize it as Optimistic Generative Adversarial
Policy Imitation (OGAPI) for online GAIL and Pessimistic
Generative Adversarial Policy Imitation (PGAPI) for offline
GAIL with linear function approximation. This framework
is motivated by the alternating update process of GANs and
involves two main stages: policy update stage and reward
update stage. (i) In the policy update stage, we apply mirror
descent (Beck & Teboulle, 2003; Hazan, 2019) to update the
policy and evaluate policy online optimistically for OGAPI
and offline pessimistically for PGAPI. (ii) In the reward
update stage, we first estimate the gradient of GAIL objec-
tive function with respect to the reward parameter through
the collected trajectory induced by the present policy for
OGAPI. While for PGAPI, we build the estimate through
estimated action-value functions during the stage of policy
update. Then we use projected gradient ascent to update
reward parameters via such an estimated gradient.

Contribution Particularly, we conclude our contributions
in the following three aspects. First, for online GAIL with
linear function approximation, we propose a new algorithm
OGAPI and prove that OGAPI achieves Õ(

√
H4d3K +√

H3d2K2/N1) regret when applying linear function ap-
proximation, demonstrating that OGAPI is provably effi-
cient. Here N1 represents the number of trajectories of
the expert demonstration, d is the feature dimension, H is
the horizon, K is the number of episodes, and Õ(·) hides
logarithmic terms and constants Second, for offline GAIL
with linear function approximation, we design a new al-
gorithm PGAPI and obtain the optimality gap of the out-
put policy under the minimal assumption on the additional
dataset. Then we decompose the optimality gap into three
sources: optimization error, Monte Carlo (MC) estimation
error, and intrinsic error. We prove that optimization error
and MC estimation error respectively scale to Õ(K−1/2)

and Õ(N−1/2
1 ), while intrinsic error depends on how well

the additional dataset DA covers the expert policy and at-
tains the minimax optimality in the utilization of the ad-
ditional dataset. Third, we demonstrate that if we fur-
ther assume that the additional dataset DA has sufficient
coverage on the expert policy, we prove PGAPI achieves
Õ(
√
H4d2/K +

√
H4d3/N2 +

√
H3d2/N1) optimality

gap, thus PGAPI has global convergence. Here N2 repre-
sents the number of trajectories of the additional dataset.
Furthermore, we discuss the effect of the additional offline
dataset DA. In particular, facilitated with an additional
dataset DA with sufficient coverage, we decrease the depen-
dency for H and d in the optimality gap.

Related Works. Our work adds to the body of analysis on
GAIL (Cai et al., 2019; Chen et al., 2020; Zhang et al.,
2020; Xu et al., 2020; Shani et al., 2021; Chang et al.,
2021). Shani et al. (2021) study online GAIL and obtain
Õ(
√
H4|S|2|A|K+

√
H3|S||A|K2/N1) regret in the tab-

ular case with bounded reward functions but we apply linear
function approximation on the transition kernels without
assuming the state space or the action space is discrete and
we adopt linear reward set. Chen et al. (2020) only study the
convergence of offline GAIL to a stationary point instead
of global convergence (optimality gap) as in this paper. Xu
et al. (2020); Zhang et al. (2020) analyze the global con-
vergence of GAIL with neural networks respectively in the
tabular case and the continuous case but assume that a well-
explored dataset is available (concentrability coefficients
are uniformly upper bounded), while our analysis need not
such a strict and impractical assumption. Cai et al. (2019)
study the global convergence of offline GAIL in the setting
of linear-quadratic regulators, which is unnecessary for this
paper. Chang et al. (2021) study offline GAIL with bounded
reward functions in the continuous kernelized nolinear reg-
ulator (KNR, Kakade et al. (2020)) and gaussian process
(GP, Fisac et al. (2018)) setting. We point out that the KNR
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(resp. GP) setting is different from linear kernel MDP as
analyzed in this paper and each one does not imply the other,
which leads to the difference in model estimation and later
analysis. In addition, we study the linear reward set instead
of bounded reward set and the former case is difficult to
handle with Shani et al. (2021).

Our work is also related to BC (Ross & Bagnell, 2010;
Rajaraman et al., 2020; 2021; Rashidinejad et al., 2021).
BC does not solve a minimax problem as GAIL, but di-
rectly mimics the expert policy extracted from the expert
demonstration. Rajaraman et al. (2021) propose a BC
method which achieves Õ(|S|H2/N1) suboptimality, at-
taining Ω(|S|H2/N1) the lower bound of BC (Rajaraman
et al., 2020), when the transition model is unknown. To
best of our knowledge, present analysis of BC only focus on
the tabular case and would fail in the continuous state and
action space with horizon H ≥ 2, since BC is considered as
a classification problem and always faces unseen states in
the continuous state space. See the remaining discussions
of related works in §B.

2. Preliminary
In this section, we introduce the notion of the episodic
Markov decision process (MDP), generative adversarial im-
itation learning in the online and offline settings, and linear
function approximation.

2.1. Episodic Markov Decision Process

We consider an episodic MDP (S,A, H,P, r), where S
and A are the state and action spaces, respectively, H is
the length of each episode, Ph is the Markov transition
kernel of the h-th step of each episode for any h ∈ [H], and
rh : S × A → [0, 1] is the reward function at the h-th step
of each episode for any h ∈ [H]. We assume without loss
of generality that the reward function rh is deterministic.

In the episodic MDP, the agent interacts with the environ-
ment as follows. At the beginning of each episode, the agent
determines a policy π = {πh}h∈[H] ∈ ∆(A |S, H). Then
the agent takes the action ah ∼ πh(· | sh) at the h-th step
of the k-th episode, observes the reward rh(sh, ah), and
transits to the next state sh+1 ∼ Ph(· | sh, ah). The episode
terminates when the agent reaches the state sH+1. Without
loss of generality, we assume that the initial state s1 = x is
fixed across different episodes. We remark that our analyses
readily generalize to the setting where the initial state s1 is
sampled from a fixed distribution.

We now define the value functions in the episodic MDP.
For any policy π = {πh}h∈[H] and reward function r =
{rh}h∈[H], the state- and action-value functions are defined

for any (s, a, h) ∈ S ×A× [H] as follows,

V r
h,π(s) = Eπ

[ H∑
i=h

ri(si, ai)
∣∣sh = s

]
, (1)

Qr
h,π(s, a) = Eπ

[ H∑
i=h

ri(si, ai)
∣∣sh = s, ah = a

]
, (2)

where the expectation Eπ[·] is taken with respect to the
action ai ∼ πi(· | si) and the state si+1 ∼ Pi(· | si, ai) for
any i ∈ {h, h+ 1, . . . ,H}. With slight abuse of notations,
we also denote by Ph the operator form of the transition
kernel such that (Phf)(s, a) = Es′∼Ph(· | s,a)[f(s

′)] for any
f : S → R. By the definitions of the value functions in (2),
for any (s, a, h) ∈ S × A × [H], any policy π, and any
reward function r, we have

V r
h,π(s) = ⟨Qr

h,π(s, ·), πh(·, s)⟩A, (3)

Qr
h,π(s, a) = rh(s, a) + PhV

r
h+1,π(s, a), (4)

where ⟨·, ·⟩ denotes the inner product over the action space
A and V r

H+1,π(s) is set to zero for any s ∈ S. We further
define the expected cumulative reward as follows,

J(π, r) = V r
1,π(x). (5)

In this paper, we characterize the performance of the agent
via the expected cumulative reward J(π, r) defined in (5).

2.2. Generative Adversarial Imitation Learning

Given an expert demonstration with N1 trajectories of state-
action pairs DE = {(sEh,τ , aEh,τ )}h∈[H],τ∈[N1], which gener-
ated following the underlying MDP and the expert policy
πE, the goal of GAIL is to find a policy whose performance
is close to that of the expert policy πE for any reward func-
tion in a given setR (Ho & Ermon, 2016). Here the setR
is specified later in §2.3. We assume that the trajectories
in the expert demonstration DE are independent, which is a
standard assumption in the literature (Abbeel & Ng, 2004;
Shani et al., 2021). In GAIL, we consider the following
minimax optimization problem,

min
π∈∆(S|A,H)

max
r∈R

J(πE, r)− J(π, r), (6)

where J(π, r) is defined in (5).

Online GAIL. In online GAIL, the agent interacts with
the environment to collect state-action pairs following the
underlying MDP and the current policy. For online GAIL,
we are interested in the performance of the algorithm during
learning. To this end, we compare the expected cumulative
reward corresponding to the algorithm during learning with
the expected cumulative reward corresponding to the expert
policy under the worst-case scenario, which is defined as
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follows (Shani et al., 2021),

Regret(K) = max
r∈R

K∑
k=1

[
J(πE, r)− J(πk, r)

]
, (7)

where πk is the policy of the agent at the k-th episode.

Offline GAIL. To simultaneously utilize non-expert data
without further interaction with the environment, we con-
sider offline GAIL, which involves an additional dataset
to benefit the policy learning. Specifically, except for the
expert demonstration DE = {(sEh,τ , aEh,τ )}h∈[H],τ∈[N1] col-
lected by the expert policy πE in the underlying MDP,
the agent has access to an additional dataset DA =
{(sτh, aτh)}h∈[H],τ∈[N2], which is collected a priori by an
experimenter in the underlying MDP. In particular, at each
step h ∈ [H] of each trajectory τ ∈ [N2], the experimenter
takes the action aτh at the state sτh and observes the next state
sτh+1 ∼ Ph(· | sτh, aτh). Here aτh is arbitrarily chosen by the
experimenter given the filtration

Fh,τ = σ
(
{(sni , ani ) : (n− 1)H + i ≤ (τ − 1)H + h}

)
,

In other words, in the τ -th trajectory, the action the experi-
ment takes is only determined by the historical information
with randomness. For offline GAIL, we measure the perfor-
mance of a policy π by the R-distance (Chen et al., 2020)
between the expert policy πE and π, which is defined as,

DR(πE, π) = max
r∈R

[J(πE, r)− J(π, r)
]
. (8)

Here R is the reward set, which is specified later in §2.3.
Optimality gap defined in (8) can be considered as one
episode regret defined in (7). When optimality gap of policy
π approaches zero, it implies that the performance difference
between the policy π and the expert policy πE tends to be
undistinguishable by the reward setR, which implies that
the performance of π is measured by both the optimality
gap DR(πE, π) and the richness of the reward setR.

2.3. Linear Function Approximation

We consider the linear setting where the transition kernel is
linear in a feature map, which is formalized as follows.

Assumption 2.1 (Linear Kernel Episodic MDP). Given
measurable sets S and A with finite measure, the episodic
MDP (S,A, H,P, rµ) is a linear MDP with a feature map
ϕ : S × A × S → Rd, that is, for any h ∈ [H], there
exists θh ∈ Rd with ∥θh∥2 ≤

√
d such that Ph(s

′ | s, a) =
ϕ(s, a, s′)⊤θh for any (s, a, s′) ∈ S × A × S. Also, there
exists an absolute constant R > 0 such that

R−2 · sup
s′∈S
|ϕ(s, a, s′)⊤y|2 ≤

∫
S
|ϕ(s, a, s′)⊤y|2 ds′ ≤ d,

for any (s, a) ∈ S ×A and y ∈ Rd with ∥y∥2 ≤ 1.

Under Assumption 2.1, we further assume that there exists
a feature map ψ : S ×A → Rd such that the reward setR
in (6) takes the following form,{
rµ : rµh(·, ·)=ψ(·, ·)

⊤µh for any (h, µ) ∈ [H]×S
}
, (9)

where rµ = {rµh(·, ·)}h∈[H] is the reward function and µ =
{µh}h∈[H] is the reward parameter. Here S is the reward
parameter domain, which is defined as follows,

S = {µ : µh ∈ B for any h ∈ [H]}, (10)

where B = {u ∈ Rd : ∥u∥2 ≤
√
d}. We assume that

∥ψ(s, a)∥2 ≤ 1 for any (s, a) ∈ S ×A, which ensures that
rµh(s, a) ∈ [0,

√
d ] for any (s, a, h, µ) ∈ S ×A× [H]× S.

For notational convenience, for any reward function rµ, we
denote by the GAIL objective function L(π, µ) as follow,

L(π, µ) = J(πE, rµ)− J(π, rµ), (11)

where J(π, rµ) is defined in (5).

Assumption 2.1 corresponds to the linear kernel MDP model
in RL. See Ayoub et al. (2020); Zhou et al. (2021); Cai et al.
(2020) for various examples of linear kernel MDPs. We
remark that the existence of R in Assumption 2.1 can be
guaranteed if for any (s, a) ∈ S × A, the feature map
ϕ(s, a, ·) is upper bounded and Lipschitz continuous. Par-
ticularly, a tabular MDP where the state space S and the
action space A are both finite, is a special case of the linear
kernel MDP in Assumption 2.1 with d = |S|2|A| and the
feature map ϕ(s, a, s′) being the canonical basis e(s,a,s′) of
R|S|2|A|. It implies that our analysis for GAIL with linear
function approximation also covers the tabular case. We
also remark that the range of the reward function is [0,

√
d]

instead of [0, 1]. With the increasing d, we can enrich the
reward setR and then capture the performance of the pol-
icy more meticulously using the optimality gap defined in
(8). Analysis in GAIL with linear reward is more challeng-
ing than the case with bounded reward, as studied in the
previous literature (Shani et al., 2021; Chang et al., 2021).

3. Algorithms
We first propose a unified framework in Algorithm 1 to
solve GAIL in both online and offline settings. Then we
specify the framework for online and offline settings in op-
timistic generative adversarial policy Imitation (OGAPI in
Algorithm 2 of §3.1) and pessimistic generative adversarial
policy imitation (PGAPI in Algorithm 3 of §3.2), respec-
tively.

This framework in Algorithm 1 involves two stages: pol-
icy update stage and reward update stage. (i) In the policy
update stage, we use mirror descent to update the policy
based on the estimated action-value function constructed in



Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation

Algorithm 1 A Unified Framework for OGAPI and PGAPI
1: Initialize {Q0

h}h∈[H] as zero functions over S ×A and
{π0

h}h∈[H] as uniform distributions over A.
2: (PGAPI) Construct estimated transition kernels
{P̂h}h∈[H] and uncertainty qualifiers {Γh}h∈[H] based
on DA.

3: for k = 1, . . . ,K do
4: Update policy πk = {πk

h}h∈[H] by mirror descent
with estimated action-value function {Q̂k−1

h }h∈[H].
5: (OGAPI) Rollout a trajectory following πk, and

construct empirically estimated transition kernels
{P̂k

h}h∈[H] and bonus functions {Γk
h}h∈[H].

6: (OGAPI/PGAPI) Optimistically/Pessimistically esti-
mate action-value function {Q̂k

h}h∈[H].
7: (OGAPI/PGAPI) Estimate ∇µL(π

k, µk) via
(25)/(28).

8: Update reward parameter µk+1 by projected gradient
ascent with estimated∇µL(π

k, µk).
9: end for

10: (PGAPI) Output the mixed policy π̂ of {πk}k∈[K].

the previous iteration. For OGAPI, we sample a trajectory
following the updated policy. Then we construct estimated
action-value functions with optimism based on the finite
historical data for OGAPI or pessimism based on the ad-
ditional dataset for PGAPI. (ii) In the reward update stage,
we first construct an estimate of the gradient based on the
collected trajectory induced by the present policy and the
finite historical data for OGAPI or estimated action-value
functions for PGAPI, and then we use projected gradient
ascent to update reward parameters via such an estimate of
gradient. We further detail OGAPI and PGAPI as follows.

3.1. Optimistic Generative Adversarial Policy Imitation

To specialize Algorithm 1 to solve online GAIL, we propose
OGAPI in Algorithm 2, which is detailed as follows.

3.1.1. POLICY UPDATE STAGE

The policy update stage (Lines 4–12 of Algorithm 2) con-
sists of two steps: (i) policy improvement (Lines 4–6) and
(ii) policy evaluation (Lines 8–12). In policy improvement,
we apply mirror descent in its proximal form to update the
current policy via estimated action-value functions, which
is specified in policy evaluation stage. In policy evaluation,
we employ the optimism principle to construct the estimated
action-value functions, which further utilize estimated tran-
sition kernels and bonus functions.

Policy Improvement. To generate a policy whose per-
formance is close to the expert policy πE, we update
the policy πk to minimize the GAIL objective function

L(π, µk−1) = J(πE, rk−1)− J(π, rk−1) in (11) under the
current reward function rk−1 = rµ

k−1

. Note that πE is
fixed, then we only need to maximize J(π, rk−1). Apply-
ing online mirror descent (Beck & Teboulle, 2003; Hazan,
2019), a standard algorithm to solve online learning prob-
lem, we update π as follows,

πk = argmax
π∈∆(A |S,H)

{Lk−1(π)− α−1D(π, πk−1)}, (12)

where α is the step size, Bregman divergence regular-
izer D(π, πk−1) is chosen as the expected KL diver-
gence Eπk−1 [

∑H
h=1DKL(πh(· | sh)∥πk−1

h (· | sh)) | s1=x],
and Lk−1(π) takes the form as

Lk−1(π) = J(πk−1, rk−1) + Eπk−1

[ H∑
h=1

〈
Q̂k−1

h (sh, ·),

πh(· | sh)− πk−1
h (· | sh)

〉
A

∣∣ s1 = x
]
. (13)

Here expectation Eπ[·] is taken with respect to the trajectory
induced by π and Q̂k−1

h is an estimator of Qrk−1

h,πk−1 , which
is specified later in (20). Such policy update formulation
defined in (12) also corresponds to the policy optimization
in online RL (Kakade, 2001; Schulman et al., 2015; 2017;
Geist et al., 2019; Shani et al., 2020a; Cai et al., 2020).

By solving (12), we obtain the following closed-form solu-
tion for any (s, h) ∈ S × [H],

πk
h(· | s) ∝ πk−1

h (· | s) · exp{α · Q̂k−1
h (s, ·)}, (14)

which gives Line 5 of Algorithm 2.

Policy Evaluation. To evaluate the policy πk under the
reward function rk, we first construct estimated transition
kernels P̂k = {P̂k

h}h∈[H], through value-target regression
(Ayoub et al., 2020) on finite historical data in Line 9, and
then construct an estimator of the action-value functions
by the Bellman equation in (4) with an extra bonus term to
incorporate exploration in Line 10.

