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Abstract

Estimating counterfactual outcomes over time
from observational data is relevant for many appli-
cations (e.g., personalized medicine). Yet, state-
of-the-art methods build upon simple long short-
term memory (LSTM) networks, thus rendering
inferences for complex, long-range dependencies
challenging. In this paper, we develop a novel
Causal Transformer for estimating counterfactual
outcomes over time. Our model is specifically
designed to capture complex, long-range depen-
dencies among time-varying confounders. For
this, we combine three transformer subnetworks
with separate inputs for time-varying covariates,
previous treatments, and previous outcomes into
a joint network with in-between cross-attentions.
We further develop a custom, end-to-end training
procedure for our Causal Transformer. Specifi-
cally, we propose a novel counterfactual domain
confusion loss to address confounding bias: it
aims to learn adversarial balanced representations,
so that they are predictive of the next outcome
but non-predictive of the current treatment assign-
ment. We evaluate our Causal Transformer based
on synthetic and real-world datasets, where it
achieves superior performance over current base-
lines. To the best of our knowledge, this is the
first work proposing transformer-based architec-
ture for estimating counterfactual outcomes from
longitudinal data.

1. Introduction
Decision-making in medicine requires precise knowledge
of individualized health outcomes over time after applying
different treatments (Huang & Ning, 2012; Hill & Su, 2013).
This then informs the choice of treatment plans and thus
ensures effective care personalized to individual patients.
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Traditionally, the gold standard for estimating the effects of
treatments are randomized controlled trials (RCTs). How-
ever, RCTs are costly, often impractical, or even unethical.
To address this, there is a growing interest in estimating
health outcomes over time from observational data, such as,
e. g., electronic health records.

Numerous methods have been proposed for estimating
(counterfactual) outcomes from observational data in the
static setting (van der Laan & Rubin, 2006; Chipman et al.,
2010; Johansson et al., 2016; Curth & van der Schaar, 2021;
Kuzmanovic et al., 2022). Different from that, we focus on
longitudinal settings, that is, over time. In fact, longitudi-
nal data are nowadays paramount in medical practice. For
example, almost all electronic health records (EHRs) nowa-
days store sequences of medical events over time (Allam
et al., 2021). However, estimating counterfactual outcomes
over time is challenging. One reason is that counterfactual
outcomes are generally never observed. On top of that, di-
rectly estimating counterfactual outcomes with traditional
machine learning methods in the presence of (time-varying)
confounding has a larger generalization error of estimation
(Alaa & van der Schaar, 2018a), or is even biased (in case
of multiple-step-ahead prediction) (Robins & Hernán, 2009;
Frauen et al., 2022). Instead, tailored methods are needed.

To estimate counterfactual outcomes over time, state-of-
the-art methods make nowadays use of machine learning.
Prominent examples are: recurrent marginal structural net-
works (RMSNs) (Lim et al., 2018), counterfactual recurrent
network (CRN) (Bica et al., 2020), and G-Net (Li et al.,
2021). However, these methods build upon simple long
short-term memory (LSTM) networks, because of which
their ability to model complex, long-range dependencies
in observational data is limited. Long-range dependencies
are omnipresent in medical data; e. g., long-term treatment
effects have been observed for obesity (Latner et al., 2000),
multiple sclerosis (Sormani & Bruzzi, 2015), or diabetes
(Jacobson et al., 2013). To address this, we develop a Causal
Transformer (CT) for estimating counterfactual outcomes
over time. It is carefully designed to capture complex, long-
range dependencies in medical data that are nowadays com-
mon in EHRs.

In this paper, we aim at estimating counterfactual outcomes
over time, that is, for one- and multi-step-ahead predictions.
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Figure 1. Overview of our CT. We distinguish two timelines: time steps 1, . . . , t refer to observational data (patient trajectories) and
thus input; time steps t + 1, . . . , t + τ is the projection horizon and thus output. Three separate transformers are used in parallel for
encoding observational data as input: treatments At / treatment interventions at (blue), outcomes Yt / outcome predictions Ŷt (green),
and time-varying covariates Xt (red). These are fused via B stacked multi-input blocks. Additional static covariates V (gray) are fed into
all multi-input blocks. Each multi-input block further makes use of cross-attentions. Afterward, the three respective representation for
treatments, outcomes, and time-varying covariates are averaged, giving the (balanced) representation Φt (purple). On top of that are two
additional networks GY (outcome prediction network) and GA (treatment classifier network) for learning balanced representations in our
CDC loss. Layer normalizations and residual connections are omitted for clarity.

For this, we develop a novel Causal Transformer (CT). It
combines two innovations: (1) a tailored transformer-based
architecture to capture complex, long-range dependencies
in the observational data; and (2) a novel counterfactual
domain confusion (CDC) loss for end-to-end training.

For (1), we combine three separate transformer subnetworks
for processing time-varying covariates, past treatments, and
past outcomes, respectively, into a joint network with in-
between cross-attentions. Here, each transformer subnet-
work is further extended by (i) masked multi-head self-
attention, (ii) shared trainable relative positional encoding,
and (iii) attentional dropout.

For (2), we develop a custom end-to-end training procedure
based on our CDC loss. This allows us to solve an adversar-
ial balancing objective in which we balance representations
to be (a) predictive of outcomes and (b) non-predictive of
the current treatment assignment. The latter is crucial to ad-
dress confounding bias and thus reduces the generalization
error of counterfactual prediction. Importantly, this objec-
tive is different from previously proposed gradient reversal
balancing (Ganin & Lempitsky, 2015; Bica et al., 2020),
as it aims to minimize a reversed KL-divergence to build
balanced representations.

We demonstrate the effectiveness of our CT over state-of-
the-art methods using an extensive series of experiments
with synthetic and real-world data. Our ablation study (e.g.,
against a single-subnetwork architecture) shows that neither
(1) nor (2) alone are sufficient for learning. Rather, it is
crucial to combine our transformer-based architecture based

on three subnetworks and our novel CDC loss.

Overall, our main contributions are as follows:1

1. We propose a new end-to-end model for estimating
counterfactual outcomes over time: the Causal Trans-
former (CT). To the best of our knowledge, this is the
first transformer tailored to causal inference.

2. We develop a custom training procedure for our CT
based on a novel counterfactual domain confusion
(CDC) loss.

3. We use synthetic and real-world data to demonstrate
that our CT achieves state-of-the-art performance. We
further achieve this both for one- and multi-step-ahead
predictions.

2. Related Work
Estimating counterfactual outcomes in static setting.
Extensive literature has focused on estimating counterfac-
tual outcomes (or, analogously, individual treatment ef-
fects [ITE]) in static settings (Johansson et al., 2016; Alaa &
van der Schaar, 2018b; Wager & Athey, 2018; Yoon et al.,
2018; Curth & van der Schaar, 2021). Several works have
adapted deep learning for that purpose (Johansson et al.,
2016; Yoon et al., 2018). In the static setting, the input is
given by cross-sectional data, and, as such, there are no
time-varying covariates, treatments, and outcomes. How-
ever, we are interested in counterfactual outcome estimation
over time.

1Code is available online: https://github.com/
Valentyn1997/CausalTransformer

https://github.com/Valentyn1997/CausalTransformer
https://github.com/Valentyn1997/CausalTransformer


Causal Transformer for Estimating Counterfactual Outcomes

Estimating counterfactual outcomes over time. Meth-
ods for estimating time-varying outcomes were originally
introduced in epidemiology and make widespread use of
simple linear models. Here, the aim is to estimate average
(non-individual) effects of time-varying treatments. Ex-
amples of such methods include G-computation, marginal
structural models (MSMs), and structural nested models
(Robins, 1986; Robins et al., 2000; Hernán et al., 2001;
Robins & Hernán, 2009). To address the limited expres-
siveness of linear models, several Bayesian non-parametric
methods were proposed (Xu et al., 2016; Schulam & Saria,
2017; Soleimani et al., 2017). However, these make strong
assumptions regarding the data generation mechanism, and
are not designed for multi-dimensional outcomes as well
as static covariates. Other methods build upon recurrent
neural networks (Qian et al., 2021; Berrevoets et al., 2021)
but these are restricted to single-time treatments or make
stronger assumptions for identifiability, which do not hold
for our setting (see Appendix B).

There are several methods that build upon the potential out-
comes framework (Rubin, 1978; Robins & Hernán, 2009),
and, thus, ensure identifiability by making the same assump-
tions as we do (see Sec. 3). Here, state-of-the-art methods
are recurrent marginal structural networks (RMSNs) (Lim
et al., 2018), counterfactual recurrent network (CRN) (Bica
et al., 2020), and G-Net (Li et al., 2021). These methods
address bias due to time-varying confounding in different
ways. RMSNs combine two propensity networks and use the
predicted inverse probability of treatment weighting (IPTW)
scores for training the prediction networks. CRN uses an
adversarial objective to produce a sequence of balanced rep-
resentations, which are simultaneously predictive of the out-
come but non-predictive of the current treatment assignment.
G-Net aims to predict both outcomes and time-varying co-
variates, and then performs G-computation for multiple-
step-ahead prediction. All of three aforementioned methods
are built on top of one/two-layer LSTM encoder-decoder
architectures. Because of that, they are limited in their abil-
ity to capture long-range, complex dependencies between
time-varying confounders (i. e., time-varying covariates, pre-
vious treatments, and previous outcomes). However, such
complex data are nowadays widespread in medical practice
(e. g., EHRs) (Allam et al., 2021), which may impede the
performance of the previous methods for real-world medical
data. As a remedy, we develop a deep transformer network
for counterfactual outcomes estimation over time.

Transformers. Transformers refer to deep neural net-
works for sequential data that typically adopt a custom self-
attention mechanism (Vaswani et al., 2017). This makes
transformers both flexible and powerful in modeling long-
range associative dependencies for sequence-to-sequence
tasks. Prominent examples come from natural language

processing (e.g., BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and GPT-3 (Brown et al., 2020)). Other exam-
ples include image understanding tasks (Dosovitskiy et al.,
2020), multi-modal tasks (image/video captioning) (Liu
et al., 2021), math problem solving (Schlag et al., 2019),
and time-series forecasting (Tang & Matteson, 2021; Zhou
et al., 2021). However, to the best of our knowledge, no
paper has developed transformers specifically for causal
inference. This presents our novelty.

3. Problem Formulation
We build upon the standard setting for estimating counterfac-
tual outcomes over time as in (Robins & Hernán, 2009; Lim
et al., 2018; Bica et al., 2020; Li et al., 2021). Let i refer to
some patient and with health trajectories that span time steps
t = 1, . . . , T (i). For each time step t and each patient i, we
have the following: dx time-varying covariates X

(i)
t 2 Rdx ;

da categorical treatments A
(i)
t 2 fa1, . . . , adag; and dy out-

comes Y
(i)
t 2 Rdy . For example, data from critical care

units of COVID-19 patients would involve blood pressure
and heart rate as time-varying covariates, ventilation as treat-
ment, and respiratory frequency as outcome. Treatments
are modeled as categorical variables as this relates to the
question of whether to apply a treatment or not, and is thus
consistent with prior works (Lim et al., 2018; Bica et al.,
2020; Li et al., 2021). Further, we record static covariates
describing a patient V(i) (e. g., gender, age, or other risk
factors). For notation, we omit patient index (i) unless
needed.

For learning, we have access to i.i.d. observational dataD ={
fx(i)

t ,a
(i)
t ,y

(i)
t gT

(i)

t=1 [ v(i)
}N
i=1

. In clinical settings, such
data are nowadays widely available in form of EHRs (Allam
et al., 2021). Here, we summarize the patient trajectory
by �Ht = f �Xt, �At�1, �Yt,Vg, where �Xt = (X1, . . . ,Xt),
�Yt = (Y1, . . . ,Yt), and �At�1 = (A1, . . . ,At�1).

We build upon the potential outcomes framework (Ney-
man, 1923; Rubin, 1978) and its extension to time-varying
treatments and outcomes (Robins & Hernán, 2009). Let
τ � 1 denote projection horizon for a τ -step-ahead pre-
diction. Further, let �at:t+��1 = (at, . . . ,at+��1) denote a
given (non-random) treatment intervention. Then, we are
interested in the potential outcomes, Yt+� [�at:t+��1], under
the treatment intervention. However, the potential outcomes
for a specific treatment intervention are typically never ob-
served for a patient but must be estimated. Formally, the
potential counterfactual outcomes over time are identifiable
from factual observational data D under three standard as-
sumptions: (1) consistency, (2) sequential ignorability, and
(3) sequential overlap (see Appendix A for details).

Our task is thus to estimate future counterfactual outcomes
Yt+� , after applying a treatment intervention �at:t+��1 for
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a given patient history �Ht. Formally, we aim to estimate:

E
(
Yt+� [�at:t+��1] j �Ht

)
. (1)

To do so, we learn a function g(τ, �at:t+��1, �Ht). Simply
estimating g(�) with traditional machine learning is biased
(Robins & Hernán, 2009). For example, one reason is that
treatment interventions not only influence outcomes but
also future covariates. To address this, we develop a tailored
model for estimation.

4. Causal Transformer
Input. Our Causal Transformer (CT) is a single multi-
input architecture, which combines three separate trans-
former subnetworks. Each subnetwork processes a differ-
ent sequence as input: (i) past time-varying covariates �Xt;
(ii) past outcomes �Yt; and (iii) past treatments before inter-
vention �At�1. Since we aim at estimating the counterfactual
outcome after treatment intervention, we further input the fu-
ture treatment assignment that a medical practitioners wants
to intervene on. Also, we autoregressively feed predictions
of outcomes �̂

Yt+1:t+��1, starting at the intervention time
step (prediction origin). Thus, we concatenate two treatment
sequences �At�1 [ �at:t+��1, and two outcome sequences
�Yt [ �̂

Yt+1:t+��1 for input. Additionally, (iv) the static
covariates V are fed into all subnetworks.

