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Abstract
Normalizing flows model complex probability
distributions using maps obtained by composing
invertible layers. Special linear layers such as
masked and 1 × 1 convolutions play a key role
in existing architectures because they increase ex-
pressive power while having tractable Jacobians
and inverses. We propose a new family of invert-
ible linear layers based on butterfly layers, which
are known to theoretically capture complex linear
structures including permutations and periodicity,
yet can be inverted efficiently. This representa-
tional power is a key advantage of our approach,
as such structures are common in many real-world
datasets. Based on our invertible butterfly layers,
we construct a new class of normalizing flow mod-
els called ButterflyFlow. Empirically, we demon-
strate that ButterflyFlows not only achieve strong
density estimation results on natural images such
as MNIST, CIFAR-10, and ImageNet-32×32, but
also obtain significantly better log-likelihoods on
structured datasets such as galaxy images and
MIMIC-III patient cohorts—all while being more
efficient in terms of memory and computation
than relevant baselines.

1. Introduction
Generative models have achieved tremendous success in
a wide range of domains, such as images (Brock et al.,
2018; Karras et al., 2020; Vahdat & Kautz, 2020; Ho et al.,
2020; Song et al., 2020), natural language (Brown et al.,
2020; Chowdhery et al., 2022), video (Kumar et al., 2019;
Ho et al., 2022), molecule synthesis (Kadurin et al., 2017;
De Cao & Kipf, 2018; Gómez-Bombarelli et al., 2018), and
speech (Oord et al., 2018; Kong et al., 2020). Normalizing
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flows, in particular, have attracted significant attention since
they allow exact likelihood evaluation of data rather than
lower-bound approximations (Dinh et al., 2014; Kingma &
Dhariwal, 2018).

To build such normalizing flows, one must design flexible
families of functions that are both invertible and admit ef-
ficient computation of Jacobian determinants (Rezende &
Mohamed, 2015; Papamakarios et al., 2019; Hoogeboom
et al., 2020; Karami et al., 2019; Finzi et al., 2019; Hooge-
boom et al., 2019; Chen et al., 2019; Ho et al., 2019; Grcić
et al., 2021). While the development of non-linear coupling
layers fueled early progress in the field (Dinh et al., 2014;
2016), recent advances have focused on the effectiveness of
special linear layers such as masked, 1× 1, and d× d con-
volutions as key architectural primitives, among others (Ma
et al., 2019; Kingma & Dhariwal, 2018; Hoogeboom et al.,
2019; 2020). In particular, most state-of-the-art flow models
first preprocess the data with such linear layers while also
leveraging non-linear layers for expressivity.

In this work, we draw inspiration from the literature on learn-
ing efficient, structured linear transformations and propose a
new class of invertible linear layers based on butterfly layers
(Dao et al., 2019). Our invertible butterfly layer satisfies
the usual desiderata of a normalizing flow primitive. How-
ever, its key distinguishing feature lies in its representational
power: in spite of its efficiency, it inherits desirable proper-
ties from Dao et al. 2019 in that it is theoretically guaranteed
to capture complex structures in data such as permutations
and periodicity. The expressivity of invertible butterfly lay-
ers gives it an advantage over existing methods when mod-
eling real-world datasets that exhibit such structures. We
then construct a new family of normalizing flow models
called ButterflyFlow by combining our proposed invertible
butterfly layers with coupling layers (Dinh et al., 2016) and
a Glow-based model backbone (Kingma & Dhariwal, 2018).

Empirically, we demonstrate that ButterflyFlow is an effec-
tive generative model, performing favorably relative to exist-
ing methods on image datasets such as MNIST, CIFAR-10,
and ImageNet-32×32. However, we highlight that Butter-
flyFlow shines when modeling real-world data with special
underlying structures, such as periodicity and permutations.
Our model outperforms relevant baselines on the MIMIC-
III patient dataset by approximately 200% in negative log-
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likelihoods per dimension while requiring less than half the
number of model parameters. In this way, our invertible
butterfly layer serves as a powerful architectural primitive
for capturing global regularities present in the data.

The contributions of our work can be summarized as:

1. We introduce ButterflyFlow, a new class of flow-based
generative models parameterized by butterfly matrices.

2. We provide theoretical guarantees that ButterflyFlow
can efficiently capture common types of structures,
such as permutations.

3. We show empirically that ButterflyFlow achieves
strong performance on density estimation and image
synthesis tasks, and is superior at modeling data with
special structure (e.g. periodicity) in real-world set-
tings relative to existing flow-based models.

2. Preliminaries
2.1. Flow-based Generative Models

Given a data distribution pX(x) and a base distribution
pZ(z) (e.g., a Gaussian distribution), a normalizing flow is
an invertible transformation fθ : x ∈ Rn 7→ z ∈ Rn that
approximates pX(x) via the change of variables formula:

pθ(x) = pZ(z)|det Jfθ (f
−1
θ (z))|, (1)

where Jfθ is the Jacobian of f(x), and θ is the set of learn-
able parameters. In practice, the Jacobian determinant
det Jfθ (f

−1
θ (z)) must be tractable to compute. Coupled

with a simple pZ(z), the change of variables formula allows
for the exact likelihood evaluation of a complex pX(x) as
well as maximum likelihood training of fθ. To sample a new
data point from the model, we first draw samples z ∼ pZ(z)
from the prior distribution and then push it through the
inverse flow transformation: x = f−1

θ (z).

Because the normalizing flow’s ability to capture complex
pX(x) hinges on the expressivity of the transformation fθ,
recent works have focused on developing more flexible
parameterizations of fθ. In particular, both non-linear and
linear layers have demonstrated promise.

Non-linear coupling layers. Coupling layers (Dinh et al.,
2014; 2016) are a powerful class of invertible non-linear
layers. The coupling layer splits the input x into two compo-
nents: xa and xb. Then, it applies an identity map to xa and
transforms xb using a learnable affine transform (with shift
and scale parameters sθ and bθ) that depend on xa. The
output of this layer y is obtained by concatenating these two

intermediate quantities:

za = xa; zb = xb ⊙ sθ(xa) + bθ(xa)

y = concat(za, zb)

Due to its simplicity and efficiency, the coupling layer has
become a fundamental building block for most state-of-
the-art flow model architectures (Chen et al., 2020; Ma
et al., 2019; Ho et al., 2019). However, their effectiveness
depends heavily on the way in which the input x is parti-
tioned. Recent works have shown that linear layers can
learn an improved partitioning scheme, thereby boosting
the performance of downstream coupling layers when used
together (Kingma & Dhariwal, 2018).

