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Abstract
Attributes skew hinders the current federated
learning (FL) frameworks from consistent opti-
mization directions among the clients, which in-
evitably leads to performance reduction and unsta-
ble convergence. The core problems lie in that: 1)
Domain-specific attributes, which are non-causal
and only locally valid, are indeliberately mixed
into global aggregation. 2) The one-stage opti-
mizations of entangled attributes cannot simul-
taneously satisfy two conflicting objectives, i.e.,
generalization and personalization. To cope with
these, we proposed disentangled federated learn-
ing (DFL) to disentangle the domain-specific and
cross-invariant attributes into two complementary
branches, which are trained by the proposed al-
ternating local-global optimization independently.
Importantly, convergence analysis proves that the
FL system can be stably converged even if in-
complete client models participate in the global
aggregation, which greatly expands the applica-
tion scope of FL. Extensive experiments verify
that DFL facilitates FL with higher performance,
better interpretability, and faster convergence rate,
compared with SOTA FL methods on both man-
ually synthesized and realistic attributes skew
datasets.

1. Introduction
Federated learning (McMahan et al., 2017), as a decentral-
ized and privacy-preserving machine learning framework,
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Figure 1. Taking bird classification as an example to illustrate the
principle of DFL. The domain-specific attributes, such as the blue
sky or trees, are stripped out and contributed locally. The invariant
aggregation employs the partial client model, which only focuses
on the invariant and causal attributes, like the bird itself. The
two-branch local model is employed in DFL to replace the single-
branch in FL, which shows in the right part.

aims to build a client-server system that can adapt to dif-
ferent distributions without access to local raw data. A
key challenge lies in the Non-i.i.d factors between clients’
data domains. The huge distribution shift comes from
the diverse contextual information across devices/locations,
which causes suboptimal or detrimental performance. In
addition, the aggregated global model could be unstable
and even nonconvergent due to the different optimization
directions of client models. To mitigate this problem, a
plethora of techniques are introduced to adjust the system,
such as local model adaptation, global reweighting aggrega-
tion, and optimization direction correction. These methods
make FL rapidly adapt to the local distributions and corre-
sponding tasks. Although effective, the basic problem still
exists. Especially, the attributes skew, as one challenging
factor of Non-i.i.d, indicates the scenarios in which the rep-
resentation distribution across attributes on each client is
different from each other. The domain-specific attributes
are inevitably extracted by the single-branch client model
and mixed into the global aggregation. These attributes are
decision-correlated but not causal, which is only locally
valid. It leads to essential differences in the optimization
directions of client models. Taking bird classification as
an example in the left part of Figure 1. The attributes of
the bird itself and the blue sky are extracted by the client
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network simultaneously by the local extractor, which both
contribute to the task decision in the flying birds’ domain.
Unfortunately, this blue sky as domain-specific attributes
will be infused into the global server by model aggregation.
It causes performance degradation to the domain where
birds all sit on tree branches. Because there is no blue sky
in this data domain. This phenomenon of attributes skew
distribution is widespread, which causes concerns about the
robustness and the trustworthiness of the FL system.

To mitigate this negative transfer1 caused by attributes skew,
we proposed disentangled federated learning (DFL). The
motivation is to spin off the domain-specific attributes from
model aggregation. However, the single-branch-based client
model of the traditional FL framework cannot support DFL.
The reason is that the specific and invariant attributes are
entangled and extracted by a single extractor. Although
these two attributes both contribute to the task decision lo-
cally, the huge differences are that: 1) invariant attributes
are intrinsic and causal, which is cross-domain generic; 2)
specific attributes are only locally valid, which may bring
performance degradation to other domains. Thus, DFL ap-
plied two complementary branches client model, which are
presented in the right part of Figure 1. These two attributes
are disentangled by mutual information (MI) constraints and
focused by two branches respectively. 1) Domain-specific
branch is only trained locally. 2) Domain-invariant branch
is applied for global aggregation. Except for redesigning
the local model, the other two innovations are proposed as
invariant aggregation and diversity transferring.

Invariant aggregation is proposed to employ the local
invariant branch for global model aggregation. The MI
maximization between the local invariant branch and the
global invariant model restricts clients’ optimizations in the
same direction. The combination of the invariant aggre-
gation and MI constraint drives the local invariant branch
to focus on the intrinsic and causal attributes (e.g. bird it-
self). In the theory of (Schölkopf et al., 2012; Peters et al.,
2016), these cross-domain invariant attributes can provide
transferable and reliable knowledge, which leads to proper
domain adaptation and lighter catastrophic forgetting. In
addition, MI minimization is employed to disentangle the in-
variant and specific locally. Although these domain-specific
attributes are dropped out from model aggregation, they
can still contribute to the final decision (e.g., things that
fly in the blue sky are most likely birds). It is not wise to
throw these task-correlated domain-specific attributes away
directly. Diversity transferring is proposed to make full
use of these attributes, enhancing the diversity of represen-
tation. In theoretical analysis, this diversity augmentation
has proved to mitigate overfitting and correct inaccurate

1Negative transfer, i.e., leveraging other clients’ knowl-
edge undesirably reduces the learning performance of the local
client (Wang et al., 2019b).

distributions (Shorten & Khoshgoftaar, 2019). Specifically,
the diverse representations are extracted by combining the
local invariant extractor and transferred specific extractors.
Thus, the local client model is forced to pay attention to
these tailed attributes, which the local extractor may ignore
but has a decision contribution (e.g. trees may appear in the
blue-sky domain).