Specifically, in the k-th episode, we construct our estimated
transition kernels P̂k = {P̂k

h}h∈[H] as

P̂k
h(s

′ | s, a) = ϕ(s, a, s′)⊤θ̂kh, (15)

for any (h, s, a, s′) ∈ [H]×S×A×S , where θ̂kh is the min-
imizer of the regularized empirical mean-squared Bellman
error defined as follows,

min
θ∈Rd

k−1∑
τ=1

∣∣φτ
h(s

τ
h, a

τ
h)

⊤θ − V̂ τ
h (sτh)

∣∣2 + λ∥θ∥22, (16)

where φτ
h(·, ·) =

∫
S ϕ (·, ·, s

′) V̂ τ
h+1 (s

′) ds′. Here V̂ τ
h is

constructed in Line 11 of Algorithm 2 and λ > 0 is the regu-
larization parameter, which is specified later in Theorem 4.1.
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By solving (16), we obtain the closed-form update of θ̂kh as

θ̂kh = (Λk
h)

−1
k−1∑
τ=1

φτ
h(s

τ
h, a

τ
h)V̂

τ
h+1(s

τ
h+1), (17)

where Λk
h =

∑k−1
τ=1 φ

τ
h(s

τ
h, a

τ
h)φ

τ
h(s

τ
h, a

τ
h)

⊤ds′ + λI. We
use (rkh+ P̂k

h V̂
k
h+1)(s, a) as an estimator ofQrk

h,πk(s, a). To
further handle the uncertainty incurred by finite historical
data and balance between exploration and exploitation, we
employ optimism to incentivize exploration as many no-
regret online RL algorithms do (Auer et al., 2002; 2009;
Azar et al., 2017; Jin et al., 2018; 2019; Yang & Wang,
2020). Specifically, we first define the bonus term as

Γk
h(s, a) = H

√
d ·min

{
κ · ∥φk

h(s, a)∥(Λk
h)

−1 , 1
}
, (18)

where κ > 0 is a scaling parameter. Then we incorporate
such a bonus term into the estimator (rkh + P̂k

h V̂
k
h+1)(s, a)

of Qrk

h,πk(s, a), i.e.,

Q̄k
h(·, ·) = (rkh + P̂k

h V̂
k
h+1 + Γk

h)(·, ·), (19)

Q̂k
h(·, ·) = min

{
Q̄k

h(·, ·), (H − h+ 1)
√
d
}
+
. (20)

We highlight that the policy update stage of OGAPI (Lines
4–12 of Algorithm 2) corresponds to the no-regret policy
optimization in adversarial MDP with full information feed-
back (Shani et al., 2020b; Rosenberg & Mansour, 2019; Cai
et al., 2020; Jin et al., 2020). Such tolerance of arbitrarily
chosen reward function every episode paves the way for the
alternate update between the policy and reward function.

3.1.2. REWARD UPDATE STAGE

To discriminate the discrepancy between the expert policy
πE and the current policy πk, we update the reward parame-
ter µk+1 by maximizing GAIL objective function L(πk, µ)
defined in (11). By projected gradient ascent, we obtain the
update of the reward parameter as follows,

µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)}, (21)

where η is the stepsize, ∇̂µh
L(πk, µk) is an estimator of

∇µh
L(πk, µk), and Proj : Rd → B is the projection oper-

ator to restrict the updated reward parameter µk+1
h within

the ball B for any h ∈ [H]. Here B is defined in (10).
Without accessing to the true transition kernels of the under-
lying MDP and the expert policy πE, we need to obtain an
estimator ∇̂µh

L(πk, µk) in (21).

Specifically, to construct an estimator of∇µh
L(πk, µk), we

first construct a Monte Carlo (MC) estimator L̂(πk, µk) of
L(πk, µk) as follows,

L̂(πk, µk) = J̃(πE, rk)− J̃(πk, rk). (22)

Here J̃(πE, rk) and J̃(πk, rk) are MC estimators of
J(πE, rk) and J(πk, rk), which are defined as,

J̃(πE, rk) =
1

N1

N1∑
τ=1

H∑
h=1

ψ(sEh,τ , a
E
h,τ )

⊤µh, (23)

J̃(πk, rk) =

H∑
h=1

ψ(skh, a
k
h)

⊤µh, (24)

where we useN1 trajectories in J̃(πE, rk) and one trajectory
in J̃(πk, rk). Combining (22) and (23), we obtain that

∇̂µh
L(πk, µk)=

1

N1

N1∑
τ=1

ψ(sEh,τ , a
E
h,τ )− ψ(skh, akh). (25)

We use ∇̂µh
L(πk, µk) as an estimator of ∇µh

L(πk, µk),
which gives Lines 13–17 of Algorithm 2.

3.2. Pessimistic Generative Adversarial Policy Imitation

To specialize Algorithm 1 to solve offline GAIL, we pro-
pose PGAPI in Algorithm 3. Besides the policy update stage
and reward update stage, PGAPI further contains an initial
construction stage, which constructs estimated transition
kernels and bonus functions at the beginning of the algo-
rithm. We detail the initial construction, the policy update,
and the reward update stage as follows.

3.2.1. INITIAL CONSTRUCTION STAGE

In Line 3 of PGAPI, we construct estimated transition ker-
nels {P̂h}h∈[H] and uncertainty quantifiers {Γh}h∈[H] via
the additional dataset DA. Before we detail such construct,
we first introduce the following definition of uncertainty
quantifiers (Jin et al., 2021) with the confidence parameter
ξ ∈ (0, 1), which quantifies the uncertainty.

Definition 3.1 (ξ-Uncertainty Quantifier). We say
{Γh}h∈[H] with Γh : S ×A → R are ξ-uncertainty quanti-
fiers for estimated kernels P̂ = {P̂h}h∈[H] with respect to
PD if the event

E =
{
|P̂hV̂ (s, a)− PhV̂ (s, a)| ≤ Γh(s, a), for any

(s, a, h) ∈ S ×A× [H] and any V̂ : S → [0, H
√
d ]
}

satisfies PD(E) ≥ 1 − ξ/2. Here PD is with respect to the
joint distribution of DA ∪ DE.

We remark that the ξ-uncertainty quantifiers in Definition 3.1
is a counterpart of the bonus functions in OGAPI. Recalling
that |rh(s, a)| ≤

√
d for any (s, a, h) ∈ S × A × [H],

Definition 3.1 implies that with probability at least 1− ξ/2,
the deviation between the true Bellman equation in (4) with
P and the estimated Bellman equation in (4) with P̂ is upper
bounded by the ξ-uncertainty quantifier {Γh}h∈[H]. Due to
the page limit, we postpone the construction process in §E.
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3.2.2. POLICY UPDATE STAGE

As a pessimistic variant of OGAPI in Algorithm 2, the pol-
icy update stage of PGAPI (Lines 5–11 of Algorithm 3)
consists of two steps: (i) policy improvement (Lines 5–7)
and (ii) policy evaluation (Lines 8–11). In the stage of policy
improvement, we adopt the same idea as in OGAPI, which
employs mirror descent to update the current policy. In the
stage of policy evaluation, instead of the optimism principle,
we employ the pessimism principle to construct the esti-
mated action-value functions via the additional dataset DA,
which is not assumed to be well-explored as specified later
in §4.2. The principle pessimism-in-face-of-uncertainty
guides the agent to be conservative to visit the states and
actions that are less covered by the additional dataset DA

(Kumar et al., 2020; Jin et al., 2021; Liu et al., 2020; Yu
et al., 2020; 2021; Buckman et al., 2020). Specifically, we
construct the estimated action-value functions as follows,

Q̂k
h(·, ·) = max

{
(rkh + P̂hV̂

k
h+1 − Γh)(·, ·), 0

}
,

where {P̂h}h∈[H] are the estimated transition kernels and
{Γh}h∈[H] are the uncertainty quantifiers constructed in
Line 3 of PGAPI, which satisfies Definition 3.1.

3.2.3. REWARD UPDATE STAGE

Similar to the reward update stage of OGAPI, in the reward
update stage of PGAPI, we update the reward parameter as,

µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)}. (26)

Here η is the stepsize, ∇̂µh
L(πk, µk) is an estimator of

∇µh
L(πk, µk), and Proj : Rd → B is the projection oper-

ator to restrict the updated reward parameter µk+1
h within

the ball B for any h ∈ [H]. Here B is defined in (10). To
achieve (26), we also need to obtain the estimated gradient
∇̂µh

L(πk, µk) in (26). However, since the agent in offline
GAIL cannot interact with the environment to collect the
state-action pairs following current policy πk, the estimator
in (25) for OGAPI is not applicable to PGAPI. Instead, we
construct an estimator L̂(πk, µk) for L(πk, µk) and use its
gradient ∇µh

L̂(πk, µk) to estimate ∇µh
L(πk, µk). Specif-

ically, we define the estimator L̂(πk, µk) as

L̂(πk, µk) = J̃(πE, rk)− Ĵ(πk, rk), (27)

where J̃(πE, rk) is a MC estimator of J(πE, rk). Here we
estimate J(πk, rk) with Ĵ(πk, rk) = V̂ k

1 (x), which is con-
structed in Line 9 of PGAPI. Based on (27), we construct an
estimator ∇̂µh

L(πk, µk) of∇µh
L(πk, µk) by taking gradi-

ent on L̂(πk, µk) w.r.t µh as follows,

∇̂µh
L(πk, µk) = ∇µh

J̃(πE, rk)−∇µh
Ĵ(πk, rk). (28)

4. Main Results
In this section, we present the theoretical analysis for
OGAPI and PGAPI in §4.1 and §4.2, respectively. Specifi-
cally, in §4.1 we upper bound the regret of OGAPI. In §4.2,
we upper bound the optimality gap of PGAPI under no cov-
erage assumption and propose a lower bound to show that
PGAPI achieves minimax optimality in the utilization of
the additional dataset DA. Moreover, under the assumption
that the additional dataset DA has sufficient coverage, we
establish the global convergence guarantee for PGAPI.

4.1. Analysis of OGAPI

We derive an upper bound of the regret of OGAPI in the
following theorem, whose proof sketch is in §H.1

Theorem 4.1 (Regret of OGAPI). In Algorithm 2, we
set α = (2 log |A|/(H2

√
dK)1/2, λ = 1, κ =

C
√
d log(HdK/ξ), η = 1/

√
HK, where C > 0 is a con-

stant. Under Assumption 2.1, it holds with probability at
least 1− ξ that

Regret(K)≤O
(√
H4d3K log(HdK/ξ)

)
+K∆N1

,
(29)

where ∆N1
= O(

√
H3d2/N1 log(N1/ξ)).

The first term on the right-hand side of (29) scales with√
K, which attains the optimal dependency on K for online

RL. The second term on the right-hand side of (29) is linear
in K and depends on the MC estimation error ∆N1 . As
the statistical error from the MC estimation, the error term
∆N1

is inevitable and independent of GAIL algorithm, since
we cannot access the expert policy but expert demonstra-
tion with N1 trajectories. When the number of trajectories
N1 in the expert demonstration is sufficiently large such
that N1 = Ω(K), the first term on the right-hand side of
(29) dominates the regret upper bound so that the regret of
OGAPI scales with

√
K. The dependency of H,K, and N1

correspond to Õ(
√
H4|S|2|A|K+

√
H3|S||A|K2/N1) re-

gret in the tabular case, established by Shani et al. (2021). If
we consider the case K = Ω(N

3/2
1 ), then the average regret

decays at a rate of N−1/2
1 and the dependency for H turns

from H2 into H3/2. As K and N1 both tend to infinity, the
average regret also shrinks to zero, meaning that the output
policy has the same performance on average with the expert
policy with respect to the linear reward setR.

According to Assumption 2.1, if we constrain the reward
setR to a fixed reward function r = {rh}h∈[H], then GAIL
(6) is reduced to RL, with respect to an episodic MDP
(S,A, H,P, r), where S,A, H,P are the same as the ones
in Assumption 2.1. Hence OGAPI can also be considered
as an RL algorithm for episodic MDP with linear function
approximation. From the aspect for information-theory, the
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lower bound of the regret of any online RL algorithm is
of the square-root order with respect to K even in tabular
case (Jin et al., 2018). Since the reward set is singleton,
OGAPI needs not MC estimation, whose regret is also of
the square-root order with respect to K, achieving such a
lower bound in online RL.

4.2. Analysis of PGAPI

We upper bound the optimality gap of PGAPI in the follow-
ing theorem, whose proof sketch can be found in §I.1.

Theorem 4.2. (Optimalty Gap of PGAPI). In Algorithm
3, we set λ = 1, κ = cR

√
d log(HdK)/ξ, α =

(2 log(vol(A))/(H2
√
dK))1/2, η = 1/

√
HK, where c>0

is a constant. Under Assumption 2.1, {Γh}Hh=1 constructed
in §3.2.1 are ξ-uncertainty qualifiers defined in Definition
3.1. it holds with probability at least 1− ξ that

DR(πE, π̂)≤O
(√

H4d2/K
)
+∆N1

+IntUncertπ
E

DA ,
(30)

where π̂ is the output policy of Algorithm 3,
IntUncertπ

E

DA=2
∑H

h=1 EπE [Γh(sh, ah) | s1 = x], and
∆N1

= O(
√
H3d2/N1 log(N1/ξ)).

In Theorem 4.2, the first term on the right-hand side of
(30) is an optimization error term, which is independent of
both expert demonstration DE and the additional dataset
DA. The optimization error term decays at a rate of K−1/2.
The second term on the right-hand side of (30) is related
to the MC estimation error and also occurs in the upper
bound of the regret of OGAPI as in Theorem 4.1. The
third term on the right-hand side of (30) is an intrinsic error
IntUncertπ

E

DA , which arises from the uncertainty of estimat-
ing Bellman equation (4) based on the additional dataset
DA. In the structure of the intrinsic error IntUncertπ

E

DA , we
note that the expectation is taken with respect to the tra-
jectory induced by the expert policy πE, which measures
the quality of the additional dataset DA and is irrelevant
to the training process. We clarify that the occurrence of
IntUncertπ

E

DA implies that the optimality gap only depends
on how well the additional dataset DA covers the trajectories
of the expert policy πE and it is not necessary to assume
that the additional dataset DA is well-explored. Hence, The-
orem 4.2 relies on no assumption on the coverage of the
additional dataset DA, such as uniformly lower bound of
densities of visitation measures, the behavior policy to be
upper bounded uniformly over the state-action space, the
concentrability coefficients are uniformly upper bounded,
or even the partial coverage assumption (Antos et al., 2007;
Munos & Szepesvári, 2008; Yang et al., 2020b;a; Levine
et al., 2020; Uehara et al., 2020; Siegel et al., 2020; Wang
et al., 2020b; Zhang et al., 2020; Xu et al., 2020). We also
highlight that Theorem 4.2 can be generalized to the case

when the transition kernel is non-linear, only if we explic-
itly find proper uncertainty quantifiers {Γh}Hh=1 satisfying
Definition 3.1 for the estimated transition kernel.

Next we show that PGAPI is provably efficient and attains
global convergence under the assumption that the additional
dataset DA has sufficient coverage. We first impose such an
assumption on the additional dataset DA as follows.

Assumption 4.3 (Sufficient Coverage). The ad-
ditional dataset DA has sufficient coverage with
the expert policy πE, that is, there exists an
absolute constant c† > 0 such that the event
E† =

{
1
N2

∑N2

τ=1

∫
S ϕ(s

τ
h, a

τ
h, s

′)ϕ(sτh, a
τ
h, s

′)⊤ds′ ≥ c† ·
EπE

[ ∫
S ϕ(sh, ah, s

′)ϕ(sh, ah, s
′)⊤ds′

]
, for any (s1, h) ∈

S × [H]
}

satisfies PD(E†) ≥ 1− ξ/2. Here the expectation
EπE [·] is taken w.r.t. the trajectory induced by πE and
ξ ∈ (0, 1) is the confidence level.

Assumption 4.3 implies that the additional dataset DA with
sufficient coverage covers the trajectories of the expert pol-
icy πE averagely in the sense of the feature map outer prod-
uct
∫
S ϕ(·, ·, s

′)ϕ(·, ·, s′)⊤ds′. We highlight that sufficient
coverage does not assume that the additional dataset DA to
be well-explored dataset (Zhang et al., 2020; Xu et al., 2020;
Yang et al., 2020b;a; Levine et al., 2020), e.g. restricting
that the densities of visitation measures of the behavior pol-
icy generating the dataset are uniformly lower bounded, i.e.
inf(s,a,h)∈S×A×[H]

[
ρπ

A

h (s, a)
]
= c > 0, where ρπh is the

density of visitation measure on S × A induced by policy
π at the h-step and πA is the policy of the experimenter
who collected the additional dataset DA. We also remark
that sufficient coverage is a weaker restriction than the par-
tial coverage assumption in offline RL (Uehara et al., 2020;
Siegel et al., 2020; Wang et al., 2020b), which assumes that
sup(s,a,h)∈S×A×[H]

[
ρπ

E

h (s, a)/ρπ
A

h (s, a)
]
= CπE <∞.

Under Assumption 4.3, we present the following corollary,
whose proof can be found in §I.3.

Corollary 4.4. Under Assumption 4.3 and the same assump-
tions as in Theorem 4.2, it holds with probability at least
1− ξ that

DR(πE, π̂)≤Õ
(√

H4d2/K+
√
H4d3/N2+

√
H3d2/N1

)
,

where π̂ is the output of Algorithm 3.

Corollary 4.4 proves that under Assumption 4.3 the intrinsic
error IntUncertπ

E

DA in Theorem 4.2 decays at a rate ofN−1/2
2 ,

showing that PGAPI attains global convergence. We remark
that this result does not require the additional dataset DA

to be well-explored and only relies on a much weaker as-
sumption as sufficient coverage in Assumption 4.3. This
improved result also responds to the information-theoretical
lower bound Ω(H2N

−1/2
2 ) for offline policy evaluation

(Duan et al., 2020). WhenK,N1, andN2 all tend to infinity,
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the optimality gap shrinks to zero as a negative square-root
rate, meaning that the output policy has the same perfor-
mance with the expert policy with respect to the reward
setR. More discussions about PGAPI can be found in §F,
where we show that how pessimism guarantees the mini-
max utilization of the additional dataset DA and how the
additional dataset DA contributes to our policy learning.

5. Experiment
Besides the theoretical analysis, we also conduct an exper-
iment for PGAPI in the offline setting. Results show that
PGAPI can converge fast and exceeds the performance of
BC method. See Appendix G for detailed discussions and
experimental results.