4.1. Model architecture

Our CT yields a sequence of treatment-invariant (balanced)
representations �Φt+��1 = (Φ1, . . . ,Φt+��1). To do so,
we stack B identical transformer blocks. The first trans-
former block receives the three input sequences. The B-th
transformer block outputs a sequence of representations
�Φt+��1. The architecture is shown in Fig. 1.

Transformer blocks. Let b = 1, . . . , B index the differ-
ent transformer blocks. Each transformer block receives
three parallel sequences of hidden states as input (for each
of the input sequences). For time step t, we denote the
respective hidden state by Ab

t or abt ; Yb
t or Ŷb

t ; and Xb
t .

We denote size of the hidden states by dh. Further, each
transformer block receives a representation vector of the
static covariates ~V as additional input.

For the first transformer block (b = 1), we use linearly-
transformed time-series as input:

A0
t ,a

0
t = LinearA(At,at), X0

t = LinearX(Xt),

Y0
t , Ŷ

0
t = LinearY (Yt, Ŷt), ~V = LinearV (V),

(2)

where parameters of fully-connected linear layers are shared
for all time steps. All blocks � 2 use the output sequence
of the previous block b � 1 as inputs. For notation, we

denote sequences of hidden states after block b by three
tensors Ab =

(
�Ab
t�1 [ �abt:t+��1

)>
,Xb =

(
�Xb
t

)>
, and

Yb =
(

�Yb
t [ �̂

Yb
t+1:t+��1

)
,>.

Following (Dong et al., 2021; Lu et al., 2021), each trans-
former block combines a (i) multi-head self-/cross-attention,
(ii) feed-forward layer, and (iii) layer normalization. Details
are in Appendix C.

(i) Multi-head self-/cross-attention uses a scaled dot-
product attention with several parallel attention heads. Each
attention head requires a 3-tuple of keys, queries, and values,
i. e., K,Q, V 2 RT�dqkv , respectively. These are obtained
from a sequence of hidden states Hb =

(
hb1, . . . ,h

b
t

)> 2
RT�dh (Hb is one of Ab, Xb or Yb, depending on the sub-
network). Formally, we compute

Attn(i)(Q(i),K(i), V (i)) = softmax
(Q(i)K(i)>√

dqkv

)
V (i),

(3)

Q(i) = Q(i)(Hb) = HbW
(i)
Q + 1b

(i)
Q
>, (4)

K(i) = K(i)(Hb) = HbW
(i)
K + 1b

(i)
K
>, (5)

V (i) = V (i)(Hb) = HbW
(i)
V + 1b

(i)
V
>, (6)

where W (i)
Q ,W

(i)
K ,W

(i)
V 2 Rdh�dqkv and b(i)Q , b(i)Q , b(i)V 2

Rdqkv are parameters of a single attention head i, where
softmax(�) operates separately on each row, and where 1 2
Rdqkv is a vector of ones. We set the dimensionality of keys
and queries to dqkv = dh/nh, where nh is the number of
heads.

The output of a multi-head attention is a concatenation of
the different heads, i. e.,

MHA(Q,K, V ) = Concat(Attn(1), . . . ,Attn(nh)). (7)

Here, we simplified the original multi-head attention in
(Vaswani et al., 2017) by omitting the final output projection
layer after concatenation to reduce risk of overfitting.

In our CT, self-attention uses the sequence of hidden states
from the same transformer subnetwork to infer keys, queries,
and values, while cross-attention uses the sequence of hid-
den states of the other two transformer subnetworks as keys
and values. We use multiple cross-attentions to exchange
the information between parallel hidden states.2 These are
placed on top of the self-attention layers (see subdiagram in
Fig. 1). We add the representation vector of static covariates,
~V when pooling different cross-attention outputs. We mask
hidden states for self- and cross-attentions by setting the

2Different variants of combining multiple-input information
with self- and cross-attentions were already studied in the context
of multi-source translation, e.g., in (Libovický et al., 2018). Our
implementation is closest to parallel attention combination.
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attention logits in Eq. (3) to �1. This ensures that infor-
mation flows only from the current input to future hidden
states (and not the other way around).

(ii) Feed-forward layer (FF) with ReLU activation is ap-
plied time-step-wise to the sequence of hidden states, i. e.,

FF(ht) = Linear
(

ReLU(Linear(ht))
)
,

where fully-connected linear layers are followed by dropout.

(iii) Layer normalization (LN) (Ba et al., 2016) and residual
connections are added after each self- and cross-attention.
We compute the layer normalization via

LN(ht) =
γ

σ
� (ht � µ) + β, (8)

µ =
1

dh

dh∑
j=1

(ht)j , σ =

√√√√ 1

dh

dh∑
j=1

(
(ht)j � µ

)2
, (9)

where γ, β 2 Rdh are scale and shift parameters and where
� is an element-wise product.

Balanced representations. The (balanced) representations
are then constructed via average pooling over three (or
two) parallel hidden states of the B-th transformer block.
Thereby, we use a fully-connected linear layer and an expo-
nential linear unit (ELU) non-linearity; i. e.,

Φ̃i =

{
1
3 (AB

i�1 + XB
i + YB

i ), i 2 f1, . . . , tg,
1
2 (aBi�1 + ŶB

i ), i 2 ft+ 1, . . . , t+ τ � 1g,
Φt = ELU(Linear(Φ̃t)) (10)

where fully-connected linear layer is followed by dropout,
Φt 2 Rdr and dr is the dimensionality of the balanced
representation.

4.2. Positional encoding

In order to preserve information about the order of hid-
den states, we make use of position encoding (PE). This
is especially relevant for clinical practice as it allows us to
distinguish sequences such as, e. g., htreatment A 7! side-
effect S 7! treatment Bi from htreatment A 7! treatment B
7! side-effect Si.
We model information about relative positions in the input
at time steps j and i with 0 � j � i � t by a set of vectors
aVij , a

K
ij 2 Rdqkv (Shaw et al., 2018). Specifically, they are

shaped in the form of Toeplitz matrices

aVij = wVclip(j�i;lmax)
, aKij = wKclip(j�i;lmax)

, (11)

clip(x, lmax) = maxf�lmax,minflmax, xgg (12)

with trainable weights wKl , w
V
l 2 Rdqkv , for l 2

f�lmax, . . . , 0g, and where lmax is the maximum distinguish-
able distance in the relative PE. The above formalization

ensures that we obtain relative encodings, that is, our CT
considers the distance between past or current position j
and current position i, but not the actual location. Further-
more, the current position i attends only to past information
or itself, and, thus, we never use aVij and aKij where i < j.
As a result, there are only (lmax + 1)� dqkv parameters to
estimate.

We then use the relative PE to modify the self-attention
operation (Eq. (3)). Formally, we compute the attention
scores via (indices of heads are dropped for clarity)

(Attn(Q,K, V ))i =

t∑
j=1

αij(Vj + aVij), (13)

αij = softmaxj

(
Q>i (Kj + aKij )√

dqkv

)
, (14)

with attention scores αij and where Kj , Vj , and Qi are
columns of corresponding matrices and where softmaxj
operates with respect to index j. Cross-attention with PE is
defined in an analogous way. In our CT, the attention scores
are shared across all the heads and blocks, as well as the
three different subnetworks.

In our CT, we use relative positional encodings (Shaw et al.,
2018) that are incorporated in every self- and cross-attention.
This is different from the original transformer (Vaswani
et al., 2017), which used absolute positional encodings with
fixed weights for the initial hidden states of the first trans-
former block (see Appendix D for details). However, rel-
ative PE is regarded as more robust and, further, suited
for patient trajectories where the order of treatments and
diagnoses is informative (Allam et al., 2021), but not the
absolute time step. Additionally, it allows for better general-
ization to unseen sequence lengths: for the ranges beyond
the maximal distinguishable distance lmax, CT stops to dis-
tinguish the precise relative location of states and considers
everything as distant past information. In line with this, our
experiments later also confirm relative PE to be superior
over absolute PE.

4.3. Training of our Causal Transformer

In our CT, we aim at two simultaneous objectives to ad-
dress confounding bias: we aim at learning representations
that are (a) predictive of the next outcome and (b) are non-
predictive of the current treatment assignment. This thus
naturally yields an adversarial objective. For this purpose,
we make use of balanced representations, which we train
via a novel counterfactual domain confusion (CDC) loss.

Adversarial balanced representations. As in (Bica
et al., 2020), we build balanced representations that allow
us to achieve the adversarial objectives (a) and (b). For this,
we put two fully-connected networks on top of the represen-
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Figure 2. Results for fully-synthetic data based on tumor growth simulator (lower values are better). Shown is the mean performance
averaged over five runs with different seeds. Here: τ = 6.

Table 1. Results for semi-synthetic data for τ -step-ahead prediction based on real-world medical data (MIMIC-III). Shown: RMSE as
mean � standard deviation over five runs. Here: random trajectory setting. MSMs struggle for long prediction horizons with values >
10.0 (due to linear modeling of IPTW scores).

� = 1 � = 2 � = 3 � = 4 � = 5 � = 6 � = 7 � = 8 � = 9 � = 10

MSMs (Robins et al., 2000) 0.37 ± 0.01 0.57 ± 0.03 0.74 ± 0.06 0.88 ± 0.03 1.14 ± 0.10 1.95 ± 1.48 3.44 ± 4.57 > 10.0 > 10.0 > 10.0
RMSNs (Lim et al., 2018) 0.24 ± 0.01 0.47 ± 0.01 0.60 ± 0.01 0.70 ± 0.02 0.78 ± 0.04 0.84 ± 0.05 0.89 ± 0.06 0.94 ± 0.08 0.97 ± 0.09 1.00 ± 0.11
CRN (Bica et al., 2020) 0.30 ± 0.01 0.48 ± 0.02 0.59 ± 0.02 0.65 ± 0.02 0.68 ± 0.02 0.71 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.78 ± 0.02
G-Net (Li et al., 2021) 0.34 ± 0.01 0.67 ± 0.03 0.83 ± 0.04 0.94 ± 0.04 1.03 ± 0.05 1.10 ± 0.05 1.16 ± 0.05 1.21 ± 0.06 1.25 ± 0.06 1.29 ± 0.06

EDCT w/ GR (� = 1) (ours) 0.29 ± 0.01 0.46 ± 0.01 0.56 ± 0.01 0.62 ± 0.01 0.67 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01 0.78 ± 0.01
CT (� = 0) (ours) � 0.20 ± 0.01 0.38 ± 0.01 0.45 ± 0.01 0.50 ± 0.02 0.52 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.58 ± 0.02 0.60 ± 0.02 0.61 ± 0.02
CT (ours) 0.20 ± 0.01 0.38 ± 0.01 0.45 ± 0.01 0.49 ± 0.01 0.52 ± 0.02 0.53 ± 0.02 0.55 ± 0.02 0.56 ± 0.02 0.58 ± 0.02 0.59 ± 0.02
Lower = better (best in bold)
� Identical hyperparameters as proposed CT for comparability

tation Φt, corresponding to the respective objectives: (a) an
outcome prediction network GY and (b) a treatment clas-
sifier network GA. Both receive the representation Φt as
input; the outcome prediction network additionally receives
the current treatment At. We implement both as single hid-
den layer fully-connected networks with number of units
nFC and ELU activation. For notation, let θY and θA de-
note the trainable parameters in GY and GA, respectively.
Further, let θR denote all trainable parameters in CT for
generating the representation Φt.

Factual outcome loss. For objective (a), we fit the out-
come prediction network GY , and thus Φt, by minimizing
the factual loss of the next outcome. This can be done, e. g.,
via the mean squared error (MSE). We then yield

LGY
(θY , θR) =

∥∥Yt+1 �GY
(
Φt(θR),At; θY

)∥∥2
.
(15)

CDC loss. For objective (b), we want to fit the treatment
classifier network GA, and thus the representation Φt, in
way that it is non-predictive of the current treatment At.
To achieve this, we develop a novel CDC loss tailored for
counterfactual inference. Our idea builds upon the domain
confusion loss (Tzeng et al., 2015) for handling adversarial
objectives, which was previously used for unsupervised
domain adaptation, whereas we adapt it specifically for
counterfactual inference.

Then, we fit GA so that it can predict the current treatment,

i. e., via

LGA
(θA, θR) = �

da∑
j=1

1[At=aj ] logGA(Φt(θR); θA), (16)

where 1[�] is the indicator function. This thus minimizes a
classification loss of the current treatment assignment given
Φt. However, while GA can predict the current treatment,
the actual representation Φt should not, and should rather
be non-predictive. For this, we propose to minimize the
cross-entropy between a uniform distribution over treatment
categorical space and predictions of GA via

Lconf(θA, θR) = �
da∑
j=1

1

da
logGA(Φt(θR); θA), (17)

thus achieving domain confusion.

Overall adversarial objective. Using the above, CT is
trained via

(θ̂Y , θ̂R) = arg min
�Y ;�R

LGY
(θY , θR) + αLconf(θ̂A, θR), (18)

θ̂A = arg min
�A

αLGA
(θA, θ̂R), (19)

where α is a hyperparameter for domain confusion. Thereby,
optimal values of θ̂Y , θ̂R and θ̂A achieve an equilibrium
between factual outcome prediction and domain confusion.
In CT, we implement this by performing iterative updates
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of the parameters (rather than optimizing globally). Details
are in Appendix E.

Previous work (Bica et al., 2020) has addressed the above
adversarial objective through gradient reversal (Ganin &
Lempitsky, 2015). However, this has two shortcomings:
(i) If the parameter λ of gradient reversal becomes too large,
the representation may be predictive of opposite treatment
(Atan et al., 2018a). (ii) If the treatment classifier network
learns too fast, gradients vanish and are not passed to repre-
sentations, leading to poor fit (Tzeng et al., 2017). Different
from that, we propose a novel CDC loss. As we see later,
our loss is highly effective: it even improves CRN (Bica
et al., 2020), when replacing gradient reversal with our loss.

