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Abstract
When extrinsic rewards are sparse, artificial
agents struggle to explore an environment. Cu-
riosity, implemented as an intrinsic reward for pre-
diction errors, can improve exploration but it is
known to fail when faced with action-dependent
noise sources (‘noisy TVs’). In an attempt to
make exploring agents robust to noisy TVs, we
present a simple solution: aleatoric mapping
agents (AMAs). AMAs are a novel form of cu-
riosity that explicitly ascertain which state transi-
tions of the environment are unpredictable, even
if those dynamics are induced by the actions of
the agent. This is achieved by generating separate
forward predictions for the mean and aleatoric un-
certainty of future states, with the aim of reducing
intrinsic rewards for those transitions that are un-
predictable. We demonstrate that in a range of en-
vironments AMAs are able to circumvent action-
dependent stochastic traps that immobilise con-
ventional curiosity driven agents. Furthermore,
we demonstrate empirically that other common
exploration approaches—previously thought to
be immune to agent-induced randomness—can
be trapped by stochastic dynamics. Code to repro-
duce our experiments is provided.

1. Introduction
Efficient exploration is a central problem in reinforcement
learning. Agents need to be capable of finding novel infor-
mation without depending on extrinsic rewards to shepherd
them through the state space of a given environment (e.g.
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(Sutton & Barto, 2018; Pathak et al., 2017; Burda et al.,
2019b), see (Weng, 2020) for a review). A notable explo-
ration method that effectively deals with sparse rewards is
curiosity driven learning—where agents are equipped with
a self-supervised forward prediction model that employs
prediction errors as intrinsic rewards (Schmidhuber, 1991b;
Pathak et al., 2017; Schmidhuber, 1991a). Curiosity is built
upon the intuition that in unexplored regions of the environ-
ment, the forward prediction error of the agent’s internal
model will be large (Schmidhuber, 1991b; Pathak et al.,
2017). As a result, agents are rewarded for visiting regions
of the state space that they have not previously occupied. If,
however, a particular state transition is impossible to predict,
it will trap a curious agent (Burda et al., 2019b; Schmidhu-
ber, 1991a). This is referred to as the noisy TV problem
(e.g. (Burda et al., 2019b; Schmidhuber, 1991a)), the ety-
mology being that a naively curious agent could dwell on
the unpredictability of a noisy TV screen.

Several existing curiosity-like methods (Burda et al., 2019b;
Pathak et al., 2017; 2019) aim to avoid noisy TVs or
“stochastic traps” (Shyam et al., 2019). Nevertheless, em-
ploying dynamics based prediction errors as intrinsic re-
wards is difficult as current methods either fail when stochas-
tic traps are action-dependent, or require an ensemble of
dynamics models (Pathak et al., 2017; 2019; Shyam et al.,
2019; Burda et al., 2019a). Even if ensemble methods are
available, we demonstrate that they cannot reliably over-
come the allure of observing random observations. Addition-
ally, we find that random network distillation—a dynamics-
free exploration technique usually assumed to be robust to
stochasticity—is also susceptible to noisy TVs. Fundamen-
tally, popular intrinsic reward approaches are vulnerable to
the never ending novelty of a noisy TV.

We present a simple solution to the noisy TV problem—
instead of only predicting the next state, we also predict
its variance (i.e it’s aleatoric uncertainty (Kendall & Gal,
2017)). The uncertainty of a statistical model can be de-
scribed as the sum of two theoretically distinct types of
uncertainty: epistemic uncertainty and aleatoric uncertainty
(e.g. (Hora, 1996), see (Hüllermeier & Waegeman, 2021)
for a review). Epistemic uncertainty measures the errors
of a model’s prediction that can be minimised with addi-
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tional experience and learning (Hüllermeier & Waegeman,
2021). As a result, an agent using epistemic uncertainties
as intrinsic rewards tends to value dynamics it has not pre-
viously encountered, and hence cannot predict accurately,
but could learn to predict in the future (e.g. (Osband et al.,
2016)). More concretely, epistemic uncertainty can be con-
sidered to be the “expected information gain” of observing
the next predicted state (Mukhoti et al., 2021). On the other
hand, prediction errors that are due to aleatoric uncertain-
ties are, by definition, a result of unpredictable processes
(Hüllermeier & Waegeman, 2021). Therefore, any agent
that receives intrinsic rewards for aleatoric dynamics risks
being trapped, as exemplified by the noisy TV problem
(Schmidhuber, 1991a; Burda et al., 2019a). By predicting
aleatoric uncertainties, our curious agents are able to dis-
regard stochastic dynamics if they are consistent with the
agent’s predicted variance–avoiding the trap of noisy TVs.
Our contributions are summarised as follows:

1. We benchmark the performance of existing exploration
techniques, highlighting that they are more vulnerable
to stochasticity than previously assumed

2. We present a novel form of curiosity that can operate
proficiently in exploration benchmark environments
in the presence of a noisy TV, while still preserving
exploration performance without a noisy TV

3. We show that even in the famously deterministic do-
main of Atari, natural sources of randomness exists

Finally, we also highlight the connections of AMAs to ex-
perimental neuroscience. Our approach to resisting stochas-
ticity is both inspired by and builds upon proposals devel-
oped within neuroscience (Yu & Dayan, 2005), that suggest
expected uncertainties in predictions of future states are
signalled by the modulation of cortical acetylcholine in the
mammalian brain. The implications for neuroscience and
potential animal experiments are included in the discussion
(5.2) and Appendix (B).

2. Background
2.1. Epistemic and Aleatoric Uncertainties

Estimating the epistemic uncertainty surrounding future
states would be an ideal basis for a curious agent but
tractable epistemic uncertainty estimation with high dimen-
sional data is an unsolved problem (see (Gal, 2016) for an
introduction to the field). We implicitly incentivise agents
to seek epistemic uncertainties by removing the aleatoric
component from the total prediction error. More specifically,
fundamental to our model is the maximum likelihood ap-
proach from (Kendall & Gal, 2017), which we use to predict
aleatoric uncertainties based on the input. We then subtract

these aleatoric uncertainties from prediction errors, which
is a novel approach for efficiently estimating epistemic un-
certainties.

