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Abstract
This paper is in the field of stochastic Multi-
Armed Bandits (MABs), i.e., those sequential
selection techniques able to learn online using
only the feedback given by the chosen option
(a.k.a. arm). We study a particular case of the
rested and restless bandits in which the arms’ ex-
pected payoff is monotonically non-decreasing.
This characteristic allows designing specifically
crafted algorithms that exploit the regularity of the
payoffs to provide tight regret bounds. We design
an algorithm for the rested case (R-ed-UCB) and
one for the restless case (R-less-UCB), provid-
ing a regret bound depending on the properties of
the instance and, under certain circumstances, of
rOpT 2

3 q. We empirically compare our algorithms
with state-of-the-art methods for non-stationary
MABs over several synthetically generated tasks
and an online model selection problem for a real-
world dataset. Finally, using synthetic and real-
world data, we illustrate the effectiveness of the
proposed approaches compared with state-of-the-
art algorithms for the non-stationary bandits.

1. Introduction
The classical stochastic MAB framework (Lattimore &
Szepesvári, 2020) has been successfully applied to a number
of applications, such as advertising, recommendation, and
networking. MABs model the scenario in which a learner
sequentially selects (a.k.a. pulls) an option (a.k.a. arm) in
a finite set, and receives a feedback (a.k.a. reward) corre-
sponding to the chosen option. The goal of online learning
algorithms is to guarantee the no-regret property, meaning
that the loss due to not knowing the best arm is increasing
sublinearly with the number of pulls. One of the assump-
tions that allows designing no-regret algorithms consists in
requiring that the payoff (a.k.a. expected reward) provided
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by the available options is stationary, i.e., rewards come
from a fixed distribution.

However, the arms’ payoff may change over time due to
intrinsic modifications of the arms or the environment. A
no-regret approach is offered by the adversarial algorithms,
in which no assumption on the nature of the reward is re-
quired. It has been shown that, in this setting, it is possible to
design effective algorithms, e.g., EXP3 (Auer et al., 1995).
However, in practice, their performance is unsatisfactory
because the non-stationarity of real-world cases is far from
being adversarial. Instead, non-stationarity is explicitly
accounted for by a surge of methods that consider either
abrupt changes (e.g., Garivier & Moulines, 2011), smoothly
changing environments (e.g., Trovò et al., 2020) or bounded
reward variation (e.g., Besbes et al., 2014).

While in non-stationary MABs the arms’ payoff changes
naturally over time, a different setting arises when the pay-
off changes as an effect of pulling the arm. This is the case
of rotting bandits (Levine et al., 2017; Seznec et al., 2019),
in which the payoff of the arms are monotonically non-
increasing over the pulls, modeling degradation phenomena.
Knowing the monotonicity property allows deriving more
specialized algorithms, exploiting the process character-
istics and further decreasing the regret w.r.t. unrestricted
cases. Notably, the symmetric problem of monotonically
non-decreasing payoffs cannot be addressed with the same
approaches. Indeed, it was shown that it represents a sig-
nificantly more complex problem, even for deterministic
arms (Heidari et al., 2016). In this non-decreasing setting, a
common assumption is the concavity of the payoff function
that defines the rising bandits setting (Li et al., 2020).

The goal of this paper is to study the stochastic MAB prob-
lem when the arms’ payoff is monotonically non-decreasing.
This setting arises in several real-world sequential selection
problems. For instance, suppose we have to choose among
a set of optimization algorithms to maximize an unknown
stochastic concave function. In this setting, we expect that
all the algorithms progressively increase (on average) the
function value and eventually converge to an optimal value,
possibly with different speeds. Therefore, we wonder which
candidate algorithm to assign the available resources (e.g.,
computational power or samples) to identify the one that
converges faster to the optimum. This online model selec-
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tion process can be modeled as a rested MAB (Tekin &
Liu, 2012), like the rotting bandits (Levine et al., 2017),
but with non-decreasing payoffs. Indeed, each optimization
algorithm (arms) and the function value does not evolve if
we do not select (pull) it. Another example that shows a
non-decreasing expected reward is the selection of athletes
for competitions. Athletes train in parallel and increase
(on average) their performance. However, if participation
in competitions is allowed to one athlete only, the trainer
should select the one who has achieved the best performance
so far. This problem is akin to the restless case (Tekin &
Liu, 2012), like non-stationary bandits (Besbes et al., 2014),
but with the additional assumption that payoffs are non-
decreasing. Indeed, the athletes (arms) are evolving even if
they are not selected (pulled) to compete.

Original Contribution In this paper, we study the stochas-
tic rising bandits, i.e., stochastic bandits in which the pay-
offs are monotonically non-decreasing and concave, in both
restless and rested formulations. More specifically:

• we show that the rested bandit with non-decreasing pay-
offs is non-learnable, i.e., the loss due to learning is linear
with the number of pulls, unless additional assumptions
on the payoff functions are enforced (e.g., concavity);

• we design R-ed-UCB and R-less-UCB, optimistic al-
gorithms for the rising rested and restless bandits;

• we show that R-ed-UCB and R-less-UCB suffer an
expected regret that depends on the payoff function profile
and, under some conditions, of order rOpT 2

3 q;1
• we illustrate, using synthetic and real-world data, the

effectiveness of our approaches, compared with state-of-
the-art algorithms for the non-stationary (restless) bandits.

2. Related Works
Restless and Rested Bandits The rested and restless ban-
dit settings have been introduced by Tekin & Liu (2012)
and further developed by (Ortner et al., 2012; Russac et al.,
2019) in the restless version and by (Mintz et al., 2020;
Pike-Burke & Grunewalder, 2019) in the rested one. Origi-
nally the evolution of the payoff was modeled via a suitable
process, e.g., a Markov chain with finite state space or a
linear regression process. For instance, Wang et al. (2020)
proposes an optimistic approach based on the estimation of
the transition kernel of the underlying chain. More recently,
the terms rested and restless have been employed to denote
arms whose payoff changes as time passes, for restless ones,
or whenever being pulled, for rested ones (Seznec et al.,
2019; 2020). That is the setting we target in this work.