Stabilization. We further stabilize the above adversarial
training by employing exponential moving average (EMA)
of model parameters during training (Yaz et al., 2018). EMA
helps to limit cycles of model parameters around the equilib-
rium with vanishing amplitude and thus accelerates overall
convergence. We apply EMA to all trainable parameters
(i. e., θY , θR, θA). Formally, we update parameters during
training via

θ
(i)
EMA = β θ

(i�1)
EMA + (1� β) θ(i), (20)

where superscripts (i) refers to the different steps of the
optimization algorithm, where β is a exponential smoothing
parameter, and where we initialize θ(0)

EMA = θ(0). We provide
pseudocode for an iterative gradient update in CT via EMA
in Appendix E.

Attentional dropout. To reduce the risk of overfitting be-
tween time steps, we implement attentional dropout via
DropAttention (Zehui et al., 2019). During training, atten-
tion scores αij in Eq. (14) are element-wise randomly set to
zero with probability p (i. e., the dropout rate). However, we
make a small simplification. We do not perform normalized
rescaling (Zehui et al., 2019) of attention scores but opt for
traditional dropout rescaling (Srivastava et al., 2014), as this
resulted in more stable training for short-length sequences.

Mini-batch augmentation with masking. For training
dataD, we always have access to the full time-series, that is,
including all time-varying covariates x

(i)
1 , . . . ,x

(i)

T (i) . How-
ever, upon deployment, these are no longer observable for
τ -step-ahead predictions with τ � 2. To reflect this during
training, we perform data augmentation at the mini-batch
level. For this, we duplicate the training samples: We uni-
formly sample the length 1 � ts � T (i) of the masking
window, and then create a duplicate data sample where the
last ts time-varying covariates x

(i)
ts , . . . ,x

(i)

T (i) are masked
by setting the corresponding attention logits of Hb = Xb in
Eq. (3) to �1.

Mini-batch augmentation with masking allows us to train
a single model for both one- and multiple-step-ahead pre-
diction in end-to-end fashion. This distinguishes our CT
from RMSNs and CRN, which are built on top of encoder-
decoder architectures and trained in a multiple-stage proce-
dure. Later, we also experiment with an encoder-decoder
version of CT (i.e., a single-subnetwork variant) but find
that it is inferior performance to our end-to-end model.

4.4. Theoretical insights

The following result provides a theoretical justification that
our CDC loss indeed leads to balanced representations,
and, thus, removes the bias induced by time-varying con-
founders.3

Theorem 4.1. We fix t 2 N and define P as the distribution
of �Ht, Pj as the distribution of �Ht given At = aj , and
P�
j as the distribution of Φt = �( �Ht) given At = aj for

all j 2 f1, . . . , dag. Here, �(�) = �(�; θR) denotes any
network that generates representations. Let GjA denote the
output of GA corresponding to treatment aj . Then, there
exists an optimal pair (��, G�A) such that

�� = arg max
�

da∑
j=1

E �Ht�P

[
logG�jA(�( �Ht)

]
(21)

G�A = arg max
GA

da∑
j=1

E �Ht�Pj

[
logGjA(��( �Ht)

]
P(At = aj)

(22)

subject to
da∑
i=1

GiA(��( �Ht)) = 1. (23)

Furthermore, �� satisfies Eq. (21) if and only if it induces
balanced representations across treatments, i.e., P��

1 =
. . . = P��

da
.

Proof. See Appendix F.

Further, it can be easily shown that objectives (16) and (17)
are exactly finite sample versions of (22) and (21) from
Theorem 4.1, respectively.

4.5. Implementation

Training. We implemented CT in PyTorch Lightning. We
trained CT using Adam (Kingma & Ba, 2015) with learning
rate η and number of epochs ne. The dropout rate p was

3Importantly, our loss is different from gradient reversal (GR)
in (Ganin & Lempitsky, 2015; Bica et al., 2020). It builds balanced
representations by minimizing reversed KL divergence between the
treatment-conditional distribution of representation and mixture of
all treatment-conditional distributions.
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Table 2. Results for experiments with real-world medical data
(MIMIC-III). Shown: RMSE as mean � standard deviation over
five runs.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

MSMs 6.37 ± 0.26 9.06 ± 0.41 11.89 ± 1.28 13.12 ± 1.25 14.44 ± 1.12
RMSNs 5.20 ± 0.15 9.79 ± 0.31 10.52 ± 0.39 11.09 ± 0.49 11.64 ± 0.62
CRN 4.84 ± 0.08 9.15 ± 0.16 9.81 ± 0.17 10.15 ± 0.19 10.40 ± 0.21
G-Net 5.13 ± 0.05 11.88 ± 0.20 12.91 ± 0.26 13.57 ± 0.30 14.08 ± 0.31

CT (ours) 4.59 ± 0.09 8.99 ± 0.21 9.59 ± 0.22 9.91 ± 0.26 10.14 ± 0.29
Lower = better (best in bold)

Table 3. Ablation study for proposed CT (with CDC loss, α =
0.01, β = 0.99). Reported: normalized RMSE of CT with relative
changes.

� = 1 � = 6

 = 1  = 4  = 1  = 4

CT (proposed) 0.80 1.32 0.63 0.93

a

w/ non-trainable PE� �0.00 �0.02 +0.01 �0.03
w/ absolute PE� +0.04 +0.16 +0.15 +1.00
w/o attentional dropout� �0.00 +0.07 +0.00 +0.09
w/o cross-attention� +0.03 +0.16 +0.06 +0.10

b
w/o EMA (� = 0)� +0.03 +0.38 +0.03 +0.33
w/o balancing (� = 0; � = 0.99)� �0.01 �0.02 �0.00 +0.07
w/ GR (� = 1) +0.02 +0.17 +0.08 +0.33

c EDCT w/ GR (� = 1) +0.16 +0.08 +0.05 +0.23
EDCT w/ DC (� = 0.01; � = 0.99) �0.03 +0.10 �0.03 +0.23

Lower = better;
Improvement over CT in green, worse performance in red
� Identical hyperparameters as proposed CT for comparability

kept the same for both feed-forward layers and DropAtten-
tion (we call it sequential dropout rate). We employed the
teacher forcing technique (Williams & Zipser, 1989). Dur-
ing evaluation of multiple-step-ahead prediction, we switch
off teacher forcing and autoregressively feed model predic-
tions. For the parameters α and β of adversarial training,
we choose values β = 0.99 and α = 0.01 as in the original
works (Tzeng et al., 2015; Yaz et al., 2018), which also per-
formed well in our experiments. We additionally perform
an exponential rise of α during training.

Hyperparameter tuning. p, η, and all other hyperparam-
eters (number of blocks B, minibatch size, number of at-
tention heads nh, size of hidden units dh, size of balanced
representation dr, size of hidden units in fully-connected
networks nFC) are subject to hyperparameter tuning. Details
are in Appendix H.

5. Experiments
To demonstrate the effectiveness of our CT, we make use
of synthetic datasets. Thereby, we follow common practice
in benchmarking for counterfactual inference (Lim et al.,
2018; Bica et al., 2020; Li et al., 2021). For real datasets,
the true counterfactual outcomes are typically unknown. By
using (semi-)synthetic datasets, we can compute the true
counterfactuals and thus validate our CT.

Baselines. The chosen baselines are identical to those in
previous, state-of-the-art literature for estimating counterfac-

tual outcomes over time (Lim et al., 2018; Bica et al., 2020;
Li et al., 2021). These are: MSMs (Robins et al., 2000;
Hernán et al., 2001), RMSNs (Lim et al., 2018), CRN (Bica
et al., 2020), and G-Net (Li et al., 2021). Details are in
Appendix G. For comparability, we use the same hyperpa-
rameter tuning for the baselines as for CT (see Appendix H).

5.1. Experiments with fully-synthetic data

Data. We build upon the pharmacokinetic-
pharmacodynamic model of tumor growth (Geng
et al., 2017). It provides a state-of-the-art biomedical
model to simulate the effects of lung cancer treatments over
time. The same model was previously used for evaluating
RMSNs (Lim et al., 2018) and CRN (Bica et al., 2020).
For τ -step-ahead prediction, we distinguish two settings:
(i) “single sliding treatment” where trajectories involve only
a single treatment as in (Bica et al., 2020); and (ii) “random
trajectories” where one or more treatments are assigned.
We simulate patient trajectories for different amounts of
confounding γ. Further details are in Appendix J. Here,
and in all following experiments, we apply hyperparameter
tuning (see Appendix H).

Results. Fig. 2 shows the results. We see a notable perfor-
mance gain for our CT over the state-of-the-art baselines,
especially pronounced for larger confounding γ and larger
τ . Overall, CT is superior by a large margin.

Fig. 2 also shows a CT variant in which we removed the
CDC loss by setting α to zero, called CT (α = 0). For com-
parability, we keep the hyperparameters as in the original
CT. The results demonstrate the effectiveness of the pro-
posed CDC loss, especially for multi-step-ahead prediction.
CT also provides a significant runtime speedup in compari-
son to other neural network methods, mainly due to faster
processing of sequential data with self- and cross-attentions,
and single-stage end-to-end training (see exact runtime and
model size comparison in Appendix M). We plotted t-SNE
embeddings of the balanced representations (Appendix N)
to exemplify how balancing works.

5.2. Experiments with semi-synthetic data

Data. We create a semi-synthetic dataset based on real-
world medical data from intensive care units. This allows
us to validate our CT with high-dimensional, long-range
patient trajectories. For this, we use the MIMIC-III dataset
(Johnson et al., 2016). Building upon the ideas of (Schulam
& Saria, 2017), we then generate patient trajectories with
outcomes under endogeneous and exogeneous dependen-
cies while considering treatment effects. Thereby, we can
again control for the amount of confounding. Details are
in Appendix K. Importantly, we again have access to the
ground-truth counterfactuals for evaluation.
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Table 4. CRN with different training procedures. Results for fully-synthetic data based on tumor growth simulator (here: γ = 4).

� = 1 � = 2 � = 3 � = 4 � = 5 � = 6

CRN + original GR (� = 1) as in (Bica et al., 2020) 1.30 ± 0.14 1.12 ± 0.25 1.23 ± 0.32 1.23 ± 0.34 1.17 ± 0.34 1.10 ± 0.32
CRN + our counterfactual DC loss (� = 0:01; � = 0:99) 1.33 ± 0.21 1.18 ± 0.31 1.19 ± 0.36 1.12 ± 0.35 1.03 ± 0.33 0.93 ± 0.31
Lower = better (best in bold)

Results. Table 1 shows the results. Again, CT has a con-
sistent and large improvement across all projection hori-
zons τ (average improvement over baselines: 38.5%). By
comparing our CT against CT (α = 0), we see clear per-
formance gains, demonstrating the benefit of our CDC loss.
Additionally, we separately fitted an encoder-decoder ar-
chitecture, namely Encoder-Decoder Causal Transformer
(EDCT). This approach leverages a single-subnetwork ar-
chitecture, where all three sequences are fed into a single
subnetwork (as opposed to three separate networks as in
our CT). Further, the EDCT leverages the existing GR loss
from (Bica et al., 2020) and the similar encoder-decoder
two-stage training. Details on this EDCT model are in Ap-
pendix I. Here, we find that, for superior performance, it is
crucial to combine both three-subnetwork architecture and
our CDC loss.

Semi-synthetic data is also used for a case study, where we
study the importance of each subnetwork. See Appendix O.

5.3. Experiments with real-world data

Data. We now demonstrate the applicability of our CT to
real-world data and, for this, use intensive care unit stays
in MIMIC-III (Johnson et al., 2016). We use the same 25
vital signs and 3 static features. We use (diastolic) blood
pressure as an outcome and consider two treatments: vaso-
pressors and mechanical ventilation, similar to (Kuzmanovic
et al., 2021; Hatt & Feuerriegel, 2021). Prediction of blood
pressure is crucial for critical care, e. g., to avoid tissue
hypoperfusion (Vincent et al., 2018). The application of
vasopressors is highly confounded by previous and current
levels of blood pressure, as they aim to raise low blood pres-
sure. So far, an optimal administration of vasopressors is
not fully understood (Subramanian et al., 2008), and, hence,
it is important for medical practitioners to have individual-
ized counterfactual predictions. Experiment details are in
Appendix L.

Results. Because we no longer have access to the true
counterfactuals, we now report the performance of predict-
ing factual outcomes; see Table 2. All state-of-the-art base-
lines are outperformed by our CT. This demonstrates the
superiority of our proposed model.

5.4. Ablation study

We performed an extensive ablation study (Table 3) using
full-synthetic data (setting: random trajectories) to confirm

the effectiveness of the different components inside the sub-
networks, the CDC loss, and the subnetwork architecture.
We grouped these into categories. a varies different compo-
nents within the subnetworks. Here, we replace trainable
relative positional encoding (PE) with non-trainable rela-
tive PE, generated as described in Appendix D. Further, we
replace our PE with a trainable absolute PE as in the origi-
nal transformer (Vaswani et al., 2017). Finally, we remove
attentional dropout as well as cross-attention layers for all
subnetworks. b varies the loss. Here, we remove EMA of
model weights; switch off adversarial balancing, but not
EMA; and replace our CDC loss with gradient reversal (GR)
as in (Bica et al., 2020). c evaluates a single-subnetwork
version of CT. We refer to this as EDCT (see Appendix I for
details). It thus has an encoder-decoder architecture which
we train with either our CDC loss or GR.