Invertible linear layers. Linear layers, such as invertible
1 × 1 convolutions, were designed to increase the effec-
tiveness of coupling layers when paired together. Specif-
ically, they learn a more general partitioning of the input
than the naive splitting as done in conventional coupling
layers (Kingma & Dhariwal, 2018). Given an input with
channel size c, we denote the learnable parameter (i.e., the
filter of the 1× 1 convolution) as W ∈ Rc×c. To compute
the Jacobian determinant efficiently, Kingma & Dhariwal
use LU decomposition and parameterize W as:

W = PL(U + diag(s)), (2)

where P is a pre-specified orthogonal matrix, L is a lower
triangular matrix with ones on the diagonal, U is an up-
per triangular matrix with zeros on the diagonal, and s is a
c-dimensional vector (Kingma & Dhariwal, 2018). This par-
ticular structure in the matrix decomposition allows for the
Jacobian determinant to be computed in O(c), rather than
O(c3). Other invertible linear layers, such as the Emerging
convolution and the Woodbury transformation (Hoogeboom
et al., 2019; Lu & Huang, 2020), leverage similar types
of matrix structures such as sparsity to improve the perfor-
mance of coupling layers without sacrificing efficiency.

2.2. Butterfly Layers for Efficient Structured
Transforms

The butterfly layer is a special family of linear layers that
can be represented as a product of K sparse matrices called
butterfly factors (Parker, 1995; Dao et al., 2019; 2020). The
butterfly factor has a particular structure that requires the
specification of two parameters: the level i ∈ [K] and the
factor dimension D. We assume that D is a power of 2 for
ease of the technical exposition.

Level-one butterfly factor. A level-one D-dimensional
butterfly factor B(1, D) is a D ×D sparse matrix. Its only
non-zero entries are the diagonals of the four D/2×D/2
sub-matrices obtained by partitioning the matrix in half (Dao
et al., 2019), as shown in the left panel in Figure 1.
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Level-i butterfly factor. More generally, a level-i D-
dimensional butterfly factor B(i,D) is a D ×D block di-
agonal matrix (i.e., any off-diagonal block is a zero matrix)
with block size D/2i−1 × D/2i−1. Each of the diagonal
blocks is a (D/2i−1)-dimensional level-one butterfly factor.
Therefore, a level-i D-dimensional butterfly factor has the
form:

B(i,D) =


B1(1, D/2i−1), 0 ... 0

0 B2(1, D/2i−1) ... 0
...

0 0 ... B2i−1(1, D/2i−1)


where Bj(1, D/2i−1) is a level-one D/2i−1-dimensional
butterfly factor on the jth sub-block of B(i,D), and 0 is the
D/2i−1 ×D/2i−1 zero matrix. We provide an illustrative
example for D = 16 in Figure 1.

𝐵(1, 16) 𝐵(2, 16) 𝐵(3, 16) 𝐵(4, 16)

Figure 1: Butterfly factors B(i,D) (D = 16) at level
i = 1, 2, 3, and 4. White entries denote zeros and blue
entries represent non-zero values. Each butterfly factor is
parameterized by the non-zero values in the blue entries.

We can now construct a butterfly layer by composing a
sequence of butterfly factors as defined below.
Definition 2.1 (Butterfly layer). Given a D-dimensional
input x, a D-dimensional butterfly layer is a lin-
ear layer b : x → B(D)x, where B(D) =
B(a1, D)B(a2, D)...B(ak, D) is a product of butterfly fac-
tors and {ai}ki=1 is a sequence of integers such that D ≡ 0
(mod 2ai).

As an example, a commonly used butterfly layer in
the literature (called the butterfly matrix) (Parker, 1995;
Dao et al., 2019; 2020) can be constructed as B(D) =
B(1, D)B(2, D)...B(k,D), where k is the largest integer
such that D ≡ 0 (mod 2k).

2.3. Desirable Properties of Butterfly Layers

Although the construction of a butterfly layer involves a
sequence of matrix multiplications, it can be efficiently com-
puted on modern hardware by utilizing the sparsity of but-
terfly factors (Dao et al., 2019; 2020). The butterfly layers’
efficiency belies their expressivity: they can represent a
wide variety of structured linear maps including discrete
Fourier transforms, permutations, and convolutions (Dao
et al., 2020; 2019). In the following section, we port over
such advantages into generative models by first proposing a
new family of invertible butterfly linear layers, which serve
as a useful architectural primitive for flow models.

3. Building Invertible Butterfly Layers
Recall that each transformation in a normalizing flow layer
must be invertible and have an efficiently-computable Jaco-
bian determinant. We describe how flow layers comprised
of butterfly factors satisfy both desiderata.

3.1. Invertible Butterfly Factors for Normalizing Flows

We first demonstrate how to compute the Jacobian
determinant of the butterfly factor. Given an input x ∈ RD,
we denote the parametrized level-i butterfly factor as
Bθ(i,D), where θ is the set of learnable parameters
(values of the non-zero entries corresponding to the blue
entries in Figure 1). Then given the linear transformation
bi : RD → RD : x → Bθ(i,D)x, we can see that the
Jacobian Jbi(x) = Bθ(i,D). Thus, computing the Jacobian
determinant of the mapping bi is equivalent to computing
the Jacobian determinant of the butterfly factor Bθ(i,D),
which can be done efficiently as in Theorem 3.1.

Theorem 3.1. The determinant of any D-dimensional but-
terfly factor can be computed in O(D).

Proof sketch. We provide the full proof in Appendix A.
Since we can decompose the matrix into diagonal matri-
ces, computing the determinant only involves operations on
the diagonal elements.

Next, we consider the invertibility of the butterfly layer.
When Bθ(i,D) is non-singular, the transformation bi(x) is
invertible. More formally, we define an invertible butterfly
factor as the following:

Definition 3.2 (Invertible butterfly factor). An invertible
level-i D-dimensional butterfly factor Bθ(i,D) is a D ×D
non-singular level-i D-dimensional butterfly factor.

Additionally, we can see that the inverse transformation of bi
is b−1

i : RD → RD : x → B−1
θ (i,D)x, where B−1

θ (i,D)
is the matrix inverse of Bθ(i,D). Thus computing x =
b−1
i (z) only requires the application of the following linear

transformation to z:

x = b−1
i (z) = B−1

θ (i,D)z. (3)

We note that although Equation (3) involves a potentially ex-
pensive matrix multiplication of a D×D matrix inverse with
a D-dimensional vector, we can efficiently invert Bθ(i, θ)
given the following proposition.