6. Conclusion
In this paper, we study provably efficient algorithms for
GAIL in the online and offline setting with linear func-
tion approximation, where both the transition kernels and
reward functions are linearly parameterized. We present
a unified framework and specialize it as optimistic gen-
erative adversarial policy imitation (OGAPI) for online
GAIL and pessimistic generative adversarial policy imi-
tation (PGAPI) for offline GAIL, respectively. With linear
function approximation, we derive the upper bound of the re-
gret of OGAPI as Õ(H2d3/2K1/2 +KH3/2dN

−1/2
1 ) and

the decomposition of optimality gap of PGAPI, without
any assumption on the additional dataset. Facilitated with
an additional dataset with sufficient coverage, we demon-
strate that PGAPI also attains global convergence, achieving
Õ(H2dK−1/2+H2d3/2N

−1/2
2 +H3/2dN

−1/2
1 ) optimal-

ity gap. Furthermore, we discuss that OGAPI can be reduced
to an online RL algorithm whose online regret achieves an
information-theoretic lower bound. Besides, we show that
pessimism in PGAPI guarantees the minimax utilization of
the additional dataset and how an additional dataset with
sufficient coverage contributes to our policy learning. How-
ever, how to design provably efficient GAIL algorithms with
general function approximation on both the transition ker-
nels and reward functions still remains an open problem,
which is a challenging but important future direction.
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A. Notations
We denote by a = O(b) if there exists an absolute constant c such that a ≤ cb when a and b are both large enough. We
use Õ(·) to hide the constants term and logarithmic terms in Õ(·). We denote by [N ] = {1, . . . , N}. We also denote
by a = Ω(b) if there exists an absolute constant c such that a ≥ cb when a and b are both large enough. We denote
by ∥ · ∥2 the ℓ2-norm of a vector and denote by ∥ · ∥A the spectral norm of a matrix A. We denote by ∆(X ) the set of
probability distributions on a set X and correspondingly define ∆(A |S, H) = {{πh(· | ·)}h∈[H] : πh(· | s) ∈ ∆(A) for any
(s, h) ∈ S × [H]} for all set S and H ∈ N+. For p1, p2 ∈ ∆(A), we denote by DKL(p1∥p2) the KL-divergence, that is,
DKL(p1∥p2) =

∫
A p1(a) log

p1(a)
p2(a)

da. And ⟨·, ·⟩A is the inner product taken over the action space A. We also denote by δx
Dirac function centered at x. We denote by Vol(X ) by the measure of set X . We also denote by {x}+ = max{x, 0}.

B. More Discussions about Related Works
Our work is also related to IRL, (Abbeel & Ng, 2004; Neu & Szepesvári, 2007; Syed et al., 2008; Syed & Schapire, 2008)
study the convergence of IRL in the tabular case, while they require to solve an RL subproblem every iteration, inefficiently.

Besides, our work is related to the vast body of existing literature on online RL cooperated with optimism (Auer et al.,
2002; 2009; Azar et al., 2017; Jin et al., 2018; 2019; Yang & Wang, 2020), offline RL (Fujimoto et al., 2019b; Kumar et al.,
2020; Fujimoto et al., 2019a; Duan et al., 2020; Levine et al., 2020; Jin et al., 2021), policy optimization (Beck & Teboulle,
2003; Hazan, 2019; Cai et al., 2020; Nemirovskij & Yudin, 1983), adversarial MDP (Shani et al., 2020b; Rosenberg &
Mansour, 2019; Jin et al., 2020), and linear function approximation (Duan et al., 2020; Bradtke & Barto, 1996; Yang &
Wang, 2019a; Jin et al., 2019; Ayoub et al., 2020; Yang & Wang, 2019b; Zhou et al., 2021) while they study minimization or
maximization problem with known reward through value-based or policy-based method, instead of minimax problem with
respect to policy and reward function as GAIL.

Our work is related to a line of study on pessimism. Specifically, the uncertainty quantification for estimated model in
PGAPI is motivated by the pessimism in offline RL (Chen & Jiang, 2019; Xie et al., 2021a;b; Kumar et al., 2020; Jin et al.,
2021; Liu et al., 2020; Yu et al., 2020; 2021; Buckman et al., 2020; Rashidinejad et al., 2021; Uehara & Sun, 2021). (Liu
et al., 2020) propose a pessimistic variant of fitted Q-learning algorithm (Antos et al., 2007; Munos & Szepesvári, 2008)
achieving the optimal policy within a restricted class of policies without assuming the dataset to be well-explored. (Jin
et al., 2021) propose a provably efficient algorithm with the spirit of pessimism to solve offline RL with linear function
approximation, under no coverage assumption on the dataset. (Xie et al., 2021a) propose a refined pessimistic estimate and
obtain a tighter suboptimality in d compared with (Jin et al., 2021). (Rashidinejad et al., 2021) study the offline RL in the
tabular case through lower confidence bound (LCB), relining on the partial coverage assumption on the dataset. (Uehara &
Sun, 2021) analyze the constrained pessimistic policy optimization with general function approximation and with the partial
coverage assumption of the dataset, then they specialize the case in the KNR setting and give a refined upper bound. The
importance of pessimism in offline RL is characterized by (Buckman et al., 2020; Zanette, 2021) through discussing the
lower bound of offline RL when the dataset has no restriction.
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C. Pseudocode of OGPAI

Algorithm 2 Optimistic Generative Adversarial Policy Imitation (OGAPI)
1: Input: Expert demonstration DE, scaling factor κ, and step size η and α.
2: Initialize {Q̂0

h}h∈[H] as zero functions over S × A, {π0
h}h∈[H] as uniform distributions over A, µ1 = {µ1

h}h∈[H] as
zero vectors, and {V̂ k

H+1}k∈{0,1,...,K} as zero functions over S.
3: for k = 1, . . . ,K do
4: for h = 1, . . . ,H do
5: πk

h(· | ·) ∝ π
k−1
h (· | ·) · exp{α · Q̂k−1

h (·, ·)}. //Policy Improvement
6: end for
7: Rollout a trajectory {(skh, akh)}h∈[H] following πk.
8: for h = H, . . . , 1 do
9: Set {P̂k

h}Hh=1 and {Γk
h}Hh=1 via (15) and (18), respectively. //Policy Evaluation

10: Q̂k
h(·, ·)← min{(rkh + P̂k

h V̂
k
h+1 + Γk

h)(·, ·), (H − h+ 1)
√
d}+.

11: V̂ k
h (·)← ⟨Q̂k

h(·, ·), πk
h(· | ·)⟩A.

12: end for
13: Set {∇µh

J̃(πE, rµ)}h∈[H] via (25). //Reward Update
14: for h = 1, . . . ,H do
15: ∇̂µh

L(πk, µk)← ∇µh
J̃(πE, rµ) | µ=µk − ψ(skh, akh).

16: µk+1
h ← ProjB(µ

k
h + η∇̂µh

L(πk, µk)).
17: end for
18: end for

D. Pseudocode of PGPAI

Algorithm 3 Pessimistic Generative Adversarial Policy Imitation (PGAPI)
1: Input: Expert demonstration DE, the additional dataset DA, step size η, α
2: Initialize {Q̂0

h}h∈[H] as zero functions, {π0
h}h∈[H] as uniform distribution, µ1 = {µ1

h}h∈[H] as zero vectors, and
{V̂ k

H+1}k∈{0,1,...,K} as zero functions over S.
3: Construct {P̂h}h∈[H] and {Γh}h∈[H] from DA via (39) and (36), respectively. //Initial Construction
4: for k = 1, . . . ,K do
5: for h = 1, . . . ,H do
6: πk

h(· | ·) ∝ π
k−1
h (· | ·) exp{α · Q̂k−1

h (·, ·)}. //Policy Improvement
7: end for
8: for h = H, . . . , 1 do
9: Q̂k

h(·, ·)← max{(rkh + P̂hV̂
k
h+1 − Γh)(·, ·), 0}. //Policy Evaluation

10: V̂ k
h (·)← ⟨Q̂k

h(·, ·), πk
h(· | ·)⟩A.

11: end for
12: Construct {∇µh

J̃(πE, rµ)}h∈[H] via (25). //Reward Update

13: Construct {∇µh
Ĵ(πk, rµ)}h∈[H] via Proposition D.1.

14: for h = 1, . . . ,H do
15: ∇µh

L̂(πk, µk)← ∇µh
J̃(πE, rµ) | µ=µk −∇µh

Ĵ(πk, rµ) | µ=µk .

16: µk+1
h ← ProjB [µ

k
h + η∇µh

L̂(πk, µk)].
17: end for
18: end for
19: Output: π̂ = Unif({πk}k∈[K]).
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Proposition D.1. If we define {Q̂k,rµ

h }h∈[H] and {V̂ k,rµ

h+1 }h∈[H] as

V̂ k,rµ

H+1(·) = 0,

Q̂k,rµ

h (·, ·) = max
{
(rµh + P̂hV̂

k,rµ

h+1 − Γh)(·, ·), 0
}
,

V̂ k,rµ

h (·, ·) =
〈
Q̂k,rµ

h (·, ·), πk
h(· | ·)

〉
A,

(31)

for all h ∈ [H] and µ ∈ S. It suggests that Q̂k
h = Q̂k,rk

h and V̂ k
h = V̂ k,rk

h , where Q̂k
h and V̂ k

h are constructed in the policy
evaluation stage in PGAPI (Algorithm 3 Lines 8–11). We can solve∇µh

V̂ k,rµ

1 (x) recursively as follows,

∇µh
V̂ k,rµ

t (st) =

{〈
πk
h(· | st)gkt (st, ·),

[
P̂t(∇µh

V̂ k,rµ

t+1 )
]
(st, ·)

〉
A

if 1 ≤ t ≤ h− 1,〈
πk
h(· | sh)gkh(sh, ·),∇µh

rµh(sh, ·)
〉
A if t = h,

where s1 = x, [P̂hf ](s, a) is a shorthand of
∫
S f(s

′)P̂h(s
′ | s, a)ds′ and gkh : S ×A → R is defined as

gkh(s, a) = 1
{
Q̂k,rµ

h (s, a) > 0
}
, (32)

for all (s, a) ∈ S ×A. Here 1{·} is the indicator function.

Proof. Taking gradient toward µh and applying chain rule on (31), we can obtain Proposition D.1.

E. Initial Construction of PGAPI
Now, we construct the estimated transition kernels and uncertainty quantifiers as follows. Specifically, we first construct the
initial estimated transition kernels P̃ = {P̃h}h∈[H] as

P̃h(s
′ | s, a) = ϕ(s, a, s′)⊤θ̃h, (33)

for any (s, a, s′, h) ∈ S ×A× S × [H], where θ̃h is the solution of the following optimization problem,

min
θ∈Rd

N2∑
τ=1

∫
S

∣∣ϕ(sτh, aτh, s′)⊤θ − δsτh+1
(s′)
∣∣2 ds′ + λ∥θ∥22. (34)

Here λ > 0 is the regularization parameter and δx(y) is Dirac function. By solving (34), we obtain the closed-form solution
of θ̃h as follows,

θ̃h = Λ−1
h

N2∑
τ=1

ϕ(sτh, a
τ
h, s

τ
h+1), (35)

where Λh =
∑N2

τ=1

∫
S ϕ(s

τ
h, a

τ
h, s

′)ϕ(sτh, a
τ
h, s

′)⊤ds′ + λI. Given (33) and (35), we further construct ξ-uncertainty quanti-
fiers {Γh}h∈[H] as follows,

Γh(s, a) = H
√
d

∫
S
ΓP
h (s, a, s

′)ds′, (36)

where ΓP
h (s, a, s

′) = min
{
κ · ∥ϕ(s, a, s′)∥Λ−1

h
, 1
}

. Here κ > 0 is a scaling parameter. In the following lemma, we show

that {Γh}h∈[H] in (36) are ξ-uncertainty qualifiers for P̃ in (33) if κ is properly chosen.

Lemma E.1. In (36), we set λ = 1 and κ = c ·R
√
d log(dHN2/ξ), where c > 0 is an absolute constant and ξ ∈ (0, 1) is

the confidence parameter. Under Assumption 2.1, {Γh}h∈[H] in (36) are ξ-uncertainty qualifiers for P̃ , defined in Definition
3.1.

Proof. See Appendix K.1 for a detailed proof.
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However, given (s, a) ∈ S × A, the initial estimated transition kernels P̃h(· | s, a) in (33) is not guaranteed to lie within
∆(S). Different from OGAPI, we are incapable to update reward functions based on the newly sampled trajectory in offline
GAIL. This difference is crucial to the analysis of PGAPI (Theorem 4.2), which relies on the fact that estimated GAIL
objective function L̂(π, µ) defined in (27) is concave for µ (we prove it in Lemma I.3). To address this issue, we define a
feasible estimation parameter domain Θ and choose the estimated transition kernel parameter θ̂ from the feasible domain Θ
(Zhou et al., 2021). Formally, we take Θ = Θ1 ∩Θ2 with Θ1 and Θ2 defined as follows,

Θ1 =
{
θ̂ : if E holds, then it satisfies that |P̂hV̂ (s, a)− P̃hV̂ (s, a)| ≤ Γh(s, a)

for any (s, a, h) ∈ S ×A× [H] and any V̂ : S → [0, H
√
d]
}
, (37)

Θ2 =
{
θ̂ : P̃h(· | s, a) ∈ ∆(S) for any (s, a, h) ∈ S ×A× [H]

}
,

where E and {P̃h}h∈[H] are defined in Definition 3.1 and (33), respectively. We remark that under Assumption 2.1, the
true transition kernel parameter θ = {θh}h∈[H] lies within the feasible estimation parameter domain Θ, which implies that
Θ is not empty. Thus, similar to (34) but enforcing the estimated transition kernel parameter to lie within Θ, we define
θ̂ = {θ̂h}h∈[H] as follows,

θ̂h = argmin
θ∈Θ

N2∑
τ=1

∫
S

∣∣ϕ(sτh, aτh, s′)⊤θ − δsτh+1
(s′)
∣∣2 ds′ + λ∥θ∥22, (38)

where the minimization is taken over Θ. Similarly, we construct the estimated transition kernel P̂ = {P̂h}h∈[H] as follows,

P̂h(s
′ | s, a) = ϕ(s, a, s′)⊤θ̂h, (39)

for any (s, a, s′, h) ∈ S ×A× S × [H], where θ̂h is defined in (38).

F. More Discussions about PGAPI

Pessimism Guarantees Minimax Utilization. With a well-explored and large enough dataset, the full information about
the transition kernel can be extracted by the agent and supports the agent to make correct decision. But when we assert no
restriction on the dataset, it is challenging to do the same because of the distribution shift and extrapolation error on the
states and actions that are less covered by the dataset. This problem has been studied widely in offline RL (Fujimoto et al.,
2019a; Kumar et al., 2020; Fujimoto et al., 2019b; Levine et al., 2020; Jin et al., 2021) and (Wang et al., 2020a) even propose
that the lower bound of offline RL can grow exponentially with the horizon under linear approximation and no assumption
on the dataset. Hence how to cooperate the additional dataset DA to aid the agent to improve the performance in offline
GAIL is also difficult since the additional dataset DA is not assumed to be well-explored. Inspired by the spirit of being
conservative in offline RL (Fujimoto et al., 2019b; Kumar et al., 2020; Jin et al., 2021), we propose a pessimistic variant of
policy optimization in the policy update stage of PGAPI (Lines 5–11 of Algorithm 3), which ensures that PGAPI utilize
the information of the additional dataset DA in the sense of minimax optimality. To illustrate it, we present the following
proposition, which is adapted from Theorem 4.7 in (Jin et al., 2021).

Proposition F.1 (Minimax Optimality in Utilizing Additional Dataset). For the output policy Algo(D) of any offline
algorithm only based on the dataset D, there exists a linear kernel MDPM (S,A, H,P, r) with an initial state x ∈ S, a
dataset D compliant withM, and a reward setR , such that

max
πE∈∆(A |S,H)

ED

[
DR(πE,Algo(D))
Informationπ

E

D

]
≥ c,

where c > 0 is an absolute constant, ED[·] is taken expectation with respect to randomness of the dataset D, and

Informationπ
E

D is defined as

Informationπ
E

D = (Vol(S))−1 · EπE

[ H∑
h=1

∫
S
∥ϕ(sh, ah, s′)∥Λ−1

h
ds′
∣∣∣ s1 = x

]
,

where Λh is only determined by the dataset D and takes the same form as in (35).
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Proof. See §I.2 for a detailed proof.

According to Proposition F.1, if we consider the additional dataset DA as D, it reveals that IntUncertπ
E

DA in the upper bound
of optimality gap of PGAPI (Theorem 4.2) matches the lower bound up to H,

√
d,Vol(S), and the scaling parameter κ

defined in (36). Though we do not assume any restriction on the additional dataset DA, owing to the pessimism principle,
PGAPI ensures the good utilization of the additional dataset DA even in the worst case.

The Additional dataset Contributes. We illustrate the contribution of the additional dataset DA by considering the
following two cases.

1. Without accessing an additional dataset, PGAPI is also applicable by simply treating the given expert demonstration
DE as the additional dataset DA in PGAPI (Algorithm 3), that is, DA = DE, which satisfies Assumption 4.3. If we set
K = Ω(N1), then by Corollary 4.4, we have

DR(πE, π̂) = Õ(H2d3/2N
−1/2
1 ). (40)

2. If we have access to a large enough additional dataset with sufficient coverage, taking N2 = Ω(d2HN1) for instance,
then by setting K = Ω(N2), we upper bound the optimality gap of PGAPI as follows,

DR(πE, π̂) = Õ(H3/2dN
−1/2
1 ). (41)

By comparing (40) and (41), we observe that the additional dataset DA helps decrease the dependency for H and d in the
optimality gap by H1/2 and d1/2. It implies that we can use a much smaller expert demonstration DE to learn a policy
as good as the expert policy πE, especially when horizon H and feature space dimension d are sufficiently large. This
improvement is meaningful in the imitation learning tasks, such as autonomous driving and robotics (Demiris* & Johnson,
2003; Hussein et al., 2017; Kebria et al., 2019; Jalali et al., 2019).

G. Experiment
To verify our theoretical analysis of PGAPI, we provide the experiment of PGAPI here, choosing the simulation environment
as a MDP with a finite state space, a finite action space, and a linear reward function. Next we will first provide the
descriptions of environment setup, then introduce the implementation details, and finally discuss the results. The codes are
available on https://github.com/YSLIU627/Adversarial-Policy-Imitation-with-LFA.

Environment Setup. In the following experiment, we consider a MDP with a linear reward function, which is adapted
from a simple 3× 3 GridWorld deterministic environment. The original GridWorld is a n× n grid network with a state
space S = {(i, j)}ni,j=1, an action space A = {stay, up, down, left, right}, and a horizon H = n2. The agent always starts
from x0 = (1, 1) and collects rewards by taking actions. Whenever the agent reaches (n, n), she gets reward 1; whenever
the agent reaches (n, 1), she gets reward 0; otherwise, she gets reward 0.1.