We emphasize that two-stage training in an alternating man-
ner is an essential innovation because it changes the opti-
mization purpose of FL. Compared with one-stage global
optimization, alternating optimization easily finds the opti-
mal solution of the global invariant model based on multiple
local optimal points. Specifically, part of the optimization
process is separated into local clients and is personalized
trained. It provides both generalized adaption and personal-
ized performance. Besides, the theoretical analysis proves
that DFL is convergent even if incomplete client models
participate in the global aggregation, based on the bounded
gradient of the remaining model part. As far as we know,
this work is the first to provide the convergence guarantee
of partial aggregation. With sufficient theoretical guaran-
tees, we design the following experiments: 1) Clarification
experiments demonstrate the unstable convergence and per-
formance degradation with the introduction of manually
synthesized attributes skew in Colored-MNIST (Arjovsky
et al., 2019); 2) Verification experiments verify the superi-
ority of DFL on convergence rate and classification accuracy,
compared with other SOTA personalized FL methods. In
addition, the ablation study proves the complementary effec-
tiveness of invariant aggregation and diversity transferring;
3) Application experiments on DomainNet (Peng et al.,
2019a) and Office-Caltech (Gong et al., 2012) point out that
DFL can adapt to the realistic attributes skew. The accura-
cies are all greatly improved in different backbones. The
visualization on DomainNet verifies that the specific and in-
variant attributes can be successfully disentangled, proving
the interpretability improvement by DFL. In summary, the
main contributions of the paper are as follows:

• Disentangled federated learning (DFL) is proposed to
overcome the attributes skew essentially, which spins
off the domain-specific attributes from model aggrega-
tion.

• Theory deduction proves the convergence analysis
of invariant aggregation based on the bounded local-
specific gradient.

• Invariant aggregation and diversity transferring are pro-
posed to correct the optimization directions and aug-
ment representation diversity.

• Alternating local-global optimization is proposed to
simultaneously meet generalized adaption and person-
alized performance.
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2. Related Work
Federated learning research with clients’ Non-i.i.d distri-
butions aims to enhance the stability and convergence of FL
system which suffers from distribution shift caused by Non-
i.i.d factors. Several kinds methods have been proposed
from different perspectives: 1) Local model adaptation
is proposed to adjust the local model for heterogeneous
distributions, such as fine-tuning (Wang et al., 2019a), Meta-
learning-based different initialization (Fallah et al., 2020;
Chen et al., 2018), and personalized prediction layers (Ari-
vazhagan et al., 2019; Liang et al., 2020), etc. 2) Global
reweighting aggregation is introduced to employ different
global aggregated weights for each client. The weights can
be based on data distribution similarity (Huang et al., 2021),
local model contribution differences (Zhang et al., 2020),
and same consensus focus (Feng et al., 2020), etc. 3) Opti-
mization direction correction is proposed to mitigate the
gap between local and global models. The additional con-
straints are introduced to the loss function or optimization,
such as regularization terms (Hanzely & Richtárik, 2020),
proximal terms (Li et al., 2018), gradient correction (Acar
et al., 2021), Moreau Envelopes (Dinh et al., 2020), attentive
message (Huang et al., 2021), control variate (Karimireddy
et al., 2020), etc. Some adversarial-based methods are pro-
posed, such as domain adaptation (?) and debiasing (Hong
et al., 2021).

MI-based disentanglement aims at interpreting underlying
interaction factors. MI can measure the degree of interde-
pendence between any two variables. MI can be applied
to 1) quantify the separation of distributions in learning bi-
nary hash codes by (Cakir et al., 2017; 2019); 2) perform
unsupervised learning (Hjelm et al., 2018); 3) disentangle
the specific features in advertising training by (Peng et al.,
2019b). In addition, the MI maximization techniques are
expended by (Belghazi et al., 2018) via a neural network to
estimate MI between two random variables. In this work, MI
is employed for two intentions: 1) disentanglement of local
specific and invariant attributes; 2) similarity enhancement
of local and global invariant model.

3. Disentangled Federated Learning
Rethinking the limitation of single-branch model sharing,
we proposed alternating training, which changes the opti-
mization purpose in Section 3.1. Two innovations, invariant
aggregation and diversity transferring, are proposed to miti-
gate the attributes skew, and the MI-based disentanglement
technique is introduced in Section 3. DFL supported by
these methods disentangled the specific and invariant at-
tributes. First, we provide the convergence analysis of DFL
in Section 3.3, which proves that the FL system is conver-
gent even if the shared model is incomplete.

3.1. Definition of Alternating Optimization

The task of FL can be defined as follows:

min
ω

{
f (ω) :=

1

N

N∑
k=1

hk(ω)

}
(1)

The optimization of a local client is to minimize the loss
of each client k ∈ |K|. The key problem of this purpose is
the Non-i.i.d dilemma in FL. Specifically, the personalized
loss minimization pushes the client parameter converging to
the local optimal point following the client data distribution
D∗

k. However, the model aggregation of FL drives server
model gradient descent toward the global direction, which
has a huge direction shift from the local client’s optimiza-
tion D∗

i ̸= D∗
j ̸= D∗, 1 ⩽ i ̸= j ⩽ K. The reason is

that the domain-specific and invariant attributes are entan-
gled and indiscriminately extracted by the single-branch
local extractor. It leads to generalization problems. The MI-
based disentanglement is introduced to disentangle these
two attributes into two local branches, which are optimized
independently. The client network is divided as representa-
tion extractors, i.e., the invariant branch Ek

c and the specific
branch Ek

s . The prediction module P k takes the concate-
nated representations from these two branches as input for
final decisions. The entire model framework is shown in
Figure 2.