There are similar methods that separate epistemic and
aleatoric uncertainties in return predictions (Clements et al.,
2019), or within a latent variable model (Depeweg et al.,
2018)—allowing for the construction of policies that are
rewarded for exploring their environments and punished for
experiencing aleatoric uncertainty. However, as far as we
are aware, we are the first to compute aleatoric uncertainties
within a scalable curiosity framework to remove intrinsic
rewards for those state transitions with aleatoric uncertainty,
which implicitly rewards agents for experiencing epistemic
uncertainties. However, we do note that a similar approach
was announced shortly after ours (Jain et al., 2021), which
shows that epistemic uncertainties can be estimated by sub-
tracting aleatoric uncertainty from a predicted prediction
error. Our approach is simpler, rather than trying to predict
prediction errors, we use the implicitly calculated epistemic
uncertainty as intrinsic rewards online.

2.2. Curiosity and Intrinsic Motivation in
Reinforcement Learning

Curiosity-driven (Pathak et al., 2017) agents assign value
to states of the environment that they deem to be “inter-
esting” (Still & Precup, 2012; Schmidhuber, 1997). How
a curiosity based method computes whether a state is “in-
teresting” (Still & Precup, 2012; Schmidhuber, 1997) is
usually its defining characteristic. The original formula-
tion of curiosity used prediction errors directly as intrin-
sic rewards (Schmidhuber, 1991b). The noisy TV prob-
lem quickly emerged when using this naı̈ve approach in
stochastic environments (Schmidhuber, 1991a). In order
to evade the allure of stochastic traps, the first proposed
solution to the noisy TV problem implements “interesting”
(Still & Precup, 2012; Schmidhuber, 1997) as prediction
errors that reduce over time (Schmidhuber, 1991a; Kaplan
& Oudeyer, 2007). Others consider “interesting” (Still &
Precup, 2012; Schmidhuber, 1997) to mean a high depen-
dency between present and future states and actions (i.e.
“interesting” things are predictable (Still & Precup, 2012) or
controllable (Mohamed & Jimenez Rezende, 2015)).

Inverse dynamics feature (IDF) curiosity (Pathak et al.,
2017) rejuvenated interest in using one step prediction er-
rors as intrinsic rewards. IDF curiosity avoids stochastic
traps by computing prediction errors with features that aim
to only contain information concerning stimuli the agent
can affect (Pathak et al., 2017). Further experiments (Burda
et al., 2019a) showed that simple one-step prediction er-
rors also work effectively within a random representation
space generated by feeding state observations through a ran-
domly initialised network. (Burda et al., 2019a) also showed
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the (IDF) approach is vulnerable to action-dependent noisy
TVs—demonstrated by giving the agent a ‘remote control’
to a noisy TV in the environment that could induce unpre-
dictable environment transitions. This motivated random
network distillation (RND) (Burda et al., 2019b), which
removes dynamics from the prediction problem altogether—
instructing a network to learn to predict the output of another
fixed randomly initialised network at each state, using the
resulting error as intrinsic rewards. RND persists as a key
component in state of the art algorithms deployed in high
dimensional state spaces (Badia et al., 2019).

Other exploration methods explicitly leverage uncertainty
quantification for exploration. The canonical approach is
“optimism under uncertainty”, which in its most basic form
means weighting the value of state-actions pairs inversely to
the number of times they have been experienced (Sutton &
Barto, 2018)(p. 36). Known as count based methods (Strehl
& Littman, 2008; Bellemare et al., 2016), this approach
was shown to reliably evade noise sources in minigrid envi-
ronments (Raileanu & Rocktäschel, 2020). However, it is
not feasible to count state visitations in many environments
where there is a large number of unique states (Bellemare
et al., 2016). “Pseudo-count” methods exchange tabular
look up tables for density models to estimate an analogous
intrinsic reward to counts in large state spaces (Bellemare
et al., 2016)—related to density models, (Kim et al., 2019)
use state “compressibility” as intrinsic rewards.

Attempts have been made to reward epistemic uncertainty
explicitly. This typically requires a posterior distribution
over model parameters, which is intractable without approx-
imations such as ensembles or variational inference (e.g.
(Houthooft et al., 2016)). (Osband et al., 2016) instantiated
an ensemble (Lakshminarayanan et al., 2017) approach into
the final layer of a deep Q-network—rewarding its agents
for epistemic value uncertainty. (Pathak et al., 2019) use
the variance of ensemble predictions being used as intrinsic
rewards, while (Shyam et al., 2019) reward experience of
epistemic uncertainty within an ensemble of environment
models. Lastly, some uncertainty estimation methods have
recently been developed that enforce a smoothness con-
straint in the representation space (Mukhoti et al., 2021; van
Amersfoort et al., 2021)—allowing for sensible estimations
of uncertainty to be made from learned representations—but
these approaches have not yet been adopted in reinforcement
learning.

3. Method
Our method operates in an environment defined as a Markov
decision process that consist of states s ∈ S , actions a ∈ A,
and rewards r ∈ R ⊂ R (Sutton & Barto, 2018). At each
timestep t the agent selects an action via a stochastic policy
at ∼ π(·|st) (Szepesvári, 2010) and then receives a reward

rt+1 and state st+1 generated via the transition function
p(st+1, rt+1|st, at) of the environment (Sutton & Barto,
2018). The objective of the agent is to learn a stochastic
policy π, parametrised by ξ, which aims to maximise the
expectation of the sum of discounted future rewards (e.g.
(Mnih et al., 2016)).

max
πξ

Eπξ

[
T∑

k=0

γkrt+k

]
(1)

Where T is the episode length and γ is the discount factor.
Following other curiosity based methods, the total reward is
the sum of the intrinsic reward provided by the intrinsic re-
ward module of the agent and the extrinsic reward provided
by the environment (e.g. (Pathak et al., 2017; Badia et al.,
2019; Raileanu & Rocktäschel, 2020; Burda et al., 2019b)).

rt = βrit + ret (2)

Where the superscripts i and e indicate intrinsic and extrin-
sic rewards, and β is a hyperparameter that regulates the
influence of intrinsic rewards on the policy. In previous
works (Burda et al., 2019a), the intrinsic reward rit is equal
to the mean squared forward prediction error of a curiosity
module. To avoid stochastic traps we subtract the aleatoric
uncertainty—which is constrained to have a diagonal co-
variance (Kendall & Gal, 2017)—from the prediction error,
so that agents are not surprised by transitions that were
previously learnt to be unpredictable.

