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Abstract

Reward signals in reinforcement learning are ex-
pensive to design and often require access to the
true state which is not available in the real world.
Common alternatives are usually demonstrations
or goal images which can be labor-intensive to col-
lect. On the other hand, text descriptions provide
a general, natural, and low-effort way of commu-
nicating the desired task. However, prior works
in learning text-conditioned policies still rely on
rewards that are defined using either true state or
labeled expert demonstrations. We use recent de-
velopments in building large-scale visuolanguage
models like CLIP to devise a framework that gen-
erates the task reward signal just from goal text
description and raw pixel observations which is
then used to learn the task policy. We evaluate the
proposed framework on control and robotic ma-
nipulation tasks. Finally, we distill the individual
task policies into a single goal text conditioned
policy that can generalize in a zero-shot manner
to new tasks with unseen objects and unseen goal
text descriptions.

1 Introduction
Previous efforts have explored image-based goal specifi-
cation, with significant successes in visual navigation and
manipulation tasks (Pathak et al., 2018; Nair et al., 2018; Fu
et al., 2018; Singh et al., 2019). Yet existing image-based
goal specification paradigms are limited because they are
typically limited to a particular scene instance in an environ-
ment, whereas a semantic goal comprises multiple possible
scene configurations. Reinforcement learning offers one
of the most appealing premises in the study of AI: from a
reward signal alone, algorithms which learn optimal policies
that maximize expected reward can learn to perform navi-
gation, dexterous manipulation, and host of other impactful
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Figure 1. Our method uses only goal text from user and images
from the environment at training time. We train several agents
on several tasks and distill their policies into a single goal text
conditioned policy that can generalize to new tasks with an unseen
goal text description in a zero-shot manner. We assume no access
to environment reward, state, demonstrations, or goal images at
either train or test time.

tasks. However, discovering or specifying a reward func-
tion for a given task is often a very challenging problem,
especially when one is considering agents that can learn
from un-instrumented environments, e.g., from raw image
observations alone. We wish to have an agent that can learn
purely from pixels, with no access to the underlying state of
the environment at any point during learning or task execu-
tion. Achieving this goal without access to an instrumented
reward function has been exceedingly challenging.

One can use image-based reward specification to cause a
robot agent to navigate to a particular chair next to a spe-
cific tall plant, but that agent may not always succeed at
the generic task of “go to a chair next to a tall flowering
plant”: e.g., if the goal specification image shows a red
chair next to a plant with a yellow flower the agent may
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navigate away from a scene with a blue chair next to a red
flower, depending on the model’s underlying image repre-
sentation. To be sure that the true goal is properly specified
irrespective of the invariances of the model’s underlying
perceptual representation, a user may have to provide a set
of goal image examples that cover the variation of the target
concept, potentially a very expensive undertaking to collect
or generate.

We advocate semantic reward specification via grounded
natural language, where a user describes a goal configu-
ration in the world using a natural language description
referring to entities in the world. This direction has long
been a “holy grail” of AI research and a presumed capability
of AI science fiction—the ability to instruct a robot with
natural language—yet attempts have been limited by the
state of the art in grounded language perception. It also
falls under the general umbrella of leveraging large-scale
passive data to bootstrap embodied learning, where we rely
on language as a means to provide necessary reward signal
which might be missing in visual data alone.

Prior work has explored reward functions or policies that
take natural language as for goal description (Oh et al.,
2017; Bahdanau et al., 2018; Zhou & Small, 2020; Goyal
et al., 2020; Fu et al., 2019; Hermann et al., 2017; Shao
et al., 2020). However, they rely on reward signals that have
access to state of the system or demonstrations of the task
distribution they are training on. There are works that use
human videos to learn reward functions to train their agent
(Shao et al., 2020; Sermanet et al., 2018; 2016), but they
require a curated dataset of humans performing the tasks.