Proposition 3.3. Assuming Bθ(i,D) is non-singular, the
matrix B−1

θ (i,D) is a D-dimensional level-i butterfly factor
that can be computed in O(D). Given B−1

θ (i,D), the map
b−1
i : z → B−1

θ (i,D)z can be computed in O(D).

We provide the proof in Appendix A. Proposition 3.3 to-
gether with Theorem 3.1 show that butterfly factors can
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be made efficiently invertible with tractable Jacobian de-
terminants, making them suitable as building blocks for
flow-based generative models.

3.2. Invertible Butterfly Layers

With our invertible butterfly factors in place, we introduce a
way to compose them into a more powerful invertible butter-
fly layer. We make this precise in the following definition.

Definition 3.4 (Invertible butterfly layer). An invertible
butterfly layer b is defined as

b = ba1
◦ ba2

◦ ... ◦ bak
, (4)

where bai : x → Bθ(ai, D)x are invertible butterfly factors
and {ai}ki=1 is a sequence of integers such that D ≡ 0
(mod 2ai).

Definition 3.4 suggests that by virtue of being a composition
of invertible butterfly factors, the invertible butterfly layer
b inherits some of their nice properties. Specifically, let
us consider the Jacobian determinant of b in Equation (4).
Using the chain rule:

log |detJb(x)| =
k∑

i=1

log |detJbai
(x)|. (5)

Since each invertible butterfly factor bai
can be efficiently in-

verted with a Jacobian determinant that can be computed in
O(D), their composition b is also efficiently invertible with
a Jacobian determinant that can be computed in O(kD).

In addition to their efficiency and ease of invertibility, invert-
ible butterfly layers largely retain the expressiveness of the
original butterfly layers (Dao et al., 2019; 2020). As a con-
crete example, they can represent any permutation matrix.

Proposition 3.5. Any D × D permutation matrix (with
D = 2k a power of 2) can be represented by an invertible
butterfly layer.

The proof of Proposition 3.5 follows Dao et al., and we pro-
vide more details in Appendix A. Proposition 3.5 shows that
invertible butterfly layers can also act as learnable permuta-
tion layers. This is especially helpful for adding expressivity
when our butterfly layers are paired with nonlinear coupling
layers that use a fixed partitioning of the input.

3.3. Block-wise Invertible Butterfly Layers

We also introduce a new variant of our invertible butterfly
factor called the block-wise butterfly factor. Specifically,
given a D-dimensional input x, we partition its entries into
D/C groups where each group has C elements (see Fig-
ure 3). We assume that C divides D for simplicity.

Definition 3.6 (Block-wise invertible butterfly factor). A
level-i, block-size-C, D-dimensional block-wise invertible
butterfly factor Bθ(i,D,C) is a D ×D non-singular block
matrix with block size C × C such that for any j, ĵ ∈
{1, ..., C}, the D/C ×D/C sub-matrix of Bθ(i,D,C) ob-
tained by selecting the C · l + j-th rows and the C · l + ĵ-
th columns for l ∈ {0, ..., D/C − 1}, is a level-i D/C-
dimensional butterfly factor.

Intuitively, the block-wise butterfly factor is a D ×D block
matrix whose C × C blocks satisfy the sparsity pattern of
a Bθ(i,D/C) butterfly layer. We provide an illustrative
example in Figure 2. Unlike the naı̈ve butterfly factor where
only two entries per row are allowed to be non-zero (see
Figure 1), this modification allows for at most 2C non-zero
entries per row.

𝐶
𝐶

𝐵(1, 24, 3) 𝐵(2, 24, 3) 𝐵(3, 24, 3)

𝐶
𝐶 𝐶

𝐶

!
"
blocks

Figure 2: Block-wise invertible butterfly factors B(i,D,C)
(D = 24, C = 3) at levels i = 1, 2, 3. White entries
denote zeros and blue entries denote non-zeros. A block-
wise invertible butterfly factor can have 2C non-zero entries
per row and is more expressive than the naı̈ve butterfly factor
(Section 3.2), which can only have 2 non-zero entries per
row.

Constructing block-wise invertible layers. Similar to
how an invertible butterfly layer is constructed using in-
vertible butterfly factors, a block-wise invertible butterfly
layer is constructed by composing a series of block-wise
invertible butterfly factors. The block-wise invertible butter-
fly layer not only improves the flexibility of our invertible
butterfly layers, but also reveals interesting connections to
previous methods as in the following observations.

Observation 1. When C = 1, the block-wise invertible but-
terfly layer reduces to the invertible butterfly layer discussed
in Section 3.1.

In fact, the block-wise butterfly layer generalizes com-
monly used invertible linear layers such as the 1x1 con-
volution (Kingma & Dhariwal, 2018).

Observation 2. When C is set to the input’s channel size,
the block-wise invertible butterfly layer recovers the invert-
ible 1x1 convolution by setting non-diagonal blocks to be
zero and using tied weights for diagonal blocks. This is the
byproduct of grouping the input entries by channels.

Additionally, the following observation shows that allowing
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the weights of the block-wise invertible butterfly layers to
be complex numbers confers a significant boost to their
representational power.

Observation 3. The block-wise invertible butterfly layer
with weights in C can be used to represent a subset of the
invertible d× d convolution layer.

Specifically, butterfly layers with weights in C can express
any d×d convolution that can be decomposed into a channel-
wise mixing (e.g. channel-wise matrix multiplication) and a
channel-wise convolution (i.e. spatial convolution for each
channel). This is an extension of a property of complex-
valued naı̈ve butterfly matrices, which can represent any
1D periodic convolution (Dao et al., 2019). We provide
additional discussion on this point in Appendix A. Although
butterfly layers can have weights in both C and R, we em-
pirically observe that restricting the butterfly layer weights
to be in R yields good performance, and only consider real-
valued weights in the rest of the paper.

Computational complexity. There exists a trade-off
between flexibility and computational complexity in
block-wise butterfly layers—larger values of C correspond
to more powerful but (potentially) more computationally
expensive models. To address this, we use a more
efficient parameterization of the block-wise butterfly
factor: each C × C block is implemented with LU
decomposition (Kingma & Dhariwal, 2018), which reduces
the complexity of computing each of the D/C Jacobian de-
terminants of the C ×C block from O(C3) to O(C). Then,
since the Jacobian determinant of a naı̈ve butterfly layer
can be computed in O(D), the Jacobian determinant of the
block-wise butterfly layer can be evaluated in O(D). Simi-
larly, with LU decomposition for each C × C block,we can
show that the inverse of the block-wise invertible butterfly
layer with k block-wise butterfly factors can be computed in
O(kC2D). This is because the desired computation reduces
to inverting a sequence of block-wise butterfly factors.