It should be emphasized that attribute disentanglement is
leveraged to break through the limitation of one-stage global
optimization of traditional FL methods. One-stage global
optimization strives to find an optimal solution that simulta-
neously meets two conflicting objectives: generalized adap-
tion and personalized performance. However, such efforts
are usually in vain. To overcome this problem, we proposed
two-stage alternating optimization. Specifically, only the
invariant extraction branch of each client participates in the
global model aggregation. The specific branches are opti-
mized locally. The optimization purpose of DFL is changed
to:

min
ωc

{
f(ωc) :=

1
N

∑N
k=1 min

ωk,s

hk(ωi)

ωi = M(ωc, ωk,s) = Pcωc + Psωk,s

}
(2)

where M represents the model combination of two branches,
ωc is the parameter of the aggregated invariant model. hk is
local loss function. Pc and Ps are the weighting vectors of
an invariant and specific model in local combinations. The
minimized local specific branch model is defined as ω∗

k,s,
which satisfies the condition as:

ω∗
k,s = argmin

ωk,s

hk(M(ωc, ωk,s)) (3)

Compared with the one-stage methods, the optimization
of local specific branches in DFL is locally trained at first.
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Figure 2. The framework of DFL.

Then, the entire local model parameter is ω∗
k = M(ωc, ω

∗
k,s)

based on multiple optimal points ω∗
k,s of local specific

branches. The global purpose turned to:

min
ωc

{
f(ωc) :=

1

N

N∑
k=1

hk(ω
∗
k)

}
(4)

which aims to find the global optimal solution of the in-
variant branch ωc. In summary, one-stage optimization is
divided into two alternating local and global parts. The
advantages are: 1) Finding the optimal global invariant ag-
gregated model with better generalization is easier. 2) The
specific branch is optimized locally, which provides person-
alized adaption. 3) The stability of convergence is enhanced
by alternating local-global optimization.

3.2. Framework

Representation disentanglement: For effective attributes
disentanglement, the MI-based disentanglement tech-
nique (Belghazi et al., 2018) is introduced to disentangle
the local extractors. MI has been applied in two aspects:
1 ) MI maximization between local invariant and global
invariant branches enhance the cross-domain similarity. 2)
MI minimization between local invariant and local specific
branches disentangles the mixed attributes. Thus, the adver-
sarial objective function of the client k model is defined as:

Lk
MI := Is(E

k
s (x

k), Ek
c (x

k))− Ic(E
k
c (x

k), EG
c (xk))

(5)
Deep InfoMax proposed by (Hjelm et al., 2018) is employed
as MI estimation, which is based on Jensen-Shannon esti-
mator, i.e.IJSD(X,Z) = DJS(PXZ ||PXPZ).

Invariant aggregation is proposed to apply the weighted
averaging to the invariant extractors from selected clients

as:

EG
c = ωkEk

c =

K∑
k=1

nk

N
Ek
c (6)

At the beginning of optimization, the aggregated model may
contain inadvertently mixed local domain-specific attributes.
When enough clients participate, one domain-specific at-
tribute is reduced to nk

N in the aggregated model by model
averaging. Thus, for better specific/invariant disentangle-
ment, parameters of the aggregated model are frozen. MI
maximization drives the local invariant branch close to
global aggregation, which abandons the domain-specific
attributes and pays more attention to the cross-domain in-
variant attributes. After that, the optimal local invariant
branch contributes to the global invariant aggregation.

Diversity transferring With the successful disentangle-
ment, the domain-specific attributes are stripped out from
the model aggregation. Most pioneering FL methods di-
rectly ignored these attributes, which causes substantial
waste. The domain-specific attributes contain not only the
personalized requirements of local clients but also the diver-
sities of data distributions. Thus, diversity transferring is
proposed to augment the local representation sets as:{

Rk,j
A

}
:=
{
Ej

s(x
k)
⊕

Ek
c (x

k)|j ∈ |K|
}

(7)

These representations are extracted by combining the local
invariant extractor and cross-domain specific extractors. It
forces the local client to pay attention to other domains’
specific attributes. These attributes may also exist in the
local domain as tail attributes, which are mistakenly ignored
by the local extractor. The representation augmentation
improves the diversity of local distribution in latent space,
mitigating the overfitting and enhancing generalization. Be-
sides, the final loss function of local client k is replaced
with:

hk = Fk(ω) + Is(ω)− Ic(ω)

Fk(ω) = lkCE +
λ

K − 1

K∑
j=1,j ̸=k

lkCE(R
k,j
A )

(8)

where the lCE is the cross-entropy loss; Fk(ω) is the loss
combination of local and augmented representations; Is,
and Ic are MI estimations. λ are hyperparameters, which is
set to 1.0 in the experiments.

Optimization process The entire training consists of lo-
cal and global two-stage alternating optimization. During
each process, the parameters of some model parts are frozen
for more targeted training. In the local process, the local
invariant parameter is frozen for spinning off the specific
attributes into the local specific branch, which is only opti-
mized locally. Then, the optimal local specific and aggre-
gated model parameters are frozen in the global process
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Algorithm 1 Optimization process of DFL.
Input: The model initialization ω0 = M(ω0

c , ω
0
s); The

distributed Non-i.i.d datasets{Dk}Nk=1; Total optimiza-
tion round T ; Number of participating clients K.
for i = 0 to T − 1 do

The client subset of t-th round St is selected from the
N clients.
Send the global aggregation invariant parameter ωt

c to
replace the local invariant branch.
for k ∈ St do

The optimization of the local model is divided into
two steps.
Step 1: Disentanglement of local specific attributes
with freezing the local invariant branch. Client

k finds a ω̂t+1
k = M(ωt

c, ω
t+1,∗
k,s ) which is a

γ−inexact minimizer of:
ωt+1,∗
k,s ≈ argmin

ωk,s

hk(ω
′, ωt

c) where ω′ =

M(ωk,c = ωt
c, ωk,s)

Step 2: Disentanglement of cross-domain invariant
attributes with freezing the local specific branch.