In our test environment, we let n = 3 and make two adaptations from the original GridWorld: (i) At each time timestep,
the agent will get stuck on the current state for one timestep with probability 0.1 and move successfully according to the
original GridWorld with probability 0.9, which induces the transition kernel. (ii) The reward function r(s, a) is defined by
r(s, a) = ψ(s, a)⊤µ, where the reward parameter µ is a |S||A|-dimensional vector and a known feature map ψ maps from
S ×A to Rd. We design ψ(s, a) by first adding 0.1 to the each entry of the canonical basis e(s,a) of the space S ×A and
then normalizing it. Since each entry of R|S||A| corresponds to a state-action pair (s, a) ∈ S × A, the reward parameter
µ ∈ R|S||A| can be determined by the reward function of the original GridWorld.

We can verify that our test environment satisfies Assumption 2.1. Given the test environment, we solve the expert policy
πE by conducting a model-based reinforcement learning method with a known transition kernel and reward function for
20 iterations such that πE has converged to a near optimal policy. The expert demonstration DE is obtained by sampling
5 trajectories from πE while the additional dataset DA is collected by sampling 1000 trajectories from the policy which
samples uniformly random actions.

https://github.com/YSLIU627/Adversarial-Policy-Imitation-with-LFA
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Implementation of Algorithms. Our proposed method PGAPI are implemented according to Algorithm 3,
where we can simplify the forms of uncertainty quantification in the tabular setting: Γh(s, a) =

CH|S|
√

log(H|S||A|/δ)/
(
N(h, s, a) ∨ 1

)
. Here C is a hyper-parameter, δ is the confidence level, and N(h, s, a) is

the visitation count of (s, a) within the additional dataset DA at the timestep h. We implement BC on a given dataset by
πBC
h (a | s) = 1{N(h, s) = 0}/|A|+ 1{N(h, s) > 0}N(h, s, a)/N(h, s), where 1{·} is the indicator function, N(h, s, a)

and N(h, s) are the visitation count of (s, a) and s at the timestep h within the given dataset , respectively.

Results and Conclusions. We conduct our proposed method PGAPI for 20 iterations and compare the average return of
PGAPI with the performance of expert πE, BC method on DE , and BC method on the mixture of DE and DA. From the
result in Figure 1, we show that PGAPI converges fast and exceeds the performance of BC method conducted on DE after
the sixth iteration, while BC conducted on the mixture of DE and DA has the nearly the same performance as uniformly
random policy. Although the additional dataset DA only involves the trajectories of uniformly random policy, PGAPI utilizes
it effectively given only very limited expert trajectories.
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Figure 1. Average return of PGAPI (our proposed method), expert, BC method conducted on the mixed dataset, and BC conducted method
on the expert demonstration. Results are averaged for 5 random seeds.

H. Proof Sketch: Analysis of OGAPI
H.1. Proof of Theorem 4.1

Proof. Recall the definition of regret in (7) and GAIL objective function L(π, µ) in (6), we decompose the regret as follows,

Regret(K) = sup
µ∈S

K∑
k=1

L(πk, µ)

≤
K∑

k=1

[J(πE, rk)− J(πk, rk)]︸ ︷︷ ︸
(A)

+ sup
µ∈S

K∑
k=1

[
L(πk, rµ)− L(πk, rk)

]
︸ ︷︷ ︸

(B)

.
(42)

The intuition of decomposition in (42) is to respectively deal with regret occurring in the stage of policy update and reward
update, which are denoted by term (A) and term (B).

Upper bound of term (A) in (42). In what follows, we upper bound term (A) in (42). For the simplicity of later discussion,
we define the model prediction error for estimating Bellman equation (4) in the h-th step of k-th episode in Algorithm 3
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with reward function rµ as follows,

ιkh(s, a) := rkh(s, a) + [PhV̂
k
h+1](s, a)− Q̂k

h(s, a), (43)

for any (s, a) ∈ S ×A, h ∈ [H], µ ∈ S.

First, we introduce a regret decomposition lemma to decompose term (A) in (42).

Lemma H.1 (Regret Decomposition for Policy Update). It holds for any initial state x ∈ S that

K∑
k=1

(
V rk

1,πE(x)− V rk

1,πk(x)
)
=

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k

h(sh, ·), πk
h(· | sh)− πk

h(· | sh)⟩
∣∣ s1 = x

]
+MK,H,2 +

K∑
k=1

H∑
h=1

(
EπE [ιkh(s

k
h, a

k
h)|s1 = x]− ιkh(skh, akh)

)
.

(44)

Here ιkh is the model prediction error defined in (43), and {MK,H,m}(k,h,m)∈[K]×[H]×[2] is a martingale adapted to the
filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2], with respect to the timestep index t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m.

Proof. See Appendix J.1 for a detailed proof.

Lemma H.1 shows that term (A) in (42) can be decomposed into three terms as follows,

(A) =
K∑

k=1

(
V rk

1,πE(x)− V rk

1,πk(x)
)

=

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k

h(sh, ·), πE
h (· | sh)− πk

h(· | sh)⟩
∣∣ s1 = x

]
︸ ︷︷ ︸

(A1)

+MK,H,2︸ ︷︷ ︸
(A2)

+

K∑
k=1

H∑
h=1

(
EπE [ιkh(sh, ah)|s1 = x]− ιkh(skh, akh)

)
︸ ︷︷ ︸

(A3)

.

(45)

To upper bound term (A1) and term (A2) in (45), we introduce the following two lemmas, respectively.

Lemma H.2 (Performance Improvement). If we set α =
√
2 log(vol(A))/(H2K

√
d ) in the policy update stage of OGAPI

(Line 5 of Algorithm 2), then under Assumption 2.1, for any initial state x ∈ S, it holds that

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k−1

h , πE
h − πk−1

h ⟩A
∣∣ s1 = x

]
≤
√
2H4
√
dK log(vol(A)).

Proof. See Appendix J.2 for a detailed proof.

Lemma H.3. It holds that

|MK,H,2| ≤ 4
√
H3dK log(8/ξ).

with probability at least 1− ξ/4, whereMK,H,2 is the martingale defined in (44).

Proof. See Appendix J.3 for a detailed proof.

To upper bound the term (A3) in (45), we introduce the following two lemmas.
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Lemma H.4 (Optimism). Under Assumption 2.1, it holds with probability at least 1− ξ/4 that

−2Γk
h(s, a) ≤ ιkh(s, a) ≤ 0 for any (h, k, s, a) ∈ [H]× [K]× S ×A,

where ιkh is the model prediction error defined in (44).

Proof. See Appendix J.4 for a detailed proof.

Lemma H.5. Under Assumption 2.1, it holds that

K∑
k=1

H∑
h=1

Γk
h(s

k
h, a

k
h) ≤ C ′

√
H4d3K · log(HdK/ξ),

where C ′ > 0 is an absolute constant.

Proof. See Appendix J.5 for a detailed proof.

Lemma H.4 implies that EπE [ιkh(sh, ah) | s1 = x] ≥ 0 with high probability. Combining Lemmas H.4 and H.5, it holds
with probability at least 1− ξ/4 that

(A3) ≤
K∑

k=1

H∑
h=1

ιkh(s
k
h, a

k
h) ≤ 2

K∑
k=1

H∑
h=1

Γk
h

(
skh, a

k
h

)
≤ 2C ′

√
H4d3K · log(HdK/ξ), (46)

with probability at least 1− ξ/4.

Now, by plugging Lemma H.2, Lemma H.3, and (46) into the formulation of term (A) in (42), we obtain that

(A) ≤
√
2H4
√
dK log(vol(A)) + 4

√
H3dK log(8/ξ) + 2C ′

√
H4d3K · log(HdK/ξ)

≤ C1

√
H4d3K log(HdK/ξ),

(47)

with probability at least 1− ξ/2, where C1 is an absolute constant.

Upper bound of term (B) in (42). We decompose term (B) in (42) by the following lemma, which characterizes the regret
occuring in the reward update.

Lemma H.6. For any µ = {µh}Hh=1 ∈ S, it holds that

K∑
k=1

[
L(πk, µ)− L(πk, µk)

]
≤

K∑
k=1

H∑
h=1

1

2η

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)

+

K∑
k=1

H∑
h=1

[
(µk+1

h − µk
h)

⊤∇̂µh
L(πk, µk)

]
+K

[
J̃(πE, rµ)− J(πE, rµ)

]
+

K∑
k=1

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk))
]
,

for any (k, h) ∈ [K]× [H]. Here ∇̂µh
L(π, µk) and J̃(πE, rµ) are defined in (25) and (23), respectively.

Proof. See Appendix J.6 for a detailed proof.
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Applying Lemma H.6, we decompose term (B) in (42) into four terms as follows,

(B) ≤ sup
µ∈S

K∑
k=1

H∑
h=1

1

2η

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)

︸ ︷︷ ︸
(B1)

+

K∑
k=1

H∑
h=1

[
(µk+1

h − µk
h)

⊤∇̂µh
L(πk, µk)︸ ︷︷ ︸

(B2)

+K · sup
µ∈S

[
J̃(πE, rµ)− J(πE, rµ)

]
︸ ︷︷ ︸

(B3)

+ sup
µ∈S

K∑
k=1

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk))︸ ︷︷ ︸
(B4)

]
.

(48)

We upper bound terms (B1), (B2), (B3), and (B4) as follows.

By telescoping the summand in term (B1) of (48) with respect to k ∈ [K], we have

(B1) = sup
µ∈S

1

2η

[ H∑
h=1

(
(∥µ1

h − µh∥22 − ∥µK+1
h − µh∥22 −

K∑
k=1

∥µK+1
h − µk

h∥22
)]

≤ sup
µ∈S

1

2η

H∑
h=1

∥µ1
h − µh∥22 ≤

2

η
Hd,

(49)

where the last inequality relies on the fact that ∥µh∥2 ≤
√
d for all µ = {µh}Hh=1 ∈ S. This upper bounds term (B1).

By the update process µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)} in OGAPI (Line 16 of Algorithm 2), we have

∥µk+1
h − µk

h∥2 ≤ ∥η∇̂µh
L(πk, µk)∥2. (50)

Then we upper bound (B2) in (48) as follows,

(B2) =
K∑

k=1

H∑
h=1

[
(µk+1

h − µk
h)

⊤∇̂µh
L(πk, µk)

]
≤

K∑
k=1

H∑
h=1

∥µk+1
h − µk

h∥2 · ∥∇̂µh
L(πk, µk)∥2

≤
K∑

k=1

H∑
h=1

η · ∥∇̂µh
L(πk, µk)∥22 ≤ 4ηHK,

(51)

where the first inequality follows from Cauchy-Schwartz inequality, the second inequality follows from (50) and the last
inequality follows from the fact that ∥∇̂µh

L(πk, µk)∥ ≤ 2∥ψ(·, ·)∥2 ≤ 2. This upper bounds term (B2).

We upper bound term (B3) via the following lemma.

Lemma H.7 (Monte Carlo Estimation). Since reward function classR is linear as defined in (9) and the estimator J̃(πE, rµ)
constructed in (25), it holds that

sup
µ∈S

∣∣J̃(πE, rµ)− J(πE, rµ)
∣∣ ≤ 4

√
H3d2/N1 log(6N1/ξ),

with probability at least 1− ξ.
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Proof. See Appendix J.7 for detailed proof.

By Lemma H.7, it holds with probability at least 1− ξ/4 that

(B3) ≤ 4K
√
H3d2/N1 log(24N1/ξ), (52)

which upper bounds term (B3).

To upper bound term (B4) in (48), we introduce the following lemma.

Lemma H.8 (Unbiased Estimation). It holds that

sup
µ∈S

K∑
k=1

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk))
]
≤ 32

√
H3d2K log(9/ξ),

with probability at least 1− ξ.

Proof. See Appendix J.8 for a detailed proof.

By Lemma H.8, it holds with probability at least 1− ξ/4 that

(B4) ≤ sup
µ∈S

K∑
k=1

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk)) ≤ 32
√
H3d2K log(36/ξ), (53)

which upper bounds term (B4).

Plugging (49), (51), (53), and (52) into (48), it holds with probability at least 1− ξ/2 that

(B) ≤ 2
√
H3d2K + 4K

√
HK + 32

√
H3d2K log(36/ξ) + 4

√
H3d2/N1 log(24N1/ξ)

≤ 32
√
H3d2K log(36/ξ) + 4K

√
H3d2/N1 log(24N1/ξ),

(54)

where we recall that η = 1/
√
HK. Combining (42), (47), and (54), we obtain that

Regret(K) ≤C1

√
H4d3K log(HdK/ξ) + 32

√
H3d2K log(24/ξ) + 4

√
H3d2/N1 log(36N1/ξ)

≤C2

(
H2d3/2K1/2 log(HdK/ξ) +KH3/2dN

−1/2
1 log(N1/ξ)

)
,

with probability at least 1− ξ, where C2 is an absolute constant. This concludes the proof of Theorem 4.1.

I. Proof Sketch: Analysis of PGAPI
I.1. Proof of Theorem 4.2

Proof. By the property of mixed policy, we can rewrite the optimality gap as

DR(πE, π̂) = sup
µ∈S

[
J(πE, rµ)− J(π̂, rµ)

]
=

1

K
sup
µ∈S

K∑
k=1

L(πk, µ), (55)

where L(πk, µ) = J(πE, rµ)−J(πk, rµ). Recall that J(πk, rµ) = V rµ

1,πk(x) and Ĵ(πk, rk) = V̂ k
1 (x), where x is the initial

state, we upper bound DR(πE, π̂) as follows,

DR(πE, π̂) ≤ 1

K

{ K∑
k=1

[
J(πE, rk)− Ĵ(πk, rk)

]
︸ ︷︷ ︸

(A)

+ sup
µ∈S

K∑
k=1

[
J(πE, rµ)− J(πk, rµ)− J(πE, rk) + Ĵ(πk, rk)

]
︸ ︷︷ ︸

(B)

}
.

(56)
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We upper bound terms (A) and (B) in (56)as follows, respectively.

Upper Bound of Term (A) in (56). To upper bound term (A) in (56), we introduce the following lemma.

Lemma I.1 (Extended Value Difference (Cai et al., 2020)). Let π = {πh}Hh=1 and π′ = {π′
h}Hh=1 be any two policies and

let {Q̂h}Hh=1 be any estimated Q-functions. For any h ∈ [H], we define the estimated V-function V̂h : S → R by setting
V̂h(x) =

〈
Q̂h(x, ·), πh(· |x)

〉
A for any x ∈ S. For any initial state x ∈ S, we have

V̂1(x)− V π′

1 (x) =

H∑
h=1

Eπ′
[
⟨Q̂h(sh, ·), πh(· | sh)− π′

h(· | sh)⟩A
∣∣ s1 = x

]
+

H∑
h=1

Eπ′
[
Q̂h(sh, ah)− r(sh, ah)− PhV̂h+1(sh, ah)

∣∣ s1 = x
]
,

where Eπ′ is taken with respect to the trajectory generated by π′ and r is the reward function.

Proof. See Appendix B.1 in (Cai et al., 2020) for a detailed proof.

For the simplicity of later discussion, at the h-th step of k-th episode, we define the error for estimating Bellman equation in
(4) in the policy evaluation stage of PGAPI (Lines 8–11 of Algorithm 3) with any reward function rµ as follows,

ιk,r
µ

h (s, a) := rµh(s, a) + [PhV̂
k,rµ

h+1 ](s, a)− Q̂k,rµ

h (s, a),

for any (s, a, h, µ) ∈ S ×A× [H]× S, where Q̂k,rµ

h and V̂ k,rµ

h+1 are defined as

V̂ k,rµ

H+1(·) = 0,

Q̂k,rµ

h (·, ·) = max
{
(rµh + P̂hV̂

k,rµ

h+1 − Γh)(·, ·), 0
}
,

V̂ k,rµ

h (·, ·) =
〈
Q̂k,rµ

h (·, ·), πk
h(· | ·)

〉
A, for h ∈ [H].

(57)

It implies that Q̂k
h = Q̂k,rk

h and V̂ k
h = V̂ k,rk

h , where Q̂k
h and V̂ k

h are constructed in the policy evaluation stage in PGAPI
(Lines 8–11 of Algorithm 3).

By applying Lemma I.1, we decompose term (A) in (56) as follows,

(A) =

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k

h(sh, ·), πE
h (· | sh)− πk

h(· | sh)⟩A
∣∣s1 = x

]
︸ ︷︷ ︸

(A1)

+

K∑
k=1

H∑
h=1

EπE [ιk,r
k

h (sh, ah)|s1 = x
]

︸ ︷︷ ︸
(A2)

.

(58)

We upper bound terms (A1) and (A2) in (58) as follows.

By Lemma H.2, we have

(A1) ≤
√
2H4d

√
dK log(vol(A)). (59)

We upper bound term (A2) in (58) using the following lemma.

Lemma I.2 (Pessimism). If {Γh}h∈[H] are ξ-uncertainty qualifiers defined in Definition 3.1, when conditioned on E defined
in Definition 3.1, it holds for any (s, a, h) ∈ S ×A× [H] and any reward function rµ with µ ∈ S that

0 ≤ ιk,r
µ

h (s, a) ≤ 2Γh(s, a).
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Proof. See Appendix K.2 for a detailed proof.

By Lemma I.2, conditioned on E , we upper bound term (A2) in (58) as follows,

(A2) ≤
K∑

k=1

H∑
h=1

EπE

[
2Γh(sh, ah)

∣∣ s1 = x
]
= K · IntUncertπ

E

DA , (60)

where we denote by IntUncertπ
E

DA =
∑H

h=1 EπE [2Γh(sh, ah)
∣∣ s1 = x

]
for notational convenience. Combining (59) and

(60), we derive an upper bound on term (A) in (56) conditioned on E as

(A) ≤
√
2H4
√
d log(vol(A)) +K · IntUncertπ

E

D . (61)

Upper Bound of Term (B) in (56). We L̂(π, µ) as follows,

L̂(π, µ) = J̃(πE, rµ)− Ĵ(πk, rµ).

Here J̃(π, rµ) is the MC estimation defined in (23) and Ĵ(πk, rµ) is the estimated cumulative reward defined as Ĵ(πk, rµ) =

V̂ k,rµ

1 (x), where V̂ k,rµ

1 is defined in (57) and x is the initial state. By this, we upper bound term (B) in (56) as

(B) = sup
µ∈S

K∑
k=1

[
J(πE, rµ)− J(πk, rµ)− J(πE, rk) + Ĵ(πk, rk)

]
≤ sup

µ∈S

K∑
k=1

[
J(πE, rµ)− J̃(πE, rµ)

]
︸ ︷︷ ︸

(B1)

+ sup
µ∈S

K∑
k=1

[
− J(πE, rk) + J̃(πE, rk)

]
︸ ︷︷ ︸

(B2)

+ sup
µ∈S

K∑
k=1

[
Ĵ(πk, rµ)− J(πk, rµ)

]
︸ ︷︷ ︸

(B3)

+ sup
µ∈S

K∑
k=1

[
L̂(πk, µ)− L̂(πk, µk)

]
︸ ︷︷ ︸

(B4)

.