𝐶

Input𝐵(1, 24, 3) 𝐵(2, 24, 3) 𝐵(3, 24, 3)Output

𝐶 𝐶 𝐶 𝐶
𝐶 𝐶

𝐶

!
" groups

Figure 3: An example of a block-wise invertible butterfly
layer (D = 24, C = 3), which is constructed by composing
a sequence of block-wise invertible butterfly factors. White
entries denote zeros and blue entries denote non-zero values.
A 24-dimensional input is partitioned into 8 groups where
each group has block-size C = 3 before feeding into the
block-wise butterfly layer.

4. Generative Modeling with ButterflyFlow
4.1. Architectural Components

In this section, we introduce how to construct the Butter-
flyFlow model by leveraging our (block-wise) invertible
butterfly layers from Section 3.3. We consider the following
invertible layers as architectural building blocks that will be
combined together for the final model.

Coupling layers. As discussed in Section 2, the coupling
layer (Dinh et al., 2014; 2016) is a standard primitive in
most state-of-the-art normalizing flow models. We similarly
leverage such coupling layers to increase the expressivity of
our ButterflyFlow model.

Split and squeeze layers. Dinh et al. split and reshuffle
the input dimensions for better mixing. This allows for
constructing deeper stacks of coupling layers within the
same flow model, increasing its expressive power. We use
them in combination with the above mentioned coupling
layers to improve their performance, as done in prior works.

Actnorm layers. Actnorm layers are invertible normaliza-
tion layers that have been developed as an alternative to
batch normalization (Ioffe & Szegedy, 2015) in flow-based
generative models (Kingma & Dhariwal, 2018). Their pa-
rameters are initialized in a data-dependent way (Hooge-
boom et al., 2019; Ma et al., 2019). They linearly transform
the activations of the input using a scale and translation
parameter similar to affine coupling layers, and have been
shown to improve training stability.

Invertible Butterfly layers. Given an input x, we expand
it into a D-dimensional vector before feeding it into the
block-wise butterfly layer as in Figure 3. Each layer’s
block-size C and grouping mechanism are specific to
each particular data type. In the case of RGB images, the
block-wise butterfly layers use C = 3 and group together
RGB values of the same pixels (i.e., cells of the same colors
in the input vector shown in Figure 3).

4.2. Building the ButterflyFlow Model

Following recent architectural advancements in flow-based
models (Hoogeboom et al., 2019; Ma et al., 2019), Butter-
flyFlow stacks a series of squeeze, Flow, and split modules
together. This results in an architecture of L levels and K
Flow modules per level as shown in Figure 4. Within each
Flow module, we combine our invertible butterfly layers
with Actnorm layers and Coupling layers for added expres-
sivity (Hoogeboom et al., 2019). We elaborate upon our
design decisions as well as hyperparameter recommenda-
tions for ButterflyFlow in Appendix B.2.

Maximum likelihood training of the ButterflyFlow model
proceeds in the same fashion as in conventional flow-based
generative models via Equation (1). While maintaining the
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Squeeze
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Squeeze
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𝑥

×𝐾

𝑧!

𝑧"

×(𝐿 − 1)

Actnorm

Coupling

×𝐾

Flow module Model architecture

Butterfly Layer

Figure 4: Architecture overview of ButterflyFlow, which
shows the transformation of an input x to an intermediate
output zL. The left diagram details a single Flow module
on the right: the input is first passed through an Actnorm
layer (Kingma & Dhariwal, 2018) then transformed by a
block-wise invertible butterfly layer, whose output is then
fed into a coupling layer (Dinh et al., 2016). Each Flow mod-
ule is repeated K times. Similar to (Kingma & Dhariwal,
2018), we use a hierarchical prior using the split module.
We also use the squeeze layer as in (Dinh et al., 2016) to
split and reshuffle dimensions for better mixing.

invertibility of the (block-wise) invertible butterfly layers
Bθ(i,D,C) during training may present a concern, we note
that we do not need to enforce any additional constraints
to ensure that Bθ(i,D,C) remains non-singular. This is
because the training loss will become infinitely large when
det(Bθ(i,D,C)) = 0 (see Equation (1)). In particular, for
a butterfly layer, a local non-zero Jacobian determinant (e.g.
evaluated at a particular data point) implies a non-zero Jaco-
bian determinant globally—this means that the layer will be
invertible. This special property of the butterfly layer is not
generally applicable to conventional model architectures.

5. Experiments
In this section, we are interested in investigating three broad
questions empirically:

1. How effective is ButterflyFlow at density estimation
tasks on standard natural image datasets?

2. How well can ButterflyFlow model datasets with spe-
cial structures, such as permutation and periodicity?

3. Is ButterflyFlow indeed more efficient than relevant
baselines in terms of wall-clock time and/or memory?

We evaluate ButterflyFlow on both synthetic and real
datasets that have the corresponding structures of interest.
We provide additional details on specific experimental set-
tings and hyperparameter configurations in Appendix B.

5.1. Density estimation on images

We first benchmark our method on standard image datasets
to ensure that ButterflyFlow still performs favorably on the
usual generative modeling tasks.

Datasets. As in prior works (Hoogeboom et al., 2019; Lu
& Huang, 2020), we evaluate our method’s performance on
MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al., 2009),
and ImageNet-32× 32 (Deng et al., 2009). We use uniform
dequantization and standard data augmentation techniques
for CIFAR-10 and ImageNet-32× 32 during training.

Baselines. We compare ButterflyFlow against several of the
most relevant baselines in terms of methods and model archi-
tectures: MAF (Papamakarios et al., 2017), Real NVP (Dinh
et al., 2016), Glow (Kingma & Dhariwal, 2018), Emerg-
ing (Hoogeboom et al., 2019), Woodbury (Lu & Huang,
2020), and i-ResNet (Behrmann et al., 2019) We follow the
standard experimental setups and architectural configura-
tions as in prior works.