Recently however, the advent of large-scale multimodal
training data together with large capacity language and vi-
sion deep learning models has significantly advanced the
state of the art. A steady series of innovations have ad-
vanced grounded language modeling, from early work on
multimodal translation and fusion models (Barnard et al.,
2003; Quattoni et al., 2007; Guadarrama et al., 2016), to
large-scale joint embedding models (Frome et al., 2013;
Radford et al., 2021), to the plethora of multimodal trans-
former models currently under investigation (Su et al., 2019;
Lu et al., 2019; Chen et al., 2019; Hu & Singh, 2021). CLIP,
in particular, demonstrated a transformative advance on
zero-shot object recognition (Radford et al., 2021).

One way to communicate text-based goal to a robot is by
simply offering a description of the goal configuration in
natural language and using the CLIP embedding dot product
with an observed image to evaluate proximity to goal state.
Surprisingly, this can work in simple cases, for examples
see the top example in figure 5. However, for more complex
goals, such as those involving spatial relationships, the sim-
ple solution has poor performance as shown in the bottom
example of figure 5.

To overcome these limitations and scale to complex ma-
nipulation tasks, we spatially ground the natural language
goal in the image. We factor ‘what’ vs ‘where/how’ aspects
of goal state, and offer a novel spatial-salience scheme to
generate data using this factorization (Figure 2 top). We
argue that existing (e.g., CLIP-like) models can be used to
ground the what aspects of a goal quite effectively, including
appropriate attribute and concept-level generalization, while
a separate where/how module can ground spatial relation-
ship aspects of goal configuration. On this generated data,
we first learn our Zero-Shot Reward Model (ZSRM) and
then use ZSRM to learn individual text-conditioned policies.
Finally, the individual task policies are distilled into a single
goal-text-conditioned policy which is multi-task in nature
and can execute unseen tasks in a zero-shot fashion – from
a natural language description of task – without having to
train a new policy for every new task.

2 Method
In our work we assume an agent only has access to a text
description of the goal desired by the user and image obser-
vations from the environment. At no point during training or
testing does the agent have access to demonstrations, goal
images, or reward from the environment. The agent only
has access to a reward model that takes images and goal text
as input to provide progress towards goal text description
with a reward score output. The reward is then used to teach
the agent how to achieve the goal described by the text with
online reinforcement learning. Given these assumptions we
will now describe how we provide a zero-shot reward model
by leveraging CLIP and how we learn a text conditioned
policy with this model.

2.1 Vanilla Dot-product Visuolinguistic Base Reward
Model

Our base model is the most intuitive way to use the CLIP
model to compute reward. Our base model simply computes
reward by taking a dot product between the goal text feature
and image observation feature through CLIP’s language and
image encoders respectively: rt = EI(It) ·EL(g) A subset
of tasks can be learned with this reward model. We visualize
the limits of this model on two tasks in Figure 5. One
significant limitation of CLIP is that it cannot distinguish
spatial relationship of objects in images. This limits our
base reward model from being useful for tasks that have
spatial goals. Our full zero-shot reward model remedies this
issue by leveraging CLIP in a very different way.

2.2 Spatially Grounded Visuolinguistic Zero-Shot
Reward Model (ZSRM)

Data Generation via CLIP-Saliency Phrase Grounding
We use a simple method that generates texts with spatial
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Figure 2. Our Zero-Shot Reward Model (ZSRM) is made by first generating spatial text labels of random exploration collected images with
random initial states of arm and objects. We train ZSRM with the generated data in the same style of CLIP. We then use a discretized dot
product of current image observation embedding and goal text embedding as our zero-shot reward. We train an agent via Reinforcement
Learning with our reward model that is computed using only goal text and current observation as input. We assume no access to
environment reward, state, demonstrations, or goal images at train or test time.

information for images using phrase grounding and spa-
tial relationship processing. We assume we have access
to the noun phrases that will be used by the user to spec-
ify their full goal text. Figure 2 illustrates how the object
noun phrases are passed through CLIP’s language encoder
and the current image observation is passed through CLIP’s
image encoder. We use the language encodings as class em-
beddings of each object noun phrase to perform a saliency
analysis (using Grad-CAM (Selvaraju et al., 2017)) on the
image encoding of the observation on the last convolutional
layer (specifically, the ReLU layer of CLIP’s ResNet-50
backbone). Saliency models such as Grad-CAM generally
output a heatmap of the features that indicate a class exists
in the current image input. The state extractor in Figure 2
computes the “state” of each object using the argmax of
the saliency heatmap (see Figure 3). Once we have the the
object states (object pixel coordinates), we use the criteria
described in the next section to generate a full text descrip-
tion of the image describing the spatial relationship between
the objects. The images we use to label are randomly sam-
pled robot arm and object locations with random actions
taken by the agent to move the arm.