Overall, we see that the combination of both our novel ar-
chitecture based three-subnetworks and our novel DC loss
is crucial. This observation is particularly pronounced for
a long prediction horizon (τ = 6), where our proposed CT
achieves the best performance. Notably, the main insight
here is: simply switching the backbone from LSTM to trans-
former and using gradient reversal as in (Bica et al., 2020)
gives unstable results (see “EDCT w/ GR (λ = 1)“). Fur-
thermore, our three-subnetworks CT with GR loss performs
even worse (see ablation “w/ GR (λ = 1)“).

To further demonstrate the effectiveness of our novel CDC
loss, we perform an additional test based on the fully-
synthetic dataset (Table 4). We use (i) a CRN with GR
as in (Bica et al., 2020). We compare it with (ii) a CRN
trained with our proposed CDC loss (implementation details
in Appendix G). Evidently, our loss also helps the CRN to
achieve a better RMSE.

6. Conclusion
For personalized medicine, estimates of the counterfactual
outcomes for patient trajectories are needed. Here, we pro-
posed a novel, state-of-the-art method: the Causal Trans-
former which is designed to capture complex, long-range
patient trajectories. It combines a custom subnetwork archi-
tecture to process the input together with a new counterfac-
tual domain confusion loss for end-to-end training. Across
extensive experiments, our Causal Transformer achieves
state-of-the-art performance.
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Libovický, J., Helcl, J., and Mareček, D. Input combina-
tion strategies for multi-source transformer decoder. In
Conference on Machine Translation, 2018.

Lim, B., Alaa, A., and van der Schaar, M. Forecasting
treatment responses over time using recurrent marginal
structural networks. Advances in Neural Information
Processing Systems, 2018.

Liu, W., Chen, S., Guo, L., Zhu, X., and Liu, J. CPTR: Full
transformer network for image captioning. arXiv preprint
arXiv:2101.10804, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Lu, K., Grover, A., Abbeel, P., and Mordatch, I. Pretrained
transformers as universal computation engines. arXiv
preprint arXiv:2103.05247, 2021.

Neyman, J. S. On the application of probability theory to
agricultural experiments. Annals of Agricultural Sciences,
10:1–51, 1923.

Qian, Z., Zhang, Y., Bica, I., Wood, A., and van der Schaar,
M. SyncTwin: Treatment effect estimation with longi-
tudinal outcomes. In Advances in Neural Information
Processing Systems, 2021.

Robins, J. A new approach to causal inference in mortality
studies with a sustained exposure period: Application to
control of the healthy worker survivor effect. Mathemati-
cal Modelling, 7(9-12):1393–1512, 1986.

Robins, J. M. and Hernán, M. A. Estimation of the causal ef-
fects of time-varying exposures. CRC Press, Boca Raton,
FL, 2009.

Robins, J. M., Hernan, M. A., and Brumback, B. Marginal
structural models and causal inference in epidemiology,
2000.

Rubin, D. B. Bayesian inference for causal effects: The role
of randomization. The Annals of Statistics, pp. 34–58,
1978.

Schlag, I., Smolensky, P., Fernandez, R., Jojic, N., Schmid-
huber, J., and Gao, J. Enhancing the transformer with
explicit relational encoding for math problem solving.
arXiv preprint arXiv:1910.06611, 2019.

Schulam, P. and Saria, S. Reliable decision support using
counterfactual models. Advances in Neural Information
Processing Systems, 2017.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with
relative position representations. In Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2018.

Soleimani, H., Subbaswamy, A., and Saria, S. Treatment-
response models for counterfactual reasoning with
continuous-time, continuous-valued interventions. In
Uncertainty in Artificial Intelligence, 2017.

Sormani, M. P. and Bruzzi, P. Can we measure long-term
treatment effects in multiple sclerosis? Nature Reviews
Neurology, 11(3):176–182, 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.



Causal Transformer for Estimating Counterfactual Outcomes

Subramanian, S., Yilmaz, M., Rehman, A., Hubmayr, R. D.,
Afessa, B., and Gajic, O. Liberal vs. conservative va-
sopressor use to maintain mean arterial blood pressure
during resuscitation of septic shock: an observational
study. Intensive Care Medicine, 34(1):157–162, 2008.

Tang, B. and Matteson, D. Probabilistic transformer for
time series analysis. Advances in Neural Information
Processing Systems, 2021.

Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. Simulta-
neous deep transfer across domains and tasks. In IEEE
International Conference on Computer Vision, 2015.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. Adver-
sarial discriminative domain adaptation. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

van der Laan, M. J. and Rubin, D. Targeted maximum likeli-
hood learning. The International Journal of Biostatistics,
2(1):Article 11, 2006.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Vincent, J.-L., Nielsen, N. D., Shapiro, N. I., Gerbasi, M. E.,
Grossman, A., Doroff, R., Zeng, F., Young, P. J., and
Russell, J. A. Mean arterial pressure and mortality in
patients with distributive shock: a retrospective analysis
of the MIMIC-III database. Annals of Intensive Care, 8
(1):1–10, 2018.

Wager, S. and Athey, S. Estimation and inference of hetero-
geneous treatment effects using random forests. Journal
of the American Statistical Association, 113(523):1228–
1242, 2018.

Wang, S., McDermott, M. B., Chauhan, G., Ghassemi, M.,
Hughes, M. C., and Naumann, T. MIMIC-extract: A data
extraction, preprocessing, and representation pipeline for
MIMIC-III. In ACM Conference on Health, Inference,
and Learning, 2020.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
Computation, 1(2):270–280, 1989.

Xu, Y., Xu, Y., and Saria, S. A non-parametric Bayesian
approach for estimating treatment-response curves from
sparse time series. In Machine Learning for Health, 2016.

Yaz, Y., Foo, C.-S., Winkler, S., Yap, K.-H., Piliouras, G.,
Chandrasekhar, V., et al. The unusual effectiveness of
averaging in GAN training. In International Conference
on Learning Representations, 2018.

Yoon, J., Jordon, J., and van der Schaar, M. GANITE:
Estimation of individualized treatment effects using gen-
erative adversarial nets. In International Conference on
Learning Representations, 2018.

Zehui, L., Liu, P., Huang, L., Chen, J., Qiu, X., and
Huang, X. DropAttention: A regularization method for
fully-connected self-attention networks. arXiv preprint
arXiv:1907.11065, 2019.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Association
for the Advancement of Artificial Intelligence, 2021.



Causal Transformer for Estimating Counterfactual Outcomes

A. Assumptions for Causal Identification
We build upon the potential outcomes framework (Neyman, 1923; Rubin, 1978) and its extension to time-varying treatments
and outcomes (Robins & Hernán, 2009). The potential outcomes framework has been widely used in earlier works with
a similar objective as ours (Robins & Hernán, 2009; Lim et al., 2018; Bica et al., 2020). To this end, three standard
assumptions for data generating mechanism are needed to identify a counterfactual outcome distribution over time, or,
specifically, average τ -step-ahead potential outcome conditioned on history from Eq. (1):

Assumption A.1. (Consistency). If �At = �at is a given sequence of treatments for some patient, then Yt+1[�at] = Yt+1.
This means that the potential outcome under treatment sequence �at coincides for the patient with the observed (factual)
outcome, conditional on �At = �at.

Assumption A.2. (Sequential Overlap). There is always a non-zero probability of receiving/not receiving any treatment
for all the history space over time: 0 < P(At = at j �Ht = �ht) < 1, if P( �Ht = �ht) > 0, where �ht is some realization of a
patient history.

Assumption A.3. (Sequential Ignorability) or No Unobserved Confounding. The current treatment is independent of
the potential outcome, conditioning on the observed history: At ?? Yt+1[at] j �Ht, 8at. This implies that there are no
unobserved confounders that affect both treatment and outcome.

The data generating mechanism for D is shown in Figure 3.

 

 

 

 

 

 

  

Figure 3. Causal diagram for data generating mechanism, depicted for different time steps t. Ut is unobserved exogenous noise, which
only affects time-varying covariates and outcomes, but not treatments. All time-varying confounders up to time t are included in the
observed history �Ht. Static covariates are ignored for the simplicity.

Corollary A.4. (G-computation (Robins, 1986)). Assumptions A.1–A.3 provide sufficient identifiability conditions for
Eq. (1), e.g., with the G-computation

E
(
Yt+� [�at:t+��1] j �Ht

)
=

∫
Rdx�����Rdx

E
(
Yt+�

∣∣ �Ht, �xt+1:t+��1, �yt+1:t+��1, �at:t+��1

)
�

t+��1∏
j=t+1

P
(
xjyj j �Ht, �xt+1:j�1, �yt+1:j�1, �at:j�1

)
d�xt+1:t+��1 d�yt+1:t+��1

(24)

Empirical G-computation is used by G-Net (Li et al., 2021), but requires the estimation of conditional distributions of
time-varying covariates. This could be particularly challenging, given a finite dataset size and high dimensionality of
covariates. Thus, we refrain from explicit usage of G-computation.
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B. Methods for Estimating Counterfactual Outcomes over Time
In Table 5, we provide an overview of the machine-learning-based methods for estimating counterfactual outcomes over time.
For our experiments, we selected MSMs (Robins et al., 2000; Hernán et al., 2001), as the simplest linear baseline, and three
state-of-the-art methods: RMSNs (Lim et al., 2018), CRN (Bica et al., 2020), and G-Net (Li et al., 2021)). Importantly, our
choice of baselines is thus analogous to the those in the state-of-the-art literature (Lim et al., 2018; Bica et al., 2020; Li et al.,
2021). Below, we provide details why certain works are not of fit for our setting and are thus not applicable as baselines.
Here, we again emphasize that this selection is again consistent with the literature (Lim et al., 2018; Bica et al., 2020; Li
et al., 2021).

One stream of the literature focuses on non- or semi-parametric methods (Xu et al., 2016; Schulam & Saria, 2017; Soleimani
et al., 2017). These are, for example, based on Gaussian processes (GPs). However, the aforementioned methods have
three limitations: (1) They are not designed to handle static covariates. As such, risk factors (e.g., age, gender) that are
standard in any electronic health record must be excluded. This omits a substantial heterogeneity in any patient cohort, and
is thus impractical. (2) These methods cannot handle multiple outcomes. (3) Due to the non-parametric nature of their
estimation, these methods typically cannot scale to large-scale datasets. Contrary to that, several methods have been built
that overcome these limitations, namely RMSNs (Lim et al., 2018), CRN (Bica et al., 2020), and G-Net (Li et al., 2021),
which we included as baselines.

We excluded two additional methods as these do not match our setting:

• SyncTwin (Qian et al., 2021) is a semi-parametric method using synthetic control, but is limited to a single-time binary
treatment and, therefore, not applicable to our setting.

• DCRN (Berrevoets et al., 2021) may appear relevant at first glance; however, it only works with sequences of binary
treatments. More importantly, it requires a stronger version of the sequential ignorability assumption: Sequential
Ignorability conditional on current covariates. The current treatment is independent from the potential outcome,
conditional on current time-varying covariates: At ?? Yt+1[at] j Xt, 8at. Therefore, this setting and ours are
different, as in our setting, past time-varying covariates may also serve as confounders.

We further make an important remark. The problem of estimating counterfactual outcomes over time differs also from
reinforcement learning: different from reinforcement learning, we assume a non-Markovian data generation mechanism.
This impedes the applicability of such approaches as the size of the state space (history) grows typically with time (see
Appendix A, Fig. 3).

Table 5. Overview of methods for estimating counterfactual outcomes over time.
Method Setting Model type (backbone) Time Treatments Framework

HITR (Xu et al., 2016) DGM (7) NP (GP) Disc & Cont Seq, Cat G-computation
CGP (Schulam & Saria, 2017) C, SO, SI, CSI (7) NP (GP) Cont Seq, Cat G-computation
MOGP (Soleimani et al., 2017) DGM (7) SP (GP) Disc & Cont Seq, Cont G-computation
SyncTwin (Qian et al., 2021) DGM (7) SP (GRU-D, LSTM) Disc Single-time, Bin Synthetic control
DCRN (Berrevoets et al., 2021) C, SO, Cov (7) P (3 LSTMs) Disc Seq, Bin Disentangled representation

* MSMs (Robins et al., 2000) C, SO, SI (3) P (Logistic & linear regressions) Disc Seq, Cat IPTW weighted loss
* RMSNs (Lim et al., 2018) C, SO, SI (3) P (LSTM) Disc Seq, Cat IPTW weighted loss
* CRN (Bica et al., 2020) C, SO, SI (3) P (LSTM) Disc Seq, Cat BR (gradient reversal)
* G-Net (Li et al., 2021) C, SO, SI (3) P (LSTM) Disc Seq, Cat G-computation

* Causal Transformer (this paper) C, SO, SI P (3 transformers) Disc Seq, Cat BR (CDC)
� = Methods with the same assumptions as ours (and thus included in our baselines)
Legend:
� Setting: consistency (C), sequential overlap (SO), sequential ignorability (SI), sequential ignorability but conditional on covariates (Cov),

continuous sequential ignorability (CSI), assumed data generating model (DGM)
�Model: parametric (P), semi-parametric (SP), and non-parametric (NP)
� Time: discrete (Disc) or continuous (Cont) time steps
� Treatments: sequential (Seq), binary (Bin), categorical (Cat), continuous (Cont).
� Framework: inverse probability of treatment weights (IPTW), balanced representations (BR)
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C. Details for Transformer Block
Here, we provide the detailed formalization of the multi-input transformer block. Recall that our multi-input transformer
block builds on top of three intertwined transformer subnetworks (see Fig. 1). First, we incorporate three separate self-
attentions:

~Ab�1 = LN
(

MHA
(
Q(Ab�1),K(Ab�1), V (Ab�1)

)
+ Ab�1

)
, (25)

~Xb�1 = LN
(

MHA
(
Q(Xb�1),K(Xb�1), V (Xb�1)

)
+ Xb�1

)
, (26)

~Yb�1 = LN
(

MHA
(
Q(Yb�1),K(Yb�1), V (Yb�1)