Client k finds a ω̃t+1
k = M(ω̃t+1

k,c , ωt+1,∗
k,s ) which is

a γ−inexact minimizer of:

ω̃t+1
k,c ≈ argmin

ωk,c

hk(ω
′′, ωt

c) where ω′′ =

M(ωk,c, ωk,s = ωt+1,∗
k,s )

end for
Step 3: Invariant aggregation. ω̃t+1

c = Est [ω̃
t+1
k,c ]

end for

for better disentanglement of domain-invariant attributes.
MI maximization drives the local invariant branch to con-
centrate on the decision-casual and cross-domain invariant
attributes. Afterward, the optimal local invariant parame-
ters are sent to the server for the next round of invariant
aggregation. The diversity transfer is employed for repre-
sentation augmentation in both two training stages. The
detailed optimization process is in Algorithm 1, and the
parameter updating is shown in Algorithm 2.

3.3. Convergence Analysis

As the optimization process is alternately performed, the
training process is changed from a one-stage global op-
timization to a two-stage partial optimization. In global
optimization, only part of the extractor from each client
participates in the model aggregation. This work proved the
convergence of the system with the following assumptions:

1. Non-convex and L-Lipschitz smoothness of f :

∥▽f(ω)−▽f(ω′)∥ ⩽ L ∥ω − ω′∥ ,∀ω, ω′ (9)

Algorithm 2 Parameter updating of DFL.
Step 1: ωk,s do not participate in model aggregation,
which only update locally. ωt+1

k,s = ωt
k,s − ηs(P

T
s ▽ω

Fk(ω) +▽ωsIs(ω
t
k,s, ω

t
c))

Step 2:The updating of ωt+1
k,c based on global aggrega-

tion parameter ωt
c. ωt+1

k,c = ωt
c − ηc(P

T
c ▽ω Fk(ω) −

▽ωc
Ic(ω

t
k,c, ω

t
c))

Step 3: invariant aggregation ωt+1
c = 1

K

∑
k∈st

ωt+1
k,c

2. Polyak-Łojasiewicz of Ic, Is:∥∥▽Ic
(
ω, ωt

c

)
−▽Ic

(
ω′, ωt

c

)∥∥ ⩾ µIc ∥ω − ω′∥ ,∀ω, ω′∥∥▽Is
(
ω, ωt

c

)
−▽Is

(
ω′, ωt

c

)∥∥ ⩾ µIs ∥ω − ω′∥ ,∀ω, ω′

(10)
3. µ−strongly convex of hk and Polyak-Łojasiewicz:∥∥∥▽hk(M(ωc, ω

t+1,∗
k,s ), ωt

c)−▽hk(M(ω′
c, ω

t+1,∗
k,s ), ωt

c)
∥∥∥

≥ µ ∥ωc − ω′
c∥

(11)
4. Bounded second moments of Ic, Is gradient:

Ek

[∥∥▽Ic
(
ω, ωt

c

)∥∥2] ⩽ ϵ2c ,∃ϵc

Ek

[∥∥▽Is
(
ω, ωt

c

)∥∥2] ⩽ ϵ2s,∃ϵs
(12)

The definitions of the γ−inexact solution and B-local dis-
similarity are the same as FedProx (Li et al., 2018) in the
Appendix. First, the expected aggregation model parameter
is defined as: ωt+1

c = Ek

[
ωt+1
k,c

]
. Then, we establish the

updating relationship between the expected and empirical
parameters of the aggregation model, using local-global two-
stage optimization. The optimization purpose of the local
and global training processes is defined in Algorithm 1.

Definition 3.1. In client k, local specific optimal param-

eter is ω̂t+1
k = M(ωt

c, ω
t+1,∗
k,s ), and the invariant optimal

parameter is ω̃t+1
k = M(ω̃t+1

k,c , ωt+1,∗
k,s ). Besides, the em-

pirical parameters applied for the updating of client k is
ωt+1
k = M(ωt+1

k,c , ωt+1,∗
k,s ).

With the bounded gradient of local specific optimization and
the empirical updating in the Algorithm 2, The following
inequality can be derived:∥∥∥ω̃t+1

k,c − ωt+1
k,c

∥∥∥ ⩽
γ

µPc

∥∥∥▽hk(ω̂
t+1
k )

∥∥∥∥∥∥ωt+1
k,c − ωt

c

∥∥∥ ⩽
1 + γ

µPc

∥∥∥▽hk(ω̂
t+1
k )

∥∥∥ (13)

Equation (32) verifies that 1) the distance between expected
and empirical of the local invariant extractor’s parameter;
and 2) the local invariant updating are both bounded by the
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gradient of the local specific extractor. Thus, the updating
relationship between the expected and empirical parameters
is derived as:∥∥ωt+1

c − ωt
c

∥∥2 ⩽ Ek

[∥∥∥ωt+1
k,c − ωt

c

∥∥∥2]
⩽

(1 + γ)2

µ2P 2
c

(
2B2

∥∥▽f(ωt
c)
∥∥2 + (8L2P 2

s

µ2
Is

+ 2

)
ϵ2s

)
(14)

After that, the local Lipschitz continuity of the function f is
applied to approximate ωt+1

c .

f
(
ωt+1
c

)
⩽ f

(
ωt+1
c

)
+ L0

∥∥ωt+1
c − ωt+1

c

∥∥
L0 ⩽

∥∥▽f
(
ωt
c

)∥∥+ L
(∥∥ωt+1

c − ωt
c

∥∥+ ∥∥ωt+1
c − ωt

c

∥∥)
(15)