rit = ∥st+1 − µ̂t+1∥2 − ηTr(Σ̂t+1) (3)

Where µ̂t+1 is the predicted mean of the next state, Σ̂t+1

is the predicted aleatoric uncertainty of the next state and
η is a hyperparameter that regulates by how much the pre-
dicted uncertainty of the next state effects intrinsic rewards.
To learn to predict the mean of the next state µ̂t+1 and
its aleatoric uncertainty Σ̂t+1, we follow (Kendall & Gal,
2017)—fitting a diagonal covariance Gaussian distribution
to the elements of the next state. The predictions are made
by a double-headed neural network—with a mean prediction
head f parameterised by θ and a variance prediction head g
parametrised by ϕ. As employed in previous works, the sep-
arate heads of the double-headed deep network share feature
extracting parameters (Kendall & Gal, 2017). The predic-
tion network performs heteroscedastic aleatoric uncertainty
estimation (Kendall & Gal, 2017), which in a reinforcement
learning context means the prediction heads are conditioned
on the current state and action,

p(s1:N |θ, ϕ) =
N∏
t=1

N (st+1; fθ(st,at),gϕ(st,at)) (4)

where N is the total number of states observed during train-
ing. While (Kendall & Gal, 2017) use maximum a posteriori
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(a) (b)

Figure 1. AMAs can learn to ignore stochastic transitions. (a) Example transitions from the Noisy MNIST environment along with
associated predictions. The top two rows show stochastic transitions where AMA’s predicted variance is high in the majority of the
image allowing intrinsic reward to be small despite the stochastic transition. (b) Two reward curves for MSE and AMA are plotted where
stochastic is the 1 → {2, ..., 9} transitions and deterministic is the 0 → 0 transitions.

inference with a zero-mean Gaussian prior on the network
parameters {θ, ϕ}, we found empirically that the resulting
regularisation terms in the cost function did not improve
results. Accordingly, we simply perform maximum likeli-
hood estimation with the likelihood presented in Equation
(4), resulting in the following cost function (Kendall & Gal,
2017).

Lt+1(θ, ϕ) = (st+1 − µ̂t+1)
⊤Σ̂−1

t+1(st+1 − µ̂t+1)+

λ log(det(Σ̂t+1))
(5)

The first term is the familiar mean squared error divided
by the uncertainty Σ̂t+1. The second term blocks the ex-
plosion of predicted aleatoric uncertainties (Kendall & Gal,
2017). We follow (Kendall & Gal, 2017)’s prescription of
estimating logΣ instead of Σ to ensure stable optimisation.
Furthermore, the hyperparameter λ was added to adjust
the model’s aleatoric uncertainty budget (e.g. (Depeweg
et al., 2018; Clements et al., 2019; Eriksson & Dimitrakakis,
2019)). We use the predicted mean and aleatoric uncer-
tianty of the next state—which are being learned online
with Equation (5)—to compute intrinsic rewards according
to Equation (3). Lastly, we would like to highlight that the
policy network is separate to the state prediction network as
in other curiosity based methods (Pathak et al., 2017).

4. Experiments
The purpose of this work is to improve the exploration
capabilities of deep reinforcement learning algorithms in
stochastic environments where current methods can fail
catastrophically. As we are interested in exploration, we
measure exploration directly by calculating an agent’s en-
vironment coverage (when possible). Details of the noisy

TVs used—including TVs we add to environments as well
as a natural noisy TV in Atari—are contained within each
subsection. Extra details such as the hyperparameters and
architectures used are in Appendix C. Shaded regions are
standard error of the mean and we use 5 seeds for each
method, except the supervised learning MNIST experiments
where only 3 were necessary.

4.1. Noisy MNIST

First we completed a supervised learning task, similar to
the noisy MNIST environment introduced by (Pathak et al.,
2019). The environment does not elicit any actions from an
agent. Instead, the prediction network simply needs to learn
one step mappings between pairs of MNIST handwritten
digits. The first images in the pairs are randomly selected
0s or 1s. When the first image is a 0 then the second image
is the exact same image (these are the deterministic transi-
tions). When the first image is a 1, then the second image is
a random digit from 2-9 (these are the stochastic transitions).
A prediction model capable of avoiding noisy TVs should
eventually learn to compute equal intrinsic rewards for both
types of transitions (Pathak et al., 2019).

We trained two different neural networks on this task
(adapted from (Liao, 2020)), one with a mean squared error
(MSE) loss function—as a baseline— and the other with the
AMA loss function (Kendall & Gal, 2017). The networks
are equivalent except that the AMA network has two pre-
diction heads. Both networks contain skip connection from
the input layer to the output layer and were optimised with
Adam (Kingma & Ba, 2015) at a learning rate of 0.001 and
a batch size of 32. The uncertainty budget hyperparameter
λ and the uncertainty weighting hyperparameter η were set
to 1 for the AMA network. The MSE prediction network
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(e)

Figure 2. AMA agents effectively explore sparse reward minigrid environments that contain action dependent stochastic traps. (a) and (b)
panel show performance on the easiest environment, containing four rooms, while the (c) and (d) show performance on a more challenging
environment with six rooms. AMA and MSE have similar exploration performance when the noisy TV is absent, outperforming a
no-intrinsic-reward baseline—but when a noisy TV is present only the AMA curiosity approach is able to significantly explore the
environment. Ensemble methods are robust to noisy TVs in this case, but not random network distillation. Panel (e) shows an example six
room environment. Standard error represents seed variation.

is unable to reduce prediction errors for the stochastic tran-
sitions, causing it to produce much larger intrinsic rewards
than the deterministic transitions, consistent with (Pathak
et al., 2019). On the other hand, the AMA prediction net-
work is able to cut its losses by attributing high variance to
the stochastic transitions, making them just as rewarding as
the deterministic transitions.