)
+ Yb�1

)
. (27)

Further, we incorporate cross-attentions:

~Ab�1
X = LN

(
MHA

(
Q(~Ab�1),K(Xb�1), V (Xb�1)

)
+ ~Ab�1

)
, (28)

~Ab�1
Y = LN

(
MHA

(
Q(~Ab�1),K(Yb�1), V (Yb�1)

)
+ ~Ab�1

)
, (29)

~Xb�1
A = LN

(
MHA

(
Q(~Xb�1),K(Ab�1), V (Ab�1)

)
+ ~Xb�1

)
, (30)

~Xb�1
Y = LN

(
MHA

(
Q(~Xb�1),K(Yb�1), V (Yb�1)

)
+ ~Xb�1

)
, (31)

~Yb�1
X = LN

(
MHA

(
Q( ~Yb�1),K(Xb�1), V (Xb�1)

)
+ ~Yb�1

)
, (32)

~Yb�1
A = LN

(
MHA

(
Q( ~Yb�1),K(Ab�1), V (Ab�1)

)
+ ~Yb�1

)
. (33)

Notably, the tensors of treatment representations Ab and ~Ab are left-shifted with respect to covariates and outcomes
representation tensors. Next, we pool the intermediate outputs using linearly transformed static features:

~~Ab�1 = ~Ab�1
X + ~Ab�1

Y + 1 ~V>, (34)
~~Xb�1 = ~Xb�1

A + ~Xb�1
Y + 1 ~V>, (35)

~~Yb�1 = ~Yb�1
X + ~Yb�1

A + 1 ~V>. (36)

Finally, the hidden states are processed in parallel by feed-forward layers:

Ab = LN
(

FF(~~Ab�1) + ~~Ab�1
)

(37)

Xb = LN
(

FF(~~Xb�1) + ~~Xb�1
)
, (38)

Yb = LN
(

FF(~~Yb�1) + ~~Yb�1
)
. (39)
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D. Absolute Positional Encoding
For completeness, we briefly summarize absolute positional encoding (Vaswani et al., 2017) in the following. We thereby
hope that readers can better understand the differences in the use of relative positional encoding as used in our Causal
Transformer.

In (Vaswani et al., 2017), absolute positional encoding PE(t) 2 Rdh was introduced to uniquely encode each time step
t 2 f1, . . . , Tg. Absolute positional encodings were added to the initial hidden states right before the first transformer block
via

ĥ0
t = h0

t + PE(t). (40)

In addition, the authors used fixed (non-trainable) weights, produced by sine and cosine functions with differing frequencies;
i. e., (

PE(t)
)

2j
= sin

t

100002j=dh
, (41)(

PE(t)
)

2j+1
= cos

t

100002j=dh
. (42)

This encoding scheme ensures continuity between neighboring time steps and that time-delta shifts are equivalent to linear
transformations. Alternatively, one could use trainable absolute positional encodings, which would require learning T � dh
parameters, where T is a maximum sequence length from the training subset. For our CT, this limits the ability to generalize
to unseen sequence lengths. Hence, this is the main reason why we opted for clipped relative positional encodings for our
CT instead.

Notably, we used the same fixed encoding scheme from Eq. (41)–(42) to produce non-trainable relative PE.
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E. Details on Adversarial Training
In our CT, we implement the adversarial training for Eq. (18) and Eq. (19) by performing iterative gradient descent updates
(rather than optimizing globally). Algorithm 1 provides the pseudocode. Recall that we further make use of exponential
moving average (EMA) for stabilization.

Algorithm 1 Adversarial training in CT via iterative gradient descent
Input: number of iterations niter, smoothing parameter β, CDC coefficient α, learning rate η
Initialize θ(0)

Y , θ
(0)
A , θ

(0)
R

for i = 1 to niter do
Update gradient descent θ(i)

Y  θ
(i�1)
Y � ηr�Y

[
LGY

(θ
(i�1)
Y , θ

(i�1)
R )

]
Update gradient descent θ(i)

R  θ
(i�1)
R � ηr�R

[
LGY

(θ
(i�1)
Y , θ

(i�1)
R ) + αLconf(θ

(i�1)
A;EMA, θ

(i�1)
R )

]
Update EMA θ

(i)
Y;EMA  βθ

(i�1)
Y;EMA + (1� β)θ

(i)
Y

Update EMA θ
(i)
R;EMA  βθ

(i�1)
R;EMA + (1� β)θ

(i)
R

Update gradient descent θ(i)
A  θ

(i�1)
A � ηr�A

[
LGA

(θ
(i�1)
A , θ

(i)
R;EMA)

]
Update EMA θ

(i)
A;EMA  βθ

(i�1)
A;EMA + (1� β)θ

(i)
A

end for
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F. Proof of Theorem F.2
We begin by stating a lemma similar to Lemma 1 (Bica et al., 2020), yet ours includes the treatment probabilities P(At = ai)
of Eq. (22).

Lemma F.1. Let αi = P(At = ai) and x0 = �( �Ht) for some fixed representation network �(�). Then, it holds that

G�jA(x0) =
αjP

�
j (x0)∑da

i=1 αiP
�
i (x0)

. (43)

Proof. The objective in Eq. (46) is obtained for fixed � by maximizing the following objective pointwise for any x0:

G�A = arg max
GA

da∑
j=1

αj log
(
GjA(x0)

)
P�
j (x0) subject to

da∑
i=1

GiA(x0) = 1. (44)

The result can now be obtained by applying Lagrange multipliers as done in (Bica et al., 2020).

We now derive our theorem.

Theorem F.2. We fix t 2 N and define P as the distribution of �Ht, Pj as the distribution of �Ht given At = aj , and P�
j

as the distribution of �( �Ht) given At = aj for all j 2 f1, . . . , dag. Let GjA denote the output of GA corresponding to
treatment aj . Then, there exists an optimal pair (��, G�A) such that

�� = arg max
�

da∑
j=1

E �Ht�P

[
logG�jA(�( �Ht)

]
(45)

G�A = arg max
GA

da∑
j=1

E �Ht�Pj

[
logGjA(��( �Ht)

]
P(At = aj) (46)

subject to
da∑
i=1

GiA(��( �Ht)) = 1. (47)

Furthermore, �� satisfies Eq. (45) if and only if it induces balanced representations across treatments, i.e., P��

1 = . . . =
P��

da
.

Proof of Theorem F.2. We plug the optimal prediction probabilities provided by Lemma F.1 into the objective Eq. (45) and
obtain

da∑
j=1

Ex0�P�

[
log

αjP
�
j (x0)∑da

i=1 αiP
�
i (x0)

]
=

da∑
j=1

∫
log

(
P�
j (x0)∑da

i=1 αiP
�
i (x0)

)
P�(x0) dx0 +

da∑
j=1

log(αj)︸ ︷︷ ︸
=C

(48)

=

da∑
j=1

∫
log

(
P�
j (x0)∑da

i=1 αiP
�
i (x0)

)
da∑
i=1

αiP
�
i (x0) dx0 + C (49)

= �
da∑
j=1

KL

(
da∑
i=1

αiP
�
i (x0)

∣∣∣∣∣
∣∣∣∣∣ P�

j (x0)

)
+ C. (50)

Hence, the objective becomes

min
�

da∑
j=1

KL

(
da∑
i=1

αiP
�
i (x0)

∣∣∣∣∣
∣∣∣∣∣ P�

j (x0)

)
. (51)
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For balanced representations P�
1 = � � � = P�

da
, we obtain a global minimum because

KL

(
da∑
i=1

αiP
�
i (x0)

∣∣∣∣∣
∣∣∣∣∣ P�

j (x0)

)
= KL

(
P�

1 (x0)
∣∣∣∣∣∣P�

1 (x0)
)

= 0 (52)

for all j 2 f1, . . . , dag.
Let us now assume that there exists an optimal � that satisfies Eq. (52) and that induces unbalanced representations, i.e.,
there exists an j 6= ` with P�

j 6= P�
‘ . This implies

da∑
i=1

αiP
�
i (x0) = P�

j 6= P�
‘ =

da∑
i=1

αiP
�
i (x0), (53)

which is a contradiction. Hence, � attains the global optimum if and only if it induces balanced representations.
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G. Baseline Methods
We select four methods as baselines, which make use of the same setting as our work (see Sec. 2). These are: (1) marginal
structural models (MSMs) (Robins et al., 2000; Hernán et al., 2001), (2) recurrent marginal structural networks (RMSNs)
(Lim et al., 2018), (3) counterfactual recurrent network (CRN) (Bica et al., 2020), and (4) G-Net (Li et al., 2021). We
provide details for each in the following.

G.1. Marginal Structural Models (MSMs)

Marginal structural models (MSMs) (Robins et al., 2000; Hernán et al., 2001) are a standard baseline from epidemiology,
which aim at counterfactual outcomes estimation with inverse probability of treatment weights (IPTW) via linear modeling.
Time-varying confounding bias is removed with the help of stabilized weights

SW (t, τ) =

∏t+�
n=t f

(
An j �An�1

)∏t+�
n=t f

(
An j �Hn

) , (54)

where τ ranges from 1 to τmax, and f
(
An j �An�1

)
and f

(
An j �Hn

)
denote the conditional probabilities mass functions

for discrete treatments of An given �An�1 and �Hn, respectively. Both are estimated with logistic regressions, which depend
on the sum of previous treatment applications, two previous time-varying covariates and static covariates

f
(
At j �At�1

)
= σ

 dA∑
j=1

ωj

t�1∑
n=1

1[An=aj ]

 , (55)

f
(
At j �Ht

)
= σ

W1;xXt +W2;xXt�1 +W1;yYt +W2;yXt�1 +WvV +

dA∑
j=1

φj

t�1∑
n=1

1[An=aj ]

 , (56)

where σ(�) is a sigmoid function and where ω�, φ�,W� are logistic regression parameters. After the stabilized weights are
estimated, they are normalized and truncated at their 1-st and 99-th percentiles as done in (Lim et al., 2018).

Counterfactual outcome regressions are fit for each prediction horizon τ separately. For a specific τ , we split dataset into
smaller chunks with a rolling origin and calculate stabilized weights for each chunk. Outcome regressions use the same
history inputs, as f

(
An j �Hn

)
(Eq. (56)).

MSMs do not contain hyperparameters; thus, we have merged train and validation subsets for all the experiments.

G.2. Recurrent Marginal Structural Networks (RMSNs)

RMSNs refer to sequence-to-sequence architectures consisting of four LSTM subnetworks: propensity treatment network,
propensity history network, encoder, and decoder. RMSNs are designed to handle multiple binary treatments. The encoder
first learns a representation of the observed history �Ht to perform one-step-ahead prediction. The decoder then uses this
representation for estimating τ -step-ahead counterfactual outcomes. A fully-connected linear layer (memory adapter) is
used to match the size of the representation of the encoder and the hidden units of the decoder.

In RMSNs, time-varying confounding is addressed by re-weighting the objective with the IPTW (Robins et al., 2000) during
training. IPTW creates a pseudo-population that mimics a randomized controlled trial. As done in (Lim et al., 2018), we
use the stabilized weights (Eq. (54)). Both f

(
An j �An�1

)
and f

(
An j �Hn

)
are learned from the data using LSTM

networks, which are called propensity treatment network (nominator) and propensity history network (denominator).

During training, the propensity networks are trained first to estimate the stabilized weights SW (t, τ). Afterward, the encoder
is trained using a mean squared error (MSE) weighted with SW (�, 1). Similarly to MSMs, stabilized weights are normalized
and truncated.

Finally, the decoder is trained by minimizing the loss using the full stabilized weights SW (�, τmax). For this purpose, the
dataset is processed into smaller chunks with rolling origins, and, for each rolling origin, a representation is built using the
trained encoder. We refer to (Lim et al., 2018) for details on the training algorithm.

We tuned the same hyperparameters, as in the original paper (Lim et al., 2018) (see details in Appendix H).



Causal Transformer for Estimating Counterfactual Outcomes

G.3. Counterfactual Recurrent Network (CRN)

CRN consists of an encoder-decoder architecture. In contrast to RMSNs, which use IPTW to address time-varying
confounding, CRN builds balanced representations which are non-predictive of the treatment assignment. This is achieved
by adopting an adversarial learning technique, namely gradient reversal (Ganin & Lempitsky, 2015).

In CRN, both encoder and decoder consist of a single LSTM-layer. Unlike RMSNs, the authors and we did not use a
memory adapter. Thus, the number of LSTM hidden units dh of decoder is set to the size of the balanced representation of
the encoder.

At each time step t, the hidden states ht are fed into a fully-connected linear layer that builds a representation Φt. Then, two
fully-connected networks GY and GA, put on top of Φt, aim to predict the next outcome Yt+1 and the current treatment
At, respectively. For this, both encoder and decoder are trained by minimizing the loss

L =
∥∥Yt+1 �GY

(
Φt,At

)∥∥2 � λ
da∑
j=1

1[At=aj ] logGA(Φt) (57)

with hyperparameter λ. The loss L is based on a gradient reversal layer (Ganin & Lempitsky, 2015), which forces GA to
minimize cross-entropy between predicted and current treatment, but Φt to maximize it. In our experiments, we kept λ = 1,
as it was used by (Atan et al., 2018b; Bica et al., 2020).

In our ablation study (Sec. 5.4), we combined CRN with our CDC loss. For that, we applied our adversarial training
procedure (introduced in Sec. 4.3) to representations of LSTM-based encoder and decoder, and feed-forward networks GY
and GA. Here, EMA of model parameters (β = 0.99) was also accompanying the CDC loss.

G.4. G-Net

G-Net is based the G-computation formula from Eq. (24), which expresses the average counterfactual outcome
Yt+� [�at;t+��1] conditioned on the history �Ht in terms of the observational data distribution.