After finishing the derivation process, the convergence of
DFL is obtained as:

Theorem 3.2. Convergence of disentangled federated
learning. Let Assumptions 1-4 hold. Suppose that ωt

c is not
a stationary solution and the local functions FK is B-locally
dissimilar, i.e. B(ωt

c) ⩽ B. If the hyperparameters in α, β
are chosen such that:

α =
ηc
2

+ 2ηcP
2
c B

2 − LB2(1 + γ)2

µ2P 2
c

− 2(1 + γ)B

µPc

√
K

− 2(2
√
2K + 2)L(1 + γ)2B2

Kµ2P 2
c

> 0

β =

√
KµPc(1 + γ) +BL(K + 4

√
2K + 4)(1 + γ)2

KBµ2P 2
c(

4L2P 2
s

µ2
Is

+ 1

)
− 8ηcL

2P 2
c P

2
s

µ2
Is

(16)
then at the t-th round of optimization, the expected decrease
in the global objective is:

Est [f(ω
t+1
c )] ⩽ f(ωt

c)− α
∥∥▽f(ωt

c)
∥∥+ βϵ2s − ηcϵ

2
c

(17)
which means the convergence is that:

1

T

T−1∑
t=0

∥∥▽f(ωt
c)
∥∥ ⩽

1

αT

(
f(ω0

c )− f∗)+ βϵ2s − ηcϵ
2
c

(18)
where f∗ is the minimum value of the problem and the ω0

c

is the initialization of the model.

The convergence proof is detailed in Appendix. As far as
we know, Theorem 3.2 first provides the convergence guar-
antee of partial aggregation. It means that the DFL system is
convergent even if only part of the extractor participates in
the aggregation, based on the bounded gradient of the local
specific branch. Compared with FedAvg, the convergence
rate of DFL can be sped up with better optimization of lo-
cal specific branches. This process is only trained locally,

which reduces the entire time cost with fewer communica-
tion rounds. The other benefits of this theory are that: 1)
The constraint of the client’s model consistency is relaxed,
amplifying the FL application. 2) The incomplete model
makes the raw data reconstruction more difficult, enhancing
privacy security.

4. Experiment
This section consists of three experimental parts: clarifica-
tion, verification, and application. The first part shows the
complex problems caused by attributes skew in FL, which
is the independent component of Non-i.i.d and exists ubiqui-
tously. Clarification experiments clarify that attributes skew
can cause unstable convergence and performance degrada-
tion. Verification experiments focus on manually synthe-
sized attributes skew, which aims to verify the effectiveness,
loss convergence, and performance improvement of DFL
compared with other critical related works. Application
experiments pay attention to the performance of DFL in
datasets with realistic attributes skew, which tries to prove
that DFL can adapt to the practical environment.

Benchmark datasets: The clarification experiments are
performed on the MNIST and colored-MNIST (Arjovsky
et al., 2019). The former is attributes balanced, and the latter
has skewed attributes as different foreground/background
colors in different clients. These digit classification datasets
are both divided into 20 clients. The verification exper-
iments are performed on: 1) colored-MNIST (Arjovsky
et al., 2019) with attributes skew as the background color
(BG color in Table 3). 2) 3dshapes (Burgess & Kim, 2018)
is employed the background colors (BG color in Table 3) or
scales(Scale in Table 3) as attributes skew. The shape is em-
ployed for classification. 3) dSprites (Matthey et al., 2017)
performs object scale classification, with the attributes skew
as orientation (Orientation in Table 3). Besides, the train-
ing sampling ratio in verification experiments is reduced
to increase the classification difficulty. However, one thing
is sure the comparisons are fair for every FL method in
each experiment. The application experiments employ two
datasets: 1) Office-Caltech10 (Gong et al., 2012), which
contains ten overlapping classes from four domains acquired
in different cameras or environments. 2) DomainNet (Peng
et al., 2019a) has 345 overlapping classes from six domains
with different image styles. For both application datasets,
the representation distribution across attributes on each do-
main is different from each other. In addition, both whole
training datasets are employed for distributed training.

Backbones: For clarification and verification, the network
architecture follows as (McMahan et al., 2017). The repre-
sentation extraction networks contain three groups of Conv-
BN-Relu layers. The classifier is composed of two fully
connected layers. For application, the AlexNet (Krizhevsky
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Figure 3. (a) and (b) show the huge accuracy degradation of the MNIST classification with the introduction of attributes skew, in different
FL methods and sampling ratios. Similarly, (c) and (d) represents the unstable convergence of the Colored-MNIST.

Table 1. Top-1 test accuracy of verifications on Colored-MNIST, 3Dshapes, dSprites. BG color means that each client has different floor
color and wall color.

Dataset Attributes clients FedAvg FedProx FedGen DFL
Colored-MNIST BG color 10/20 88.88±0.28 89.93±0.87 93.47±0.26 95.91±0.13

3Dshapes BG color 20/50 98.57±0.46 98.16±0.79 98.38±0.47 99.37±0.09
3Dshapes Scale 10/10 89.34±1.25 89.93±1.43 76.57±9.18 90.38±0.56
dSprites Orientation 20/40 73.55±4.78 71.64±5.23 82.69±1.82 86.74±2.09

Figure 4. Accuracy and cross-entropy loss curves with global com-
munication rounds increase. DFL improves classification perfor-
mance and convergence stability compared with other baseline FL
methods in Colored-MNIST. DFL reaches better performance with
fewer communication rounds.

Table 2. Ablation study of DFL in Colored-MNIST.