Results. Quantitative results are shown in Table 1, with
visualizations of the generated samples in Figure 5. We
find that ButterflyFlow either outperforms or is on par with
all relevant baselines. It achieves some improvements on
CIFAR-10 and, on ImageNet-32 × 32 and MNIST, But-
terflyFlow performs comparably to Glow, Emerging, and
Woodbury (with the same Glow backbone). This is possibly
due to overparametrization of these large models over
image datasets; it is unlikely that adding more linear layers
will yield significant improvements. We further examine
this claim in Section 5.3 by evaluating the performance of
shallower variants of ButterflyFlow on smaller datasets.

Table 1: Density estimation on image datasets. Test set log-
likelihood values are in bits per dimension. Lower is better.
ButterflyFlow performs favorably relative to all baselines.

MNIST CIFAR-10 ImageNet 32×32
MAF (Papamakarios et al., 2017) 1.89 4.31 -

Real NVP (Dinh et al., 2016) 1.06 3.49 4.28
Glow (Kingma & Dhariwal, 2018) 1.05 3.35 4.09

Emerging (Hoogeboom et al., 2019) 1.05 3.34 4.09
Woodbury (Lu & Huang, 2020) 1.05 3.35 4.09

Residual Flows (Chen et al., 2019) 0.97 3.28 4.01
i-DenseNet (Perugachi-Diaz et al., 2021) - 3.25 3.98

i-ResNet (Behrmann et al., 2019) 1.06 3.45 -
ButterflyFlow (Ours) 1.05 3.33 4.09

5.2. Density estimation on permuted image datasets

In contrast to many existing linear transformations such
as 1 × 1 convolutions, invertible butterfly layers are theo-
retically guaranteed to be able to represent a large family
of complex linear transformations (e.g., any permutation
matrix). In this section, we demonstrate empirically that
ButterflyFlow is expressive enough to capture special struc-
tures in the data such as permutations (as in Proposition 3.5)
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(a) MNIST (b) CIFAR-10 (c) ImageNet-32×32

Figure 5: Uncurated samples from ButterflyFlow. From left
to right: MNIST, CIFAR-10, ImageNet-32× 32.

by testing our model on image datasets with built-in permu-
tations.

Datasets. We experiment on a permuted version of MNIST,
CIFAR-10, and ImageNet-32× 32 and generate a dataset-
wide random permutation matrix. The same permutation
matrix is used to permute all images from the same dataset.

Baselines. We compare with Glow (Kingma & Dhariwal,
2018), Emerging (Hoogeboom et al., 2019), and Wood-
bury (Lu & Huang, 2020), which share the same architec-
tural backbone as ButterflyFlow and similarly exploit spatial
locality and permutation structures.

Results. We test the hypothesis that butterfly layers are more
effective at capturing the structure in permuted images as
compared to baselines. Intuitively, this is because our butter-
fly layer is a learnable permutation layer that can capture per-
mutation structure present in the data (Proposition 3.5). The
rest of the flow model can then learn the appropriate struc-
ture specific to the image dataset itself. As shown in Table 2,
we find that ButterflyFlow outperforms all other methods.
Specifically, our method achieves significantly lower likeli-
hoods as computed by bits per dimension (BPD) on CIFAR-
10 and ImageNet-32× 32. The performance gap is notice-
ably closer for MNIST, and we show some visualizations of
the generated images (permuted back) in Figure 6. All our
baselines are able to reasonably model permuted MNIST,
likely due to the large modeling capacity of the Glow-based
architecture on lower-dimensional datasets such as MNIST.
Thus adding butterfly layers to specifically model permuta-
tion in this setting only yields marginal improvements.

Table 2: Density estimation on image datasets with permu-
tations. Test set log-likelihood values are reported in bits
per dimension. Lower is better. ButterflyFlow outperforms
all relevant baselines.

MNIST CIFAR-10 ImageNet 32×32
Glow (Kingma & Dhariwal, 2018) 1.44 5.48 6.29

Emerging (Hoogeboom et al., 2019) 1.43 5.41 6.25
Woodbury (Lu & Huang, 2020) 1.43 5.41 6.26

ButterflyFlow (Ours) 1.42 5.11 6.18

5.3. Density estimation on structured datasets

Many real-world datasets often exhibit (unknown) special
types of structures such as permutation and periodicity.
Therefore, in addition to modeling images with synthetic
permutations, we also showcase a set of experiments where
ButterflyFlow can be used to model real-world datasets with
periodic structures. In particular, we experiment with galaxy
images (Ackermann et al., 2018; Hoogeboom et al., 2019)
and the MIMIC-III patient records dataset (Johnson et al.,
2016) of intensive care units (ICU).

Galaxy images. The galaxy dataset is comprised of 5000
images for both train and test sets, and exhibits periodicity
as the images are “continuous”—they represent snapshots
of a continuum in space, rather than individual images. As
shown in Table 3, we find that ButterflyFlow outperforms
all relevant baselines, achieving a BPD improvement of
up to 0.07. We also visualize 100 generated images with
100 test set examples in Figure 7. This result provides
further evidence that our invertible butterfly layers excel at
capturing naturally-occuring structure in real-world data.

Table 3: Comparison of 1× 1 convolutions (Glow), Emerg-
ing convolution, Woodbury flows, and ButterflyFlow on the
galaxy images dataset. Test set log-likelihood values are re-
ported in bits per dimension. Lower is better. ButterflyFlow
outperforms all relevant baselines.

Galaxy

1× 1 (Glow) (Kingma & Dhariwal, 2018) 2.02
Emerging 3× 3 (Hoogeboom et al., 2019) 1.98
Periodic (Hoogeboom et al., 2019) 1.98
Woodbury (Lu & Huang, 2020) 2.01
ButterflyFlow (Ours) 1.95

MIMIC-III waveform database. MIMIC-III is a large-
scale dataset containing approximately 30,000 patients’ ICU
waveforms. For each patient’s waveform, two features are
recorded: Photoplethysmography (PPG) and Ambulatory
Blood Pressure (ABP). Since each patient’s recording is
very long, we construct a per-patient dataset according to
Appendix C.2 and randomly select 3 distinct patient records
for our experiments. We illustrate some example ground-
truth waveforms in Figure 8 and highlight its repetitive,
periodic structure, which is difficult to capture faithfully
with conventional flow-based generative models.