G-Net performs counterfactual outcomes prediction in two steps: First, the conditional distributions P(Xj j
�Ht, �xt+1:j�1, �at:j�1) are estimated. Then, Monte Carlo simulations are performed via Eq. (24), by sampling from
the estimated distributions. Afterward, Yt+� [�at;t+��1] is predicted by taking the empirical mean over the Monte Carlo
samples (M = 50 in our experiments).

The conditional distributions P(Xj j �Ht, �xt+1:j�1, �at:j�1) are learned by estimating the respective conditional expectations
E(Xj j �Ht, �xt+1:j�1, �at:j�1), which are learned via a single LSTM jointly with outcome prediction. One can then sample
from P(Xt+j j �Ht, �xt+1:j�1, �at:j�1) by drawing from the empirical distributions of the residuals on some holdout set not
used to estimate the conditional expectations. We used 10% of the training data for the holdout dataset.

For better comparability with other baselines, we used one or two-layered LSTMs (as in the original papers) with an extra
fully-connected linear representation layer and a network with hidden units on top of the latter (analogous to GY in CT or
CRN).
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H. Hyperparameter Tuning
We performed hyperparameter optimization for all benchmarks via random grid search with respect to the factual RMSE of
the validation set. We list the ranges of hyperparameter grids in Table 6. We report additional information on model-specific
hyperparameters in Table 7 (here we used the same ranges for all experiments). For reproducibility, we make the selected
hyperparameters public: they can be found in YAML format in our GitHub4.

We aimed for a fair comparison and thus kept the number of parameters and layers similar across datasets and models.
Nevertheless, the hyperparameter ranges differ slightly for each dataset and model, as the size of inputs is different (see
Table 7). Thus, e.g., the range of sizes of hidden units (sequential, representational, or fully-connected) is decreased for
the MIMIC-III-based experiments. In specific cases (LSTM hidden units propensity treatment network of RMSNs or
transformer units of CT), we discarded unrealistically small values for synthetic datasets. For the fully-synthetic dataset
based on the tumor growth simulator, we use one layer sequential models. For MIMIC-III, we also include two-layered
LSTMs/transformers. The number of epochs (ne) is also chosen differently for each dataset to reflect its complexity. CT
generally requires more epochs to converge due to the EMA of model weights. Therefore, we used approximately 60 %
more epochs for CT than other models. Note that CT still outperforms the baselines when EMA is omitted, as shown in our
ablation study. Due to the high memory usage of self-attention for long sequences and batch augmentation with masked
vitals of CT, we also use smaller ranges of minibatch sizes for CT. Notably, as in CT, we omitted the final projection layer
after concatenation of the attention heads, as we need the size of hidden units (which always depends on the input size while
tuning) to always be divisible by the number of heads nh. Thus, we have chosen the closest larger divisible by the number
of hidden units.

Training of baselines: All baseline models are implemented in PyTorch Lightning and, as our CT, trained with Adam
(Kingma & Ba, 2015). The number of epochs (ne) is varied across datasets for a better fit.

We perform exponential rise of both α (in the CDC loss) and λ (in gradient reversal). This is given by

αe = α �
( 2

1 + exp(�10 � e/ne)
� 1
)
, λe = λ �

( 2

1 + exp(�10 � e/ne)
� 1
)
, (58)

where e 2 1, . . . , ne is an index of current epoch.

For all baselines, we also used the teacher forcing technique (Williams & Zipser, 1989) when training the models for
multiple-step-ahead prediction. During evaluation of multiple-step-ahead prediction, we switch off teacher forcing and
autoregressively feed model predictions.

4https://github.com/Valentyn1997/CausalTransformer/

https://github.com/Valentyn1997/CausalTransformer/
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Table 6. Ranges for hyperparameter tuning across experiments. Here, we distinguish (1) data using the tumor growth (TG) simulator
(=experiments with fully-synthetic data), (2) data from the semi-synthetic (SS) benchmark, and (3) real-world (RW) MIMIC-III data. C is
the input size. dr is the size of balanced representation (BR) or the output of LSTM (in the case of G-Net).

Model Sub-model Hyperparameter Range (TG simulator) Range (SS data) Range (RW data)

RMSNs

Propensity
treatment
network

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100 400 200

Propensity
history
network

Encoder

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0
Number of epochs (ne) 100 400 200

Decoder

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) 1C, 2C, 4C, 8C, 16C 1C, 2C, 4C 1C, 2C, 4C
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max gradient norm 0.5, 1.0, 2.0, 4.0
Number of epochs (ne) 100 400 200

CRN

Encoder

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
BR size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr 0.5dr , 1dr , 2dr
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (ne) 100 400 200

Decoder

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024
LSTM hidden units (dh) BR size of encoder
BR size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr 0.5dr , 1dr , 2dr
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (ne) 100 400 200

G-Net —

LSTM layers (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256
LSTM hidden units (dh) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
LSTM output size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr 0.5dr , 1dr , 2dr
LSTM dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Number of epochs (ne) 50 400 200

CT —

Transformer blocks (B) 1 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 32, 64 32, 64
Attention heads (nh) 2 2, 3 2, 3
Transformer units (dh) 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
BR size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr 0.5dr , 1dr , 2dr
Sequential dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (lmax) 15 20 30
Number of epochs (ne) 150 400 300
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Table 7. Additional information on model-specific hyperparameters (kept the same for all experiments).
Model Sub-model Hyperparameter Value

RMSNs

Propensity treatment network
Random search iterations 50
Input size (C) da
Output size da

Propensity history network
Random search iterations 50
Input size (C) da + dy + dx + dv
Output size da

Encoder
Random search iterations 50
Input size (C) da + dy + dx + dv
Output size dy

Decoder
Random search iterations 20
Input size (C) da + dy + dv
Output size dy

CRN

Encoder

Random search iterations 50
Input size (C) da + dy + dx + dv
Output size da + dy
Gradient reversal coefficient (λ) 1.0

Decoder

Random search iterations 30
Input size (C) da + dy + dv
Output size da + dy
Gradient reversal coefficient (λ) 1.0

G-Net —

Random search iterations 50
Input size (C) da + dy + dx + dv
Output size dy + dx
MC samples (M ) 50
Number of covariate groups 1
Holdout dataset ratio (empirical residuals) 10%

CT —

Random search iterations 50
Input size (C) maxfda, dy, dx, dvg
Output size da + dy
CDC coefficient (α) 0.01
EMA of model weights (β) 0.99
Positional encoding relative, trainable
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I. Encoder-Decoder Causal Transformer
I.1. Overview

Here, we summarize the Encoder-Decoder Causal Transformer (EDCT) from our ablation study, namely a single-subnetwork
version of out CT. The EDCT consists of transformer-based encoder and decoder (see Fig. 4). The encoder builds a treatment-
invariant sequence of representations of the history �Φt = (Φ1, . . . ,Φt), balanced with a custom adversarial objective. The
decoder subsequently uses �Φt as cross-attention keys and values for estimating outcomes of future treatments.

We start by mapping the concatenated time-varying covariates, left-shifted treatments, outcomes and static covariates to a
hidden state space of dimensionality dh via fully-connected linear layer:

h0
t = Linear(Concat(At�1,Yt,Xt,V)). (59)

In the case of decoder, we apply a similar input transformation

h0
t = Linear(Concat(at�1, Ŷt,V)), (60)

where Ŷt are autoregressively-fed model outputs.

We then stack of B identical encoder/decoder blocks or layers, which transform the whole sequence of hidden states(
h0

1, . . . ,h
0
t

)
in quadratic time, depending on sequence length t. This is given by

Hb =
(
hb1, . . . ,h

b
t

)> 2 Rt�dh , (61)

Hb = Blockb(Hb�1), b 2 f1, . . . , Bg, (62)

where B is the total number of blocks.

The encoder uses its hidden states to infer keys, queries, and values (thus: self-attention). In contrast, the decoder has
both self- and cross-attentions. For later, we use keys and values, inferred from the sequence of balanced representations
of the history. Note that the dimensionality of hidden decoder state is set such that it matches the size of the balanced
representations of the encoder, i.e., dh = dr.

Lastly, we take the balanced representations from the last transformer block as outputs. Here, we apply an additional
fully-connected linear layer and exponential linear unit (ELU) non-linearity as in Eq. (10).

We make slightly adaptations to the relative positional encoding for the cross-attention of the decoder (Eq. (66)). The
decoder works a priori with the continuation of the same sequence. However, it is here beneficial to use the sequence for
construction of aVij and aKij , so that j 2 f1, . . . , tg and i 2 ft+ 1, . . . , t+ τ � 1g. Notably, relative positional encodings
are shared neither between encoder and decoder, nor between self-attention and the cross-attention of the decoder.

We show the EDCT in Fig. 4. We further formalize the encoder/decoder transformer blocks in the following section.
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   Patient history       Projection horizon    

Linear Linear Linear Linear

Legend: 

Inputs / Outputs Network layer

Concatenation

Masked 
self-attention

Feed-forward

Cross-attention

Masked 
self-attention

Feed-forward

Figure 4. Architecture of the encoder-decoder causal transformer (EDCT). Residual connections with layer normalizations are omitted
for clarity. The encoder is trained to perform one-step-ahead prediction Ŷt+1[at], whereas the decoder uses the pretrained balanced
representations of history from the encoder. Based on them, the decoders makes predictions for the projection horizon τ � 2 via
Ŷt+τ [�at+1:t+τ−1].
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I.2. Transformer Blocks in EDCT

The EDCT encoder block is defined in a following way:

~Hb�1 = LN
(

MHA
(
Q(Hb�1),K(Hb�1), V (Hb�1)

)
+ Hb�1

)
, (63)

Hb = LN
(

FF(~Hb�1) + ~Hb�1
)
. (64)

The EDCT decoder block adds a cross-attention layer after the self-attention (i.e., between Eq. (63) and Eq. (64)). This is
formalized by

~Hb�1 = LN
(

MHA
(
Q(Hb�1),K(Hb�1), V (Hb�1)

)
+ Hb�1

)
, (65)

~~Hb�1 = LN
(

MHA
(
Q(~Hb�1),K(( �Φt)

>), V (( �Φt)
>)
)

+ ~Hb�1
)
, (66)

Hb = LN
(

FF(~~Hb�1) + ~~Hb�1
)
, (67)

where �Φt is a sequence of the encoder representations (i.e., the encoded history �Ht), as transformed according to Eq. (61)).

I.3. Hyperparameter Tuning for EDCT

We performed a hyperparameter selection for EDCT in a similar manner to CRN, see Appendix H. We provide hyperpa-
rameter ranges for both encoder and decoder in Table 8. Other hyperparameters are kept fixed, the same as for CRN in
Table 7. For the fully-synthetic dataset based on the tumor growth simulator, we add a two-layer (two-block) architecture to
the search range. This was done to keep the number of total trainable parameters similar to other baselines. We employed
trainable relative positional encodings. Notably, the decoder has lmax set to τmax for the self-attention and to lmax of the
encoder for the cross-attention.

Table 8. Ranges for hyperparameter tuning for EDCT across experiments. Here, we distinguish (1) data using the tumor growth (TG)
simulator (=experiments with fully-synthetic data) and (2) semi-synthetic (SS) data. C is the input size. dr is the size of balanced
representation (BR) or the output of LSTM (in the case of G-Net).

Model Sub-model Hyperparameter Range (TG simulator) Range (SS data)

EDCT

Encoder

Transformer blocks (B) 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256 32, 64, 128
Attention heads (nh) 2 2, 3
Transformer units (dh) 1C, 2C, 3C, 4C 0.5C, 1C, 2C
BR size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr
Sequential dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (self-attention) (lmax) 15 20
Number of epochs (ne) 100 400

Decoder

Transformer blocks (B) 1, 2 1, 2
Learning rate (η) 0.01, 0.001, 0.0001
Minibatch size 256, 512, 1024 128, 256, 512
Attention heads (nh) 2 2, 3
Transformer units (dh) BR size of encoder
BR size (dr) 0.5C, 1C, 2C, 3C, 4C 0.5C, 1C, 2C
FC hidden units (nFC) 0.5dr , 1dr , 2dr , 3dr , 4dr 0.5dr , 1dr , 2dr
Sequential dropout rate (p) 0.1, 0.2, 0.3, 0.4, 0.5
Max positional encoding (self-attention) (lmax) τmax
Max positional encoding (cross-attention) (lmax) 15 20
Number of epochs (ne) 100 400
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J. Details on Experiments with Synthetic Data
J.1. Summary of Tumor Growth Simulator

The tumor growth (TG) simulator (Geng et al., 2017) models the volume of tumor Yt+1 for t+ 1 days after cancer diagnosis
(so that the outcome is one-dimensional, i. e., dy = 1). The model has two binary treatments: (i) radiotherapy (Ar

t ) and
(ii) chemotherapy (Ac

t ). These are modeled as follows: (i) Radiotherapy when assigned to a patient has an immediate effect
d(t) on the next outcome. (ii) Chemotherapy affects several future outcomes with exponentially decaying effect C(t) via

Yt+1 =

(
1 + ρ log

( K
Yt

)
� βcCt � (αrdt + βrd

2
t ) + εt

)
Yt, (68)

where ρ,K, βc, αr, βr are parameters in the simulation and where εt � N(0, 0.012) is independently sampled noise. Here,
the parameters βc, αr, βr describe the individual response of each patient and are sampled from a mixture of truncated
normal distributions with three mixture components. For exact values of parameters, refer to the code implementation5. The
indices of mixture components are considered as static covariates (dv = 1). Time-varying confounding is introduced by a
biased treatments assignment, identical for both treatments; i. e.,

Ac
t ,A

r
t � Bernoulli

(
σ
( γ

Dmax
( �D15( �Yt�1)�Dmax/2)

))
, (69)

where σ(�) is a sigmoid activation, Dmax is the maximum tumor diameter, �D15( �Yt�1) is the average tumor diameter over
the last 15 days, and γ is a confounding parameter. We can control the level of confounding via γ. For γ = 0, the treatment
assignment is fully randomized. For increasing values, the the amount of time-varying confounding becomes also larger.