(62)

We upper bounds terms (B1)–(B4) in (62) as follows.

By applying Lemma H.7 on term (B1) and term (B2) in (62), it holds with probability at least 1− ξ/2 that

(B1) + (B2) ≤ 8K
√
H3d2/N1 log(24N1/ξ). (63)

To upper bound term (B3) in (62), we invoke Lemmas I.1 and I.2, which imply

(B3) = sup
µ∈S

[ K∑
k=1

H∑
h=1

Eπk

[
− ιk,r

µ

h (skh, a
k
h)
∣∣ s1 = x

]]
≤ 0. (64)

To upper bound term (B4) in (62), we first introduce the following lemma.

Lemma I.3. The function L̂(πk, µ) defined in (27) is concave in µh for any h ∈ [H], where µ = {µh}Hh=1 ∈ S and
L̂(πk, µ).

Proof. See Appendix K.3 for a detailed proof.

By Lemma I.3, we establish the following lemma to upper bound term (B4) in (62), which corresponds to the reward update
stage in PGAPI (Lines 12–17 of Algorithm 3).
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Lemma I.4. For any µ ∈ S, it holds that

K∑
k=1

[
L̂(πk, µ)− L̂(πk, µk)

]
≤

K∑
k=1

H∑
h=1

[ 1
2η
∥µk+1

h − µh∥22 +
1

2η
∥µk+1

h − µh∥22

− 1

2η
∥µk+1

h − µk
h∥22 + η∥∇µh

L̂(πk, µk)∥22
]
,

Proof. See Appendix K.4 for a detailed proof.

By Lemma I.4, we have

(B4) ≤ sup
µ∈S

[ H∑
h=1

( 1

2η
∥µ1

h − µh∥22 −
1

2η
∥µK+1

h − µh∥22 −
1

2η

K∑
k=1

∥µk
h − µk+1

h ∥22

+

K∑
k=1

η∥∇µh
L̂(πk, µk)∥22

)]
,

which implies that

(B4) ≤ sup
µ∈S

H∑
h=1

[ 1
2η
∥µ1

h − µh∥22
]
+ sup

µ∈S

H∑
h=1

K∑
k=1

[
η∥∇µh

L̂(πk, µk)∥22
]
. (65)

Based on (65), we upper bound ∥∇µh
L̂(πk, rµ)∥22 for any µ ∈ S and h ∈ [H] as follows,

∥∇µh
L̂(πk, rµ)∥22 ≤ ∥∇µh

J̃(πE, rµ)−∇µh
Ĵ(πk, rµ)∥22

≤ 2∥∇µh
J̃(πE, rµ)∥22 + 2∥∇µh

Ĵ(πk, rµ)∥22.
(66)

Recall that ∇µh
J(πE, rµ) = N1

−1∑N1

τ=1 ψ(s
E
h,τ , a

E
h,τ ) and ∇µh

Ĵ(πk, rµ) is characterized in Proposition D.1, then we
have that

∥∇µh
J̃(πE, rµ)∥22 + ∥∇µh

Ĵ(πk, rµ)∥22 ≤ 2∥ψ(·, ·)∥22. (67)

Since it holds that ∥µh∥2 ≤
√
d for any µ ∈ S and ∥ψ(·, ·)∥2 ≤ 1, it also yields that

∥µ′
h − µh∥22 ≤ (∥µ′

h∥2 + ∥µh∥2)2 ≤ 4d (68)

for any µ, µ′ ∈ S. By setting η = 1/
√
KH and combining (65), (66), (67), and (68), we attain that

(B4) ≤H ·
√
HK

2
· 4d+HK · 1√

HK
· 2 · 4d

≤2H3/2dK1/2 + 8H1/2dK1/2 ≤ 8H3/2dK1/2.

(69)

Plugging (63), (64), and (69) into (62), conditioned on E , it holds with probability at least 1− ξ/2 that

(B) ≤ 8K
√
H3d2/N1 log(24N1/ξ) + 8dH3/2K1/2. (70)

Recall that Definition 3.1 implies PD(E) > 1− ξ/2. Combining (55), (61), and (70), with probability at least 1− ξ, we have

DR(πE, π̂) ≤
√
2H4
√
d log(vol(A))/K + IntUncertπ

E

D

+ 8
√
H3d2/N1 log(24N1/ξ) + 8H3/2dK−1/2

≤ 8H2dK−1/2 + IntUncertπ
E

D + 8H3/2dN
−1/2
1 log(24N1/ξ).

Thus, we conclude the proof of Theorem 4.2.
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I.2. Proof of Proposition F.1

Proof. Our proof is based on the following theorem that presents the information-theoretic lower bound.

Theorem I.5 (Information-Theoretic Lower Bound, Theorem 4.6 in (Jin et al., 2021)). For the output Algo(D) of any
offline RL algorithm based on the dataset D, there exists a tabular MDPM (S,A, H,P, r) with initial state x ∈ S and a
dataset D which is compliant withM, such that

ED

[
J(π⋆)− J(Algo(D))∑H

h=1 Eπ⋆

[
1/
√

1 + nh (sh, ah)
∣∣ s1 = x

]] ≥ c
where c is an absolute constant,π⋆ is the optimal policy statisfying that π⋆ := argmaxπ∈∆(A |S,H) J(π), and nh (sh, ah) =∑N

τ=1 1 {sτh = sh, a
τ
h = ah} for (sh, ah) ∈ S ×A.

First we show the linear kernel MDP defined in Assumption 2.1 can be reduced to tabular MDP. If we set d = |S|2|A| and
take the feature map as the canonical basis

ϕ(s, a, s′) = e(s,a,s′), ψ(s, a) = e(s,a), for all (s, a, s′) ∈ S ×A× S,

then Assumption 2.1 is satisfied with R = 1.

Applying Theorem I.5, we derive a hard instance in tabular MDP with known reward r. When we choose the reward setR
as the singleton reward r, it yields that

max
πE∈∆(A |S,H)

ED

[
DR(πE,Algo(D))

Informationπ
E

D

]
≥ ED

[
DR(π⋆,Algo(D))

Informationπ
⋆

D

]
= ED

[
J(π⋆)− J(Algo(D))

Informationπ
⋆

D

]
, (71)

where the last equality is originated from the definition of optimality gap in (8).

Next we handle IntUncertπ
⋆

D , which takes the form as

Informationπ
⋆

D = (Vol(S))−1 · Eπ⋆

[ H∑
h=1

∫
S
∥ϕ(sh, ah, s′)∥Λ−1

h
ds′
∣∣ s1 = x

]
where Λh = λI +

N∑
τ=1

∫
S
ϕ(sτh, a

τ
h, s

′)ϕ(sτh, a
τ
h, s

′)⊤ds′,

(72)

where N is the number of the trajectories in the dataset D. In the tabular setting, we obtain that

N∑
τ=1

ϕ(sτh, a
τ
h, s

′)ϕ(sτh, a
τ
h, s

′)⊤ =
∑

(s,a)∈S×A

nh(s, a)W(s,a,s′),

where W(s,a,s′) is a symmetric matrix whose non-zero entry is at ((s, a, s′)(s, a, s′)) and equals to 1. Summing s′ over S,
in the tabular case we have that

Λh = λI +

N∑
τ=1

∑
s′∈S

(sτh, a
τ
h, s

′)ϕ(sτh, a
τ
h, s

′)⊤ds′ = λI +
∑

(s,a,s′)∈S×A×S

nh(s, a)W(s,a,s′).

Choosing λ = 1, we obtain that

ϕ (s, a, s′)
⊤
Λ−1
h ϕ (s, a, s′) =

1

1 + nh(s, a)
,

for all (s, a, s′) ∈ S ×A× S. Hence we have that

H∑
h=1

∑
s′∈S
∥ϕ(s, a, s′)∥Λ−1

h
=

H∑
h=1

|S|√
1 + nh(s, a)

, (73)
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for all (s, a) ∈ S ×A. Taking expectation on (73) with respect to the optimal policy π⋆ and according to (72), it holds that

Informationπ
⋆

D = |S|−1 ·
H∑

h=1

Eπ⋆

[
1/
√
1 + nh (sh, ah)

∣∣ s1 = x
]
. (74)

Plugging (74) into (71), under the hard instance in Theorem I.5, we obtain that

max
πE∈∆(A |S,H)

ED

[
DR(πE,Algo(D))

InformationπE

D

]
≥ c,

where c > 0 is a positive constant. Then we conclude the proof of Proposition F.1

I.3. Proof of Corollary 4.4

Proof. By the property of trace, we have that

EπE

[ ∫
S

√
(ϕ(sh, ah, s′)⊤Λ

−1
h ϕ(sh, ah, s′)ds

′
∣∣∣ s1 = x

]
= EπE

[ ∫
S

√
Tr(ϕ(sh, ah, s′)⊤Λ

−1
h ϕ(sh, ah, s′))ds

′
∣∣∣ s1 = x

]
= EπE

[ ∫
S

√
Tr(ϕ(sh, ah, s′)ϕ(sh, ah, s′)⊤Λ

−1
h )ds′

∣∣∣ s1 = x
]
.

(75)

Applying Cauchy-Schwartz inequality on (75), we derive that

EπE

[ ∫
S

√
Tr(ϕ(sh, ah, s′)ϕ(sh, ah, s′)⊤Λ

−1
h )ds′

∣∣∣ s1 = x
]

≤
(
Vol(S)

)1/2 · (EπE

[ ∫
S
Tr(ϕ(sh, ah, s

′)ϕ(sh, ah, s
′)⊤Λ−1

h )ds′
∣∣∣ s1 = x

])1/2 (76)

for any x, s′ ∈ S and all h ∈ [H].

To utilize Theorem 4.2, we define the event E♯ as follows,

E♯ =
{
DR(πE, π̂) ≤ O

(
H2dK−1/2) + ∆N1

+ IntUncertπ
E

D

}
,

where IntUncertπ
E

D = 2
∑H

h=1 EπE [Γh(sh, ah) | s1 = x] and Γh is defined in (36). Conditioned on the event E♯ ∩E†, where
E† is defined in Assumption 4.3, we obtain that

IntUncertπ
E

DA ≤ 2κH
√
d

H∑
h=1

EπE

[ ∫
S
∥ϕ(sh, ah, s′)∥Λ−1

h
ds′
∣∣ s1 = x

]
. (77)

By plugging (75) and (76) into (77), we have

IntUncertπ
E

DA ≤ 2κH
√
d
√

Vol(S) ·
H∑

h=1

√
Tr
(
EπE

[ ∫
S
ϕ(sh, ah, s′)ϕ(sh, ah, s′)⊤ds′ | s1 = x

]
Λ−1
h

)
, (78)

where Vol(S) is the finite measure of the state space S. For notational simplicity, we define

Σh(x) = EπE

[ ∫
S
ϕ(sh, ah, s

′)ϕ(sh, ah, s
′)⊤ds′ | s1 = x

]
, (79)

for all x ∈ S and all h ∈ [H].



Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation

By Assumption 4.3 and the definition of Σh(x) in (79), we know that the matrix (I + c†N2Σh(x)
)−1 − Λ−1

h is positive
definite conditioned on E†. Combining (78) and (79), we obtain that

IntUncertπ
E

DA ≤ 2
(
Vol(S)

)1/2 · κH√d H∑
h=1

√
Tr
(
Σh(x) · (I + c† ·N2 · Σh(x))−1

)
= 2
(
Vol(S)

)1/2 · κH√d H∑
h=1

√√√√ d∑
j=1

λh,j(x)

1 + c† ·N2 · λh,j(x)
. (80)

Here {λh,j(x)}dj=1 are the eigenvalues of Σh(x) for any x ∈ S and h ∈ [H]. Meanwhile, under Assumption 2.1, we have
∥ϕ(·, ·, ·)∥2 ≤ dR, which is shown in (109). By applying Cauchy-Schwartz inequality to (79), it holds that

∥Σh(x)∥op ≤ EπE

[∥∥∥ ∫
S
ϕ(sh, ah, s

′)ϕ(sh, ah, s
′)⊤ds′

∥∥∥
op

∣∣∣ s1 = x
]
≤ d3/2R2 · (Vol(S))1/2,

for any x ∈ S and h ∈ [H], where ∥ · ∥op is the operator norm. As Σh(x) is positive semidefinite, we have λh,j(x) ∈
[0, ∥Σh(x)∥op ] for any x ∈ S and (h, j) ∈ [H] × [d]. Hence, conditioned on E† ∩ E†, combining (80), it holds for any
x ∈ S that

IntUncertπ
E

DA ≤ 2
(
Vol(S)

)1/2 · κH√d H∑
h=1

√√√√ d∑
j=1

λh,j(x)

1 + c† ·N2 · λh,j(x)

≤ 2
(
Vol(S)

)1/2 · κH√d H∑
h=1

√√√√ d∑
j=1

1

c† ·N2

≤ c′
(
Vol(S)

)1/2
d3/2H2N

−1/2
2 log(HdN2/ξ),

(81)

where the second inequality follows from the fact that λh,j(x) ∈ [0, ∥Σh(x)∥op ] for any (x, h, j) ∈ S × [H]× [d], while
the third inequality follows from the choice of the scaling parameter κ > 0 stated in Theorem 4.2. Here c′ is an absolute
constant dependent on c and c†. By the condition in Corollary 4.4, we have PD(E†) ≥ 1− ξ/2. Also, by Theorem 4.2, we
have PD(E♯) ≥ 1− ξ/2. Hence, by the union bound, we derive that PD(E† ∩ E♯) ≥ 1− ξ. Combining (81), we finish the
proof of Corollary 4.4.

J. Proofs of Supporting Lemmas: Analysis of OGAPI
J.1. Proof of Lemma H.1

Proof. For notational simplicity, we define operators Jh and Jkh as

(Jhf)(s) = ⟨f(s, ·), πE
h (· | s)⟩, (Jkhf)(s) = ⟨f(s, ·), πk

h(· | s)⟩, (82)

for any s ∈ S, (k, h) ∈ [K]× [H], and any function f : S ×A → R. We define Fk,h,1,Fk,h,2 as follows,

Fk,h,1 = σ
(
{(sτi , aτi )}(τ,i)∈[k−1]×[H] ∪ {(ski , aki )}i∈[h]

)
Fk,h,2 = σ

(
{(sτi , aτi )}(τ,i)∈[k−1]×[H] ∪ {(ski , aki )}i∈[h] ∪ {skh+1}

)
,

(83)

where skH+1 is defined as a null state for any k ∈ [K]. We define the time index as follows,

t(k, h,m) = (k − 1) · 2H + (h− 1) · 2 +m, (84)

which imples that {Fk,h,m}(k,h,m)∈[K]×[H]×[2] is a filtration with respect to t(k, h,m).

Now we are ready to prove Lemma H.1. First we note that for any initial state x ∈ S, it holds that

V rk

1,πE(x)− V rk

1,πk(x) =
(
V rk

1,πE(x)− V k
1 (x)

)︸ ︷︷ ︸
(i)

+
(
V̂ k
1 (x)− V rk

1,πk(x)
)︸ ︷︷ ︸

(ii)

, (85)
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where V k
1 is the estimated state value function in the stage of policy evaluation of OGAPI (Lines 2–2 of Algorithm 2). We

calculate terms (i) and (ii) separately.

Term (i). By (4), we have

V rk

h,πE(s) = ⟨Qrk

h,πE(s, ·), πE
h (· | s)⟩ = JhQrk

h,πE(s), V̂ k
h (s) = ⟨Q̂k

h(s, ·), πk
h(· | s)⟩ = JkhQ̂k

h(s), (86)

for any (k, h) ∈ [K]× [H]. We then have

V rk

h,πE − V̂ k
h = JhQrk

h,πE − JkhQ̂k
h

= Jh(Qrk

h,πE − Q̂k
h) + (Jh − Jkh)Q̂k

h,
(87)

where Jh and Jkh are defined in (82). By the property of state-value function and the definition of ιkh, we have

Qrk

h,πE = rkh + PhV
rk

h+1,πE , Q̂k
h = rkh + PhV̂

k
h+1 − ιkh, (88)

Define ζkh = (Jh − Jkh)Q̂k
h and plug (88) into (87), we have

V rk

h,πE − V̂ k
h = JhPh(V

rk

h+1,πE − V̂ k
h+1) + Jhιkh + ζkh , (89)

for any (k, h) ∈ [K]× [H]. Here ιkh is the prediction error defined in (43). For any k ∈ [H], note that V rk

h+1,πE = V̂ k
H+1 = 0,

we expand (89) across h ∈ [H] to obtain that

V rk

1,πE − V̂ k
1 =

H∑
h=1

(

h−1∏
i=1

JiPi)Jhιkh +

H∑
h=1

(

h−1∏
i=1

JiPi)ζ
k
h . (90)

The effect of composite operator PhJh on function f is to calculate one-step expectation of f following policy πE
h . Hence

we rewrite (90) as

V rk

1,πE(x)− V̂ k
1 (x) =

H∑
h=1

(
EπE

[
ιkh(s

k
h, a

k
h)|s1 = x

])
+

H∑
h=1

EπE

[
⟨Q̂k

h(sh, ·), πE
h (· | sh)− πk

h(· |xh)⟩
∣∣ s1 = x

]
.

(91)

This characterize term (i).

Term (ii). By (85), we have
ιkh = rkh + PhV̂

k
h+1 − Q̂k

h

= rkh + PhV̂
k
h+1 −Qrk

h,πE + (Qrk

h,πE − Q̂k
h)

= Ph(V̂
k
h+1 − V rk

h+1,πE) + (Qrk

h,πE − Q̂k
h).

(92)

By (92), we obtain that

V̂ k
h − V rk

h,πk = Jkh(Q̂k
h −Qrk

h,πE) + ιkh − ιkh
=
(
Jkh(Q̂k

h −Qrk

h,πE)− (Q̂k
h −Qrk

h,πE)
)
+ Ph

(
V̂ k
h+1 − V rk

h+1,πE

)
− ιkh.