For modeling time series, we compare with Emerging and
Periodic convolution baselines (Hoogeboom et al., 2019),
as well as Woodbury (Lu & Huang, 2020). All methods
use the same Glow-based backbone of the same depth and
levels. As shown in Table 4, ButterflyFlow outperforms all
baselines by a significant margin. In particular, our approach
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(a) Permuted data (input) (b) Glow (c) Emerging (d) Woodbury (e) ButterflyFlow (Ours)

Figure 6: Comparison of (unscrambled) generated samples on permuted MNIST. We observe that the Glow, Emerging, and
Woodbury transforms struggle to model the permuted data well (as shown by missing, corrupted, or extremely speckled
samples), while ButterflyFlow’s learnable permutation layer allows it to better capture the permuted structure.

Figure 7: (Left) 10 × 10 examples from the galaxy images
test set. (Right) 10× 10 samples from the trained Butterfly-
Flow model. Note that the samples look visually similar.

Figure 8: Two independent data points from the processed
MIMIC-III patient waveforms. The x-axis indicates the
1024 intervals at which the signal was subsampled and the
y-axis indicates the (normalized) recorded values for the
PPG and ABP features.

outperforms all competing methods while using less than
half the number of parameters required by the second-best
performing model, as shown in Table 5. Thus, our model is
more efficient in terms of space while better modeling the
patient data with periodic regularity.

Apart from natural image datasets, we find that our Butter-
flyFlow model shines when modeling real-world data with
special underlying structures. Our empirical evaluations
demonstrate that our invertible butterfly layers are able to
better capture the global regularity than emerging or peri-
odic convolutions, which rely on local spatial structures.

5.4. Running time

Finally, we benchmark the efficiency of ButterflyFlow,
which exploits the sparsity structure of its underlying but-
terfly factors. We compare the forward and backward

Table 4: Density estimation results on the MIMIC-III task.
We report the test set negative log-likelihood per dimension.
Lower is better. ButterflyFlow outperforms all other base-
lines by a significant margin.

Patient 1 Patient 2 Patient 3 Avg.
Glow (Kingma & Dhariwal, 2018) -7.21 -5.59 -6.41 -6.40

Emerging (Hoogeboom et al., 2019) -6.91 -8.48 -7.25 -7.55
Periodic (Hoogeboom et al., 2019) -8.47 -9.623 -8.73 -8.94

Woodbury (Lu & Huang, 2020) -11.68 -11.83 -10.91 -11.47
ButterflyFlow (Ours) -29.49 -27.07 -27.20 -27.92

Table 5: Total number of parameters for each model trained
on the MIMIC-III dataset. ButterflyFlow is the best per-
forming model (as in Table 4) while using less than half the
parameters as compared to baselines.

# parameters

Glow (Kingma & Dhariwal, 2018) 36,032
Emerging (Hoogeboom et al., 2019) 42,576
Periodic (Hoogeboom et al., 2019) 39,312
Woodbury (Lu & Huang, 2020) 48,576
ButterflyFlow (Ours) 15,280

pass through a single butterfly layer with those of Emerg-
ing and Periodic convolution layers across 4 settings: for-
ward/inversion time vs. spatial dimension size and for-
ward/inversion time vs. batch size. We present additional
details and comparisons in Appendix B.2. As shown in Fig-
ure 9, our runtime stays consistently lower than baselines,
indicating that our butterfly layer is more computationally
efficient.

6. Conclusion
In this work we proposed ButterflyFlow, a novel class of
flow-based generative models parameterized by invertible
butterfly layers. Drawing inspiration from the literature
on learning efficient structured linear transformations, we
introduced how butterfly layers more generally can serve
as powerful architectural primitives for flow models. We
demonstrated that ButterflyFlow not only achieves strong
performance on density estimation tasks for standard im-
age datasets, but also better handles real-world data with
naturally-occurring structures such as periodicity and per-
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Figure 9: Run-time comparison. The y-axis shows run-
time (ms) of each setting in log scale. Our run-time stays
consistently lower.

mutations relative to existing baselines. A current limitation
of our approach is that we must manually specify a particu-
lar partitioning of the input for cases where its dimension is
not divisible by 2. It would be interesting to generalize the
invertible butterfly layer to handle such cases automatically.
Additionally, exploring further use cases of ButterflyFlow
in applications beyond density estimation would be exciting
future work.
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A. Proof
In this section, we provide proofs for the main paper.

Lemma A.1. The determinant of any (invertible) level-one butterfly factor Bθ(1, D) can be computed in O(D).

Proof. According to the definition of butterfly factor, we can write Bθ(1, D) =

[
D1 D2

D3 D4

]
, where Di is a D/2 × D/2

diagonal matrix. It is easy to see that det(Bθ(1, D)) = det(D1D4 − D2D3) =
∏D/2

j=1

(
D1[j, j]D4[j, j]− D2[j, j]D3[j, j]

)
,

where Di[j, j] denotes the (j, j)-th entry for Di. The Jacobian determinant of Bθ(1, D) can thus be computed in O(D).

Theorem 3.1. The determinant of any D-dimensional butterfly factor can be computed in O(D).

Proof. By definition, we have

Bθ(i,D) =


B1(1, D/2i−1), 0 ... 0

0 B2(1, D/2i−1) ... 0
...

0 0 ... B2i−1(1, D/2i−1)


where Bj(1, D/2i−1) is a level-one D/2i−1-dimensional (invertible) butterfly factor and 0 is the D/2i−1 ×D/2i−1 zero
matrix. Using the property of diagonal block matrices, we have

det(Bθ(i,D)) =

2i−1∏
j=1

det(Bj(1, D/2i−1)). (6)

From Lemma A.1, we know computing each det(Bj(1, D/2i−1)) takes O(D/2i−1), computing det(Bθ(i,D)) thus takes
2i−1O(D/2i−1) = O(D).

Proposition 3.3. Assuming Bθ(i,D) is non-singular, the matrix B−1
θ (i,D) is a D-dimensional level-i butterfly factor that

can be computed in O(D). Given B−1
θ (i,D), the map b−1

i : z → B−1
θ (i,D)z can be computed in O(D).

To prove Proposition 3.3, we first prove Lemma A.2.

Lemma A.2. Assuming Bθ(1, D) is non-singular, then its inverse B−1
θ (1, D) is a D-dimensional level-i butterfly factor

that can be computed in O(D) given Bθ(1, D).

Proof. According to the definition of butterfly factor, we can write Bθ(1, D) =

[
D1 D2

D3 D4

]
, where Di is a D/2 × D/2

diagonal matrix. The inverse of Bθ(1, D) can be computed as

B−1
θ (1, D) =

[
−D4/(D3 ⊙ D2 − D4 ⊙ D1) D2/(D3 ⊙ D2 − D4 ⊙ D1)
−D3/(D1 ⊙ D4 − D3 ⊙ D2) D1/(D1 ⊙ D4 − D3 ⊙ D2)

]
, (7)

where Di ⊙ Dj are element-wise multiplication of diagonal matrices. Since Di is a D/2×D/2 diagonal matrix, computing
Di ⊙ Dj can be performed in O(D/2). Thus, evaluating B−1

θ (1, D) can be performed in O(D).