In our implementation, we proceed as follows. For RMSNs, we insert two binary treatments directly. For all other
methods, we use a single-categorical treatment out of the set f(Ac

t = 0,Ar
t = 0), (Ac

t = 1,Ar
t = 0), (Ac

t = 0,Ar
t = 1),

(Ac
t = 1,Ar

t = 1)g.
For each patient in the test set and each time step, we simulate several counterfactual trajectories, depending on τ . For one-
step-ahead prediction, we simulate all four combinations of one-step-ahead counterfactual outcomes Yt+1. This corresponds
to the tumor volume under all possible combinations of treatment assignments. For multi-step-ahead prediction, the number
of all potential outcomes of Yt+2, . . . ,Yt+�max growths exponentially with the projection horizon τmax. Therefore, we adopt
two alternative schemes:

1. Single sliding treatment. To test that the correct timing of a treatment is chosen, we simulate trajectories with a single
treatment but where the treatments are iteratively moved over a window ranging from t to t+ τmax � 1. This effectively
results in 2(τmax � 1) trajectories.

2. Random trajectories. Here, we simulate a fixed number of trajectories, i. e., 2 (τmax � 1), each with random treatment
assignments.

The former setting is identical to the one in (Bica et al., 2020). We additionally included the latter setting, as it may also
involve more diverse trajectories with multiple treatments. Thereby, we hope to make our analysis more realistic with
respect to clinical practice.

For each level of confounding γ, we simulate 10,000 patient trajectories for training, 1,000 for validation, and 1,000
trajectories for testing. We limit the length for trajectories to max. 60 time steps (some patients have shorter trajectories due
to recovery or death). Here, and in all following experiments, we apply hyperparameter tuning.

J.2. Experimental Details

Hyperparameter tuning. We perform hyperparameter tuning separately for all models as well as all the different values of
the confounding amount γ. For this, we use the 1,000 factual patient time-series from the validation set. Details are in H.

5Code is available online: https://github.com/Valentyn1997/CausalTransformer/blob/main/src/data/
cancer_sim/cancer_simulation.py

https://github.com/Valentyn1997/CausalTransformer/blob/main/src/data/cancer_sim/cancer_simulation.py
https://github.com/Valentyn1997/CausalTransformer/blob/main/src/data/cancer_sim/cancer_simulation.py
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Performance measurement: We retrain the models on five simulated datasets with different random seeds. We then report
the averaged root mean square error (RMSE) on the test set, that is, for hold-out data. We report a normalized RMSE, where
we normalize by the maximum tumor volume Vmax = 1150 cm3.

We acknowledge that our results are slightly different from those reported in (Lim et al., 2018; Bica et al., 2020). The
aforementioned papers calculate the test RMSE based on both counterfactual trajectories after rolling origin and historical
factual trajectories before rolling origin. However, the latter biases evaluation towards factual performance. For that reason,
we opted for a more challenging evaluation that directly matches our aim, namely predicting counterfactuals over time.
Therefore, we only measure performance with respect to counterfactual outcomes after rolling origin (and thus without
considering historical factual patient trajectories).

J.3. Additional Results

In the following, we provide additional results for one-step-ahead prediction (Table 9), τ -step-ahead prediction in a setting
with single sliding treatment (Table 11), and τ -step-ahead prediction with random trajectories (Table 10). Note that CT
(α = 0) uses the same model and hyperparameters as CT. The only difference is that we switched off our CDC loss.

In the setting of random trajectories (Table 10), RMSEs become lower for increasing projection horizons. This can be
expected as the application of treatment should decrease the tumor volume. This results in a lower error of estimation.
Importantly, the results confirm the superiority of our Causal Transformer.

Table 9. Normalized RMSE for one-step-ahead prediction. Shown: mean and standard deviation over five runs (lower is better). Parameter
γ is the the amount of time-varying confounding: higher values mean larger treatment assignment bias.

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

MSMs 1.107 ± 0.113 1.222 ± 0.108 1.410 ± 0.089 1.680 ± 0.118 2.023 ± 0.230
RMSNs 1.037 ± 0.123 1.104 ± 0.116 1.124 ± 0.115 1.268 ± 0.116 1.399 ± 0.196
CRN 0.782 ± 0.053 0.817 ± 0.050 0.887 ± 0.072 1.063 ± 0.124 1.301 ± 0.144
G-Net 0.832 ± 0.052 0.873 ± 0.080 1.000 ± 0.062 1.299 ± 0.303 1.375 ± 0.250

CT (α = 0) (ours) 0.778 ± 0.065 0.790 ± 0.081 0.869 ± 0.075 1.024 ± 0.148 1.300 ± 0.220
CT (ours) 0.775 ± 0.063 0.797 ± 0.066 0.859 ± 0.070 1.046 ± 0.147 1.316 ± 0.229
Lower = better (best in bold).
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Table 10. Normalized RMSE for τ -step-ahead prediction (here: random trajectories setting). Shown: mean and standard deviation over
five runs (lower is better). Parameter γ is the the amount of time-varying confounding: higher values mean larger treatment assignment
bias.

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

τ = 2 MSMs 1.04 ± 0.04 1.21 ± 0.13 1.50 ± 0.23 1.73 ± 0.43 1.85 ± 0.71
RMSNs 1.01 ± 0.09 1.03 ± 0.12 1.00 ± 0.10 1.13 ± 0.16 1.09 ± 0.22
CRN 0.77 ± 0.04 0.76 ± 0.05 0.81 ± 0.07 0.94 ± 0.13 1.12 ± 0.25
G-Net 0.94 ± 0.13 0.95 ± 0.09 1.01 ± 0.05 1.10 ± 0.13 1.20 ± 0.26
CT (α = 0) (ours) 0.76 ± 0.06 0.76 ± 0.05 0.82 ± 0.07 0.92 ± 0.21 1.09 ± 0.28
CT (ours) 0.75 ± 0.06 0.77 ± 0.06 0.81 ± 0.08 0.90 ± 0.18 1.06 ± 0.27

τ = 3 MSMs 1.00 ± 0.04 1.14 ± 0.12 1.38 ± 0.22 1.54 ± 0.38 1.51 ± 0.59
RMSNs 0.96 ± 0.05 1.02 ± 0.09 0.98 ± 0.10 1.11 ± 0.20 1.17 ± 0.29
CRN 0.78 ± 0.03 0.78 ± 0.06 0.83 ± 0.09 1.05 ± 0.16 1.23 ± 0.32
G-Net 1.01 ± 0.15 1.03 ± 0.12 1.07 ± 0.07 1.15 ± 0.20 1.35 ± 0.32
CT (α = 0) (ours) 0.76 ± 0.04 0.78 ± 0.06 0.83 ± 0.10 0.95 ± 0.25 1.16 ± 0.37
CT (ours) 0.75 ± 0.04 0.79 ± 0.06 0.83 ± 0.11 0.93 ± 0.23 1.12 ± 0.32

τ = 4 MSMs 0.90 ± 0.06 1.02 ± 0.11 1.22 ± 0.21 1.31 ± 0.31 1.25 ± 0.51
RMSNs 0.89 ± 0.06 0.98 ± 0.08 0.92 ± 0.10 1.06 ± 0.22 1.15 ± 0.31
CRN 0.74 ± 0.03 0.74 ± 0.07 0.80 ± 0.10 1.07 ± 0.17 1.23 ± 0.34
G-Net 0.97 ± 0.15 0.97 ± 0.13 1.01 ± 0.08 1.07 ± 0.21 1.33 ± 0.34
CT (α = 0) (ours) 0.72 ± 0.03 0.75 ± 0.06 0.79 ± 0.11 0.93 ± 0.28 1.14 ± 0.39
CT (ours) 0.71 ± 0.03 0.75 ± 0.06 0.80 ± 0.12 0.90 ± 0.26 1.07 ± 0.35

τ = 5 MSMs 0.80 ± 0.07 0.89 ± 0.10 1.06 ± 0.20 1.10 ± 0.27 1.08 ± 0.47
RMSNs 0.81 ± 0.06 0.93 ± 0.07 0.85 ± 0.10 0.99 ± 0.22 1.09 ± 0.30
CRN 0.68 ± 0.04 0.68 ± 0.07 0.75 ± 0.10 1.03 ± 0.16 1.17 ± 0.34
G-Net 0.88 ± 0.14 0.88 ± 0.14 0.92 ± 0.08 0.97 ± 0.21 1.26 ± 0.36
CT (α = 0) (ours) 0.66 ± 0.03 0.69 ± 0.06 0.73 ± 0.11 0.88 ± 0.29 1.08 ± 0.38
CT (ours) 0.66 ± 0.03 0.70 ± 0.06 0.74 ± 0.12 0.84 ± 0.26 1.01 ± 0.34

τ = 6 MSMs 0.71 ± 0.07 0.78 ± 0.09 0.91 ± 0.18 0.93 ± 0.23 0.99 ± 0.44
RMSNs 0.73 ± 0.05 0.87 ± 0.06 0.77 ± 0.09 0.90 ± 0.21 1.01 ± 0.28
CRN 0.62 ± 0.04 0.62 ± 0.07 0.70 ± 0.09 0.96 ± 0.15 1.10 ± 0.32
G-Net 0.79 ± 0.12 0.79 ± 0.13 0.82 ± 0.09 0.86 ± 0.20 1.18 ± 0.35
CT (α = 0) (ours) 0.59 ± 0.02 0.63 ± 0.06 0.67 ± 0.11 0.80 ± 0.29 1.00 ± 0.36
CT (ours) 0.59 ± 0.02 0.63 ± 0.06 0.67 ± 0.12 0.77 ± 0.25 0.93 ± 0.32

Lower = better (best in bold).
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Table 11. Normalized RMSE for τ -step-ahead prediction (here: single sliding treatment setting). Shown: mean and standard deviation over
five runs (lower is better). Parameter γ is the the amount of time-varying confounding: higher values mean larger treatment assignment
bias.

γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

τ = 2 MSMs 1.33 ± 0.13 1.59 ± 0.20 1.88 ± 0.36 2.23 ± 0.63 2.51 ± 0.91
RMSNs 0.98 ± 0.12 1.10 ± 0.25 0.98 ± 0.08 1.18 ± 0.10 0.94 ± 0.09
CRN 0.71 ± 0.07 0.75 ± 0.06 0.77 ± 0.04 0.94 ± 0.14 1.11 ± 0.22
G-Net 0.99 ± 0.16 0.99 ± 0.06 1.03 ± 0.09 1.10 ± 0.08 1.18 ± 0.16
CT (α = 0) (ours) 0.70 ± 0.09 0.71 ± 0.09 0.76 ± 0.08 0.90 ± 0.21 1.00 ± 0.21
CT (ours) 0.70 ± 0.09 0.72 ± 0.09 0.74 ± 0.07 0.90 ± 0.13 1.01 ± 0.23

τ = 3 MSMs 1.61 ± 0.15 1.90 ± 0.24 2.20 ± 0.42 2.53 ± 0.72 2.64 ± 0.95
RMSNs 0.98 ± 0.10 1.16 ± 0.21 1.00 ± 0.09 1.23 ± 0.12 1.06 ± 0.14
CRN 0.73 ± 0.06 0.78 ± 0.06 0.85 ± 0.06 1.16 ± 0.26 1.34 ± 0.37
G-Net 1.15 ± 0.20 1.16 ± 0.11 1.20 ± 0.15 1.24 ± 0.12 1.47 ± 0.22
CT (α = 0) (ours) 0.73 ± 0.08 0.75 ± 0.08 0.82 ± 0.09 0.99 ± 0.25 1.13 ± 0.28
CT (ours) 0.73 ± 0.08 0.76 ± 0.07 0.79 ± 0.08 0.98 ± 0.19 1.12 ± 0.27

τ = 4 MSMs 1.79 ± 0.16 2.08 ± 0.26 2.37 ± 0.45 2.67 ± 0.76 2.62 ± 0.94
RMSNs 0.99 ± 0.10 1.18 ± 0.17 1.03 ± 0.11 1.28 ± 0.15 1.21 ± 0.19
CRN 0.76 ± 0.05 0.81 ± 0.07 0.93 ± 0.08 1.35 ± 0.38 1.55 ± 0.50
G-Net 1.25 ± 0.24 1.24 ± 0.14 1.27 ± 0.21 1.29 ± 0.14 1.64 ± 0.28
CT (α = 0) (ours) 0.76 ± 0.07 0.79 ± 0.06 0.87 ± 0.11 1.06 ± 0.27 1.21 ± 0.32
CT (ours) 0.76 ± 0.07 0.80 ± 0.06 0.85 ± 0.09 1.05 ± 0.22 1.21 ± 0.30

τ = 5 MSMs 1.88 ± 0.17 2.15 ± 0.27 2.42 ± 0.45 2.69 ± 0.75 2.54 ± 0.90
RMSNs 1.00 ± 0.10 1.19 ± 0.14 1.08 ± 0.13 1.34 ± 0.19 1.39 ± 0.31
CRN 0.79 ± 0.04 0.85 ± 0.07 1.01 ± 0.11 1.51 ± 0.47 1.72 ± 0.58
G-Net 1.29 ± 0.26 1.28 ± 0.18 1.32 ± 0.25 1.33 ± 0.15 1.76 ± 0.37
CT (α = 0) (ours) 0.79 ± 0.06 0.83 ± 0.06 0.92 ± 0.12 1.12 ± 0.30 1.28 ± 0.34
CT (ours) 0.79 ± 0.07 0.84 ± 0.07 0.89 ± 0.11 1.11 ± 0.24 1.26 ± 0.31

τ = 6 MSMs 1.89 ± 0.17 2.14 ± 0.26 2.39 ± 0.44 2.62 ± 0.73 2.41 ± 0.85
RMSNs 1.03 ± 0.10 1.21 ± 0.12 1.12 ± 0.14 1.41 ± 0.25 1.58 ± 0.45
CRN 0.82 ± 0.04 0.89 ± 0.07 1.08 ± 0.13 1.64 ± 0.54 1.83 ± 0.62
G-Net 1.33 ± 0.27 1.31 ± 0.22 1.35 ± 0.29 1.35 ± 0.16 1.86 ± 0.47
CT (α = 0) (ours) 0.82 ± 0.04 0.86 ± 0.05 0.96 ± 0.12 1.19 ± 0.33 1.32 ± 0.34
CT (ours) 0.82 ± 0.05 0.88 ± 0.06 0.93 ± 0.11 1.16 ± 0.25 1.29 ± 0.29

Lower = better (best in bold).
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K. Details on Experiments with Semi-Synthetic Data
K.1. Data

We used the MIMIC-extract (Wang et al., 2020) with a standardized preprocessing pipeline of MIMIC-III dataset (Johnson
et al., 2016). MIMIC-extract provides intensive care unit (ICU) data aggregated at hourly levels. We used forward and
backward filling for missing values and did standard normalization of all the continuous time-varying features.