Non-Stationary Bandits The restless bandits, without a
fixed temporal reward evolution, are usually addressed via
non-stationary MAB approaches, that include both pas-

1With rOp¨q we disregard logarithmic terms in the order.

sive (e.g., Garivier & Moulines, 2011; Besbes et al., 2014;
Auer et al., 2019; Trovò et al., 2020) and active (e.g., Liu
et al., 2018; Besson et al., 2019; Cao et al., 2019) methods.
The former algorithms base their selection criterion on the
most recent feedbacks, while the latter actively try to de-
tect if a change in the arms’ rewards occurred and use only
data gathered after the last change. Garivier & Moulines
(2011) employ a discounted reward approach (D-UCB) or
an adaptive sliding window (SW-UCB), proving a rOp?T q
regret when the number of abrupt changes is known. Similar
results have been obtained by (Auer et al., 2019) without
knowing the number of changes, at the price of resorting
to the doubling trick. (Besbes et al., 2014) provides an al-
gorithm, namely RExp3, a modification EXP3, originally
designed for adversarial MABs, to give a regret bound of
OpT 2

3 q under the assumption that the total variation VT of
the arms’ expected reward is known. The knowledge of VT
has been removed by Chen et al. (2019) using the doubling
trick. In Trovò et al. (2020), an approach in which the com-
bined use of a sliding window on a Thompson Sampling-like
algorithm provides theoretical guarantees both on abruptly
and smoothly changing environments. Nonetheless, in our
setting, their result might lead to linear regret for specific
instances. Notably, none of the above explicitly use assump-
tions on the monotonicity of the payoff over time.

Rising Bandits The rising bandit problem has been tackled
in its deterministic version by (Heidari et al., 2016; Li et al.,
2020). In Heidari et al. (2016), the authors design an online
algorithm to minimize the regret of selecting an increasing
and concave function among a finite set. This study assumes
that the learner receives feedback about the true value of
the reward function, i.e., no stochasticity is present. In Li
et al. (2020), the authors model the problem of parameter
optimization for machine learning models as a rising ban-
dit setting. They propose an online algorithm having good
empirical performance, still in the case of deterministic re-
wards. A case where the reward is increasing in expectation
(or equivalently decreasing in loss), but no longer determin-
istic, is provided by Cella et al. (2021). However, the payoff
follows a given parametric form known to the learner, who
estimates such parameters in the best-arm identification and
regret-minimization frameworks. The need for knowing
the parametric form of the payoff makes these approaches
hardly applicable for arbitrary increasing functions.

Corralling Bandits It is also worth mentioning the cor-
ralling bandits (Agarwal et al., 2017; Pacchiano et al.,
2020b; Abbasi-Yadkori et al., 2020; Pacchiano et al., 2020a;
Arora et al., 2021), a setting in which the goal is to minimize
the regret of a process choosing among a finite set of bandit
algorithms. This setting, close to online model selection, is
characterized by particular assumptions. Indeed, each arm
corresponds to a learning algorithm, operating on a bandit,
endowed with a (possibly known) regret bound, sometimes
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requiring additional conditions (e.g., stability).

3. Problem Setting
AK-armed MAB (Lattimore & Szepesvári, 2020) is defined
as a vector of probability distributions ν“pνiqiPrKs, where
νi :N2Ñ∆pRq depends on a pair of parameters pt,nqPN2

for every iPrKs, where rKs–t1,...,Ku. Let T PN be the
optimization horizon, at each round tPrT s, the agent selects
an arm ItPrKs and observes a reward Rt„νItpt,NIt,tq,
where Ni,t“řt

l“11tIl“iu is the number of times arm iP
rKs was pulled up to round t. Thus, the reward depends, in
general, on the current round t and on the number of pulls
NIt,t“NIt,t´1`1 of arm It up to t. For every arm iPrKs,
we define its payoff µi :N2ÑR as the expectation of the
reward, i.e., µipt,nq“ER„νipt,nqrRs and denote the vector
of payoffs as µ“pµiqiPrKs. We assume that the payoffs are
bounded in r0,1s, and that the rewards are σ2-subgaussian,
i.e., ER„νipt,nqreλpR´µipt,nqqsďe

σλ2

2 , for every λPR.

Rested and Restless Arms We revise the definition of
rested and restless arms (Tekin & Liu, 2012).2

Definition 3.1 (Rested and Restless Arms). Let ν be a MAB
and let iPrKs be an arm, we say that:

• i is a rested arm if, for every round tPrT s and number of
pulls nPN, we have µipt,nq“µipnq;

• i is a restless arm if, for every round tPrT s and number
of pulls nPN, we have µipt,nq“µiptq.

A K-armed bandit is rested (resp. restless) if all of its arms
are rested (resp. restless).

Thus, the payoff of a rested arm changes when being pulled
and, therefore, it models phenomena that evolve as a conse-
quence of the agent intervention. Instead, a restless arm is in
all regards a non-stationary arm (Besbes et al., 2014), and it
is suitable for modeling a natural phenomenon that evolves
for time passing, independently of the agent intervention.

Rising Bandits We revise the rising bandits notion, i.e.,
MABs with payoffs non-decreasing and concave as a func-
tion of pt,nq (Heidari et al., 2016).3

Assumption 3.1 (Non-Decreasing Payoff). Let ν be a MAB,
for every arm iPrKs, number of pulls nPN, and round
tPrT s, functions µip¨,nq and µipt,¨q are non-decreasing. In
particular, we define the increments:

2We refer to the definition of (Levine et al., 2017; Seznec et al.,
2020) and not to the one of (Tekin & Liu, 2012) that assumes an
underlying Markov chain governing the arms’ distributions.

3Deterministic bandits with non-decreasing payoffs were in-
troduced in (Heidari et al., 2016) with the term improving. In (Li
et al., 2020), the term rising was used to denote the improving
bandits with concave payoffs (concavity was already employed
by Heidari et al. (2016)).

Rested arm: γipnq:“µipn`1q´µipnqě0;
Restless arm: γiptq:“µipt`1q´µiptqě0.

