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Abstract

Attributes skew hinders the current federated
learning (FL) frameworks from consistent opti-
mization directions among the clients, which in-
evitably leads to performance reduction and unsta-
ble convergence. The core problems lie in that: 1)
Domain-specific attributes, which are non-causal
and only locally valid, are indeliberately mixed
into global aggregation. 2) The one-stage opti-
mizations of entangled attributes cannot simul-
taneously satisfy two conflicting objectives, i.e.,
generalization and personalization. To cope with
these, we proposed disentangled federated learn-
ing (DFL) to disentangle the domain-specific and
cross-invariant attributes into two complementary
branches, which are trained by the proposed al-
ternating local-global optimization independently.
Importantly, convergence analysis proves that the
FL system can be stably converged even if in-
complete client models participate in the global
aggregation, which greatly expands the applica-
tion scope of FL. Extensive experiments verify
that DFL facilitates FL with higher performance,
better interpretability, and faster convergence rate,
compared with SOTA FL methods on both man-
ually synthesized and realistic attributes skew
datasets.

1. Introduction

Federated learning (McMahan et al., 2017), as a decentral-
ized and privacy-preserving machine learning framework,
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Figure 1. Taking bird classification as an example to illustrate the
principle of DFL. The domain-specific attributes, such as the blue
sky or trees, are stripped out and contributed locally. The invariant
aggregation employs the partial client model, which only focuses
on the invariant and causal attributes, like the bird itself. The
two-branch local model is employed in DFL to replace the single-
branch in FL, which shows in the right part.

aims to build a client-server system that can adapt to dif-
ferent distributions without access to local raw data. A
key challenge lies in the Non-i.i.d factors between clients’
data domains. The huge distribution shift comes from
the diverse contextual information across devices/locations,
which causes suboptimal or detrimental performance. In
addition, the aggregated global model could be unstable
and even nonconvergent due to the different optimization
directions of client models. To mitigate this problem, a
plethora of techniques are introduced to adjust the system,
such as local model adaptation, global reweighting aggrega-
tion, and optimization direction correction. These methods
make FL rapidly adapt to the local distributions and corre-
sponding tasks. Although effective, the basic problem still
exists. Especially, the attributes skew, as one challenging
factor of Non-i.i.d, indicates the scenarios in which the rep-
resentation distribution across attributes on each client is
different from each other. The domain-specific attributes
are inevitably extracted by the single-branch client model
and mixed into the global aggregation. These attributes are
decision-correlated but not causal, which is only locally
valid. It leads to essential differences in the optimization
directions of client models. Taking bird classification as
an example in the left part of Figure 1. The attributes of
the bird itself and the blue sky are extracted by the client
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network simultaneously by the local extractor, which both
contribute to the task decision in the flying birds’ domain.
Unfortunately, this blue sky as domain-specific attributes
will be infused into the global server by model aggregation.
It causes performance degradation to the domain where
birds all sit on tree branches. Because there is no blue sky
in this data domain. This phenomenon of attributes skew
distribution is widespread, which causes concerns about the
robustness and the trustworthiness of the FL system.

To mitigate this negative transfer! caused by attributes skew,
we proposed disentangled federated learning (DFL). The
motivation is to spin off the domain-specific attributes from
model aggregation. However, the single-branch-based client
model of the traditional FL framework cannot support DFL.
The reason is that the specific and invariant attributes are
entangled and extracted by a single extractor. Although
these two attributes both contribute to the task decision lo-
cally, the huge differences are that: 1) invariant attributes
are intrinsic and causal, which is cross-domain generic; 2)
specific attributes are only locally valid, which may bring
performance degradation to other domains. Thus, DFL ap-
plied two complementary branches client model, which are
presented in the right part of Figure 1. These two attributes
are disentangled by mutual information (MI) constraints and
focused by two branches respectively. 1) Domain-specific
branch is only trained locally. 2) Domain-invariant branch
is applied for global aggregation. Except for redesigning
the local model, the other two innovations are proposed as
invariant aggregation and diversity transferring.