(93)

We define Dk,h,1 and Dk,h,2 as follows,

Dk,h,1 =
(
Jkh(Q̂k

h −Qrk

h,πE)
)
(skh)− (Q̂k

h −Qrk

h,πE)(skh, a
k
h)

Dk,h,2 =
(
Ph(V̂

k
h+1 − V rk

h+1,πE)
)
(skh, a

k
h)− (V̂ k

h+1 − V rk

h+1,πE)(skh+1).
(94)
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By plugging (94) into (93), we obtain that

V̂ k
h (skh)− V rk

h,πk(s
k
h) = Dk,h,1 +Dk,h,2 + (V̂ k

h+1 − V rk

h+1,πE)(skh+1)− ιkh(skh, akh). (95)

By telescoping (95) with respect to h ∈ [H], we have

V̂ k
1 (x)− V rk

h,πk(x) =

H∑
h=1

(Dk,h,1 +Dk,h,2)−
H∑

h=1

ιkh(s
k
h, a

k
h). (96)

By the definition of Fk,h,1 and Fk,h,2 in (83), we have

Dk,h,1 ∈ Fk,h,1, Dk,h,2 ∈ Fk,h,1, E[Dk,h,1|Fk,h−1,1] = 0, E[Dk,h,2|Fk,h,1] = 0. (97)

Following from (97), we define the martingale

Mk,h,m =
∑

(τ,i,l)∈[K]×[H]×[2]
t(τ,i,l)≤t(k,h,m)

Dτ,i,l,
(98)

with respect to the time index t(k, h,m) defined in (84). It is obvious that

K∑
k=1

H∑
h=1

(Dk,h,1 +Dk,h,2) =MK,H,2 (99)

Combining (85), (94), and (96) we obtain that

K∑
k=1

(
V rk

1,πE(x)− V rk

1,πk(x)
)
=

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k

h(sh, ·), πE
h (· | sh)− πk

h(· |xh)⟩|s1 = x
]

+MK,H,2 +

K∑
k=1

H∑
h=1

(
EπE

[
ιkh(s

k
h, a

k
h)|s1 = x

]
− ιkh(skh, akh)

)
.

(100)

By this, we conclude the proof of Lemma H.1.

J.2. Proof of Lemma H.2

Proof. By the update rule of OGAPI in (14) (Lines 2–2 of Algorithm 2) and the property of the mirror descent, we have

Lk−1(π
k)− α−1 ·D(πk, πk−1) ≥ Lk−1(π

E)− α−1 ·D(πE, πk−1) + α−1 ·D(πE, πk).

Recalling the definition of Lk−1(π) in (13) and rearranging the above inequality, we derive that

H∑
h=1

〈
Q̂k−1

h , πE
h − πk−1

h

〉
A ≤ α

−1 ·D(πE, πk−1)− α−1 ·D(πE, πk)

+

H∑
h=1

〈
Q̂k−1

h , πk
h − πk−1

h ⟩A − α−1 ·D(πk, πk−1),

(101)

where D(πk, πk−1) =
∑H

h=1DKL(π
k
h∥π

k−1
h ). For the last two terms on the right-hand side of (101), we have

H∑
h=1

〈
Q̂k−1

h , πk
h − πk−1

h

〉
A − α

−1 ·D(πk, πk−1)

≤
H∑

h=1

(
∥Q̂k−1

h ∥A,∞ · ∥πk
h − πk−1

h ∥A,1 − (2α)−1 · ∥πk
h − πk−1

h ∥2A,1

)
≤ α

2
·

H∑
h=1

∥Q̂k−1
h ∥2A,∞ ≤ αH3

√
d/2,
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where the first inequality follows from Holder’s inequality and Pinsker’s inequality, and the last inequality derives from
the fact that |rµh(·, ·)| ≤

√
d for any h ∈ [H] and µ ∈ S. Since π0 is a uniform distribution on A, it holds that

D(πE, π0) ≤ H log(vol(A)). Telescoping (J.2) with respect to k ∈ [K], we have

K∑
k=1

H∑
h=1

[
⟨Q̂k−1

h , πE
h − πk−1

h ⟩A
]
≤ αKH3

√
d/2 + α−1HD(πE, π0)

≤ αKH3
√
d/2 + α−1H log(|A|).

(102)

Recalling that α =
√

2 log(|A|)/(H2K
√
d) and taking expectation on both side of (102), we have

K∑
k=1

H∑
h=1

EπE

[
⟨Q̂k−1

h , πE
h − πk−1

h ⟩A
∣∣ s1 = x

]
≤ αKH3

√
d/2 + α−1H log(|A|)

≤
√

2H4
√
dK log(vol(A)).

Then we conclude the proof of Lemma H.2.

J.3. Proof of Lemma H.3

Proof. Recalling that we define Dk,h,1 and Dk,h,2 in (94) and the fact that |rµh(·, ·)| ≤
√
d for any µ ∈ S, we derive that

|Dk,h,1| ≤ 2H
√
d and |Dk,h,2| ≤ 2H

√
d for any (k, h) ∈ [K]× [H]. Now by Azuma-Hoeffding inequality, we have

P(|MK,H,2| > t) ≤ 2 exp
( −t2

16H3Kd

)
, (103)

for any t > 0. Setting t =
√
16H3dK · log(8/ξ) with ξ ∈ (0, 1) in (103), we have

MK,H,2 ≤
√
16H3dK · log(8/ξ),

with probability at least 1− ξ/4.

J.4. Proof of Lemma H.4

Proof. For notational simplicity, we write Q̄k
h(s, a) = rkh(s, a)+ P̂hV̂

k
h+1(s, a)+Γk

h(s, a). Then, from the policy evaluation
stage in Lines 2–2 of Algorithm 3, we have

Q̂k
h(s, a) = min

{
max

{
Q̄k

h(s, a), 0
}
, (H − h+ 1)

√
d
}
. (104)

We introduce the following lemma.

Lemma J.1. Let λ = 1 in the construction of estimated kernels (17) and κ = C
√
d log(HdK/ξ) in the construction of

bonus (18). Then it holds with probability at least 1− ξ/4 that∣∣PhV̂
k
h+1(s, a)− P̂k

h V̂
k
h+1(s, a)

∣∣ ≤ Γk
h(s, a)

for any (s, a) ∈ S ×A.

Proof. See Appendix J.9 for a detailed proof.

By Lemma J.1, we obtain that rkh + PhV̂
k
h+1 ≤ Q̄k

h. Moreover, by the fact that |rkh(s, a)| ≤
√
d and V̂ k

h+1(s) =

⟨Q̂k
h(s, ·), πk

h(· | s)⟩A ∈ [0, (H − h)
√
d] for any (s, a) ∈ S × A, we have rkh + PhV

k
h+1,πk ∈ [0, (H − h + 1)

√
d].

Thus, we have
Q̂k

h(s, a) = min
{
max

{
Q̄k

h(s, a), 0
}
, (H − h+ 1)

√
d
}

≥ min
{
max

{
rkh(s, a) + PhV̂

k
h+1(s, a), 0

}
, (H − h+ 1)

√
d
}

= rkh(s, a) + PhV̂
k
h+1(s, a),
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which implies that ιkh ≤ 0.

It remains to establish the lower bound of ιkh(s, a). By Lemma J.1, we have

Q̄k
h(s, a) = rkh(s, a) + P̂hV̂

k
h+1(s, a) + Γk

h(s, a)

≥ rkh(s, a) + PhV̂
k
h+1(s, a) ≥ 0,

(105)

where the last inequality follows from the fact that V̂ k
h+1(s, a) ≥ 0 and rkh(s, a) ≥ 0. By (104) and (105), we obtain that

Q̂k
h(s, a) ≤ Q̄k

h(s, a), which implies that

ιkh(s, a) = (rkh + PhV̂
k
h )(s, a)− Q̂k

h(s, a)

≥ (Ph − P̂h)V̂
k
h (s, a)− Γk

h(s, a)

≥ −2Γk
h(s, a).

Here the last inequality follows from Lemma J.1. Thus, we conclude the proof of Lemma I.2.

J.5. Proof of Lemma H.5

Proof. By the construction of bonus Γk
h in (18), we have

H∑
h=1

K∑
k=1

Γk
h(s

k
h, a

k
h) = H

√
d ·

H∑
h=1

K∑
k=1

min
{
1, κ · φk

h

(
skh, a

k
h

)⊤
(Λk

h)
−1φk

h(s
k
h, a

k
h)
}

≤ H
√
dκ ·

H∑
h=1

(
K ·

K∑
k=1

φk
h

(
skh, a

k
h

)⊤
(Λk

h)
−1φk

h(s
k
h, a

k
h)
)1/2

,

(106)

where the last inequality comes from Cauchy-Schwarz inequality. To upper bound the right-hand side of (106), we introduce
the following lemma.

Lemma J.2 (Elliptical Potential (Abbasi-Yadkori et al., 2011)). Let {ϕt}∞t=1 be an Rd-valued sequence. Meanwhile, let
Λ0 ∈ Rd×d be a positive-definite matrix and Λt = Λ0 +

∑t−1
j=1 ϕjϕ

⊤
j . It holds for any t ∈ Z+ that

t∑
j=1

min
{
1, ϕ⊤j Λ

−1
j ϕj

}
≤ 2 log

(
det (Λt+1)

det (Λ1)

)
.

Moreover, assuming that ∥ϕj∥2 ≤ 1 for any j ∈ Z+ and λmin (Λ0) ≥ 1, it holds for any t ∈ Z+ that

log

(
det (Λt+1)

det (Λ1)

)
≤

t∑
j=1

ϕ⊤j Λ
−1
j ϕj ≤ 2 log

(
det (Λt+1)

det (Λ1)

)
.

Proof. See proof of Lemma 11 in (Abbasi-Yadkori et al., 2011) for a detailed proof.

For any fixed h ∈ [H], by Lemma J.2, we have

K∑
k=1

φk
h

(
skh, a

k
h

)⊤
(Λk

h)
−1φk

h(s
k
h, a

k
h) ≤ 2 log

(
det(ΛK+1

h )

det(Λ1
h)

)
, (107)

where Λ1
h = λ · I and ΛK+1

h ∈ FK,H,2, which is defined in (83). By Assumption 2.1, we obtain that∥∥φk
h(s, a)

∥∥
2
=
∥∥∥∫

S
ϕ(s, a, s′)V̂ k

h+1(s
′)ds′

∥∥∥
2

≤ H
√
d ·
∥∥∥∫

S
ϕ(s, a, s′)ds′

∥∥∥
2

≤ H
√
d · Vol(S) · sup

s′∈S
∥ϕ(s, a, s′)∥2 ≤ Hd3/2R · Vol(S).

(108)
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Here the first inequality comes from the fact that V̂ k
h ∈ [0, H

√
d] for any (k, h) ∈ [K]× [H], and the last inequality comes

from the fact that ∥ϕ(·, ·, ·)∥2 ≤ dR, which can be verified as follows,

sup
(s,a,s′)∈S×A×S

∥ϕ(s, a, s′)∥2 = sup
(s,a,s′)∈S×A×S

√√√√ d∑
i=1

∥ϕ(s, a, s′)⊤ei∥22 ≤ dR. (109)

Here {ei}di=1 is a group of orthonormal basis of Rd and the last inequality follows from Assumption 2.1. By the definition
of Λk

h in (17), we can upper bound det(ΛK+1
h ) by (108) as follows,

det(ΛK+1
h ) = det

( K∑
k=1

φ(skh, a
k
h)φ(s

k
h, a

k
h)

⊤ + I
)

≤
(
det
(
(Hd3/2R · Vol(S) + 1) · I

))d
,

(110)

which implies that

log

(
det
(
ΛK+1
h

)
det (Λ1

h)

)
≤ 2d · log(H2d3R2K · Vol(S)2). (111)

Recalling that κ = C
√
d log(HdK/ξ), combining (106), (107), and (111), we have

H∑
h=1

K∑
k=1

Γk
h(s

k
h, a

k
h) ≤ 4H

√
dκ ·H

√
dK · log(H2d3R2K · Vol(S)2)

≤ C ′
√
H4d3K · log(HdK/ξ),

where C ′ is an absolute constant determined by C,R, and log(Vol(S)). By this, we conclude the proof of Lemma H.5.

J.6. Proof of Lemma H.6

Proof. By the definition of cumulative reward in (5), we observe that

J(π, µ) = Eπ

H∑
h=1

[
rµh(sh, ah)

]
=

H∑
h=1

Eπ

[
rµh(sh, ah)

]
=

H∑
h=1

∫
S×A

ρπh(s, a) · r
µ
h(s, a)dsda,

(112)

where ρπh(s, a) = P(sh = s, ah = a) is the density of state-action visition measure on S ×A. Recall that under Assumption
2.1, we have rµh(s, a) = ψ(s, a)⊤µh, hence we have

∇µh
J(πk, µk) =

∫
S×A

ρπ
k

h (s, a) · ψ(s, a)dsda. (113)

By (6), we obtain that

L(πk, µ)− L(πk, µk) =

H∑
h=1

(µh − µk
h)

⊤∇µh
L(πk, µk),

where∇µh
L(πk, µk) = ∇µh

J(πE, µk)−∇µh
J(πk, µk).

(114)

Combining (113) and (114), we know that L(π, µ) is a linear function in µ for any π. Recall that µk+1
h = ProjB{µk

h +

η∇̂µh
L(πk, µk)} in OGAPI (Lines 2–2 of Algorithm 2), by the definition of the projection operator ProjB(·), it holds that[

µk+1
h − µk

h − η∇̂µh
L(πk, µk)

]⊤
(µh − µk+1

h ) ≥ 0. (115)
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Rearranging terms in (115), we obtain that

η(µh − µk+1
h )⊤∇̂µh

L(πk, µk) ≤ (µk+1
h − µk

h)
⊤(µh − µk+1

h )

=
1

2

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)
,

(116)

which also implies that

1

2

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)
− η(µh − µk+1

h )⊤∇̂µh
L(πk, µk) ≥ 0. (117)

By adding a term η∇µh
L(πk, µk)⊤(µh − µk

h) on both sides of (117) and combining (114), we obtain that

L(πk, µ)− L(πk, µk) ≤
H∑

h=1

1

2η
(∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22)

+

H∑
h=1

[
(µk+1

h − µk
h)

⊤∇̂µh
L(πk, µk)

]
+

H∑
h=1

[
(µk

h − µh)
⊤(∇̂µh

L(πk, µk)−∇µh
L(πk, µk))

]
,

(118)

where we take the summation on h from 1 to H . By the fact that ∇̂µh
L(πk, µk) = ∇µh

J̃(πE, rµ) − ψ(skh, akh) and the
definition of the GAIL objective function L(π, µ) in (6), we rewrite the third term on the right-hand side of (118) as

H∑
h=1

[
(µk

h − µh)
⊤(∇̂µh

L(πk, µk)−∇µh
L(πk, µk))

]
=

H∑
h=1

[
µ⊤
h (∇µh

J̃(πk, µk)−∇µh
J(πE, rk))

]
+

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk))
]
.

(119)

By (113) and the definition of J̃(πE, rµ) in (23), we derive from (118) and (119) that

L(πk, µ)− L(πk, µk) ≤
H∑

h=1

1

2η

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)

+

H∑
h=1

[
(µk+1

h − µk
h)

⊤∇̂µh
L(πk, µk)

]
+
[
J̃(πE, rµ)− J(πE, rµ)

]
+

H∑
h=1

[
(µk

h − µh)
⊤(ψ(skh, a

k
h)−∇µh

J(πk, µk))
]
.

Upon telescoping sum on the below inequality for the index k ∈ [K], we complete the proof of Lemma H.6.

J.7. Proof of Lemma H.7

Proof. For any fixed reward parameter µ ∈ S, we define Jτ (πE, rµ) =
∑H

h=1 ψ(s
E
h,τ , a

E
h,τ )

⊤µh for any τ ∈ [N1]. Since
the expert demonstration DE = {(sEh,k, aEh,k)}(k,h)∈[N1]×[H] involves N1 independent trajectories induced by the expert
policy πE, we apply Monte Carlo method to estimate J(πE, rµ) by N1 i.i.d. samples {Jτ (πE, rµ)}N1

τ=1.

Let Zn =
∑n

τ=1

(
Jτ (πE, rµ)−J(πE, rµ)

)
and we have |Zn−Zn−1| ≤ 2H

√
d, since |rh(·, ·)| ≤

√
d for all h ∈ [H]. Note

that {Zn} is a martingale with zero mean with respect to the filtration Fn = σ
(
{sih, aih}(h,i)∈[H]×[n]

)
, by Azuma-Hoffeding

inequality, we have

PD(|Zn| > t) ≤ 2 exp

(
−2t2

4H2dn

)
,
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which implies that

PD

(∣∣∣∣ZN1

N1

∣∣∣∣ > m

)
≤ 2 exp

(
−2m2N1

4H2d

)
.

Let δ = 2 exp{−m2N1/(2H
2d)}, it holds with probability at least 1− δ that∣∣J̃(πE, rµ)− J(πE, rµ)

∣∣ = ∣∣∣∣ZN1

N1

∣∣∣∣ ≤ H√2d log(2/δ)/N1. (120)

We union bound
∣∣J̃(πE, rµ)− J(πE, rµ)

∣∣ for any µ ∈ S as follows. Since the reward parameter domain S defined in (10)
is not a finite set, we apply discretization on S to derive a union bound on

∣∣J̃(πE, rµ)− J(πE, rµ)
∣∣. If we define a normed

space (RHd, ∥ · ∥⋆), where ∥ · ∥⋆ is defined as

∥µ∥⋆ = sup
h∈[H]

∥µh∥2, (121)

then parameter domain S belongs to this normed space. Before we continue, we first introduce the definitions of ϵ-covering
and covering number as follows.

Definition J.3 (ϵ-covering). Let (V, ∥ · ∥) be a normed space, and Θ ⊂ V . We say that {V1, . . . , VN} is an ϵ-covering of Θ
if Θ ⊂ ∪Ni=1B (Vi, ϵ), or equivalently, ∀θ ∈ Θ, ∃i such that ∥θ − Vi∥ ≤ ϵ. Here B(Vi, ϵ) denotes a ball centering Vi with
radius ϵ.

We define the covering number as follows,

N (Θ, ∥ · ∥, ϵ) := min
{
n : ∃ϵ -covering over Θ of size n,Θ ∈ (V, ∥ · ∥)

}
.

With Definition J.3, we introduce the following lemma to upper bound the covering number.

Lemma J.4. If (V, ∥ · ∥) is a normed space, and (i) Θ ⊂ V = Rd, (ii) Θ is convex, (iii) ϵBunit ∈ Θ, where ϵ > 0 and Bunit

is the unit ball in Rd, then it holds that

N (Θ, ∥ · ∥, ϵ) ≤
(
3

ϵ

)d
vol(Θ)

vol(Bunit)
.

Proof. See Lemma 5.2 of (Vershynin, 2010) for proof.

Note that S is convex as a subset of RHd, we apply Lemma J.4 with V = RHd, Θ = S, ∥ · ∥ = ∥ · ∥⋆, and an appropriate
ϵ > 0 satisfing condition (iii) in Lemma J.4, which implies that

N (S, ∥ · ∥⋆, ϵ) ≤
(
3

ϵ

)Hd

dHd/2.