From an economic perspective, γip¨q represents the increase
of total return (or payoff) we obtain by adding a factor
of production, i.e., pulling the arm (rested) or letting time
evolve for a unit (restless). In the next sections, we analyze
how the following assumption defines a remarkable class of
bandits with non-decreasing payoffs (Heidari et al., 2016).

Assumption 3.2 (Concave Payoff). Let ν be a MAB, for
every arm iPrKs, number of pulls nPN, and round tPrT s,
functions µip¨,nq and µipt,¨q are concave, i.e.:

Rested arm: γipn`1q´γipnqď0;
Restless arm: γipt`1q´γiptqď0.

As pointed out by Heidari et al. (2016), the concavity as-
sumption corresponds, in economics, to the decrease of
marginal returns that emerges when adding a factor of pro-
duction, i.e., pulling the arm (rested) or letting time evolve
for one unit (restless).

Formally, we define rising a stochastic MAB in which both
Assumption 3.1 and Assumption 3.2 hold.

Learning Problem Let tPrT s be a round, we denote with
Ht“pIl,Rlqtl“1 the history of observations up to t. A (non-
stationary) deterministic policy is a function π :Ht´1 ÞÑIt
mapping a history to an arm, that is abbreviated as πptq:“
πpHt´1q. The performance of a policy π in a MAB with
payoffs µ is the expected cumulative reward collected over
the T rounds, formally:

Jµpπ,T q–E
„

ÿ

tPrT s
µIt pt,NIt,tq



,

and the expectation is computed over the histories. A pol-
icy πµ̊,T is optimal if it maximizes the expected cumula-
tive reward: πµ̊,T PargmaxπtJµpπ,T qu. Denoting with
Jµ̊ pT q–Jµpπµ̊,T ,T q the expected cumulative reward of
an optimal policy, the suboptimal policies π are evaluated
via the expected cumulative regret:

Rµpπ,T q–Jµ̊ pT q´Jµpπ,T q. (1)

Problem Characterization To characterize the problem
instance, we introduce the following quantity, namely the
cumulative increment, defined for qPr0,1s and M PrT s as:

ΥµpM,qq–max
iPrKs

#

M´1
ÿ

l“1

γiplqq
+

. (2)

The cumulative increment accounts for how fast the pay-
offs reach their asymptotic value, i.e., become stationary.
Intuitively, small values of ΥµpM,qq lead to simpler prob-
lems, as they are closer to stationary bandits. Table 1 reports
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Table 1. O rates of ΥµpM,qq in the case γiplqďfplq for all iPrKs
and lPN (see also Lemma C.6).

fplq e´cl l´c

(cqą1)
l´c

(cq“1)
l´c

(cqď1)

ΥµpM,qq e´cq

cq

1

cq´1
logM M1´cq

1´cq

some bounds on ΥµpM,qq for particular choices of γiplq
and q. When q“1, the cumulative increment resembles
the bounded variation VT–

řT´1
l“1 maxiPrKstγiplqu (Bes-

bes et al., 2014), but ΥµpT,1q is smaller than VT as the
maximization over the arms appears outside the summation.

In the next sections, we devise and analyze learning algo-
rithms for rested (Section 4) and restless (Section 5) rising
bandits. We will present optimistic algorithms, whose struc-
ture is summarized in Algorithm 1 and parametrized by an
exploration index Biptq that will be designed case by case.

4. Stochastic Rising Rested Bandits
In this section, we consider the Rising rested bandits
(R-ed) setting in which the arms’ expected payoff increases
only when it is pulled, i.e., µipt,Ni,tq”µipNi,tq.4
Oracle Policy We recall that the oracle constant policy, that
always plays at each round tPrT s the arm that maximizes
the sum of the payoffs over the horizon T , is optimal for the
non-increasing rested bandits.

Theorem 4.1 (Heidari et al., 2016). Let πcµ,T be the oracle
constant policy:

πcµ,T ptqPargmax
iPrKs

#

ÿ

lPrT s
µiplq

+

, @tPrT s.

Then, πcµ,T is optimal for the rested non-decreasing bandits
(i.e., under Assumption 3.1).

The result holds under the non-decreasing property (As-
sumption 3.1) only, without requiring concavity (Assump-
tion 3.2). However, this policy cannot be used in practice as
it requires knowing the full function µip¨q in advance.

4.1. Non-Learnability

We now prove a result highlighting the “hardness” of the
non-decreasing rested bandits. We show that with no as-
sumptions on the payoff µipnq (e.g., concavity), it is impos-
sible to devise a no-regret algorithm.

Theorem 4.2 (Non-Learnability). There exists a 2-armed

4We are employing the original definition of rested arms
of (Levine et al., 2017) in which µipnq is the payoff of arm i
when it is pulled for the n-th time.

Algorithm 1 R-l-UCB (lPtless,edu )
Input: K, pBiqiPrKs
Initialize NiÐ0 for all iPrKs
for tPp1,...,T q do

Pull ItPargmaxiPrKstBiptqu
Observe Rt„νItpt,NIt`1q
Update BIt and NItÐNIt`1

end for

non-decreasing (non-concave) deterministic rested bandit
with γipnqďγmaxď1 for all iPrKs and nPN, such that any
learning policy π suffers regret:

Rµpπ,T qě
Yγmax

12
T
]

.

The intuition behind this result is that, if we enforce no
condition on the increment γipnq we cannot predict how
much the arm payoff will increase in the future. Therefore,
we face the dilemma of whether or not to pull an arm that
is currently believed to be suboptimal, hoping its payoff
will increase. If we decide to pull it and its payoff will not
actually increase, or if we decide not to pull it and its payoff
will actually increase, becoming optimal, we will suffer
linear regret. Thus, Theorem 4.2 highlights the importance
of the concavity assumption (Assumption 3.2), providing an
answer to an open question posed in (Heidari et al., 2016).

Remark 4.1 (About the Concavity Assumption). While
without additional structure, e.g., concavity, the non-
decreasing rested bandits are non-learnable (Theorem 4.2),
the assumption is not necessary in other related settings. In
particular, non-decreasing restless bandits are in all regard
non-stationary bandits, for which no-regret algorithms exist
under different assumptions about the number of change
points (Garivier & Moulines, 2011) or a bounded total vari-
ation (Besbes et al., 2014). Furthermore, for non-increasing
rested (rotting) bandits (Levine et al., 2017), a bounded
payoff decrement between consecutive pulls is sufficient to
devise a no-regret algorithm.