Invariant aggregation is proposed to employ the local
invariant branch for global model aggregation. The MI
maximization between the local invariant branch and the
global invariant model restricts clients’ optimizations in the
same direction. The combination of the invariant aggre-
gation and MI constraint drives the local invariant branch
to focus on the intrinsic and causal attributes (e.g. bird it-
self). In the theory of (Scholkopf et al., 2012; Peters et al.,
2016), these cross-domain invariant attributes can provide
transferable and reliable knowledge, which leads to proper
domain adaptation and lighter catastrophic forgetting. In
addition, MI minimization is employed to disentangle the in-
variant and specific locally. Although these domain-specific
attributes are dropped out from model aggregation, they
can still contribute to the final decision (e.g., things that
fly in the blue sky are most likely birds). It is not wise to
throw these task-correlated domain-specific attributes away
directly. Diversity transferring is proposed to make full
use of these attributes, enhancing the diversity of represen-
tation. In theoretical analysis, this diversity augmentation
has proved to mitigate overfitting and correct inaccurate

'Negative transfer, i.e., leveraging other clients’ knowl-
edge undesirably reduces the learning performance of the local
client (Wang et al., 2019b).

distributions (Shorten & Khoshgoftaar, 2019). Specifically,
the diverse representations are extracted by combining the
local invariant extractor and transferred specific extractors.
Thus, the local client model is forced to pay attention to
these tailed attributes, which the local extractor may ignore
but has a decision contribution (e.g. trees may appear in the
blue-sky domain).

We emphasize that two-stage training in an alternating man-
ner is an essential innovation because it changes the opti-
mization purpose of FL. Compared with one-stage global
optimization, alternating optimization easily finds the opti-
mal solution of the global invariant model based on multiple
local optimal points. Specifically, part of the optimization
process is separated into local clients and is personalized
trained. It provides both generalized adaption and personal-
ized performance. Besides, the theoretical analysis proves
that DFL is convergent even if incomplete client models
participate in the global aggregation, based on the bounded
gradient of the remaining model part. As far as we know,
this work is the first to provide the convergence guarantee
of partial aggregation. With sufficient theoretical guaran-
tees, we design the following experiments: 1) Clarification
experiments demonstrate the unstable convergence and per-
formance degradation with the introduction of manually
synthesized attributes skew in Colored-MNIST (Arjovsky
et al., 2019); 2) Verification experiments verify the superi-
ority of DFL on convergence rate and classification accuracy,
compared with other SOTA personalized FL. methods. In
addition, the ablation study proves the complementary effec-
tiveness of invariant aggregation and diversity transferring;
3) Application experiments on DomainNet (Peng et al.,
2019a) and Office-Caltech (Gong et al., 2012) point out that
DFL can adapt to the realistic attributes skew. The accura-
cies are all greatly improved in different backbones. The
visualization on DomainNet verifies that the specific and in-
variant attributes can be successfully disentangled, proving
the interpretability improvement by DFL. In summary, the
main contributions of the paper are as follows:

 Disentangled federated learning (DFL) is proposed to
overcome the attributes skew essentially, which spins
off the domain-specific attributes from model aggrega-
tion.

e Theory deduction proves the convergence analysis
of invariant aggregation based on the bounded local-
specific gradient.

* Invariant aggregation and diversity transferring are pro-
posed to correct the optimization directions and aug-
ment representation diversity.

* Alternating local-global optimization is proposed to
simultaneously meet generalized adaption and person-
alized performance.
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2. Related Work