4.2. Minigrid

Next we test AMAs on the Gym MiniGrid environment
(Chevalier-Boisvert et al., 2018), which allows for resource
limited deep reinforcement learning. The agent receives
tensor observations describing its receptive field at each
timestep. The channels of the observations represent seman-
tic features (e.g. blue door, grey wall, empty, etc.) of each
grid tile. The action space is discrete (containing actions:
turn left, turn right, move forward, pick up, drop, toggle
objects and done) allowing the agent to move around the
environment as wells well as open and close doors. We
used singleton environments but with different seeds for
each run—resulting in 5 different room configurations (one
for each seed). We measure exploration by counting the
number of unique states visited throughout training. An
action-dependent noisy TV was added, inspired by other
minigrid experiments with noisy TVs from (Raileanu &
Rocktäschel, 2020), by setting approximately half of the

state observation to uniformly sampled integers within the
range of possible minigrid values. When the agent selects
the ‘done’ action the noisy TV is activated in the next ob-
servation. This is the only effect of the ‘done’ action. We
perform policy optimisation with a synchronous advantage
actor critic (A2C) implementation recommended by the gym
minigrid README (Mnih et al., 2016; Willems, 2020). For
the minigrid experiments we train on intrinsic and extrinsic
rewards with their relative weighting being equal. The actor
critic weights were optimised with RMSProp (Tieleman &
Hinton, 2014) at a learning rate of 0.001, while the intrinsic
reward module was optimised with the Adam (Kingma &
Ba, 2015) optimizer at a learning rate of 0.001 for the AMA
agent and 0.0001 for the MSE agent. All methods used the
same A2C base implementation (Willems, 2020) with the
same default hyperparameters. Intrinsic reward specific hy-
perparameters were optimised for each baseline individually
with and without the noisy TV, see Appendix C.2 for details.

The uncertainty budget λ of the AMA network was set to 0.1
as the environment representations from minigrid are very
sparse, which we found empirically reduces the prediction
networks willingness to predict uncertainties. The uncer-
tainty weighting η was set to 1 (its natural value). We found
that clipping intrinsic rewards to the range [0,∞] compen-
sated for possible over predictions of uncertainty, which
implemented for AMA. The robustness of performance to
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Figure 3. Pixel AMA performs significantly better than all baselines with a noisy TV (a) and (c) and without the distracting noisy TV
AMA nearly matches its most directly comparable method Pixel MSE (b) and (d). No extrinsic rewards were used for policy optimisation.
In Mario distance covered and extrinsic reward are equivalent. The y-axis plots extrinsic rewards per episode. The no intrinsic reward
baseline for Space Invaders is the mean performance of the random agent data provided by (Burda et al., 2019a). For Mario we were
required to compute the no intrinsic reward baseline from scratch, which is the PPO agent from (Burda et al., 2019b) with intrinsic rewards
turned off without a noisy TV (but repeated in all panels for easy comparison).

hyperparameters is analysed in Section 4.6.

The forward prediction module of AMA works in the ob-
servation space as opposed to a learned feature space as
is implemented in other curiosity driven methods (Pathak
et al., 2017; Burda et al., 2019b). Pixel based curiosity was
chosen due to its simplicity. The forward prediction model
is a double headed CNN, which builds upon a previous in-
trinsic motivation implementation on minigrid (Raileanu
& Rocktäschel, 2020). The ensembles’ intrinsic rewards
were implemented based on (Pathak et al., 2019) using the
same forward prediction network as AMA. The RND ap-
proach was adapted from (Raileanu & Rocktäschel, 2020)’s
implementation.

We perform experiments in four and six room configurations
of the minigrid (see Figure 2(e) for an example six room
environment). Without a noisy TV both AMA and MSE
reward functions generate visit more states compared to the
no intrinsic reward baseline. On the other hand, the presence
of a noisy TV profoundly affects the performance of the
MSE curiosity agent, greatly reducing the number of states
visited. In contrast, AMA agents are almost unaffected by
the presence of an action dependent noisy TV. RND (Burda
et al., 2019b) shows good performance without a noisy TV
but performs poorly when a noisy TV is present. Ensemble
disagreement (Pathak et al., 2019) demonstrate robustness
to this version of a noisy TV in minigrid—preserving its
exploration boost over vanilla A2C with and without the
TV.

4.3. Mario and Space Invaders

We have shown AMAs can learn to ignore stochasticity
in the supervised setting of MNIST and also explore pro-
ficiently in the sparse reward multiroom environments of
minigrid. In this section we test whether AMAs can learn
to explore in stochastic versions of high dimensional retro
video game environments. We isolated two games that have

been used as curiosity benchmarks in the relevant explo-
ration literature: Space Invaders (from (Bellemare et al.,
2013) used in (Burda et al., 2019a; Pathak et al., 2019))
and Mario (from (Nichol et al., 2018) used in (Pathak et al.,
2017), (Burda et al., 2019b), (Pathak et al., 2019)).

While these environments are useful for testing curiosity,
they are mostly deterministic. Sticky action environments
(Machado et al., 2018) were previously developed to make
atari RL algorithms more robust to stochasticity. However,
the stochasticity in sticky action environments is indepen-
dent of the agents policy, meaning an agent cannot trap itself
by selecting actions that generate random dynamics. This
is unlike random dynamics that are likely to be found in
real world applications—for example a curious warehouse
robot could become distracted with watching another robots
actions whose goal it does not understand. Consequently,
we developed a noisy TV wrapper for atari game environ-
ments, where the action space is extended with an action
that induces random grayscale tiled CIFAR-10 (Krizhevsky
et al., 2014) images in place of game frames for the next
observation (using1, see Appendix C.6 for examples). When
the noisy TV action is selected, the zeroth action of the ac-
tion space is sent to the game emulator (the choice of the
zeroth action is arbitrary).

We adapt the proximal policy optimisation (PPO) (Schul-
man et al., 2017) curiosity implementation from (Burda
et al., 2019a) into an AMA curiosity system. When using
the pixel feature space, we extend (Burda et al., 2019a)’s
U-Net (Ronneberger et al., 2015) to use two output heads
to predict the mean and variance of future states. We leave
all PPO hyperparameters equal to their values from (Burda
et al., 2019a). We set the uncertainty budget hyperparameter
λ to 1 and the uncertainty weighting hyperparameter η to
2—doubling the punishment given to our agents for expe-

1https://github.com/snatch59/
load-cifar-10

https://github.com/snatch59/load-cifar-10
https://github.com/snatch59/load-cifar-10
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(a) (b)

Figure 4. AMA is robust to Noisy TVs of a very random unifrom
noise distribution (random pixels from 0-255) while other baselines
are also trapped by this additional noisy TV. We verify in C.8 the
eventual collapse in Mario is a property of the curiosity methods
tested and not a feature of AMA.

riencing aleatoric uncertainty. For the these experiments
we do not clip intrinsic rewards. The hyperparameter op-
timisation process is described in Appendix C.4. We also
test the robustness of AMA to alternative noise distributions
(Section 4.5) as well as different settings of hyperparameters
(Section 4.6). We compare AMA to four alternative intrin-
sic reward methods: random network distillation (RND)
(Burda et al., 2019b), inverse dynamics feature (IDF) curios-
ity (Pathak et al., 2017), MSE pixel based curiosity (Burda
et al., 2019a) and ensemble disagreement (Pathak et al.,
2019). It is important to stress policy optimisation is done
with intrinsic rewards only following (Burda et al., 2019a).