4.2. Deterministic Setting

To progressively introduce the core ideas, we begin with
the case of deterministic arms (σ“0). We devise an opti-
mistic estimator of µiptq, namely µR-edi ptq, having observed
the exact payoffs pµipnqqNi,t´1

n“1 . Differently from the rot-
ting setting, these payoffs are an underestimation of µiptq.
Therefore, we exploit the non-decreasing assumption (As-
sumption 3.1) to derive the identity:

µiptq“ µipNi,t´1q
loooomoooon

(most recent payoff)

`
t´1
ÿ

n“Ni,t´1

γipnq.
looooooomooooooon

(sum of future increments)

(3)
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Ni,t´1´1 Ni,t´1 t

0.5

1

t́ Ni,t´1

γipNi,t´1´1q

µipNi,t´1q µ
R
-
e
d

i
ptq

µ
ipt
q

n

µipnq

Figure 1. Graphical representation of the estimator construction
µR-edi ptq for the rested deterministic setting.

By exploiting the concavity (Assumption 3.2), we upper
bound the sum of future increments with the last experienced
increment γipNi,t´1´1q that is projected for the future t´
Ni,t´1 pulls, leading to the following estimator:

µR-edi ptq:“µipNi,t´1q
loooomoooon

(most recent payoff)

`pt´Ni,t´1qγipNi,t´1´1q,
looooooomooooooon

(most recent increment)

(4)

if Ni,t´1ě2 else µR-edi ptq:“`8. Figure 1 illustrates the
construction of the estimator. The optimism of µR-edi and a
bias bound are proved in Lemma A.2.

Regret Analysis We are now ready to provide the regret
analysis of R-ed-UCB, i.e., Algorithm 1 when we employ
as exploration index Biptq”µR-edi ptq.
Theorem 4.3. Let T PN, then R-ed-UCB (Algorithm 1)
with Biptq”µR-edi ptq suffers an expected regret bounded,
for every qPr0,1s, as:

RµpR-ed-UCB,T qď2K`KT qΥµ

ˆR

T

K

V

,q

˙

.

The regret depends on a parameter qPr0,1s that can be se-
lected to tighten the bound, whose optimal value depends
on Υµp¨,qq, that is a function on the horizon T . Some ex-
amples, when γiptqďl´c for cą0, are reported in Figure 2.

4.3. Stochastic Setting

Moving to the R-ed stochastic setting (σą0), we cannot
directly exploit the estimator in Equation (4). Indeed, we
only observe the sequence of noisy rewards pRti,nqNi,t´1

n“1 ,
where ti,nPrT s is the round at which arm iPrKs was pulled
for the n-th time. To cope with stochasticity, we need to
employ an h-wide window made of the h most recent sam-
ples, similarly to what has been proposed by Seznec et al.
(2020). The choice of h represents a bias-variance trade-off
between employing few recent observations (less biased),
compared to many past observations (less variance). For

cď1 cě1

Rested T KT
1
c

Restless K
1`c
2 T 1´ c

2 KT
1
c`1

1

0.5

1

c

Figure 2. Regret bounds rO rates optimized over q for R-less
and R-ed deterministic bandits when γiplqďl´c for cą0.

hPrNi,t´1s, the resulting estimator pµR-ed,hi ptq is given by:

pµR-ed,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

Rti,l
loomoon

(estimated payoff)

`pt´lq Rti,l´Rti,l´h
h

looooooomooooooon

(estimated increment)

¸

,

if hďtNi,t´1{2u, else pµR-ed,hi ptq:“`8. The construction
of the estimator is shown in Appendix A.1 and relies on the
idea of averaging several estimators of the form of Equa-
tion (4) instanced using as starting points different number
of pulls Ni,t´1´l`1 for lPrhs and replacing the true pay-
off with the corresponding reward sample. An efficient way
to compute this estimator is reported in Appendix D.

Regret Analysis By making use of the presented estimator,
we build the following optimistic exploration index:

Biptq”pµ
R-ed,hi,t
i ptq`βR-ed,hi,ti ptq, where

β
R-ed,hi,t
i pt,δtq:“σpt´Ni,t´1`hi,t´1q

d

10log 1
δt

h3
i,t

,

and hi,t are arm-and-time-dependent window sizes and δt
is a time-dependent confidence parameter. By choosing the
window size depending linearly on the number of pulls, we
are able to provide the following regret bound.

Theorem 4.4. Let T PN, then R-ed-UCB (Algorithm 1)
with Biptq”pµ

R-ed,hi,t
i ptq`βR-ed,hi,ti ptq, hi,t“tεNi,t´1u

for εPp0,1{2q and δt“t´α for αą2, suffers an expected
regret bounded, for every qPr0,1s, as:

RµpR-ed-UCB,T qďO

˜

K

ε
pσT q 2

3 pαlogT q 1
3

` KT q

1´2ε
Υµ

ˆR

p1´2εq T
K

V

,q

˙

¸

.

This result deserves some comments. First, compared with
the corresponding deterministic R-ed regret bound (Theo-
rem 4.3), it reflects a similar dependence of the cumulative



Stochastic Rising Bandits

increment Υµ, although it now involves the ε parameter
defining the window size hi,t“tεNi,t´1u. Second, it in-
cludes an additional term of order rOpT 2

3 q that is due to the
noise σ presence that increases inversely w.r.t. the ε.5 Thus,
we visualize a trade-off in the choice of ε: larger windows
(ε«1) are beneficial for the first term, but they enlarge the
constant 1{p1´2εq multiplying the second component.