Spatial Language Grounding Criteria We generate a
spatial text label using the object pixel coordinates of one
or more camera views as input to match various criteria.
The criteria that matches our object state determines the text

label of the image. The text labels used are the simplest
spatial descriptions we could think of. We did not engineer
what text labels to use.

Our spatial language grounding criteria is defined in Table
2.2. The first set (left of, right of, on top of, below, and in
between) assume coordinates in a front camera view and the
semantics are defined in that camera view with positive y
in the upward direction and positive x in the right direction.
The second set (in front of & behind) has access to a left
camera view with coordinate x2 pointing towards the right
which is towards the front in the first camera view and y2
pointing upward similar to the first camera view. The second
camera is needed to know if the object is placed in the front
or behind another object correctly. The third set (close to
& inside of) require access to a front camera view with a
45◦ downward tilt towards the ground. This camera view is
needed to see if the object is getting closer to another object
in two orthogonal directions at once where as a left only or
front view only allows you to determine one dimension of
closeness. For “inside of” a 45◦ camera helps the agent see if
the object is going inside another object without occlusion.
The ϵ threshold for “inside of” is much smaller than for
“close to” since the centroid can come much closer when an
object goes inside a container object.

Full Reward Model Training and Usage After generat-
ing spatial language labels for randomly collected images
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Spatial Language Label Label Grounding Criteria

Obj1 on the left of Obj2 O2
x > O1

x

Obj1 on the right of Obj2 O1
x > O2

x

Obj1 on top of Obj2 |O1
x −O2

x| < ϵ1 & O2
y < O1

y < O2
y + ϵ2

Obj1 below Obj2 |O1
x −O2

x| < ϵ1 & O1
y < O2

y < O1
y + ϵ2

Obj1 in between Obj2, Obj3 min(O2
x, O

3
x) < O1

x < max(O2
x, O

3
x)

Obj1 in front of Obj2 O1
x2 > O2

x2

Obj1 behind Obj2 O2
x2 > O1

x2

Obj1 close to Obj2 ∥O1
xy −O2

xy∥2 < ϵ

Obj1 inside of Obj2 ∥O1
xy −O2

xy∥2 < ϵ

Table 1. Spatial Language Grounding Criteria.

using CLIP-saliency phrase grounding, we train our full
reward model similar to CLIP (Radford et al., 2021) with
the similar visuolinguistc contrastive loss where the model
essentially predicts which caption matches which image in
every batch. The cosine similarity of the image and text
embeddings of the correct pairs in the batch are maximized
while the cosine similarity of the embeddings of the incor-
rect pairs are minimized. We initialized our model with the
pretrained language and image encoders from CLIP. This,
what we call ‘full reward model’, is essentially same as the
base reward model but now it has been ”fine-tuned” with
spatial-grounded text-image data generated automatically.
To prevent catastrophic forgetting and overfitting to just the
new data, one could maintain a distillation loss with respect
to the old model. However, we found that training the model
from scratch on this new data to work well. Finally, the dot
product of our new model can directly be used as reward
but we found thresholding the dot product to obtain bina-
rized reward to work better. In order to avoid engineering
the threshold of our binarized reward we computed the dot
product of positive and negative goal texts and if the highest
dot product (argmax) was our positive goal text we output
a reward of 1 and a reward of 0 otherwise. We found this
to give us the best results. This finetuned zero-shot reward
model can be used for a broad set of manipulation tasks
to push or place objects to semantic locations which we
showcase in our results.