Since each Di is a D/2×D/2 diagonal matrix, each of the block in Equation (7) are also diagonal. Thus, B−1
θ (1, D) is a

level-one D-dimensional butterfly block by definition.

We now prove Proposition 3.3.

Proof of Proposition 3.3. According to the definition of Bθ(i,D), we can write it as

Bθ(i,D) =


B1(1, D/2i−1), 0 ... 0

0 B2(1, D/2i−1) ... 0
...

0 0 ... B2i−1(1, D/2i−1)
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where Bj(1, D/2i−1) is a level-one D/2i−1-dimensional (invertible) butterfly factor and 0 is the D/2i−1 ×D/2i−1 zero
matrix. Using the properties of diagonal block matrices, it is easy to check

B−1
θ (i,D) =


B−1
1 (1, D/2i−1), 0 ... 0

0 B−1
2 (1, D/2i−1) ... 0

...
0 0 ... B−1

2i−1(1, D/2i−1)

 .

According to Lemma A.2, we have each B−1
j (1, D/2i−1) is a level-one D/2i−1-dimensional butterfly factor that can be

computed in O(D/2i−1) given Bj(1, D/2i−1). Thus, B−1
θ (i,D) is a level-i D-dimensional butterfly factor by definition.

It can be computed in 2i−1O(D/2i−1) = O(D) given Bθ(i,D). Since B−1
θ (i,D) is a D × D sparse matrix with only

two non-zero entries each row, the map b−1
i : z → B−1

θ (i,D)z (i.e., a matrix vector multiplication) can be computed in
2O(D) = O(D) given B−1

θ (i,D).

Proposition 3.5. Any D ×D permutation matrix (with D = 2k a power of 2) can be represented by an invertible butterfly
layer.

Proof. According to Theorem 2. in (Dao et al., 2020), any D ×D permutation matrix P ∈ RD×D (when D = 2k) can be
represented as

P = b1 ◦ b2 ◦ ... ◦ bk−1 ◦ bk ◦ b̂k ◦ b̂k−1 ◦ ... ◦ b̂1(I), (8)

where bi : x → Bθ(i,D)x and b̂i : x → Bθ̂(i,D)x are linear layers obtained by multiplying a learnable level-i D-
dimensional butterfly matrix with the input. Since P is a permutation matrix, it is non-singular, which implies that each bi,
b̄i and b̂i must be invertible. Thus, any D ×D permutation matrix can be represented by an invertible butterfly layer. We
also note that (Dao et al., 2020) does not consider settings where exponentiation of a linear transformation is also invertible
(as in our invertible butterfly layers).

Lemma A.3 ((Dao et al., 2020)). Any D ×D (D = 2k) convolution matrix CD can be represented as

CD = b1 ◦ b2 ◦ ... ◦ bk ◦ b̂k−1 ◦ b̂k−2 ◦ ... ◦ b̂1, (9)

where bi : x → Bθ(i,D)x and b̂i : x → Bθ̂(i,D)x are butterfly layers with weights in C.

Proof. See Lemma J.5. in (Dao et al., 2020).

Proposition A.4. Given a single channel 2D input x ∈ RW×H , any 2D convolution layer with kernel size k × k, zero
padding and output channel one, can be obtained by multiplying a circulant matrix with the input with padding expanded to
a vector.

Sketch of proof. Given the input x, we apply the zero padding to x and obtain a padded input x̃. We then expand x̃ to a
one-dimensional vector. It is easy to show that the 2D convolution can be represented as a circulant matrix multiplied by x̃
with entries (of the output) corresponding to the paddings removed.

Observation 3. The block-wise invertible butterfly layer with weights in C can be used to represent a subset of the invertible
d× d convolution layer.

Sketch of proof. Given an input x ∈ RC,W,H , an invertible d×d convolution can be decomposed into two steps: (1) mix the
channel information for each (w, h) pair, w ∈ [W ] and h ∈ [H], by performing an invertible C × C matrix multiplication
with a C-dimensional vector x[:, w, h], and (2) perform single channel d× d convolution for each of the C inputs x[i, :, :],
i = 1, ..., C, independently. As we showed previously, each of the single channel d× d convolution can be performed by
using circulant matrix, vector multiplication. For input whose size after padding is not a power of 2, we can always pad extra
zeros so that the input after padding has size of power of 2. We can remove the entries corresponding to the paddings in the
output to recover the correct output. Now, observe that each C × C matrix block in the block-wise butterfly matrix exactly
corresponds to (1) and by Lemma A.3, any circulant matrix with size a power of 2 can be represented using naive butterfly
layers. Then the D/C ×D/C block matrix in block-wise butterfly factors (seeing each C × C as a whole) corresponds to
(2). Thus block-wise invertible butterfly layer with weights in C can be used to represent a family of the invertible d× d
convolution layer.
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Table 6: Model architecture for various datasets.

Levels (L) Steps (K) Coupling channels Butterfly levels Bi-direction? EMA Butterfly scheduler γ Butterfly init

CIFAR-10 3 32 512 1 ✗ none N/A id
ImageNet-32× 32 3 32 512 1 ✗ none N/A id

MNIST 2 20 512 1 ✗ none N/A id
CIFAR-10,permuted 3 32 512 10 ✗ separate 0.99 rot

ImageNet-32× 32,permuted 3 32 512 10 ✓ separate 0.99 rot
MNIST,permuted 2 20 512 [9,8,4] ✓ separate 0.996 id

Galaxy 2 8 512 2 ✗ separate 0.996 id
MIMIC-III 2 2 16 10 ✗ none N/A rot

B. Experiments
B.1. Training details

For all experiments, we use Adam optimizer with α = 0.001, β1 = 0.9, β2 = 0.999 for training. We warm up our learning
by linearly increasing learning rate from 0 to initial learning rate for 10 iterations, and afterwards exponentially decaying
with γ = 0.999997 per iteration. Training is done on TITAN RTX GPU machines. For some experiments we also employ
exponential moving average (EMA) of either the entire model or only the butterfly layers, which we will specify in the next
section.