Remark 4.2 (Comparison with Adversarial Bandits). The
R-ed setting can be mapped to an adversarial bandit (Auer
et al., 2002) with an adaptive (i.e., non-oblivious) adver-
sary. Indeed, the arm payoff µipNi,tq can be thought to as
selected by an adversary who has access to the previous
learner choices (i.e., the history Ht´1), specifically to the
number of pulls Ni,t. However, although adversarial bandit
algorithms, such as EXP3 (Auer et al., 2002) and OSMD (Au-
dibert et al., 2014), suffer rOp?T q regret, these results are
not comparable with ours. Indeed, while these correspond
to guarantees on the external regret, the regret definition we
employ in Section 3 is a notion of policy regret (Dekel et al.,
2012).

5. Stochastic Rising Restless Bandits
In this section, we consider the Rising restless bandits
(R-less) in which the payoff increases at every round
regardless the arm is pulled, i.e., µipt,Ni,tq”µiptq.
Oracle Policy We start recalling that the oracle greedy
policy, i.e., the policy selecting at each round tPrT s the
arm with largest payoff, is optimal for the non-decreasing
restless bandit setting.

Theorem 5.1 (Seznec et al., 2020). Let πgµ be the oracle
greedy policy:

πgµptqPargmax
iPrKs

tµiptqu, @tPrT s.

Then, πgµ is optimal for the restless non-decreasing bandits
(i.e., under Assumption 3.1).

Notice that πgµ is optimal under the non-decreasing payoff
assumption (Assumption 3.1) only, without requiring the
concavity (Assumption 3.2). We can now first appreciate
an important difference between rising and rotting bandits.
While for the rotting bandits the oracle greedy policy is
optimal for both the rested and restless settings, for the
rising bandits it remains optimal in the restless case only.
Indeed, for the rising rested case, as shown in Theorem 4.1,
the oracle constant policy is needed to achieve optimality.

5In particular, when γipnq decreases sufficiently fast (see Ta-
ble 1), the regret is dominated by the rOpT

2
3 q component.

5.1. Deterministic Setting

We begin with the case of deterministic arms (σ“0). Simi-
larly to the rested case, we design an optimistic estimator
of µiptq, namely µR-lessi ptq, employing the exact payoffs
pµipti,nqqNi,t´1

n“1 . To this end, we exploit the non-decreasing
assumption (Assumption 3.1) to derive the identity:

µiptq“ µipti,Ni,t´1
q

looooomooooon

(most recent payoff)

`
t´1
ÿ

l“ti,Ni,t´1

γiplq.
looooooomooooooon

(sum of future increments)

Then, we leverage the concavity (Assumption 3.2) to upper
bound the sum of future increments with the last experienced
increment that will be projected in the future for t´ti,Ni,t´1

rounds, leading to the estimator:

µR-lessi ptq:“ µipti,Ni,t´1
q

looooomooooon

(most recent payoff)

`pt´ti,Ni,t´1q
µipti,Ni,t´1

q´µipti,Ni,t´1´1q
ti,Ni,t´1´ti,Ni,t´1´1

looooooooooooooooomooooooooooooooooon

(most recent increment)

,
(5)

if Ni,t´1ě2, else µR-lessi ptq:“`8. Lemma A.5 shows
that µR-lessi is optimistic and provides a bias bound.

Regret Analysis We now provide the regret analysis of
R-less-UCB that is obtained from Algorithm 1, when
setting Biptq”µR-lessi ptq.
Theorem 5.2. Let T PN, then R-less-UCB (Algorithm 1)
with Biptq”µR-lessi ptq suffers an expected regret bounded,
for every qPr0,1s, as:

RµpR-less-UCB,T qď2K`KT q
q`1 Υµ

ˆR

T

K

V

,q

˙
1
q`1

.

Similarly to Theorem 4.3, the result depends on
the free parameter qPr0,1s, that can be chosen to
tighten the bound. It is worth noting that the re-
gret bound of the R-less deterministic case (Theo-
rem 5.2) is always smaller than that of the R-ed de-
terministic case (Theorem 4.3). Indeed, ignoring the
dependence on K, we have RµpR-less-UCB,T q“
O
´

RµpR-ed-UCB,T q 1
q`1

¯

. The following example clari-
fies the role of q for both the restless and rested case.

Example 5.1. Suppose that for all iPrKs, we have γiplqď
l´c for cą0. The expressions of bounds on Υµp¨,qq have
been shown in Table 1. Different values of qPr0,1s should
be selected to tighten the regret bounds depending on the
value of c. Figure 2 reports the optimized bounds for the de-
terministic R-less and R-ed (derivation in Appendix B).
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5.2. Stochastic Setting

In the stochastic setting (σą0), we have access to noisy
versions of µi only, i.e., pRti,nqNi,t´1

n“1 . Intuitively, we might
be tempted to straightforwardly extend the derivation of
the rested case by averaging h estimators like the ones in
Equation (5), instanced with different time instants ti,Ni,t´1

.
Unfortunately, this approach is unsuccessful for technical
issues since the increment term would include the difference
of time instants ti,Ni,t´1´ti,Ni,t´1´1 that, in the stochastic
setting, are random variables correlated with the observed
rewards Rti,n . For this reason, at the price of a larger bias,
we employ the same estimator used in the stochastic rested
case, defined for hPrNi,t´1s:

pµR-less,hi ptq– 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

Rti,l
loomoon

(estimated payoff)

`pt´lq Rti,l´Rti,l´h
h

looooooomooooooon

(estimated increment)

˙

,

if hi,tďtNi,t´1{2u, else pµR-less,hi ptq–`8. Additional
details on the estimator construction is reported in Ap-
pendix A.2 together with its analysis.

Regret Analysis We provide the regret analysis of
R-less-UCB when we employ the exploration index anal-
ogous to that of the rested case:

Biptq”pµ
R-less,hi,t
i ptq`βR-less,hi,ti ptq, where

β
R-less,hi,t
i pt,δtq:“σpt´Ni,t´1`hi,t´1q

d

10log 1
δt

h3
i,t

,

and hi,t are a arm-and-time-dependent window sizes and δt
is a time-dependent confidence. The regret bound is given
by the following result.