2.3 Language Conditioned Multi-task Policy

Now that we have a method for learning tasks in a zero-
shot reward fashion, we would like to be able to not require
training a new policy for every new task and ideally have
a language conditioned multi-task policy that takes in the
goal text description of an unseen task and executes the task
without needing any new samples from the environment.

To approach this goal, we first learn several tasks via rein-
forcement learning using our zero-shot reward model. We
then create a large dataset of the rollouts of those polices
and pair each trajectory with the goal text description of the

tasks it was trained to learn. We then use behavioral cloning
(supervised learning for predicting actions) to learn a policy
that takes images and text goal task description as input and
actions as target outputs. We use CLIP’s language encoder
as the text goal embedding that is fed to the multi-task pol-
icy. In addition we use image augmentation techniques to
aid behavioral cloning in learning more robust policies.

3 Experiments

3.1 Phrase grounding and Base Zero-shot Reward
Model Visualization

Object detectors are one way to extract object states for our
spatial text generator, however, they are usually not used
off the shelf and need to be fine-tuned with in domain data.
In Figure 3, we show pretrained Mask R-CNN (He et al.,
2017) outputs on different camera views for the block stack
environment. As you can see in the first two subfigures, the
blocks are not proposed as objects with Mask R-CNN from
both far and close camera views. This is a demonstration
of the need for in-domain fine-tuning of object detectors to
work in the environment you want to use. Our Grad-CAM
output from CLIP however, highlights exactly the objects we
are interested in from the object noun phrases that describes
each object in the last two subfigures. Another limitation
with Mask R-CNN is that even if the object proposals were
good, it would not necessarily classify objects it has not
been trained for and therefore not output a filtered set of
object proposals. In other words, we would not know which
object is which if the detector hasn’t been trained with the
label of objects we care about.

In Figure 5 we show what our base reward model outputs
on two goal descriptions: 1. inverted pendulum 2. yellow
object close to a blue object. For the first goal description
we observe that the dot product increases as the pendulum
becomes more inverted from either side as desired. For the
second goal description we observe that as the blue object
gets closer to the yellow object the dot product increases
except for the closest image where it dips which results in
an undesired output. We observed this example and many
others that the base reward model is not sufficient for recog-
nizing object spatial relationships. The encoders are good
at identifying what objects are in the image however, which
is what we leverage to generate paired language image data
for our full reward model.

3.2 Full Zero-shot Reward Model Results

In this section, we evaluate our full Zero-shot Reward Model
on pushing, picking, and placing manipulation tasks per-
formed in a planar setup. We train each task using our full
zero-shot reward model output as reward for the PPO rein-
forcement learning algorithm (Schulman et al., 2017). We
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Figure 3. a) Mask R-CNN object detection results b) Mask R-CNN detection results on far view c) Mask R-CNN instance segmentation
results on far view d) Grad-CAM result with ’red block’ text input (white being highest intensity) e) Grad-CAM result with ’yellow block’
text input (white being highest intensity).

Figure 4. We showcase our base reward model trained policy in
Double Inverted Pendulum performing slightly better than oracle
reward. We average our results over 3 seeds per task.

then train for the same tasks with other types of reward func-
tions as baselines or privileged methods for comparison:

a) Oracle reward (privileged): this reward function has direct
access to state to determine task completion. In other words
it uses true x,y,z spatial positions of the objects to determine
if the desired spatial relationship is reached and outputs 1
to the RL algorithm for every timestep the conditions of the
task are met.

b) VICE (privileged): VICE(Fu et al., 2018) is used as a
privileged method that has access to task goal image for
comparison. We train the VICE reward model as a binary
goal classifier that is trained with true goal images of the
task such as “red block on top of yellow block” as positive
images and images that aren’t in the correct goal configura-
tion as negative images. We discretize the model to output 1
if it determines the current image is positive and 0 otherwise.

c) Ours-base: Our base zero-shot reward model that uses
the dot product between the goal text feature and image
observation feature of CLIP as reward.

d) Curiosity-RL (Pathak et al., 2017; Burda et al., 2018):
Curiosity is used as a baseline since it only has access to
images similar to our method for computing reward, but
has only been successful for videogames such as Atari and
Mario or locomotion where exploring new states leads to

progressing through the task (going further in levels of game
for example). It is less privileged however, in that it does
not use language input for task specification.