For our semi-synthetic data, we then extract 25 different vital signs (as time-varying covariates) and 3 static covariates, i. e.,
gender, ethnicity, and age (as static covariates). The full list of features is given in the code of our GitHub repository for
reproducibility. We one-hot-encode all static covariates (gender, ethnicity, and age) and use them later further for generating
noise. Altogether, this results into a 44-dimensional feature vector (dv = 44).

Our simulation of semi-synthetic data extends the basic idea of (Schulam & Saria, 2017). As such, we first generate
untreated trajectories of outcomes under endogeneous and exogeneous dependencies and, then, sequentially apply treatments
to the trajectory. Dependencies between treatments, outcomes, and time-varying covariates are assumed to be sparse, so
outcomes are influenced by only a few treatments and time-varying covariates. Treatment assignment in turn depends on a
few outcomes and time-varying covariates.

Our semi-synthetic simulator proceeds as follows. First, we select a cohort of 1,000 patients, which are randomly chosen
from patients where the intensive care unit stay lasted at least 20 hours. For the selected cohort, we clip intensive care unit
stays longer than 100 hours (so that T (i) ranges from 20 to 100).

Second, we simulate dy untreated outcomes Z
j;(i)
t , j = 1 . . . , dy, for each patient i from the cohort. Therein, we combine

(1) an endogenous component (B-spline(t) and random function gj;(i)(t)); (2) an exogenous dependency f jZ(X
(i)
t ) on a

subset of current time-varying covariates; and (3) independent random noise εt. Formally, we generate the simulations via

Z
j;(i)
t = αjS B-spline(t) + αjg g

j;(i)(t)︸ ︷︷ ︸
endogenous

+αjf f
j
Z(X

(i)
t )︸ ︷︷ ︸

exogenous

+ εt︸︷︷︸
noise

(70)

with εt � N(0, 0.0052) and where αjS , αjg, and αjf are weight parameters. Further, B-spline(t) is sampled from a mixture
of three cubic splines (one with rapid decline during all intensive care unit stay, one with a mild decline, and one stable);
gj;(i)(�) is sampled independently for each patient from Gaussian process with Matérn kernel; and f jZ(�) is sampled from a
random Fourier features (RFF) approximation of an Gaussian process (Hensman et al., 2017). Here, we specifically use
RFF as they circumvent the need for tedious Cholesky decomposition when sampling random functions at many points of
time-varying feature space Rdx . By combining all three components, we aim to simulate outcomes, which have endogeneous
dependencies with different resolutions (global trends of B-splines and local correlation structure of Gaussian processes)
and arbitrarily chosen exogeneous dependencies on other time-varying features.

Third, we sequentially simulate synthetic da binary treatments Al
t, l = 1, . . . , da. We add confounding to the treatments

by a subset of current time-varying covariates via a random function f lY (Xt). Subsequently, we average of the subset of
previous Tl treated outcomes �ATl

( �Yt�1). Formally, we compute Al
t via

pAl
t

= σ
(
γlA �ATl

( �Yt�1) + γlXf
l
Y (Xt) + bl

)
, (71)

Al
t � Bernoulli

(
pAl

t

)
, (72)

where σ(�) is the sigmoid activation, γlA and γlX are confounding parameters, bl is a fixed bias, and f lY (�) is sampled from
an RFF approximation of a Gaussian process (similar to f jZ(�)).

Fourth, we apply treatments to the untreated outcomes. For this, we set Y1 = Z1. Each treatment l is modeled so that it has
a long-lasting effect on some outcome j, with maximal additive effect βlj right after application. Here, we assume that the
treatment has an effect within a time window t� wl, . . . , t. We further assume that the effect size of treatments is subject
to an inverse-square decay over time. We also scale the effect by the probability pAl

t
. Afterward, the effects of multiple

treatments are aggregated by taking the minimum across the treatment effects. Formally, we model this via

Ej(t) =

t∑
i=t�wl

minl=1;:::;da 1[Al
i=1]pAl

i
βlj

(wl � i)2
, (73)
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where βlj is the maximum effect size of treatment l. This is either constant for all the outcomes j, or zero, so that the
treatment does not influence the outcome.

Fifth, we combine the above. That is, we simply add the simulated treatment effect Ej(t) to untreated outcome; i. e.,

Yj
t = Zjt + Ej(t). (74)

Sixth, we generate our semi-synthetic dataset based on the above simulator. For exact values of all simulation parameters,
we refer to code implementation. After simulating three synthetic binary treatments (da = 3) and two synthetic outcomes
(dy = 2), we split the cohort of 1,000 patients into train/validation/test subsets via a 60% / 20% / 20 % split. For one-step-
ahead prediction, we then simulate all 23 = 8 counterfactual outcomes. For multiple-step-ahead prediction with τmax = 10,
we sample 10 random trajectories for each patient/time step.

K.2. Experimental Details

Hyperparameter tuning. We perform hyperparameter tuning separately for all models. For this, we use the 200 factual
patient time-series from the validation subset. Details are in Appendix H.

Performance measurement: We retrain the models on five simulated datasets with different random seeds (random seeds
for sampling from Gaussian processes are kept the same). We then report the averaged root mean square error (RMSE) on
the test set, that is, for hold-out data. RMSE is calculated for standardized outcomes.
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L. Details on Experiments with Real-World Data
L.1. Data

Similarly to the semi-synthetic data in Appendix K, we make use of the MIMIC-extract following a standardized preprocess-
ing pipeline (Wang et al., 2020). The data gives measurements from intensive care units aggregated at hourly levels. We used
forward and backward filling for missing values and did standard normalization of all the continuous time-varying features.

We use the same 25 vital signs (dx = 25) and the 3 static features (also one-hot-encoded for categorical features, dv = 44)
as in the semi-synthetic experiments. Both time-varying covariates and static features serve as potential confounders.
We use two binary treatments (da = 2): vasopressors and mechanical ventilation. We then estimate the factual outcome
(dy = 1): (diastolic) blood pressure. Here, it is known that this may be positively or negatively affected by vasopressors and
mechanical ventilation, thus raising the question for clinical practitioners of how a patient trajectory may look like when
such treatment is applied.

For our experiments, we selected a cohort of 5,000 patients, randomly chosen from the patients with intensive care unit (ICU)
stays of at least 30 hours. For the selected cohort, we cut off ICU stays at 60 hours. We then split the cohort of 5,000 patients
with a ratio of 70%/15%/15% into train/validation/test subsets. We varied the implementation according to the projection
horizon τ . (i) For the one-step-ahead prediction, we used all trajectories in the test set. (ii) For a τ -step-ahead prediction
with τ � 2, we proceed as follows. Let τmax � τ denote the maximum projection horizon. In our experiments, τmax = 5.
We then extract all sub-trajectories with a length of at least τmax + 1 with a rolling origin, where we remove vital signs from
time steps 1, . . . , T (i) � τmax + 1, respectively. We then make predictions but where a looking-ahead is prevented due to
masking. Later, we report only the performance for the τ -step-ahead prediction.

L.2. Experimental Details

Hyperparameter tuning. We perform hyperparameter tuning separately for all models. For this, we use the 750 factual
patient time-series from the validation subset. Details are in Appendix H.

Performance measurement: We retrain the models on five random sub-samples of the dataset with different random seeds.
We then report the averaged root mean square error (RMSE) on the test set, that is, for hold-out data. RMSE is then unscaled
to the original range with standard normalization parameters.
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M. Runtime and Model Size Comparison
CT with a single-stage training also provides a decent speed up for training and inference in comparison to other methods.
In Table 12, we compare the total runtime of experiments, averaged over all confounding levels γ = 0, . . . , 4, for synthetic
data. Among all neural models, our CT has the smallest runtime. Hence, our transformer architecture together with a
single-stage training procedure with CDC loss not only improves the performance of counterfactual outcomes estimations
but also achieves a substantial computational speed-up. In Table 13, we report the total number of trainable parameters for
different models after hyperparameter tuning. For semi-synthetic and real-world data, CT turns out to be more parsimonious,
than LSTM-based models.

Table 12. Runtime of experiments (all stages of training and inference) for both tasks of one- and τ -step-ahead prediction, averaged over
different γ = 0, . . . , 4 (lower is better). Total runtime includes data generation. Experiments are carried out on 1� TITAN V GPU.

Main stages of training & inference Total runtime (in min)

MSMs 2 logistic regressions for IPTW & linear regression 3.5 ± 0.3
RMSNs 2 networks for IPTW & encoder & decoder 109.7 ± 2.3
CRN encoder & decoder 75.3 ± 17.5
G-Net single network & MC sampling for inference 118.0 ± 2.0

CT (ours) single multi-input network 13.5 ± 4.8

Table 13. Total number of trainable parameters of models after hyperparameter tuning. Here, we distinguish (1) data using the tumor
growth (TG) simulator (=experiments with fully-synthetic data), (2) data from semi-synthetic (SS) benchmark, and (3) real-world (RW)
MIMIC-III data. The number is the sum of trainable parameters among all the sub-models for MSMs, RMSNs, and CRN.

TG simulator SS data RW data
γ = 0 γ = 1 γ = 2 γ = 3 γ = 4

MSMs <100 3K 1K
RMSNs 20K 4K 23K 21K 22K 477K 947K
CRN 4K 6K 8K 7K 8K 165K 219K
G-Net 3K 2K 3K 4K 3K 151K 310K

CT (ours) 11K 11K 10K 10K 10K 45K 69K
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N. Visualization of Learned Representations
Figure 5(a,b) visualizes the t-SNE embeddings for the balanced representations of CT. Here, we use the validation set of the
fully-synthetic data from the tumor growth simulator. Colors show the health outcome (tumor volume). As the plots show,
we observe several regions where representations are indeed balanced, so that they appear non-predictive of the current
treatment but expressive of the outcome. To this end, one can observe a continuous change in color (outcome). In severe
cases, the points are colored in yellow when tumor size is comparatively large. As we can see, balancing then becomes
challenging, as few patients with this condition receive no treatment.

−100 −75 −50 −25 0 25 50 75 100

First t-SNE component

−100

−50

0

50

S
ec

o
n

d
t-

S
N

E
co

m
p

on
en

t

None

Radiotherapy

Chemotherapy

Both

(a) t-SNE embeddings of balanced representations with
indicated current treatments

−100 −75 −50 −25 0 25 50 75 100

First t-SNE component

−100

−50

0

50

S
ec

on
d

t-
S

N
E

co
m

p
on

en
t

−10

−8

−6

−4

−2

0

2

N
or

m
al

iz
ed

tu
m

or
vo

lu
m

e,
lo

ga
ri

th
m

ic
al

ly
sc

al
ed

(b) t-SNE embeddings of balanced representations with indicated
next outcomes

Figure 5. t-SNE embeddings of the balanced representations of CT. We display N = 100 patients from the fully-synthetic data (tumor
growth simulator). Here: representations of the validation set (γ = 4), where each patient trajectory contains 60 time steps, thus displaying
6,000 embeddings. Note the logarithmic scale for the outcomes (in color).
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O. Case Study: Importance of Subnetworks
In the following, we provide a case study for explainability. That is, we study the importance of different subnetworks. Such
insights may help medical practitioners to ponder about the relevance of treatments for patient outcomes, or the relevance of
time-varying covariates for patient outcomes.

To this end, we examine the role of using multiple cross-attention for information exchange between three subnetworks
of CT. We informally define an importance score of subnetwork A, Y , or X as the difference in performance (e. g., with
test RMSE) between full CT and CT with the correspondingly isolated subnetwork. Here, isolating a subnetwork means
that we remove cross-attentions of the particular subnetwork. As such, it does not completely ignore the input sequence
but only the interactions, as we still use sequences of all subnetworks representations at the latest stage of average pooling.
Therefore, the importance score aims to explain how the connectivity of subnetworks via cross-attentions helps in estimating
counterfactuals over time.

For our case study, we use the semi-synthetic benchmark and kept the same hyperparameters, as for the original CT. Figure 6
shows importance scores of each subnetwork for different prediction horizons τ . We observe that subnetwork processing
time-varying covariates has the largest importance score (red bars). Interestingly, the importance score for the treatment
subnetwork is close to zero for a small prediction horizon τ and grows only for larger prediction horizons. This thus has
implications: it suggests long-range treatment effects.
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Figure 6. Subnetworks importance scores based on semi-synthetic benchmark (higher values correspond to higher importance of sub-
network connectivity via cross-attentions). Shown: RMSE differences between model with isolated subnetwork and full CT, means �
standard errors.