Theorem 5.3. Let T PN, then R-less-UCB (Al-
gorithm 1) with Biptq”pµ

R-less,hi,t
i ptq`βR-less,hi,ti ptq,

hi,t“tεNi,t´1u for εPp0,1{2q, and δt“t´α for αą2, suf-
fers an expected regret bounded, for every qPr0,1s, as:

RµpR-less-UCB,T qďO

˜

K

ε
pσT q 2

3 pαlogT q 1
3

`KT
2q

1`q plogT q q
1`q

εp1´2εq Υµ

ˆR

p1´2εq T
K

V

,q

˙
1

1`q

¸

.

Some observations are in order. First, compared to the
bound for the rested case in Theorem 4.4, we note the same
dependence of rOpT 2

3 q due to the noise presence σ. Con-
cerning the second term, compared with the one of the
deterministic case (Theorem 5.2), we worsen the depen-
dence on T and an inverse dependence on the ε and 1´2ε

parameters appear. This is due to the usage of the h-wide
window instead of the last sample and that, all other things
being equal, the estimator employed for the stochastic case,
as already discussed, is looser compared to the one for the
deterministic case. Finally, our result is not fully compa-
rable with (Besbes et al., 2014) for generic non-stationary
bandits with bounded variation because, as already men-
tioned, ΥµprT {Ks,qq may be smaller than VT . Moreover,
we achieve such a bound with no knowledge about Υµ,
while the work by (Besbes et al., 2014) requires knowing
VT .

6. Numerical Simulations
We numerically tested R-less-UCB and R-ed-UCB
w.r.t. state-of-the-art algorithms for non-stationary MABs
in the restless and rested settings, respectively.6

Algorithms We consider the following baseline algorithms:
Rexp3 (Besbes et al., 2014), a non-stationary MAB al-
gorithm based on variation budget, KL-UCB (Garivier &
Cappé, 2011), one of the most effective stationary MAB
algorithms, Ser4 (Allesiardo et al., 2017), which con-
siders best arm switches during the process, and sliding-
window algorithms such as SW-UCB (Garivier & Moulines,
2011), SW-KL-UCB (Combes & Proutiere, 2014), and
SW-TS (Trovò et al., 2020) that are generally able to deal
with non-stationary restless settings. The parameters for all
the baseline algorithms have been set as recommended in
the corresponding papers (see also Appendix E). For our
algorithms, the window is set as hi,t“tεNi,t´1u (as pre-
scribed by Theorems 4.4 and 5.3). We remark that while the
baseline algorithms are suited for the restless case, in the
rested case, no algorithm has been designed to cope with
the stochastic rising setting, provided that no knowledge on
the payoff function is available. We compare the algorithms
in terms of empirical cumulative regret pRµpπ,tq, which is
the empirical counterpart of the expected cumulative re-
gret Rµpπ,tq at round t averaged over multiple independent
runs.

6.1. Restless setting

To evaluate R-less-UCB in the restless setting, we
run the aforementioned algorithms on a problem with
K“15 arms over a time horizon of T“200,000 rounds,
setting ε“1{4. The payoff functions µip¨q are chosen
in these families: Fexp“tfptq“cp1´e´atqu and Fpoly“
 

fptq“c`1´bpt`b1{ρq´ρ˘(, where a,c,ρPp0,1s and bP
Rě0 are parameters, whose values have been selected ran-
domly. By construction all functions f PFexpYFpoly satisfy

6Details of the experimental setting, and additional results are
provided in Appendix E. The code to reproduce the experiments
is available at https://github.com/albertometelli/
stochastic-rising-bandits.

https://github.com/albertometelli/stochastic-rising-bandits
https://github.com/albertometelli/stochastic-rising-bandits
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Figure 3. 15 arms bandit setting: (a) first 6000 rounds/pulls of the payoff functions, (b) cumulative regret in the R-less scenario,
(c) cumulative regret in the R-ed scenario (100 runs 95% c.i.).
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Figure 4. 2 arms R-ed bandit setting: (a) payoff functions, (b) cumulative
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Figure 5. Cumulative regret in the online model selection
on IMDB dataset (30 runs, 95% c.i.).

Assumptions 3.1 and 3.2. The functions coming from Fexp
(exponential functions) have a sudden increase, while ones
from Fpoly (polynomial functions) have a slower growth
rate, leading to different cumulative increments Υµ. The
stochasticity is realized by adding a Gaussian noise with
σ“0.1. The generated functions are shown in Figure 3a.

The empirical cumulative regret pRµpπ,tq is provided in Fig-
ure 3b. The results show that SW-TS is the algorithm that
achieves the lowest regret at the horizon, even though its per-
formance at the beginning is worse than the other algorithms.
As commonly happening in practice, TS-based approaches
tend to outperform UCB ones. Indeed, R-less-UCB dis-
plays the second-best curve overall and achieves the best
performance among the UCB-like algorithms.

6.2. Rested setting

We employ the same arms generated for the restless case to
evaluate R-ed-UCB in the rested setting. We plot the em-
pirical cumulative regret in Figure 3c. SW-TS is confirmed
as the best algorithm at the end of the time horizon, although
other algorithms (SW-UCB and SW-KL-UCB) suffer less re-
gret at the beginning of learning. R-ed-UCB pays the price
of the initial exploration, but at the end of the horizon, it
manages to achieve the second-best performance. Notice

that, besides R-ed-UCB, all other baseline algorithms are
designed for the restless setting and are not endowed with
any guarantee on the regret in the rested scenario.

To highlight this fact, we designed a particular 2-arms rising
rested bandit in which the optimal arm reveals only when
pulled a sufficient number of times (linear in T ). The payoff
functions, fulfilling Assumptions 3.1 and 3.2, are shown in
Figure 4a and the algorithms’ empirical regrets in Figure 4b.
Note that in this setting the expected (instantaneous) regret
may be negative for tă 19T

400 , and this is the case for most of
the algorithms for tă20,000. While for the first «20,000
rounds R-ed-UCB is on par with the other algorithms, it
outperforms all the other policies over a longer run. Note
that the regret for Rexp3 and Ser4 is decreasing the slope
for tą40,000, meaning that they are somehow reacting to
the change in the reward of the two arms. SW-TS starts
reacting even later, at around t«100,000. However, they
are not prompt to detect such a change in the rewards and,
therefore, collect a large regret in the first part of the learning
process. The other algorithms suffer a linear regret at the
end of the time horizon since they do not employ forgetting
mechanisms or because the sliding window should be tuned
knowing the characteristics of the expected reward.