By the definition of covering number, there exists an ϵ-covering Vϵ = {µ1, ..., µN (S,∥·∥⋆,ϵ)} ⊂ S. For each µ ∈ Vϵ, by
(120), it holds that ∣∣J̃(πE, rµ)− J(πE, rµ)

∣∣ ≤ H√2d log(2N (S, ∥ · ∥⋆, ϵ)/ξ)/N1,

with probability at least 1− ξ/N (S, ∥ · ∥⋆, ϵ). By the union bound, it yields that

sup
µ∈Vϵ

∣∣J̃(πE, rµ)− J(πE, rµ)
∣∣ ≤ H√2d log(2N (S, ∥ · ∥⋆, ϵ)/ξ)/N1

≤ H
√(

Hd2 log(d) + 2Hd2 log(3/ϵ) + 2d log(2/ξ)
)
/N1,

(122)

with probability at least 1− ξ. Note that for any µ′, µ′′ ∈ S satisfying ∥µ′ − µ′′∥⋆ ≤ ϵ, it holds that∣∣∣[J̃(πE, rµ
′
)− J(πE, rµ

′
)
]
−
[
J̃(πE, rµ

′′
)− J(πE, rµ

′′
)
]∣∣∣ ≤ 4Hϵ. (123)
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Combining (122) and (123) and applying triangle inequality, we derive that

sup
µ∈S

∣∣J̃(πE, rµ)− J(πE, rµ)
∣∣ ≤ H√(Hd2 log(d) + 2Hd2 log(3/ϵ) + 2d log(2/ξ)

)
/N1 + 4Hϵ, (124)

with probability at least 1− ξ. By taking ϵ =
√
6d/N1 in (124), which satisfies the conditions in Lemma J.4, it holds with

probability at least 1− ξ that

sup
µ∈S

∣∣J̃(πE, rµ)− J(πE, rµ)
∣∣ ≤ H√(Hd2 log(d) +Hd2 log(

2N1

d
) + 2d log(2/ξ)

)
/N1 + 4H

√
d

N1
,

≤ 4
√
H3d2/N1 log(6N1/ξ).

We conclude the proof of Lemma H.7.

J.8. Proof of Lemma H.8

Proof. First, we arbitrarily fix µ ∈ S. We define for (k, h) ∈ [K]× [H] that

Xk
h = (µk

h − µh)
⊤(−ψ(skh, akh) +∇µh

J(πk, µk)),

Y k =

k∑
i=1

H∑
h=1

Xi
h,

Sk
h = σ

(
(s1h, a

1
h), (s

2
h, a

2
h), . . . , (s

h
k , a

h
k)
))
,

Eh = σ
(
(sEh,1, a

E
h,1), (s

E
h,2, a

E
h,2), · · · , (sEh,N1

, aEh,N1
)
)
,

Gk
h = σ(Sk

h, Eh),

Gk = σ(Gk
1 , G

k
2 , . . . , G

k
H),

(125)

where σ(·) denotes the generated σ-algebra. It holds that {Gk}k∈[K] is a filtration with respect to the time index k, since
Gk1 ⊆ Gk2 for k1 ≤ k2.

We first show that Xk
h ∈ Gk holds for any (k, h) ∈ [K]× [H]. By the definition of Xk

h in (125), it only suffices to prove
that µk

h ∈ Gk for any (k, h) ∈ [K]× [H]. Here we show this by induction with index k. Since µ1
h = 0 for any h ∈ [H], the

base case where k = 1 is trival. We assume that µk
h ∈ Gk where k ≥ 1 is a given integer, then we consider the case k + 1.

Recall that the update process of reward parameter in OGAPI (Lines 2–2 of Algorithm 2) takes the following form,

µk+1
h = ProjB{µk

h + η∇̂µh
L(πk, µk)}

= ProjB
{
µk
h + η ·

[ 1

N1

N1∑
τ=1

ψ(sEh,τ , a
E
h,τ )− ψ(skh, akh)

]}
.

First, according to the induction hypothesis, we have µk
h ∈ Gk ⊆ Gk+2, which implies that (skh, a

k
h) ∈ Gk+1. Then it holds

that

µk
h +

1

N1

N1∑
τ=1

ψ(sEh,τ , a
E
h,τ )− ψ(skh, akh) ∈ Gk+1,

for any h ∈ [H]. As ProjB is a continous operator, we obtain that µk+1
h ∈ Gk+1. Thus we complete the induction.

Now we construct a martingale to upper bound Y K . Note that conditioning on the filtration Gk−1, the term µk
h − µh is a

constant. Recall that in (113) we show that

∇µh
J(πk, µk) =

∫
S×A

ψ(s, a) · ρπ
k

h (s, a)dsda,

which implies that

Ek(X
k
h |Gk−1) = (µk

h − µh)
⊤Ek(ψ(s

k
h, a

k
h)−∇µh

J(πk, µk)|Gk−1) = 0 (126)
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for any (k, h) ∈ [K] × [H]. Here the expectation Ek is taken with respect to aki ∼ πk
i (· | ski ) and ski+1 ∼ Pi(· | ski , aki ),

corresponding to the expectation taken with respect to the state-action visitation measure ρπ
k

h defined in (112). Also, we
have Y k ∈ Gk, since Xk

h ∈ Gk for any (k, h)× [K]× [H]. Moreover, we obtain for any k ∈ [K] that

Ek(Y
k|Gk−1) = Ek

( k∑
i=1

H∑
h=1

Xi
h

∣∣Gk−1
)

= Ek

( H∑
h=1

Xk
h +

k−1∑
i=1

H∑
h=1

Xi
h

∣∣Gk−1
)

= Ek

( k∑
h=1

Xk
h

∣∣Gk−1
)
+ Y k−1 = Y k−1,

where the last equality follows from (126). Thus {Y k}Kk=1 is a martingale. Furthermore, by the definition of Xk
h in (125), it

holds that

|Y k − Y k−1| =
∣∣ H∑
h=1

Xk
h

∣∣ ≤ H∑
h=1

∥µk
h − µh∥2∥ψ(skh, akh)−∇µh

J(πk, µk)∥2 ≤ 8
√
dH,

where the last inequality follows from the facts that ∥ψ(·, ·)∥2 ≤ 1 and ∥µk
h∥2 ≤

√
d. Therefore, by Azuma-Hoeffding

inequality, we obtain that

P(|Y K | ≥ t) ≤ exp

(
−t2

2
∑K

k=1(8
√
dH)2

)
= exp

( −t2

128KdH2

)
for any t > 0. Setting t =

√
128H2dK log(2/ξ) with ξ ∈ (0, 1) and by the definition of Y k in (125), it holds with

probability at least 1− ξ that∣∣∣ K∑
k=1

H∑
h=1

(µk
h − µh)

⊤(−ψ(skh, akh) +∇µh
J(πk, µk))

∣∣∣ ≤ 8
√

2H2dK log(2/ξ). (127)

Now we union bound (127). This is similar to the proof of Lemma H.7 in Appendix J.7. By applying Lemma J.4 in the
same normed space (RHd, ∥ · ∥⋆), it holds with probability at least 1− ξ that

sup
µ∈Vϵ

|M(µ)| =
∣∣∣ K∑
k=1

H∑
h=1

(µk
h − µh)

⊤(−ψ(skh, akh) +∇µh
J(πk, µk))

∣∣∣
≤ 8
√(

H3d2 log(d) + 2Hd2 log(3/ϵ) + 2d log(2/ξ)
)
K,

(128)

where Vϵ is the ϵ-covering for S in Definition J.3 and ∥ · ∥⋆ is defined in (121). Here for notational convenience, we denote
by M(µ) =

∑K
k=1

∑H
h=1(µ

k
h − µh)

⊤(−ψ(skh, akh) +∇µh
J(πk, µk)). For any µ′, µ′′ ∈ S satisfying ∥µ′ − µ′′∥⋆ ≤ ϵ, it

holds that

|M(µ′)−M(µ′′)| ≤ 4HKϵ. (129)

Combining (128) and (129) and applying triangle inequality, we have that

sup
µ∈S
|M(µ)| ≤ 8

√(
H3d2 log(d) + 2Hd2 log(3/ϵ) + 2d log(2/ξ)

)
K + 4HKϵ, (130)

with probability at least 1− ξ. By taking ϵ =
√
d/K in (130), which satisfies that ϵBunit ⊂ S, we derive that

sup
µ∈S
|M(µ)| ≤ 8

√(
H3d2 log(d) + 2Hd2 log(9K/d) + 2d log(2/ξ)

)
K + 4H

√
dK,

≤ 32
√
H3d2K log(9K/ξ),

with probability at least 1− ξ. Hence we conclude the proof of Lemma H.8.
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J.9. Proof of Lemma J.1

Proof. Under Assumption 2.1 and by the definition of Λk
h in (17), we have

(PhV̂
k
h+1)(x, a) = φk

h(s, a)
⊤(Λk

h)
−1
( k−1∑
τ=1

φτ
h(s

τ
h, a

τ
h)φ

τ
h(s

τ
h, a

τ
h)

⊤θh + λ · θh
)

= φk
h(s, a)

⊤(Λk
h)

−1
( k−1∑
τ=1

φτ
h(s

τ
h, a

τ
h) · (PhV̂

τ
h+1)(s

τ
h, a

τ
h) + λ · θh

)
.

(131)

Note that P̂hV̂
k
h (s, a) = φ(s, a)⊤θ̂kh by the closed form of θ̂kh in (138), we obtain that

φk
h(s, a)

⊤θ̂kh−(PhV̂
k
h+1)(s, a)

=φk
h(s, a)

⊤(Λk
h)

−1
( k−1∑

τ=1

φτ
h(s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)− (PhV̂

τ
h+1)(s

τ
h, a

τ
h

))
︸ ︷︷ ︸

(i)

− λ · φk
h(s, a)

⊤(Λk
h)

−1θh︸ ︷︷ ︸
(ii)

,

(132)

for any (s, a) ∈ S ×A. To upper bound the norm of term (i) in (132), we introduce the following lemma.

Lemma J.5. Let λ = 1 in the construction of estimated kernels (17). It holds with probability at least 1− δ/4 that

∥∥∥ k−1∑
τ=1

φτ
h (s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)−

(
PhV̂

τ
h+1

)
(sτh, a

τ
h)
)∥∥∥

(Λk
h)

−1
≤ C

√
H2d2 · log(HdK/δ)

for any (k, h) ∈ [K]× [H], where C > 0 is an absolute constant and δ ∈ (0, 1).

Proof. See Appendix J.10 for a detailed proof.

By applying Cauchy-Schwarz inequality and Lemma J.5 on term (i) in (132), we have

|(i)| ≤ ∥φ(s, a)∥(Λk
h)

−1 ·
∥∥∥ k−1∑

τ=1

φτ
h (s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)−

(
PhV̂

τ
h+1

)
(sτh, a

τ
h)
)∥∥∥

(Λk
h)

−1

≤ H
√
d · C

√
d log(HdK/ξ) · ∥φ(s, a)∥(Λk

h)
−1

(133)

with probability at least 1− ξ/4.

For term (ii) in (132), by setting λ = 1, we obtain that

|(ii)| ≤ ∥φ(s, a)∥(Λk
h)

−1 · ∥θh∥(Λk
h)

−1

≤
√
d · ∥φ(s, a)∥(Λk

h)
−1 ,

(134)

where the last inequality follows from the fact that ∥(Λk
h)

−1∥2 ≤ 1 and ∥θh∥2 ≤
√
d for any h ∈ [H]. Combining (131),

(132), (133), and (134), it holds with probability at least 1− ξ/4 that∣∣PhV̂
k
h+1(s, a)− P̂k

h V̂
k
h+1(s, a)

∣∣ ≤ C√d log(HdK/ξ) · ∥φ(s, a)∥(Λk
h)

−1

≤ H
√
dκ · ∥φ(s, a)∥(Λk

h)
−1 ≤ Γk

h(s, a)

for any h ∈ [H] and (s, a) ∈ S × A. Here κ = C
√
d log(HdK/ξ) is the scaling parameter in (18) with an absolute

constant C > 0. Then we conclude the proof of Lemma J.1.
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J.10. Proof of Lemma J.5

Proof. The proof of Lemma J.5 is adapted from that of Lemma D.1 in (Cai et al., 2020).

Lemma J.6 (Concentration of Self-Normalized Process). Let
{
F̃t

}∞
t=0

be a filtration and {ηt}∞t=1 be an R -valued stochastic
process such that ηt is F̃t -measurable for any t ≥ 0. Moreover, we assume that, for any t ≥ 0, conditioning on F̃t, ηt is a
zero-mean and σ-sub-Gaussian random variable with the variance proxy σ2 > 0, that is,

E
[
exp(ληt) | F̃t

]
≤ eλ

2σ2/2

for any λ ∈ R. Let {Xt}∞t=1 be an Rd -valued stochastic process such that Xt is F̃t -measurable for any t ≥ 0. Also, let
Y ∈ Rd×d be a deterministic and positive-definite matrix. For any t ≥ 0, we define

Ȳt = Y +

t∑
s=1

XsX
⊤
s , St =

t∑
s=1

ηs ·Xs.

For any δ > 0, it holds with probability at least 1− δ that

∥St∥2Ȳ −1
t
≤ 2σ2 · log

(
det
(
Ȳt
)1/2

det(Y )−1/2

δ

)
for any t ≥ 0.

Proof. See Theorem 1 of (Abbasi-Yadkori et al., 2011) for a detailed proof.

By the definition of filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2] in (83) and Markov property, we have

E
[
V̂ τ
h+1(s

τ
h+1)

∣∣Fτ,h,1

]
=
(
PhV̂

τ
h+1

)
(sτh, a

τ
h). (135)

Conditioning on Fτ,h,1, the only randomness comes from sτh+1, while V̂ τ
h+1 is a deterministic function determined

by Q̂τ
h+1 and πτ

h+1, which are further determined by the historical data in Fτ,h,1. For simiplicity of notations, we
define ητ,h = V̂ τ

h+1

(
sτh+1

)
−
(
PhV̂

τ
h+1

)
(sτh, a

τ
h) . By (135), conditioning on Fτ,h,1, ητ,h is a zero-mean random variable.

Moreover, as V̂ τ
h+1 ∈ [0, H

√
d], conditioning on Fτ,h,1, ητ,h is an (H

√
d/2)-sub-Gaussian random variable defined in

Lemma J.6. Meanwhile, ητ,h is Fk,h,2 -measurable, since Fτ,h,1 ⊆ Fk,h,2 for any τ ∈ [k − 1]. Hence, for any fixed
h ∈ [H], by Lemma J.6, it holds with probability at least 1− δ/(4H) that∥∥∥ k−1∑

τ=1

φτ
h (s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)−

(
PhV̂

τ
h+1

)
(sτh, a

τ
h)
)∥∥∥2

(Λk
h)

−1

≤ H2d

2

(1
2
log(det(Λk

h))−
1

2
log(det(I)) + log(4H/δ)

)
.

(136)

Recall that in (110) we derive that

det(ΛK+1
h ) ≤

(
det
(
(Hd3/2R · Vol(S) + 1) · I

))d
. (137)

By plugging (137) into (136) and a union bound argument, we obtain with probability at least 1− δ/2 that∥∥∥ k−1∑
τ=1

φτ
h (s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)−

(
PhV̂

τ
h+1

)
(sτh, a

τ
h)
)∥∥∥2

(Λk
h)

−1

≤ H2d

2

(
d · log((Hd3/2R · Vol(S) + 1) + log(4H/δ)

)
,

which implies that∥∥∥ k−1∑
τ=1

φτ
h (s

τ
h, a

τ
h) ·

(
V̂ τ
h+1(s

τ
h+1)−

(
PhV̂

τ
h+1

)
(sτh, a

τ
h)
)∥∥∥2

(Λk
h)

−1
≤ C ′′

√
H2d2 · log(HdK/δ),

for any (k, h) ∈ [K]× [H] with probability at least 1− δ/4. Here C ′′ > 0 is an absolute constant. By this, we conclude the
proof of Lemma J.5.
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K. Proofs of Supporting Lemmas: PGAP
K.1. Proof of Lemma E.1

Proof. We show that {Γh}Hh=1 constructed in Lemma E.1 are the ξ-uncertainty qualifiers for the initially estimated transition
kernels {P̃h}Hh=1 constructed in (35). By the definition of Λh in (35), we have

Ph(s
′ | s, a) = ϕ(s, a, s′)⊤θh

= ϕ(s, a, s′)⊤Λ−1
h (

N2∑
τ=1

∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ + λ · θh).

(138)

By (138), we have

Ph(s
′ | s, a)− P̃h(s

′ | s, a)

= Ph(s
′ | s, a)− ϕ(s, a, s′)⊤θ̃h

= ϕ(s, a, s′)⊤Λ−1
h

( N2∑
τ=1

( ∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ − ϕ(sτh, aτh, sτh+1)

))
︸ ︷︷ ︸

(i)

+ λ · ϕ(s, a, s′)⊤Λ−1
h θh︸ ︷︷ ︸

(ii)

.

(139)

We introduce the following lemma to upper bound term (i) on the RHS of (139).

Lemma K.1. Let λ = 1 in the construction of P̃h and Γh in (35) and (36). By Assumption 2.1 , the event that

∥∥∥ N2∑
τ=1

( ∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ − ϕ(sτh, aτh, sτh+1)

)∥∥∥
Λ−1

h

≤
√
c1R2 · (d log(HdN2/δ))

holds for all (s, a, h) ∈ S ×A× [H] with probability at least 1− δ. Here c1 is an absolute constant.

Proof. See proof in Appendix K.5.

For term (i) on the RHS of (139), by Cauchy-Schwartz inequality, it holds with probability at least 1− ξ/2 that

|(i)| ≤ ∥ϕ(s, a, s′)∥Λ−1
h
·
∥∥∥ N2∑

τ=1

( ∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ − ϕ(sτh, aτh, sτh+1)

)∥∥∥
Λ−1

h

≤ c1R ·
√
d log(dHN2/ξ) · ∥ϕ(s, a, s′)∥Λ−1

h
,

(140)

where the last inequality follows from Lemma K.1.