Compared to the relatively weak baseline of pixel based
curiosity, the Space Invaders and Mario experiments show
similar results to the minigrid experiments—MSE and AMA
pixel based curiosity have comparable performance when
no noisy TV is present (Figure 3(b) and 3(d)), while with
the noisy TV AMA greatly outperforms MSE pixel based
curiosity (Figure 3(a) and Figure 3(c)). Unsurprisingly,
RND and IDF curiosity maintain their superiority over pixel
based methods without a noisy TV (Figure 3(b) and 3(d)).
However, unlike AMA curiosity, both these baselines are
vulnerable to action dependent noisy TVs (Figure 3(a) and
Figure 3(c)). While Ensembles and RND have previously
been shown to be able to evade stochastic traps (Burda et al.,
2019b), it seems that if the number of novel states in the trap
is large then their approximation of epistemic uncertainty
breaks down.

4.4. Bank Heist: An Atari Game with a Natural Noisy
TV

Although Atari games are famously deterministic (Machado
et al., 2018), we identified a naturally ocurring stochastic
trap in the Bank Heist gameplay videos of the original IDF
curiosity paper (Pathak et al., 2017). The objective of Bank
Heist is to simultaneously avoid police cars and navigate to
banks distributed across four 2D mazes—which can be en-
tered and exited through the sides of the screen. Importantly,

(a) (b)

Figure 5. IDF AMA (a) and Pixel AMA (b) avoids the natural
trap in Bank Heist and so explores more of the maze on average
than the IDF MSE. (b) shows the different seeds from Pixel AMA
plotted individually due to the very long episodes of pixel AMA.
An implementation detail means the values of the x-axis above are
a close approximation to their true values see C.7 for details.

with each enter/exit the bank locations reset randomly.

When trained on purely intrinsic rewards, IDF curiosity will
perpetually enter and exit the maze while also dropping dy-
namite. This creates high prediction error as it is impossible
to predict when the dynamite will explode and where the
banks will regenerate. An example video of this behaviour
orignally from (Pathak et al., 2017) is provided2. To mea-
sure the effect of this pathological behaviour on exploration,
we count the number of pixels covered by the car on average
in an episode.

As expected, the IDF agent initially begins to explore the
environment before it falls into the trap (Figure 5(a)). On
the other hand, most of the other baselines seem to be rela-
tively unaffected by this trap—although they do not seem
to explore particularly proficiently. Pixel AMA develops an
interesting strategy which makes its performance difficult to
plot—so we plot all of its seeds individually in Figure 5(b).
Pixel AMA discovers that if it does not rob any banks it will
not be chased by the police, allowing it to explore unim-
peded with very long episodes (so long that they exceed the
107 timesteps used for training hence why the line is cut off
at different points for different seeds). Overall, pixel AMA
explores the maze well, with 2 seeds getting good perfor-
mance, 2 seeds getting extremely good performance and 1
seed becoming bored and deciding to give up on exploration.
Lastly, we integrated the AMA prediction paradigm into the
IDF approach, predicting the mean and aleatoric variance
of future state representations and computing rewards with
Equation (3) with AMA hyperparameters λ and η set to 1.
This ablation was not susceptible to the natural Bank Heist
trap (Figure 5). Overall, this section demonstrates that noisy
TVs can be an inherent issue even in environments with
simple dynamics.

2https://www.youtube.com/watch?v=
S4YdZe70XMQ

https://www.youtube.com/watch?v=S4YdZe70XMQ
https://www.youtube.com/watch?v=S4YdZe70XMQ
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4.5. Different Noise Distributions

A key desiderata of AMA is that exploration performance
should be robust to noisy TVs no matter the distribution they
follow. In addition to the CIFAR Noisy TV experiments,
we performed further experiments to see how AMA and the
baselines would react to uniform “salt and pepper” noise
in Mario. Although uniform noise is a simpler distribution
than natural images, it is even more distracting than CIFAR
images due to its high entropy. Consequently, AMA is again
the only method that does not catastrophically fail when a
noisy TV is present as can be seen in Figure 4. Interestingly,
ensembles perform considerably worse with uniform noise
than with CIFAR noise. AMA’s extrinsic reward decreases
slightly in Mario—we verified in appendix C.8 that this is
a result of the well known boredom behaviour of curiosity
systems discovered by (Pathak et al., 2017), rather than
being distracted by a Noisy TV.

4.6. Hyperparameter Ablations

The hyperparameters λ and η have simple interpretations—
λ is a prior on the width of the noise distribution, while
η controls how much AMA is punished for experiencing
random dynamics. Although λ and η are interpretable, it
is important to understand the effect on exploration per-
formance when hyperparameters are perturbed from their
optimal values. Table 1 shows that Mario performance in
relatively robust to hyperparameter selection but as expected
η and λ can be tuned to be more susceptible to noisy TVs.
Table 2 shows that it is not crucial to tune η minigrid but
due to the nature of minigrid observations it is important to
have a wide prior on the variance of states3. An interesting
direction for further work would be to try to estimate λ
online from experience.

5. Discussion
5.1. Limitations

The AMA reward function implicitly rewards epistemic
uncertainty by assuming the total uncertainty can be de-
composed into epistemic and aleatoric uncertainties. While
theoretically true (Kendall & Gal, 2017), there is no guar-
antee that AMAs are able to surgically subtract those errors
due to aleatoric dynamics from the total prediction error.
Additionally, aleatoric uncertainty estimates are not guar-
anteed to be reliable for out of distribution data, meaning
intrinsic rewards could become less reliable the further the
agent travels into novel territory (Mukhoti et al., 2021).
In practice we find that a stochastic policy—and clipping
in the case of minigrid—offsets potentially deceptive in-

3Note that an early code version was used for these results
where the novel states of one parallel actor (out of 16) were
recorded, instead of the novel states visited across all actors.