Environment Reward Details for Oracle Evaluation: The
oracle reward function for Double-Inverted-Pendulum is
alive bonus minus distance penalty minus velocity penalty.
The oracle for SawyerSimRobot-Pushing is a sparse re-
ward that outputs one when the centroid distance between
two pucks are below a threshold. The oracle reward for
FetchSimRobot-Stacking is a sparse reward that outputs
one when a yellow block is within a horizontal and vertical
threshold distance of a red block. The oracle reward for
FetchSimRobot-Placing is a sparse reward that outputs one
when a yellow block is correctly placed on the right of a red
block. See Figs. 3 & 5 for image observation examples of
FetchSimRobot and SawyerSimRobot.

In Figure 6 we show how our full reward model performs
on three planar manipulation tasks. We observe that our
Full Reward Model performs as well as oracle reward and
VICE both of which are priviledged on SawyerSimRobot-
Pushing (pushing a blue puck close to a yellow puck),
FetchSimRobot-Stacking (stacking a yellow block on top of
a red block), and FetchSimRobot-Placing (placing a yellow
block on the right of a red block). For Curiosity-RL we see
that it learns the pushing pucks close together task but then
starts learning separation of the pucks which reemphasizes
that curiosity is only useful for tasks where exploring new
dynamics leads to going farther in the task. Curiosity also
has some trouble learning the double inverted pendulum
task because the dynamics of the pendulum swinging can be
hard to predict and therefore have misleading higher reward.
Curiosity also does not learn the other manipulation tasks
(stacking and placing) as those are more complex tasks that
are harder to reach by exploration.

For Double inverted pendulum (Fig. 4) our base reward
model does better than oracle by chance which we speculate
is because the oracle reward was originally designed for
state input and was not tuned for learning image to reward
mapping. Our base reward model fails for pushing, stacking,
and placing, which take “an image of a yellow block on top
of a red block”, “an image of a yellow object close to a blue
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Figure 5. We visualize the results of the base reward model which is a trivial dot product between the goal language description and image
observation. The top row (green box) displays a successful utilization of the base reward model and the bottom row (red box) shows a
failure case. The x-axis represents image index.

object”, and “an image of a yellow block on the right of a
red block” as language input for those tasks respectively.

3.3 Multi-task Policy Results

In order to avoid having to train a new policy for every new
task we want to learn, we train a multi-task policy with a set
of training tasks and then show that it can generalize to a set
of unseen test tasks by leveraging CLIP’s language model to
encode the goal text description of the tasks as conditioning
input to our multi-task policy.

In FetchSimRobot env, we train 18 tasks with PPO for
200K steps with our zero-shot reward model described in
the previous section and show generalization results for 18
unseen test tasks by training a language conditioned policy
with behavior cloning on rollouts of the 18 training tasks.
We collect 5000 steps (i.e., 50 trajectories) per task. We do
this for pickplace-left, pickplace-right, and stack tasks for
different object combinations. The object training colors
are red, green, and yellow, and the test color is blue. The
multi-task policy has never seen blue block in text input or
image input. (There are 18 training tasks because there are 3
relationship types and 6 different combinations of choosing
two out of three training colors where order matters. There
are 18 test tasks because there are 3 relationship types and
6 different combinations of pairing the test color to one of
three training colors where order matters.)

In evaluation, we average episode rewards over 50 seeds.

We then average across all training tasks to get the train
metric and across all test tasks to get the test metric respec-
tively. We compare our language conditioned policy with
a policy trained without task labels, and one trained with a
primitive code as the conditioning input. The latter baseline
simply labels the training tasks with integers 0 to 17. Since
the Primitive code conditioned policy has only been trained
with primitive codes of the training tasks, when evaluating it
for test tasks we allow the policy to use CLIP’s language em-
bedding to find the closest corresponding training primitive
code. This is done by comparing the text description embed-
ding of all the training tasks to the test task text description
embedding and choosing the training task primitive code
corresponding to the smallest L2 distance.