B.2. Model architecture

We here define relevant model architecture hyperparameters. The backbone of the our network follows Glow (Kingma
& Dhariwal, 2018) baseline as visualized in Figure 4. Our model uses L levels and K steps, and each butterfly layer
is of maximum M levels. We by default choose a list of contiguous integers to parametrize our levels {ai}ki=1, i.e., for
a butterfly layer of M levels, {ai}ki=1 = {1, 2, . . . ,M}. For our butterfly layers we also implement a version specified
in Proposition 3.5, which stacks a level-inverted M -level butterfly layer on top of a regular butterfly layer. We indicate
this version as “bi-direction” in Table 6. If it is set, our butterfly layer has 2M butterfly factors with selected integer set
{ai}ki=1 = {1, 2, . . . ,M, . . . , 2, 1}. For our models, we also implement different types of parameter EMA for training.
When EMA is “none”, we use a single Adam optimizer for all parameters. When EMA is indicated as “all”, we employ EMA
on all model parameters. When EMA is indicated as “separate”, we employ EMA only for all of our butterfly layers. During
training, we use a separate Adam optimizer of the same hyperparameters and exponential decay scheduler of different γ for
butterfly layers than the Glow backbone, and we optimize the Glow backbone based on the EMA output of butterfly layers.

We also explore different initialization types for our butterfly layers. If it is “id”, we initialize all our butterfly factors
to identity matrix. If it is “rot”, we initialize our butterfly factors such that the 4 diagonal matrices are element-wise

orthogonal. That is, if a butterfly factor is
[

D1 D2

D3 D4

]
with each sub-matrix being a diagonal matrix, each 2 × 2 matrix[

D1[k, k] D2[k, k]
D3[k, k] D4[k, k]

]
is initialized to a rotation matrix.

Image datasets. For MNIST datasets specifically, we use logit transform with λ = 10−6 for data preprocessing. For
CIFAR-10 and ImageNet-32× 32, we follow (Hoogeboom et al., 2019) for data preprocessing.

Permuted image datasets. For ImageNet-32× 32 and CIFAR-10 in particular, we use level-10 butterfly layers and decrease
the level by 1 after each Squeeze layer. Since MNIST’s image size is 28× 28 = 784, it is not divisible by 2 as required by
butterfly layers. Therefore, we choose to partition the space into a concatenation of 512, 256, 16-dimensional spaces where
each can be fed into a 9, 8, 4-level butterfly factor respectively. Each separate butterfly matrix’s level decreases by 1 after
each Squeeze layer.

Galaxy images. Model architecture is as shown in Table 6 and we empirically find the using batch size 64 results in better
performance.

MIMIC-III waveform database. Since the data has shape (1024, 2), we treat each data point as a 1D image of size 1024
and 2 channels. We then straight-forwardly adapt the Glow backbone for 2D image to process 1D data. For our Emerging
and Periodic baselines, we use filter size of 51 since we empirically found that using the default value filter size of 3 fails in
learning a reasonable density estimator. For all our model we also use learning rate of 0.0001 because we observed that
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higher learning rate results in unstable loss curves. For our butterfly matrix, to reduce the number of learnable parameters,

we also share parameters for each diagonal matrix, i.e., if a butterfly factor is
[

D1 D2

D3 D4

]
with each sub-matrix being a

diagonal matrix, the diagonal elements in each Dk are the same. This sharing holds for each primitive diagonal matrix in a
butterfly factor.

Running time. We define specifically what is forward pass and inversion pass for each layer tested. In PyTorch’s
language, by forward pass we mean applying the tested layer and computing the log determinant of its Jacobian under
requires grad mode. By inversion pass we mean applying the inverse of the tested layer under no grad mode.

All testing is done on a TITAN XP GPU. For each tensor tested, e.g. of size 3× 32× 32, we flatten it into a vector before
applying butterfly matrix in our CUDA implementation. We use level-10 butterfly layer by default, and for tensors of smaller
sizes, we use the maximum possible level to construct our butterfly layer. For example, a tensor of size 1× 4× 4 allows for
a level-4 butterfly layer. For tensors of large sizes, e.g. 3× 128× 128, which allows for butterfly layers with more than 10
levels, we stop at level 10 because it is the maximum number we use in all our other experiments.

Here we also present additional comparisons with 1× 1 convolution.

Figure 10: Comparisons with 1× 1 convolution added.

Shown in Figure 10, 1×1 convolution scales better than our model on large images because the operation can be parallelized
across all spatial locations. We note that our model is faster on smaller images (first row of Figure 10) and performs
comparably with 1 × 1 convolution at spatial size 32 × 32. Nevertheless, 1 × 1 convolution does not scale well with
increasing channel size primarily because calculation of its determinant is cubic with respect to channel size. For fair
comparison, with fix spatial size at 32 × 32 and vary channel size (second row of Figure 10). We find that our model
outperforms all baselines for runtime vs. channel size.
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C. Datasets
C.1. Permuted image datasets

For each of CIFAR-10, ImageNet-32 × 32, and MNIST, we generate a random permutation matrix and preprocess the
images in each dataset using the same dataset-wise permutation matrix. visualizations are done by first generating from the
model and permute back using the ground-truth matrix.

C.2. MIMIC-III waveform database

MIMIC-III is a large-scale dataset containing approximately 30,000 patients’ ICU waveforms. Each patient’s record contains
a time series of periodic measurements, which is a quasi-continuous recording of the patient’s vital signals over their entire
stay at the hospital (sometimes days and usually weeks). For this dataset in particular, two feature waveforms are recorded
by bedside monitors: Photoplethysmography (PPG) and Ambulatory Blood Pressure (ABP) waveforms.

Due to the extremely long samples per patient, we built per-patient datasets by cutting each waveform sequence into
chunks of length 1024. As a concrete example, we can build a dataset of 10,000 data points for a patient with 10.24M
sampled intervals. Within this patient’s recording, we then have 10,000 data points of dimension (1024, 2) where each
dimension corresponds to PPG and ABP features in time. The data points are additionally normalized to [−1, 1] before
training. Patient 1, 2, 3 corresponds to patient ID 3000063, 3000393, 3000397, respectively. More details about the dataset
is available at https://physionet.org/content/mimic3wdb/1.0/. We also preprocess our data according
to (Slapničar et al., 2019) with this Github page https://github.com/gslapnicar/bp-estimation-mimic3,
which performs necessary filtering for noise removal and anomaly removal.

https://physionet.org/content/mimic3wdb/1.0/
https://github.com/gslapnicar/bp-estimation-mimic3