η λ Max. X Distance Max. X Distance w/ TV
2 0.1 598 641
2 1 616 715
2 10 1092 451
1 1 725 814

0.5 1 568 516

Table 1. Mario results with different hyperparameters. Hyperpa-
rameter tuning is not crucial in Mario. However, increasing λ or
decreasing η can make AMA susceptible to noisy TVs.

η λ Novel States Novel States w/ TV
1 0.1 100 92
1 1 85 5
1 10 44 3
2 0.1 115 107

0.5 0.1 100 70

Table 2. Minigrid results with different hyperparameters. Due to
the sparse observations of minigrid, it is important to place a prior
of being more eager to predict uncertainty by decreasing λ. For
minigrid, tuning η is not very important.

trinsic rewards. Furthermore, trust region methods in the
retro games (i.e. using PPO (Schulman et al., 2017) in-
stead of A2C (Mnih et al., 2016)) may also compensate for
ocassionally deceptive rewards—suggested by the fact that
intrinsic reward clipping was not necessary for the retro
game experiments. Finally, we note that like all curiosity ap-
proaches (e.g. (Burda et al., 2019a)), our method generates
non-stationary rewards, which is known to make learning
difficult for RL agents.

5.2. Acetylcholine

AMAs build upon (Yu & Dayan, 2003)’s work on
Acetylcholine—a neurotransmitter associated with “ex-
pected” uncertainty signalling in the brain (we point the
interested reader to Appendix A for a literature review). The
exact nature of the uncertainty signalled by acetylcholine—
whether it is epistemic or aleatoric—is an open question
in theoretical neuroscience posed by (Yu & Dayan, 2005).
Previously, it was obvious why a biological agent would
find epistemic uncertainty predictions useful as they can be
used to maximise information gain (Mukhoti et al., 2021).
In this work, we present a use case for aleatoric uncertainty
predictions—rejuvenating interest in (Yu & Dayan, 2005)’s
call for experiments to analyse the kinds of uncertainty
signalled in brain. To codify the relevance of AMAs to
theoretical neuroscience, we propose an animal experiment
in B as well as theoretical predictions of cholinergic activity
in the proposed task.
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6. Conclusion
We have shown AMAs are able to avoid action-dependent
stochastic traps that destroy the exploration capabilities of
conventional curiosity driven agents in environments with
high entropy noisy TVs (Burda et al., 2019a; Pathak et al.,
2019; Burda et al., 2019b). AMAs tractably avoid stochastic
traps by decreasing intrinsic rewards in regions with high
estimated aleatory. Future RL research should aim to inte-
grate the AMA approach into curiosity methods that operate
in feature spaces besides pixels or even within those meth-
ods that circumvent dynamics altogether (e.g. (Burda et al.,
2019b)), with the aim of achieving state of the exploration
even when noisy TVs are present. Lastly, more work should
be done to understand the cause of the failure cases of popu-
lar intrinsic reward methods in stochastic environments.
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Appendix

A. Acetylcholine
In the mammalian brain acetylcholine is implicated in a range of processes including learning and memory, fear, novelty
detection, and attention (Ranganath & Rainer, 2003; Pepeu & Giovannini, 2004; Acquas et al., 1996; Barry et al., 2012;
Yu & Dayan, 2005; Hasselmo, 2006; Giovannini et al., 2001; Parikh et al., 2007). Traditional views—supported by the
rapid increase in cholinergic tone in response to environmental novelty and demonstrable effects on neural plasticity—
emphasised its role as a learning signal, generating physiological changes that favour encoding of new information over
retrieval (Hasselmo, 2006).

Notably, (Yu & Dayan, 2003) proposed an alternative perspective, suggesting that acetylcholine signals the expected
uncertainty of top down predictions, while modulation of norepinephrine is a result of unexpected uncertainties. More
concretelty, (Yu & Dayan, 2003)’s model can be seen as favouring bottom up sensory input over top down predictions if
predictions are believed to be inaccurate—consistent with evidence that shows acetylcholine inhibits feedback connections
and strengthens sensory inputs (Hasselmo, 2006). However this approach does not explicitly separate epistemic and aleatoric
uncertainties (Yu & Dayan, 2005). In contrast, the utility of quantifying epistemic uncertainties for exploration has been
widely recognised in the RL literature (e.g. (Osband et al., 2016; Pathak et al., 2019)). Here we demonstrate a potential
use of aleatoric uncertainties in exploring agents both biological and artificial. Namely, aleatoric uncertainties can be used
to divert attention away from unpredictable dynamics when using prediction errors as intrinsic rewards. This is similar to
a model proposed by (Parr & Friston, 2017), suggesting acetylcholine may indicate expected uncertainties in top down
predictions within an MDP.

In this context we propose an extension to (Yu & Dayan, 2005)’s dichotomy. Specifically, we suggest that in the mammalian
brain, cortical acetylcholine signals expected aleatoric uncertainties, while norepinephrine is modulated by epistemic
uncertainties both expected and unexpected. This formulation is attractive in an ML framework, providing a means to avoid
stochastic traps, while also being consistent with empirical biological data (Hasselmo, 2006; Yu & Dayan, 2003).

B. A Proposed Test for the Aleatoric Model of Acetylcholine
Inspired by (Yu & Dayan, 2005), we propose that in the mammalian brain acetylcholine signals aleatoric uncertainty
surrounding future states. However, we are not aware of any experimental neuroscience data that elucidates the specific
nature of the uncertainty signalled by acetylcholine. As a result, this section proposes a 1D rodent VR task designed to
test the specific nature of cholinergic uncertainty signalling in the mammalian brain which we hope will be picked up by
experimental neuroscientists. To supplement our experimental proposal, we compute theoretical predictions of cholinergic
activity within either an aleatoric or epistemic acetylcholine model—two competing interpretations of (Yu & Dayan, 2005)’s
work. The aleatoric model uses aleatoric uncertainties as a theoretical acetylcholine signal (Kendall & Gal, 2017), while the
epistemic model uses ensemble variance as an acetylcholine signal (Pathak et al., 2019).