We use the same oracle reward that has direct access to state
in figure 6 to measure the performance of our multi-task
models. Every timestep the objects are in the correct target
text description the agent is rewarded 1 point. The objects
never start in the correct target state. Therefore it always
takes several timesteps for the policy to move the objects to
the correct state. All episodes timeout after 100 timesteps
or if one of the objects falls off the table. In RL training
and in policy rollout collection for behavior cloning each
object has a one block width of variation in starting point
location. We tested the policies on same distribution of start
point variation interval (seen initial state distribution) and
double the start point variation interval (unseen initial state
distribution).
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Figure 6. We showcase our Full Reward Model performing as well as oracle reward and VICE both of which are priviledged on
SawyerSimRobot-Pushing (pushing a blue puck close to a yellow puck), FetchSimRobot-Stacking (stacking a yellow block on top of a
red block), and FetchSimRobot-Placing (placing a yellow block on the right of a red block). We average results over 3 seeds per task.
Oracle reward is privileged with true state information used to compute proximity to goal. VICE is privileged with true goal images used
to train its reward model in classifying observations as close to goal or not.

Seen distribution Unseen distribution
train tasks test tasks train tasks test tasks

(episode reward stats) mean s.e. mean s.e. mean s.e. mean s.e.
No Conditioning 17.91 1.11 14.82 0.97 14.81 1.02 10.79 0.85
Primitive Code Cond. 26.71 1.23 17.20 1.03 17.03 1.07 11.74 0.87
Language Cond. 29.89 1.28 22.41 1.09 21.14 1.16 15.69 0.98

Table 2. Multi-task Policy Performance Results: We report multi-task average and standard error performance across all 18 training tasks
and all 18 test tasks (unseen object color in goal text or image) for seen and unseen initial state distributions with no conditioning, primitive
code conditioning, and language conditioning. The values reported are the episode reward averaged across 50 seeds per task policy
rollout. The tasks are robotic arm manipulation of objects to different target semantic relationships of each other in the FetchSimRobot
environment. While the policies were trained using our full zero-shot reward model, the reward metric reported is oracle reward to
evaluate true performance.

In Table 2 we see that no conditioning policy has the lowest
performance as expected since there is full ambiguity in
what task to perform given only an image. However, since
the no conditioning policy has been trained across many
different object colors going to different target states it has
learned general displacement of blocks to different semantic
locations randomly that can sometimes be moved to the
correct semantic location by chance during testing. For
the training tasks it has higher performance than testing
tasks since it can memorize to execute some of the training
tasks that have almost the exact same initial states sampled
during testing as those in the behavior cloning dataset and
thereby execute correctly as memorized. We observe that the
primitive code conditioned policy has much higher training
performance than the no conditioning policy since it can
disambiguate what task it needs to execute.

We observe that the language conditioned policy performs

significantly better on test tasks than the primitive code con-
ditioned policy since it can use the language embedding to
infer the target task determined by the goal text description.
The primitive code conditioning policy has access to the
language embedding only to determine the closest training
primitive code to the target task description. It’s interesting
to observe that the primitive code conditioning performs
better than no conditioning on the test tasks because the
closest primitive code can sometimes lead to a successful
execution of the test task since it has some signal towards
the correct task. One such example is that the test goal
description task of ”a blue block on the right of a yellow
block” is mapped to the primitive code of the training goal
description task of ”a red block on the right of a yellow
block”. In Table 2 we also observe the same trend in the
policy performances in unseen intial state distribution: the
no conditioning policy performing the poorest on train and
test tasks, the primitive code conditioned policy performing
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significantly better on both, the language conditioned policy
performing the best at training and test tasks via its language
structured specification of tasks.