Invariant
Aggregation

Diversity
Transferring DFL

10/20
√

95.11±0.13
Ratio=0.5

√
95.29±0.33

BG-color
√ √

96.02±0.30

et al., 2012) without pre-training and ResNet101 (He et al.,
2016) with pre-training are selected as representation extrac-
tion modules. The classifier consists of 3 fully connected
layers and two batch normalization layers.

Comparison Five pioneering FL methods are fairly com-
pared. FedAvg (McMahan et al., 2017) is the classic FL
using simple aggregation. FedProx (Li et al., 2018) em-
ployed regularization terms for optimization correction that

Figure 5. Accuracy curve as client number increases.

Table 3. Top-1 test accuracy of application on Office-Caltech10.
A, C, D , and W are abbreviations for Amazon, Caltech, DSLR
and WebCam.

Dataset Office-Caltech10, Backbone=AlexNet
Methods A C D W Avg
Fedavg 60.64 54.22 87.50 96.61 74.69
FedProx 59.38 53.33 84.38 94.92 73.00
FedBN 69.27 55.00 96.88 97.31 79.61

DFL 73.96 55.56 100.00 98.31 81.96

achieve good personalized performance. FedGen (Zhu et al.,
2021) proposed a data-free knowledge distillation to miti-
gate the distribution shift. FedEnsemble (Shi et al., 2021)
introduced model ensembling to FL using random permu-
tations for updating. FedBN (Li et al., 2021) applied local
batch normalization to alleviate the feature shift.

Configurations: Unless otherwise mentioned, the global
communication round set 200 for clarification/verification
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Figure 6. (a), (b) are the loss curves with different client participation and different local updating epochs.(c), (d) are the accuracy and
cross-entropy loss curves.

Table 4. Top-1 test accuracy of application on DomainNet.

Clipart Infograph Painting Quickdraw Real Sketch Avg
FedAvg DomainNet 77.70 37.29 62.84 73.00 70.67 72.56 65.68
FedProx Backbone 77.71 38.96 62.20 72.50 71.08 71.12 65.60
FedBN =AlexNet 76.43 35.31 65.11 83.60 74.45 74.55 68.24
DFL Top-10 Classes 77.76 41.55 66.88 84.10 76.42 74.65 70.23

FedAvg DomainNet 96.32 60.12 94.83 82.10 95.81 93.68 87.14
FedProx Backbone 96.58 60.27 94.67 82.90 95.15 94.04 87.27
FedBN =ResNet101 97.15 61.34 94.80 87.00 96.63 94.95 88.65
DFL Top-10 Classes 96.20 61.64 95.01 89.60 96.73 95.67 89.14

SingleSet ResNet101 69.3 34.5 66.3 66.8 80.1 60.7 62.95
DFL All 345 Classes 78.4 38.2 71.2 70.4 82.7 68.6 68.25

and 100 for application. The testing sample ratio of verifica-
tion experiments is 0.5, which means half of the images are
used for testing. The training sample ratios are set to: 1) 0.01
or 0.1 for MNIST and Colored-MNIST in the clarification
experiments; 2) 0.5 for Colored-MNIST, 0.01 for 3Dshapes,
and 0.2 for dSprites in verification experiments; 3) 1.0 for
Office-Caltech10 and DomainNet in the application experi-
ments, which means using all training data for FL training.
The data distribution of the training and testing set is the
same in each experiment in one client, but different between
clients. The local updating step is E=20, and the mini-batch
size is B=32. The learning rate lr=0.0.1. The total client
numbers are 20 for Colored-MNIST, 50 for 3Dshapes with
BG color skew, 10 for 3Dshapes with scale skew, 40 for
dSprites, 4 for Office-Caltech10, and 6 for DomainNet.

4.1. Clarification

(a) and (b) of Figure 3 shows huge accuracy degradation
with the introduction of attributes skew. With the decrease
in sampling ratio, the performance damage rapid growth,
which increased from less than 4% at 0.1 ratio to over 10%
at 0.01 ratio. In addition, the negative transfer caused by
the background color attributes skew is worse than the fore-
ground color skew. To further explore the influence of at-
tributes skew on the FL system, the attributes skew and label
skew are mixed, which is closer to reality. The accuracy

curves as (c) and (d) in Figure 3 show both the performance
and convergence are severely damaged in any FL methods,
which even tends to be un-convergent. In summary, the
stability, convergence, and performance of the FL system
suffer from the introduction of attributes skew. Worse yet,
this phenomenon widely exists in reality, which seriously
hinders the application of FL. Thus, It is crucial to delve
into and mitigate the bad influence of attributes skew.

4.2. Verification

Performance: The verification results are shown in Ta-
ble 3. DFL outperforms FedAvg, FedProx, and FedGen on
all three datasets with different attributes skew and differ-
ent classification tasks. Especially, FedGen applied global
representation generation to complement local latent space.
The higher performance of DFL means that the diversity
transferring augmented the local representations with a more
accurate distribution. The accuracy curve as (a) in Figure 4
indicates that DFL provides a faster and more stable perfor-
mance improvement.

Convergence: The cross-entropy loss curve as (b) in Fig-
ure 4 shows that DFL achieves a higher rate and more stable
convergence compared with SOTA FL methods. The small
volatility of the DFL loss curve verifies the similar opti-
mization directions provided by invariant aggregation. The
accuracy and loss curve of (c) and (d) in Figure 6 repre-
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Figure 7. Visualization of DomainNet. The first line shows the
Grad-CAM (Selvaraju et al., 2017) generated by invariant branches,
and the second line shows specific branches.

sent that the convergence is sped up, and the accuracy is
improved with the increase of local specific training epochs.
It also means that the DFL can achieve better performance
with fewer communication rounds. In addition, the influence
of participating clients number increasing is analyzed. The
loss curve as (a) in Figure 6 shows that the convergence is
more stable with more clients participating, although the fi-
nal losses are the same. Similarly, ten local updating epochs
setting achieves the best and fastest convergence compared
with 1 or 100, shown in (b) of Figure 6.