The proposed task places an animal in a VR corridor containing a series of spatial landmarks and two reward zones in which
it must respond in order to have a chance of receiving a reward. Responding in reward zone A causes the animal to teleport
to a random position along the track. Responding in reward zone B causes the animal to teleport to a fixed position on the
track.

To compute how both models predict the cholinergic signal should respond in the proposed rodent VR experiment, we
simulate the task with a simple multi-armed bandit environment. In our bandit model of the task an agent predicts a 1D
function by sampling minibatches from different regions of the input. In one region of sample space the function takes a
simple sinuisoidal form, analogous to zone A of the VR track, in a second region the function consists of points randomly
sampled from a standard normal distribution at each timestep, analogous to zone B (Figure 6(c)). As described previously,
we applied two models to this task, in the first acetycholine was identified with aleatoric uncertainty, while in the second—as
a control—acetylcholine tracks epistemic uncertainty.

We trained an action value based multi-armed bandit to maximise intrinsic rewards for two kinds of forward prediction
models: a double headed network trained to optimise the AMA objective and an ensemble of networks where each member
is minimising their own MSE (e.g. (Pathak et al., 2019)). The aleatoric model uses the AMA reward function whereas the
epistemic model is (intrinsically) rewarded for variance in ensemble predictions. We plot both models’ uncertainties in each
reward zone over time—recovering a clear prediction of cholinergic activity in both cases. The aleatoric uncertainty of AMA
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(a) (b) (c)

Figure 6. Predictions on a theoretical experiment to illuminate the epistemic or aleatoric nature of cholinergic signalling in the brain. (a)
and (b) show that the epistemic model predicts acetycholine will eventually decrease in both zones while the aleatoric model predicts
acetylcholine decreasing to zero in the stable zone but remaining high in the noisy zone. Panel (c) shows our 1D model of the proposed
animal experiment where the bandit samples different ‘corridor positions’ and receives scalar stimuli, which it is trying to predict—using
the resulting prediction errors as intrinsic rewards. Plots are smoothed with the same method as the Bank Heist plots C.7.

remains high in reward zone B but decreases in reward zone A. On the other hand, the epistemic model shows a decrease
in acetylcholine in both reward zones over time. We hope these clear and distinct predictions on the nature of cholinergic
uncertainty signalling will be tested by the experimental neuroscience community in a task similar to the one we propose.

C. Implementation Details
C.1. Noisy MNIST

We use three random seeds for the repeats of the MNIST experiments. The results in the graph show test set performance.
The hyperparameters used are listed below. The learning rate was manually tuned so that the identity transformation was
learned for the deterministic transitions (hence very low loss for the MSE and AMA network) and the AMA network
produced sensible uncertainty estimates for the stochastic transitions.

Hyperparameter Value
MSE Learning Rate 0.001
AMA Learning Rate 0.0001
Batch Size 32
AMA uncertainty budget λ 1
AMA uncertainty coefficient η 1

Table 3. Noisy MNIST hyperparameters

C.2. Minigrid

We used 5 seeds for the minigrid experiments. We tuned 2 different hyperparameter via grid search: curiosity learning rate
∈ [0.01, 0.001, 0.0001] and intrinsic reward scaling (before normalisation) ∈ [1, 10, 100] for the AMA and MSE modules
on the six room environment (by summing up the novel states visited with and without a noisy TV). We used different seeds
for the grid search and the final results. We also adapt an implementation of the Welford algorithm from stack overflow
for normalising rewards 4. The architecture for forward prediction is adapted from the implementation from (Raileanu &
Rocktäschel, 2020) but in preliminary experimentation we ended up changing their prediction architecture dramatically.

4https://stackoverflow.com/a/5544108/13216535

https://stackoverflow.com/a/5544108/13216535
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Figure 7. MNIST image to image architecture. For the MSE network the second log variance branch was discarded. A skip connection
was provided from the input to the final layer for both AMA and MSE.

C.3. Extrinsic Rewards Experiments in Minigrid

We measured state coverage in our main experiments as a proxy for exploration performance. In the rebuttal period we
performed additional experiments to verify that increased state coverage does indeed lead to better extrinsic returns. When
we performed these experiments we found it necessary to normalise the sum of extrinsic and intrinsic rewards rather than
just normalising intrinsic rewards. This slight change to the normalisation scheme used in the main text was necessary to
reliably return to goal states.

C.4. Atari

For each run we used five seeds. We use the official implementations (Burda et al., 2019b;a) for the baselines we compare to
(with their default hyperparameters). For AMA and Pixel MSE we adapt from (Burda et al., 2019a). The hyperparameters
used for our AMA experiments can be found in Table 5. We did not change the PPO/vanilla curiosity hyperparameters from
the original implementation we adapted and only changed the AMA hyperparameters. The hyperparameters were chosen by
first exploring different configurations on smaller minigrid environments and evaluating promising configurations on the
Atari environments.

The UNet architecture used for the forward predictions is described below. We duplicate the decoder head to create a two
headed output but we only describe the encoder and decoder here. For the Pixel MSE baselines we use identical architectures
but don’t use the uncertainty predictions and train on MSE only. There are UNet style residual connections between the
corresponding encoder and decoder layers. Leaky ReLU activations are used in the encoder layers and Tanh activations are
used in the decoder layers. Batch normalisation is used throughout the hidden layers. Action information is concatenated at
each layer. See supplementary code for further details.

To integrate AMA into the IDF approach, we did not share any representations between mean and variance prediction heads,
instead we used two prediction MLPs for the mean and variance. Leaky ReLU is used throughout hidden layers and action
information is concatenated at each layer. We used five layers with 512 units each and UNet style residual connections.
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Hyperparameter Value
AMA learning rate 0.001
MSE learning rate 0.0001
AMA reward scaling 1
MSE reward scaling 1
AMA normalise rewards True
MSE normalise rewards False
RMS Prop α 0.99
RMS Prop ϵ 1.000e-8
number of actors 16
unroll length 5
discount factor γ 0.99
policy learning rate 0.001
GAE λ 0.95
entropy coefficient 0.01
value loss coefficient 0.5
max grad norm 0.5
AMA uncertainty budget λ 0.1
AMA uncertainty coefficient η 1

Figure 8. Actor critic architecture for the policy network in the minigrid experiments.
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Figure 9. Curiosity forward prediction architecture for the minigrid experiments. For the MSE baseline the variance predictions are not
used and loss is computed via a standard MSE.