We train the language conditioned policy with ResNet18
image encoding that is concatenated with CLIP language
encoding both of which are pushed through an fc layer be-
fore concatenation. The concatenated vector is then inserted
into two fc layers before predicting actions. The primitive
code conditioned policy swaps the CLIP language encoding
with an integer from 0-17 representing the primitive code
input. The no conditioned policy only has two fc layers on
top of the same image encoding as the other two policies.
We apply an L2 regression loss on the output for predicting
continuous actions (behavior cloning). The policy is trained
using Adam optimizer with AMS grad with learning rate of
1e-4. The images are augmented with PyTorch RandomRe-
sizedCrop of 0.95 to 1.0 area and 0.98 to 1.02 aspect ratio
randomization and resized to original image dimensions of
128x128. All the policies are trained for 300 epochs.

4 Related Work:
Goal conditioned policies Goal conditioned policies al-
low a user to specify the agent’s goal. States (Schaul et al.,
2015; Andrychowicz et al., 2017) and Images (Pathak et al.,
2018; Nair et al., 2018; Fu et al., 2018; Singh et al., 2019;
Mendonca et al., 2021) are one way of specifying goal.
However, they assume that the user has access to a photo or
state of the completed task to give to the agent. We assume
no access to goal images or state and use language which
provides a natural form of supervision.

Goal text conditioned policies Several previous efforts
train reward functions or policies that take natural language
as input for goal description (Oh et al., 2017; Bahdanau
et al., 2018; Zhou & Small, 2020; Goyal et al., 2020; Fu
et al., 2019; Hermann et al., 2017; Shao et al., 2020). They
all however rely on reward signals that have access to state
of the system or demonstrations of the task distribution they
are training on.

Learning reward functions There are works that use
human videos to learn reward functions to train their agent
with (Sermanet et al., 2018; 2016; Shao et al., 2020). We
however, don’t need a curated dataset of humans performing
the tasks we want our agent to train with. Having humans
perform all tasks we are interested in may not scale well
with the amount of labor needed for recording and curating
those datasets. CLIP has the advantage of learning a caption
model from 400 million image, text pairs from the publicly
available sources on the internet WIT.

No Environment Reward There have been recent work
on methods that use no reward signal from the environment

to train for specific tasks, for instance, curiosity (Pathak
et al., 2017), DIAYN (Eysenbach et al., 2018), intrinsic
goals (Nair et al., 2018; Mendonca et al., 2021), etc. These
methods have different ways to go from self-directed ex-
ploration to solving tasks at test time, and rely on reward
function or goal images to be given by the user. Such a
signal could be unnatural and costly to obtain. Our method
however, can learn a subset of manipulation tasks by speci-
fying end goal with language.

Utility of large vision language models in RL Recent
works leverage CLIP to do diverse manipulation tasks
(Shridhar et al., 2021) and using GPT-3 to perform navi-
gation (Huang et al., 2022). However, former has access to
labeled expert demonstrations for training their policy and
latter requires predefined action primitives. We assume no
access to demonstrations or goal images at training or test
time and operate with direct low-level actions.

5 Discussion
In this work, we presented a method for learning a set of
object manipulation tasks without access to state of the
system by computing reward from pixels conditioned on
text goal description alone. Our method doesn’t use goal
images or demonstrations at either training time or test
time. We devised a zero-shot reward model that leverages
a language vision model (CLIP) that has been trained on
a very large dataset of captioned images on the internet to
compute progress (reward) towards a goal text description.
We use this zeroshot-reward model to collect data on many
tasks to then supervise a language conditioned multi-task
policy that can execute new tasks without need of extra
training. There are many future directions that can expand
the abilities of our reward model such as taking into account
pose of objects and state of objects (such as closed door).

Finally we must address the ethical perils inherent in our
leverage of models trained on large-scale vision and lan-
guage datasets. Such datasets are well known to suffer from
dataset bias that can cause failure or unintended harm (Buo-
lamwini & Gebru, 2018). While the near-term risks appear
to be limited with the robotic applications presently envi-
sioned, practitioners should continuously monitor systems
for bias against underrepresented groups and ensure that
robotic systems work across all socioeconomic domains.
Techniques for bias assessment and debiasing should be em-
ployed whenever possible to ensure this remains the case.
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