For term (ii) in (139), setting λ = 1, we have

|(ii)| ≤ ∥ϕ(s, a, s′)∥Λ−1
h
· ∥θh∥Λ−1

h
≤
√
d · ∥ϕ(s, a, s′)∥Λ−1

h
, (141)

where the last inequality follows from the facts that ∥Λ−1
h ∥2 ≤ 1 and ∥θh∥2 ≤

√
d for all h ∈ [H]. Plugging (140) and

(141) into (139), it holds with probability at least 1− ξ/2 that

|Ph(s
′ | s, a)− P̃h(s

′ | s, a)| ≤ cR
√
d log(HdN2/ξ) · ∥ϕ(s, a, s′)∥Λ−1

h

≤ κ · ∥ϕ(s, a, s′)∥Λ−1
h

for any h ∈ [H] and (s, a, s′) ∈ S ×A× S . Here κ = cR
√
d log(dN2) is the scaling parameter with an absolute constant

c > 0. We conclude the proof of Lemma E.1.
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K.2. Proof of Lemma I.2

Proof. We establish the lower and upper bounds for ιk,r
µ

h as follows, respectively.

Lower Bound. First we prove by backward induction that V̂ k,rµ

h ∈ [0, (H − h + 1)
√
d] for any h ∈ [H]. The base

case h = H holds, since V̂ k,rµ

H+1 = 0 and rµh ∈ [0,
√
d]. We assume that V̂ k,rµ

h+1 ∈ [0, H − h]. For the case for h,
recall that {P̂h( · | s′, a′)}Hh=1 is a set of probability measures on the state space S for (s′, a′) ∈ S × A, which implies
that P̂hV̂

k,rµ

h+1 ∈ [0, (H − h)
√
d ]. Note that Γh ≥ 0, hence we have that Q̂k,rµ

h (s, a) ∈ [0, (H − h + 1)
√
d]. Then it

holds that V̂ k,rµ

h ∈ [0, H − h], since V̂ k,rµ

h (s) = ⟨Q̂k,rµ

h (s, ·), πk
h(· | s)⟩A for any s ∈ S. By induction, it holds that

V̂ k,rµ

h ∈ [0, (H − h+ 1)
√
d] for any h ∈ [H].

For notational simplicity, we write Q̄k,rµ

h (s, a) = rµh(s, a) + P̂hV̂
k,rµ

h+1 (s, a)− Γh(s, a). From the policy evaluation stage in
Algorithm 3, we have

Q̂k,rµ

h (s, a) = max
{
Q̄k,rµ

h (s, a), 0
}
. (142)

Meanwhile, by the definition of the ξ-uncertainty qualifiers in Definition 3.1, we have rµh +PhV̂
k
h+1 ≥ Q̄

k,rµ

h . Moreover, by
the fact that rµh ∈ [0,

√
d] and V̂ k,rµ

h+1 ∈ [0, (H − h)
√
d], we have rµh + PhV

k,rµ

h+1,πk ∈ [0, (H − h+ 1)
√
d]. Thus, we derive

that
Q̂k

h(s, a) = max{Q̄k,rµ

h (s, a), 0}

≤ max{rµh(s, a) + PhV̂
k,rµ

h+1 (s, a), 0}

= rµh(s, a) + PhV̂
k,rµ

h+1 (s, a),

which implies that ιk,r
µ

h ≥ 0.

Upper Bound. Since we condition on the event E defined in Definition 3.1, we have

Q̄k,rµ

h (s, a) = rµh(s, a) + P̂hV̂
k,rµ

h+1 (s, a)− Γh(s, a))

≤ rµh(s, a) + PhV̂
k,rµ

h+1 (s, a) ≤ H − h+ 1,

where the last inequality follows from the facts that V̂ k,rµ

h+1 (s, a) ≤ (H − h)
√
d and rµh(s, a) ≤

√
d. By (142) we have that

Q̂k,rµ

h (s, a) ≥ Q̄k,rµ

h (s, a). Thus, we obtain that

ιk,r
µ

h (s, a) = (rµh + PhV̂
k
h )(s, a)− Q̂k,rµ

h (s, a)

≤ rµh(s, a) + (Ph − P̂h)V̂
k,rµ

h (s, a) + Γh(s, a)

≤ 2Γh(s, a),

where the last inequality follows from the definition of E . Then we complete the proof of Lemma I.2.

K.3. Proof of Lemma I.3

Proof. Recall that L̂(π, µ) = J̃(πE, µ) − Ĵ(πk, µ). By Assumption 2.1, we know that the function J̃(πE, µ) =
1
N1

∑N1

τ=1

∑H
h=1 ψ(s

E
h,τ , a

E
h,τ )

⊤µh is a linear combination of {µh}Hh=1 and concave. Therefore, to prove that L̂(π, µ)

is concave, it suffices to prove that Ĵ(πk, rµ) is convex for any µh with µ = {µh}Hh=1 ∈ S.

Recall that Ĵ(πk, rµ) = V̂ k,rµ

1 (x), where x is the fixed initial state and V̂ k,rµ

1 defined in (57) is solved by

V̂ k,rµ

H+1(·) = 0

Q̂k,rµ

h (·, ·) = max
{
(rµh + P̂hV̂

k,rµ

h+1 − Γh)(·, ·), 0
}

V̂ k,rµ

h (·, ·) =
〈
Q̂k,rµ

h (·, ·), πk
h(· | ·)

〉
A, for h ∈ [H].

(143)

Our proof relies on the following three basic properties of convex functions:
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(i) If f(u) and g(u) are both convex function for u, then f(u) + g(u) is also convex.

(ii) If f(u) and g(u) are both convex function for u, then max
(
f(u), g(u)

)
=
(
|f(u) + g(u)|+ |f(u)− g(u)|

)
/2 is also

convex.

(iii) If f(u, s) is a convex function for u, then Es∼pf(u, s) is also convex function for u, where p is a distribution.

Now we are ready to prove that Ĵ(πk, µ) is convex for {µh}Hh=1. For the base case where h = 1, observing that
Ĵ(πk, µ) =

〈
Q̂k,rµ

1 (s1, ·), πk
1 (· | s1)

〉
A, by property (ii) and (iii) and (143), it suffices to prove that rµh + P̂1V̂

k,rµ

2 − Γ1

is convex for µ1. Note that {µh}Hh=1 are separate reward parameters and rµh(·, ·) is only determined by µh, it shows that
P̂1V̂

k,rµ

2 −Γ1 is a constant regardless of µh, which implies that P̂1V̂
k,rµ

2 −Γ1 is convex for µ1. Meanwhile, sinceR is linear
to ψ as shown in (9), we know that rµh = ψ⊤µh is also convex for µh. By property (i), we know that Ĵ(πk, µ) = V̂ k,rµ

1 (s1)
is convex for µ1.

For the case when h = H ′, where 2 ≤ H ′ ≤ H , similar to the analysis in the case when h = 1, we can prove that V̂ k,rµ

H′ (sh)

is convex for µH′ . Note that {Γh}Hh=1 defined in (3.1) is independent of {µh}Hh=1, we know that rµH′−1 + P̂H′−1V̂
k,rµ

H′ −
ΓH′−1 is convex for µH′ . By property (ii) and (iii) and (143), we know that V̂ k,rµ

H′−1 is also convex for µH′ . By repeating the
analysis, we know that Ĵ(πk, µ) is convex for µH′ . Therefore, we conclude the proof of Lemma I.3.

K.4. Proof of Lemma I.4

Proof. Since Lemma I.3 shows that L̂(πk, µ) is concave for µh for any h ∈ [H], by the property of concave function, we
have

L̂(πk, µ)− L̂(πk, µk) ≤
H∑

h=1

[
∇µh

L̂(πk, µk)⊤(µh − µk
h)
]
. (144)

Recall that we apply projected gradient ascent method to update {µk
h}Hh=1 in PGAP (Line 3 of Algorithm 3) as

µk+1
h = ProjS

[
µk
h + η∇µh

L̂(πk, µk)
]
, (145)

we obtain that [
µk+1
h − µk

h − η∇µh
L̂(πk, µk)

]⊤
(µh − µk+1

h ) ≥ 0. (146)

Rearranging terms in (146), we have

∇µh
L̂(πk, µk)⊤(µh − µk+1

h ) ≤ − 1

2η

(
(µk+1

h − µk
h)

⊤(µh − µk+1
h )

)
=

1

2η

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)
.

(147)

By adding the term ∇µh
L̂(πk+1, µk)⊤(µk+1

h − µk
h) on both sides of (147), we obtain that

∇µh
L̂(πk, µk)⊤(µh − µk

h) =
1

2η

(
∥µk

h − µh∥22 − ∥µk+1
h − µh∥22 − ∥µk+1

h − µk
h∥22
)

+∇µh
L̂(πk, µk)⊤(µk+1

h − µk
h).

(148)

Note that η is positive and by applying Cauchy-Schwartz inequality on the second term of the right-hand side of (148), we
derive that

∇µh
L̂(πk, µk)⊤(µk+1

h − µk
h) ≤ ∥∇µh

L̂(πk, µk)∥2∥µk+1
h − µk

h∥2. (149)

From the reward update process in (145), we observe that

∥µk+1
h − µk

h∥2 ≤ ∥∇µh
L̂(πk, µk)∥2. (150)
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By plugging (148), (149), and (150) into (144), we have

K∑
k=1

[
L̂(πk, µ)− L̂(πk, µk)

]
≤

K∑
k=1

H∑
h=1

[ 1
2η
||µk+1

h − µh||22 +
1

2η
||µk+1

h − µh||22

− 1

2η
||µk+1

h − µk
h||22 + η∥∇µh

L̂(πk, µk)∥22
]
,

which concludes the proof of Lemma I.4.

K.5. Proof of Lemma K.1

Proof. Before we prove Lemma K.1, we introduce the following lemma to generalize the concentration of self-normalized
vector-valued process in (Abbasi-Yadkori et al., 2011) to function-valued process.

Lemma K.2. Let Ω be a probability space and {ηt}∞t=1 be a function-valued stochastic process with a filtration {Mt}∞t=0,
i.e. ηt : S × Ω→ R. We assume that ηt | Gt−1 is zero-mean and σ-sub-Gaussian, that is,

E[ηt(s) | Gt−1] = 0, log
(
E
[
exp

( ∫
S
g(s)ηt(s)ds

) ∣∣Gt−1

])
≤ 1

2
∥g∥2∞ · σ2,

for any s ∈ S and function g : S → R. Let {Xt}∞t=0 be an vector-function-valued stochastic process where Xt : S × Ω→
Rd, Xt ∈ Mt−1. We also assume that ∥λ⊤Xt∥∞,S ≤ R · ∥λ⊤Xt∥2,S a.s. for all λ ∈ Rd. Let V ∈ Rd×d be a positive
definite matrix and V̄t =

∑t
τ=1

∫
Xτ (s)Xτ (s)

⊤ds. We also define

St =

t∑
τ=1

∫
S
Xτ (s)ητ (s)ds.

Then for any δ > 0 and t > 0, it holds with probability at least 1− δ that

∥St∥2V̄ −1
t
≤ 2(σR)2 · log

(
det(V̄t)

1/2

δ det(V )1/2

)
.

Proof. See Appendix K.5.1 for a detailed proof.

We consider the filtration {Fh,τ}h∈[H],τ∈[N2] defined in §2.2. For any function f : S → R, by Holder inequality, it holds
that ∣∣∣ ∫

S
f(s′)

(
Ph(s

′ | sτh, aτh)− δsτh+1
(s′)
)
ds′
∣∣∣ ≤ 2∥f∥∞. (151)

By the property of Dirac function, we have

E[δsτh+1
(s′) | Fh,τ ] = Ph(s | sτh, aτh). (152)

Combining (151) and (152), we verify the condition of Lemma K.2 as follows,

log

(
E
[
exp

(∫
S
f(s′)

(
Ph(s

′ | sτh, aτh)− δsτh+1
(s′)
)
ds′
)∣∣∣Fh,τ

])
≤ 2∥f∥2∞.

Note that ϕ(sτh, a
τ
h, s

′) is Fh,τ -measurable and δsτh+1 is Fh+1,τ -measurable, we apply Lemma K.2 with Xτ = ϕ(sτh, a
τ
h, ·)

and ητ = Ph(· | sτh, aτh)− δsτh+1
, which implies that

∥∥∥ N2∑
τ=1

[ ∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ − ϕ(sτh, aτh, sτh+1)

]∥∥∥2
Λ−1

h

≤ 8R2 · log
(
H/δ · det(Λh)

1/2 det(λI)−1/2
)
,

(153)

with probability at least 1− δ/H .
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We now upper bound the term det(Λh). By the definition of Λh in (35), it holds for any y ∈ Rd that

y⊤Λhy = λ∥y∥22 +
N2∑
τ=1

∫
S
|y⊤ϕ(sτh, aτh, s′)|2ds′ ≤ (λ+ dN2)∥y∥22,

where the last inequality follows from Assumption 2.1. Hence we derive that ∥Λh∥2 ≤ λ+ dN2, which implies that

det(Λh) ≤ ∥Λh∥d2 ≤ (λ+ dN2)
d. (154)

Setting λ = 1, combining (153) and (154), it holds with probability at least 1− p/H that

∥∥∥ N2∑
τ=1

( ∫
S
ϕ(sτh, a

τ
h, s

′)Ph(s
′ | sτh, aτh)ds′ − ϕ(sτh, aτh, sτh+1)

)∥∥∥2
Λ−1

h

≤ 8R2 ·
(
1/2 · d log(1 + dN2) + log(H/p)

)
≤ c1R2 ·

(
d log(HdN2/p)

)
.

(155)

Here c1 > 0 is an absolute constant. By the union bound for h ∈ [H], we know that (155) holds for all h ∈ [H] with
probability at least 1− p. Thus, we complete the proof of Lemma K.1.

K.5.1. PROOF OF LEMMA K.2

Proof. The proof is a generalization of that in (Abbasi-Yadkori et al., 2011). For notational simplicity, we denote by
⟨f, g⟩ =

∫
S f(s)g(s)ds the inner product of any functions f and g. We use the same definitions and notations as Lemma

K.1. First, we introduce the following lemmas.

Lemma K.3. Let β ∈ Rd be a vector and

Mβ
t = exp

{ t∑
τ=1

(
⟨β⊤Xτ , ητ ⟩

σR
− ⟨β

⊤Xτ , β
⊤Xτ ⟩

2

)}
.

Let T be a stopping time with respect to the filtration {Mt}∞t=1. Then Mβ
T is almost surely well-defined and E[Mβ

T ] ≤ 1.

Proof. We first show that {Mβ
t }∞t=0 is a supermartingale. Let

Gβ
τ = exp

(
⟨β⊤Xτ , ητ ⟩

σR
−
∥β⊤Xτ∥22,S

2

)
.

By the conditional sub-Gaussian property of ητ and the fact that ∥β⊤Xt∥∞,S ≤ R · ∥β⊤Xt∥2,S , we have

E[Gβ
τ |Mt−1] ≤ exp

(∥β⊤Xτ∥2∞,S

2R
−
∥β⊤Xτ∥2∞,S

2R

)
= 1.

Thus, we have E[Mβ
t |Mt−1] = Mβ

t−1 · E[Gβ
τ |Mt−1] ≤ Mβ

t−1, which implies that {Mβ
t }∞t=0 is a supermartingale and

E[Mβ
t ] ≤ 1. We then show that Mβ

T is well-defined, where T is a stopping time. By the convergence theorem of nonnegative
supermartingales, it holds that Mβ

∞ = limt→∞Mβ
t . Thus, Mβ

T is well-defined whether T <∞ or not. Finally, to show that
E[Mβ

T ] ≤ 1, we apply Fatou’s lemma and obtain that

E[Mβ
τ ] = E[ lim

t→∞
Mβ

T∧t] ≤ lim inf
t→∞

E[Mβ
T∧t] ≤ 1.

Thus, we conclude the proof of Lemma K.3.

Lemma K.4. Let T be a stopping time with respect to {Mt}∞t=0, then it holds with probability at least 1− δ that

∥ST ∥2V̄ −1
T

> 2(σR)2 · log
(
det(V̄T )

1/2

δ det(V )1/2

)
.
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Proof. Without loss of generality, we assume that σ ·R = 1. We define

Vt =

t∑
τ=1

∫
Xτ (s)Xτ (s)

⊤.

Then, we have
Mβ

t = exp(β⊤St − ∥β∥2Vt
/2).

By Lemma K.3, we have that E[Mβ
t ] ≤ 1. Let Λ be an Rd-valued Gaussian random variable with covariance matrix V −1.

Moreover, we assume that Λ is independent of {Mt}∞t=0. Let Mt = E[MΛ
t |M∞], whereM∞ = σ(∪∞τ=0Mτ ). Notice

that E[MT ] = E[E[MΛ
T |Λ]] ≤ 1. We denote by p the density of Λ and by v(A) =

∫
exp(−x⊤Ax)dx =

√
(2π)d/ det(A)

for positive definite matrix A ∈ Rd×d. Then we obtain that

Mt =

∫
exp(β⊤St − ∥β∥2Vt

/2)p(β)dβ

=

∫
exp(−∥β − V −1

t St∥2Vt
/2 + ∥St∥2V −1

t
)p(β)dβ

= v(V )−1 · exp(∥St∥2V −1
t
/2) ·

∫
exp(−∥β − V −1

t St∥2Vt
/2− ∥β∥2V /2)dβ.

(156)

Note that
∥β − V −1

t St∥2Vt
+ ∥β∥2V /2 = ∥β − V̄ −1

t St∥2Vt
+ ∥V −1

t St∥2Vt
− ∥St∥2Vt

= ∥β − V̄ −1
t St∥2Vt

+ ∥St∥2V −1
t
− ∥St∥2Vt

.
(157)

Plugging (157) into (156), we have that

Mt = v(V )−1 · exp(∥St∥2V̄ −1
t
/2) ·

∫
exp(−∥β − V̄ −1

t St∥2V̄t
/2)dβ

=
v(V̄t)

v(Vt)
· exp(∥St∥2V̄ −1

t
/2)

=
√

det(V )/ det(V̄t) · exp(∥St∥2V̄ −1
t
/2).

Thus, we have

P
{
∥ST ∥2V̄ −1

T

> 2 log

(
det(V̄T )

1/2

δ det(V )1/2

)}
= P(δMT > 1) ≤ E[δMT ] ≤ δ,

which completes the proof of Lemma K.4.

We now prove Lemma K.2 as follows. Define

T = inf

{
t ≥ 0: 2 log

(
det(V̄t)

1/2

δ det(V )1/2

)
< ∥St∥2V̄ −1

t

}
for a fixed δ > 0. Then it holds that

P
{
∃t ≥ 0, ∥St∥2V̄ −1

t
> 2 log

(
det(V̄t)

1/2

δ det(V )1/2

)}
= P(T <∞)

= P
{
∥ST ∥2V̄ −1

T

> 2 log

(
det(V̄T )

1/2

δ det(V )1/2

)
, T <∞

}
≤ P

{
∥ST ∥2V̄ −1

T

> 2 log

(
det(V̄T )

1/2

δ det(V )1/2

)}
≤ δ,

which completes the proof of Lemma K.2.