Federated learning research with clients’ Non-i.i.d distri-
butions aims to enhance the stability and convergence of FL
system which suffers from distribution shift caused by Non-
i.i.d factors. Several kinds methods have been proposed
from different perspectives: 1) Local model adaptation
is proposed to adjust the local model for heterogeneous
distributions, such as fine-tuning (Wang et al., 2019a), Meta-
learning-based different initialization (Fallah et al., 2020;
Chen et al., 2018), and personalized prediction layers (Ari-
vazhagan et al., 2019; Liang et al., 2020), etc. 2) Global
reweighting aggregation is introduced to employ different
global aggregated weights for each client. The weights can
be based on data distribution similarity (Huang et al., 2021),
local model contribution differences (Zhang et al., 2020),
and same consensus focus (Feng et al., 2020), etc. 3) Opti-
mization direction correction is proposed to mitigate the
gap between local and global models. The additional con-
straints are introduced to the loss function or optimization,
such as regularization terms (Hanzely & Richtérik, 2020),
proximal terms (Li et al., 2018), gradient correction (Acar
etal., 2021), Moreau Envelopes (Dinh et al., 2020), attentive
message (Huang et al., 2021), control variate (Karimireddy
et al., 2020), etc. Some adversarial-based methods are pro-
posed, such as domain adaptation (?) and debiasing (Hong
etal., 2021).

MlI-based disentanglement aims at interpreting underlying
interaction factors. MI can measure the degree of interde-
pendence between any two variables. MI can be applied
to 1) quantify the separation of distributions in learning bi-
nary hash codes by (Cakir et al., 2017; 2019); 2) perform
unsupervised learning (Hjelm et al., 2018); 3) disentangle
the specific features in advertising training by (Peng et al.,
2019b). In addition, the MI maximization techniques are
expended by (Belghazi et al., 2018) via a neural network to
estimate MI between two random variables. In this work, MI
is employed for two intentions: 1) disentanglement of local
specific and invariant attributes; 2) similarity enhancement
of local and global invariant model.

3. Disentangled Federated Learning

Rethinking the limitation of single-branch model sharing,
we proposed alternating training, which changes the opti-
mization purpose in Section 3.1. Two innovations, invariant
aggregation and diversity transferring, are proposed to miti-
gate the attributes skew, and the MI-based disentanglement
technique is introduced in Section 3. DFL supported by
these methods disentangled the specific and invariant at-
tributes. First, we provide the convergence analysis of DFL
in Section 3.3, which proves that the FL system is conver-
gent even if the shared model is incomplete.

3.1. Definition of Alternating Optimization

The task of FL can be defined as follows:

mjn{f(w) = ;th(w)} (1)

k=1

The optimization of a local client is to minimize the loss
of each client k 2 jKj. The key problem of this purpose is
the Non-i.i.d dilemma in FL. Specifically, the personalized
loss minimization pushes the client parameter converging to
the local optimal point following the client data distribution
D,. However, the model aggregation of FL drives server
model gradient descent toward the global direction, which
has a huge direction shift from the local client’s optimiza-
tion D; & Dj & D ;1616 ) 6 K. The reason is
that the domain-specific and invariant attributes are entan-
gled and indiscriminately extracted by the single-branch
local extractor. It leads to generalization problems. The MI-
based disentanglement is introduced to disentangle these
two attributes into two local branches, which are optimized
independently. The client network is divided as representa-
tion extractors, i.e., the invariant branch E'c‘ and the specific
branch EX. The prediction module P takes the concate-
nated representations from these two branches as input for
final decisions. The entire model framework is shown in
Figure 2.

It should be emphasized that attribute disentanglement is
leveraged to break through the limitation of one-stage global
optimization of traditional FL. methods. One-stage global
optimization strives to find an optimal solution that simulta-
neously meets two conflicting objectives: generalized adap-
tion and personalized performance. However, such efforts
are usually in vain. To overcome this problem, we proposed
two-stage alternating optimization. Specifically, only the
invariant extraction branch of each client participates in the
global model aggregation. The specific branches are opti-
mized locally. The optimization purpose of DFL is changed
to:

C P

— N ;
min TF) TN k= Minhi(t)

e L =M(Ig; Tis) = Pele + Pslics

2

where M represents the model combination of two branches,
1. is the parameter of the aggregated invariant model. hy is
local loss function. P; and Pg are the weighting vectors of
an invariant and specific model in local combinations. The
minimized local specific branch model is defined as I, .,
which satisfies the condition as:

s = argminhic(M (e i) 3)

Compared with the one-stage methods, the optimization
of local specific branches in DFL is locally trained at first.