Hyperparameter Value
global learning rate 0.0001
normalise rewards True
number of PPO epochs 3
number of actors 128
unroll length 128
discount factor γ 0.99
GAE λ 0.95
entropy coefficient 0.001
value loss coefficient 0.5
policy gradient clip range [-1.1, 1.1]
Pixel AMA uncertainty budget λ 1
Pixel AMA uncertainty coefficient η 2
IDF AMA uncertainty budget λ 1
IDF AMA uncertainty coefficient η 1

Table 5. Retro game policy hyperparameters

Layer Type Filters Kernel Size Stride
Conv2d 32 8 3
Conv2d 64 8 2
Conv2d 64 4 2
Dense (512 Units) N/A N/A N/A
Conv2d Transpose 64 4 2
Conv2d Transpose 32 8 2
Conv2d Transpose 4 8 2

Table 6. Retro game forward prediction hyperparameters
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Hyperparameter Value
epistemic learning rate 0.0001
epistemic batch size 32
aleatoric learning rate 0.001
aleatoric batch size 1000
aleatoric uncertainty budget λ 1
aleatoric uncertainty coefficient η 1
ϵ greedy ϵ 0.1

Table 7. Bandit hyperparameters.

Figure 10. AMA prediction network for bandit tasks.

C.5. Bandit

We performed 3 repeats to produce the standard error regions show in the graph. Learning rate was tuned by hand, observing
how well the network performed in making predictions as the bandit sampled different regions of the environment. The
intrinsic reward method for the epistemic bandit is based on (Pathak et al., 2019; Lakshminarayanan et al., 2017). We use an
action value based bandit algorithm with ϵ-greedy exploration (Sutton & Barto, 2018)(p. 31).

C.6. Different Noise Distribution for Retro Games

For the CIFAR noisy TV we tiled a random CIFAR image (from the training set) for each frame observed on the noisy TV.
This required around around 2.5 tiles to fill the 84× 84 pixels of the retro game frames. An example frame can be seen in
Figure 12.

C.7. Bank Heist Plotting

As briefly mentioned in the main text, the lines plotted for Bank Heist have approximate x points as the exact frames were
not recorded directly with the average number of pixels covered in an episode. However, the logging step was recorded with
the average pixel coverage. In the main text we use the frame count from the nearest recorded step to the step used for pixel
coverage. To show the trends of these graphs show similar results we plot pixel coverage against training steps below. Note



How to Stay Curious while Avoiding Noisy TVs

Figure 11. Epistemic prediction network for the bandit task.
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Figure 12. Four examples of frames that an agent might see when interacting with the CIFAR noisy TV. This is a complex noise distribution
picked to test the limits of the heteroscedastic aleatoric uncertainty estimation.

for all methods besides pixel AMA the Bank Heist plots are smoothed with following code snippet5 so that the crowded plot
is readable.

C.8. Eventual Decrease in Exploration During Mario Training

In initial experiments we noticed the AMA agent lost motivation to explore its environment after reaching it peak extrinsic
reward. To ensure that this was not an inherent problem with AMA, we ran the other curiosity methods for further frames
and found similar eventual decreases in extrinsic reward (Figure 14). Presumably the cause of this is that once a significant
portion of the environment has been explored the agent is no longer motivated to return to those regions (as prediction error
decreases)—this issue has been noted by previous authors (Pathak et al., 2017).

C.9. Potential Negative Social Impacts

The work presented is very far from any real world deployment. If it were to be deployed in any real world context then
extensive testing would need to be done to understand how the curiosity agents would behave in novel environments as
erratic behaviours could be dangerous in, for example, a robotic control context. The AMA objective is overarching (like
other curiosity methods) and so care should be taken if deploying in something like a recommender system as the agent
could find certain behaviours intrinsically rewarding that you might not have intended it to (like the noisy TV problem).
Lastly, although the AMA system contains notions of uncertainty quantification, that does not mean it is able to completely
understand the limits of its predictions and so one should not be overconfident in its abilities to do so.

C.10. Hardware

The experiments were performed on three different machines depending on their availability: A 32 core CPU with one
GeForce GTX TITAN X, a 12 core CPU with two GeForce GTX TITAN Xs and one 8 core CPU with two GeForce 2080Ti
GPUs.

5https://stackoverflow.com/a/11352216

https://stackoverflow.com/a/11352216
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(a) (b) (c)

(d) (e)

Figure 13. Trends of Bank Heist exploration plotted exactly against logging steps, showing similar trends to the approximate x-axis used
in the main text. The training steps are not comparable between different methods. The pixel MSE results cannot be plotted together
meaningfully against training steps as slightly different logging was used with different seeds.

Figure 14. Repeats ran for more frames on Mario for MSE Pixel curiosity and MSE IDF curiosity. 3/3 of seeds see a decrease in
performance for IDF curiosity and 2/3 in the pixel curiosity case.



How to Stay Curious while Avoiding Noisy TVs

We list times here on the 2080Ti machine, the other machines were as much as 2× slower. The minigrid experiments took
around 40 minutes per run, the Space Invader experiments took around 12 hours per run, the Mario experiments took around
1 hour and 20 minutes per run.

C.11. Licensing

The repository from (Willems, 2020) has an MIT license. The code used from (Chevalier-Boisvert et al., 2018) has an
Apache License 2.0. (Raileanu & Rocktäschel, 2020) has a creative commons license. Besides those listed we are not aware
of any further code licensing. We adapted a copyright free rat silhouette image for the bandit figure 6.

C.12. Further Code Acknowledgements

Although we did not directly use their code we would like to acknowledge the following open source contributions that
provided a useful reference when implementing Kendall and Gal’s (Kendall & Gal, 2017) aleatoric uncertainty estimation
algorithms:

https://github.com/ShellingFord221/My-implementation-of-What-Uncertainties-
Do-We-Need-in-Bayesian-Deep-Learning-for-Computer-Vision

https://github.com/pmorerio/dl-uncertainty

https://github.com/hmi88/what

6https://pixabay.com/vectors/rat-rodent-silhouette-gold-chinese-5184465/

https://github.com/pmorerio/dl-uncertainty
https://github.com/hmi88/what
https://pixabay.com/vectors/rat-rodent-silhouette-gold-chinese-5184465/