Stochastic Rising Bandits

6.3. IMDB dataset (rested)

We investigate the performance of R-ed-UCB on an online
model selection task for a real-world dataset. We employ the
IMDB dataset, made of 50,000 reviews of movies (scores
from 0 to 10). We preprocessed the data as done by Maas
et al. (2011) to obtain a binary classification problem. Each
review xt lies in a d“10,000 dimensional feature space,
where each feature is the frequency of the most common
English words. Each arm corresponds to a different online
optimization algorithm, i.e., two of them are Online Logistic
Regression algorithms with different learning rate schemes,
and the other five are Neural Networks with different topolo-
gies. We provide additional information on the arms of the
bandit in Appendix E.2. At each round, a sample xt is ran-
domly selected from the dataset, a reward of 1 is generated
for a correct classification, 0 otherwise, and, finally, the
online update step is performed for the chosen algorithm.

The empirical regret is plotted in Figure 5. We can see that
R-ed-UCB, with ε“1{32 outperforms the considered base-
lines. Compared to the synthetic simulations, the smaller
window choice is justified by the fact that we need to take
into account that the average learning curves of the classifi-
cation algorithms are not guaranteed to be non-decreasing
nor concave on the single run. However, keeping the win-
dow linear in Ni,t´1 is crucial for the regret guarantees of
Theorem 4.4.

7. Discussion and Conclusions
This paper studied the MAB problem when the payoffs are
non-decreasing functions that evolve either when pulling
the corresponding arm (rested) or for time passing (restless).
We showed that, for the rested case, an assumption on the
payoff (e.g., concavity) is essential to make the problem
learnable. We presented novel algorithms that suitably em-
ploy the concavity assumption to build proper estimators for
both settings. These algorithms are proven to suffer a regret
made of a first instance-independent component of rOpT 2

3 q
and an instance-dependent component involving the cumu-
lative increment function Υµp¨,qq. For the rested setting,
ours represent the first no-regret algorithm for the stochastic
rising bandits. The experimental evaluation confirmed our
theoretical findings showing advantages over state-of-the-art
algorithms designed for non-stationary bandits, especially
in the rested setting. The natural future research direction
consists of studying the complexity of the learning problem
in stochastic rising rested and restless bandits, focusing on
deriving suitable regret lower bounds. Other future works
include investigating the best-arm identification setting and,
motivated by the online model selection, analysing the alter-
native case in which the optimization algorithms associated
with the arms act on a shared vector of parameters.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Levine, N., Crammer, K., and Mannor, S. Rotting bandits. In
Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M.,
Fergus, R., Vishwanathan, S. V. N., and Garnett, R. (eds.),
Proceedings of the conference on Neural Information
Processing Systems (NeurIPS), pp. 3074–3083, 2017.

Li, Y., Jiang, J., Gao, J., Shao, Y., Zhang, C., and Cui, B.
Efficient automatic CASH via rising bandits. In Proceed-
ings of the Conference on Artificial Intelligence (AAAI),
pp. 4763–4771, 2020.

Liu, F., Lee, J., and Shroff, N. A change-detection based
framework for piecewise-stationary multi-armed bandit
problem. In Proceedings of the Conference on Artificial
Intelligence (AAAI), volume 32, 2018.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis.
In Proceedings of the annual meeting of the association
for computational linguistics: Human Language Tech-
nologies (HLT), pp. 142–150, 2011.

Mintz, Y., Aswani, A., Kaminsky, P., Flowers, E., and
Fukuoka, Y. Nonstationary bandits with habituation and
recovery dynamics. Operations Research, 68(5):1493–
1516, 2020.

Ortner, R., Ryabko, D., Auer, P., and Munos, R. Regret
bounds for restless markov bandits. In Proceedings of the
international conference on Algorithmic Learning Theory
(ALT), pp. 214–228, 2012.

Pacchiano, A., Dann, C., Gentile, C., and Bartlett, P. Regret
bound balancing and elimination for model selection in
bandits and rl. arXiv preprint arXiv:2012.13045, 2020a.

Pacchiano, A., Phan, M., Abbasi-Yadkori, Y., Rao, A., Zim-
mert, J., Lattimore, T., and Szepesvári, C. Model selec-
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A. Proofs and Derivations
In this section, we provide the proof of the results presented in the main paper.

A.1. Proofs of Section 4

Theorem 4.1 (Heidari et al., 2016). Let πcµ,T be the oracle constant policy:

πcµ,T ptqPargmax
iPrKs

#

ÿ

lPrT s
µiplq

+

, @tPrT s.

Then, πcµ,T is optimal for the rested non-decreasing bandits (i.e., under Assumption 3.1).

Proof. The proof is reported in Proposition 1 of (Heidari et al., 2016).

Lemma A.1. In the noiseless (σ“0) setting, there exists a 2-armed non-increasing non-concave bandit such that any
learning policy π suffers regret:

Rµpπ,T qě
Z

T

12

^

.

Proof. Let µA and µB be two non-concave non-decreasing rested bandits, defined as:

µA1 pnq“µB1 pnq“
1

2
,

µA2 pnq“
#

0 if nďtT3 u

1 otherwise
,

µB2 pnq“0.

It is clear that for µA the optimal arm is 2, whereas for bandit µB the optimal arm is 1, having optimal performance
respectively J˚

µA
pT q“r 2

3T s and J˚
µB
pT q“ T

2 .

tT3 u
T

0.5

1

n

µA1
µA2

T

0.5

1

n

µB1
µB2

Let π be an arbitrary policy. Since the learner will receive the same rewards for both bandits until at least tT3 u. Thus, we
have:

πpHtpµAqq“πpHtpµBqqùñ E
µA

”

N1,tT3 u

ı

“ E
µB

”

N1,tT3 u

ı

“:n1.