Communication cost: At first, the (c) and (d) of Figure 6
present that the convergence rate is sped up due to better
local specific optimization, which is trained independently
with more local epochs. It means DFL needs fewer com-
munication rounds. Second, diversity transferring is an
optional component. Analyzing the results in Table 1 and
the ablation study in Table 2, DFL only with invariant ag-
gregation has fewer communication costs and outperforms
other SOTA FL methods. Third, Figure 5 quantitatively
presents the improvement of absolute accuracy as client
number increases, wherein more clients participating in the
diversity transferring means more communication cost. The
performance gain tends to stabilize with more participating
clients. It means that only a few clients selected are enough
for diversity transferring. The communication overhead will
not be very large.

Ablation: Table 2 is the ablation study of DFL, which
verifies the complementarity of invariant aggregation and
diversity transferring. The one-stage optimization is also
tested, but the training diverged, and the results are not
shown in the body text.

4.3. Application

Application experiments verify that DFL can adapt to realis-
tic environments with realistic attribute shifts. Table 3 and
Table 4 show that DFL outperforms other baselines with
a considerable margin. In Office-Caltech10, DFL signifi-
cantly improves all categories and mean accuracy by almost
3%. For DomainNet, regardless of whether the backbone
is AlexNet or ResNet101, the mean accuracy of DFL is im-
proved. In addition, the performance of DFL is better than

SingleSet training, which is only trained by the source data.
It proves that DFL transfers knowledge from other domains
successfully. The visualization in Figure 7 is an example
of mug classification from DomainNet. The heatmaps of
invariant branches are highlighted around the shape of the
objects, which is causal to the final decision. The specific
branches from different clients pay attention to different
attributes such as liquid, description, and color, which are
decision-correlated but domain-specific. It demonstrates the
effectiveness of disentanglement in DFL. In future work, we
would implement DFL on MindSpore2, which is a new deep
learning computing framework suitable for FL applications.

5. Conclusion
In this paper, we propose a novel FL paradigm that applies
MI-based disentanglement to mitigate the negative transfer
caused by distributed attributes skew. The invariant aggre-
gation is proposed to spin off the mixed domain-specific
attributes, which essentially corrects the optimization di-
rection. The proposed diversity transferring augmented the
representation in local latent space. The convergence of
global aggregation using an incomplete client model ex-
pands the application scope of FL. Extensive experiments,
guided by our solid convergence analysis, verify that DFL
benefits FL with higher performance, better interpretability,
and fewer communication rounds.
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A. Appendix A
A.1. Proof of Convergence

Theorem 3.2. Convergence of disentangled federated learning. Let Assumptions 1-4 hold. Suppose that ωt
c is not a

stationary solution and the local functions FK is B-locally dissimilar, i.e. B(ωt
c) ⩽ B. If the hyperparameters in α, β are

chosen such that:

α =
ηc
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then at the t-th round of optimization, the expected decrease in the global objective is:

Est [f(ω
t+1
c )] ⩽ f(ωt

c)− α
∥∥▽f(ωt

c)
∥∥+ βϵ2s − ηcϵ

2
c (20)

which means the convergence is that:

1

T

T−1∑
t=0

∥∥▽f(ωt
c)
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1

αT

(
f(ω0

c )− f∗)+ βϵ2s − ηcϵ
2
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where f∗ is the minimum value of the problem, and the ω0
c is the initialization of the model.

Proof.

Definition A.1. γ−inexact solution: For local function: hk(M(ωc, ωs), ω
t
c) = Fk(M(ωc, ωs)) + Is(ωs, ω

t
c)− Ic(ωc, ω

t
c),

and γ ∈ [0, 1], ω∗
k,c is defined as γ−inexact solution of min

ωk,c

{
hk(M(ωk,c, ω

t+1,∗
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}

if:

∥∥∥▽hk(M(ω∗
k,c, ω

t+1,∗
k,s ), ωt

c)
∥∥∥ ⩽ γ

∥∥∥▽hk(M(ωt
c, ω

t+1,∗
k,s ), ωt

c)
∥∥∥ (22)

Definition A.2. B-local dissimilarity: The local functions Fk is B-locally dissimilar at ωt
c if:

Ek[
∥∥▽Fk(M(ωt

c, ω
∗
k,s))
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and the B is defined as:
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Definition A.3. In global, the expected aggregation model parameters is ωt+1
c = Ek

[
ωt+1
k,c

]
. In client k, local specific

optimal parameter is ω̂t+1
k = M(ωt

c, ω
t+1,∗
k,s ), and the invariant optimal parameter is ω̃t+1

k = M(ω̃t+1
k,c , ωt+1,∗

k,s ). Besides,
the empirical parameters applied for the updating of client k is ωt+1

k = M(ωt+1
k,c , ωt+1,∗

k,s ).

Let Assumptions 1-4 hold, we have: ∥∥ωt+1
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Trigonometric inequality is introduced:∥∥∥ωt+1
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Next, the expectation calculation is introduced:
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[∥∥∥▽hk(ω̂
t+1
k )

∥∥∥2] ⩽ 2B2
∥∥▽f(ωt

c)
∥∥2 + (8L2P 2

s

µ2
Is

+ 2

)
ϵ2s (38)

∥∥ωt+1
c − ωt

c

∥∥2 ⩽ Ek

[∥∥∥ωt+1
k,c − ωt

c

∥∥∥2] ⩽ (1 + γ)2

µ2P 2
c

(
2B2

∥∥▽f(ωt
c)
∥∥2 + (8L2P 2

s

µ2
Is

+ 2

)
ϵ2s

)
(39)

Based on the L-Lipschitz smoothness of f and Taylor expansion, it is:

f
(
ωt+1
c

)
⩽ f

(
ωt
c

)
+
〈
▽f

(
ωt
c

)
, ωt+1

c − ωt
c

〉
+

L

2

∥∥ωt+1
c − ωt

c

∥∥2 (40)
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Est

[〈
▽f

(
ωt
c

)
, ωt+1

c − ωt
c

〉]
= Est

[〈
▽f

(
ωt
c

)
,Ek[ω

t+1
k,c − ωt

c]
〉]

= −ηcEst

[〈
▽f

(
ωt
c

)
,Ek[▽ωc

hk(ω̂
t+1
k )]

〉]
(41)

Since the following inequality established as:

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
(42)

similarly, we have:

Est

[〈
▽f

(
ωt
c

)
, ωt+1

c − ωt
c

〉]
⩽ −ηc

2
Est(

∥∥▽f
(
ωt
c

)∥∥2 + ∥∥∥▽ωc
hk(ω̂

t+1
k )

∥∥∥2 − ∥∥∥▽f
(
ωt
c

)
− Ek[▽ωc

hk(ω̂
t+1
k )]

∥∥∥2)
⩽ −ηc

2
(
∥∥▽f

(
ωt
c

)∥∥2 + Est

[∥∥∥▽ωc
hk(ω̂

t+1
k )

∥∥∥2]) (43)

Est

[∥∥∥▽ωchk(ω̂
t+1
k )

∥∥∥2] = Est

[∥∥∥Pc ▽ Fk

(
ω̂t+1
k

)
−▽Ic

(
ωt
k,c, ω

t
c,
)∥∥∥2] ⩽ 2P 2

c Est

[∥∥∥▽Fk

(
ω̂t+1
k

)∥∥∥2]+ 2ϵ2c

⩽ 4P 2
c B

2
∥∥▽f(ωt

c)
∥∥2 + 16L2P 2

c P
2
s

µ2
Is

ϵ2s + 2ϵ2c

(44)

The local Lipschitz continuity of the function f is applied to approximate ωt+1
c .

f
(
ωt+1
c

)
⩽ f

(
ωt+1
c

)
+ L0

∥∥ωt+1
c − ωt+1

c

∥∥
L0 ⩽

∥∥▽f
(
ωt
c

)∥∥+ L
(∥∥ωt+1

c − ωt
c

∥∥+ ∥∥ωt+1
c − ωt

c

∥∥) (45)

Following the derivation process, we have:

Est

[
f(ωt+1

c )
]
⩽ f(ωt+1

c ) +

√
2

K
Ek

[∥∥∥ωt+1
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c
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√
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K
Ek

[∥∥∥ωt+1
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c

∥∥∥2]
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c ) +

2(1 + γ)B

µPc

√
K

√
∥▽f(ωt

c)∥
4
+

(
4L2P 2

s

µ2
Is

+ 1

)
ϵ2s
B2

∥▽f(ωt
c)∥

2

+
2(2

√
2K + 2)L(1 + γ)2

Kµ2P 2
c

(
B2
∥∥▽f(ωt

c)
∥∥2 + (4L2P 2

s

µ2
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+ 1

)
ϵ2s

)
⩽ f(ωt+1

c ) +

(
2(1 + γ)B

µPc

√
K

+
2(2

√
2K + 2)L(1 + γ)2B2

Kµ2P 2
c

)∥∥▽f(ωt
c)
∥∥2

+

√
KµPc(1 + γ) + 2BL(2

√
2K + 2)(1 + γ)2

KBµ2P 2
c

(
4L2P 2

s

µ2
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+ 1

)
ϵ2s

(46)

f(ωt+1
c ) ⩽ f(ωt

c)−
(
ηc
2

+ 2ηcP
2
c B

2 − LB2(1 + γ)2

µ2P 2
c

)∥∥▽f(ωt
c)
∥∥2

+

(
L(1 + γ)2

µ2P 2
c

(
4L2P 2

s
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)
− 8ηcL

2P 2
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2
s

µ2
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)
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2
c

(47)

At last, we get the convergence as:

Est

[
f(ωt+1

c )
]
⩽ f(ωt

c)− (
ηc
2

+ 2ηcP
2
c B

2 − LB2(1 + γ)2

µ2P 2
c
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µPc

√
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√
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Kµ2P 2
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)
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√
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s
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2P 2
c P
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s

µ2
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2
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(48)



Disentangled Federated Learning

A.2. Cross-entropy Loss Functions

With the optimization purpose changing, and the introduction of invariant aggregation and diversity transferring, the loss
function of local clients also has huge changes. The optimization purpose of local client is to minimize the loss of each
client k ∈ |K|.

argmin
θk

E(xk,yk)∈D∗
k
[hk (xk, yk,E )] (49)

where D∗
k is the data distribution of client k, D∗

i ̸= D∗
j , 1 ⩽ i ̸= j ⩽ K shows the Non-i.i.d factors between domains. In

reality, the empirical loss function is employed for instead in actual calculations as:

ĥk =
1

nk

nk∑
j=1

hk (xk, yk, ωk) (50)

The training samples of k client are defined as Dk =
{(

xj
k, y

j
k

)
, xj

k ∈ Rd, yjk ∈ R
}nk

j=1
, nk is the training sample number

of client k. With the application of the two-branch local model replacing single-branch, the local empirical loss function
tends to:

ĥk =
1

nk

nk∑
j=1

hk

(
P k
(
Ek

c (x
j
k)
⊕

Ek
s (x

j
k)
)
, yjk

)
(51)