Let us now compute the performance of policy π in the two bandits and the corresponding regrets. Let us start with µA:

JµApπ,T q“ 1

2
E
µA
rN1,T s`max

"

0, E
µA
rN2,T s´

Z

T

3

^*

(6)

“ 1

2
E
µA
rN1,T s`max

"

0,

R

2

3
T

V

´ E
µA
rN1,T s

*

, (7)
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where Equation (6) follows from observing that we get reward from arm 2 only if we pull it more than tT3 u times and
Equation (7) derives from observing that T“EµArN1,T s`EµArN2,T s. Now, consider the two cases:

Case (i) : EµArN1,T sěr 2
3T s

JµApπ,T q“ 1

2
E
µA
rN1,T s,

that is maximized by taking EµArN1,T s“T .

Case (ii) : EµArN1,T săr 2
3T s

JµApπ,T q“
R

2

3
T

V

´ 1

2
E
µA
rN1,T s,

that is maximized by taking the minimum value of EµArN1,T s possible, that is EµArN1,T sěEµArN1,tT3 us“n1. Putting all
together, we have:

JµApπ,T qďmax

"

T

2
,

R

2

3
T

V

´n1

2

*

“
R

2

3
T

V

´n1

2
,

having observed that n1ďtT3 u. Let us now focus on the regret:

RµApπ,T q“J˚µApT q´JµApπ,T q“
R

2

3
T

V

´
R

2

3
T

V

`n1

2
“n1

2
.

Consider now bandit µB , we have:

JµB pπ,T q“ 1

2
E
µB
rN1,T sďn1

2
`
Z

T

3

^

,

having observed that EµB rN1,T s“n1`EµB rN1,T s´EµB rN1,tT3 usďn1`r 2
3T s. Let us now compute the regret:

RµB pπ,T q“J˚µB pT q´JµB pπ,T q“
T

2
´n1

2
´
Z

T

3

^

“
R

T

6

V

´n1

2
.

Finally, the worst-case regret can be lower bounded as follows:

inf
π

sup
µ
Rµpπ,T qěinf

π
max

 

RµApπ,T q,RµB pπ,T q
(“ inf

n1Pr0,tT3 us
max

"

n1

2
,

R

T

6

V

´n1

2

*

ě 1

2

R

T

6

V

ě
Z

T

12

^

,

having minimized over n1.

Theorem 4.2 (Non-Learnability). There exists a 2-armed non-decreasing (non-concave) deterministic rested bandit with
γipnqďγmaxď1 for all iPrKs and nPN, such that any learning policy π suffers regret:

Rµpπ,T qě
Yγmax

12
T
]

.

Proof. It is sufficient to rescale the mean function of the proof of Lemma A.1 by the quantity γmax.

Lemma A.2. For every arm iPrKs and every round tPrT s, let us define:

µR-edi ptq:“µipNi,t´1q`pt´Ni,t´1qγipNi,t´1´1q,
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if Ni,t´1ě2 else µR-edi ptq:“`8. Then, µR-edi ptqěµiptq and, if Ni,t´1ě2, it holds that:

µR-edi ptq´µipNi,tqďpt´Ni,t´1qγipNi,t´1´1q.

Proof. Let us consider the following derivation:

µiptq“µipNi,t´1q`
t´1
ÿ

n“Ni,t´1

γipnqďµipNi,t´1q`pt´Ni,t´1qγipNi,t´1´1q“:µR-edi ptq,

where the inequality holds thanks to Assumption 3.2, having observed that
řt´1
n“Ni,t´1

γipnqďpt´Ni,t´1qγipNi,t´1qď
pt´Ni,t´1qγipNi,t´1´1q. For the bias bound, when Ni,t´1ě2, we consider the following derivation:

µR-edi ptq´µipNi,tq“µipNi,t´1q`pt´Ni,t´1qγipNi,t´1´1q´µipNi,tqďpt´Ni,t´1qγipNi,t´1´1q.

having observed that µipNi,t´1qďµipNi,tq by Assumption 3.1.

Theorem 4.3. Let T PN, then R-ed-UCB (Algorithm 1) with Biptq”µR-edi ptq suffers an expected regret bounded, for
every qPr0,1s, as:

RµpR-ed-UCB,T qď2K`KT qΥµ

ˆR

T

K

V

,q

˙

.

Proof. We have to analyze the following expression:

RµpR-ed-UCB,T q“
T
ÿ

t“1

µi˚ptq´µItpNi,tq,

where i˚PargmaxiPrKs
!

ř

lPrT sµiplq
)

. We consider a term at a time, use Biptq”µR-edi ptq, and we exploit the optimism,
i.e., Bi˚ptqďBItptq:

µi˚ptq´µItpNIt,tq`BItptq´BItptqďmin

$

&

%

1,µi˚ptq´Bi˚ptq
looooooomooooooon

ď0

`BItptq´µItpNIt,tq
,

.

-

ďmint1,BItptq´µItpNIt,tqu.

Now we work on the term inside the minimum when NIt,t´1ě2:

BItptq´µItpNIt,tq“µR-edi ptq´µItpNIt,tqďpt´Ni,t´1qγItpNi,t´1´1q,

where the inequality follows from Lemma A.2. We are going to decompose the summation of this term over the K arms:

RµpR-ed-UCB,T qď
T
ÿ

t“1

mint1,pt´Ni,t´1qγItpNi,t´1´1qu

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

mint1,pti,j´pj´1qqγipj´2qu,

where ti,jPrT s is the round at which arm iPrKs was pulled for the j-th time. Now, qPr0,1s, then for any xě0 it holds that
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mint1,xuďmint1,xuqďxq . By applying this latter inequality to the inner summation, we get:

Ni,T
ÿ

j“3

mint1,pti,j´pj´1qqγipj´2quď
Ni,T
ÿ

j“3

mint1,Tγipj´2quďT q
Ni,T
ÿ

j“3

γipj´2qq,

having used ti,j´pj´1qďT . Summing over the arms, we obtain:

T q
ÿ

iPrKs

Ni,T
ÿ

j“3

γipj´2qqďT q
ÿ

iPrKs
ΥµpNi,T ,qqďT qKΥµ

ˆR

T

K

V

,q

˙

,

where the last inequality is obtained from Lemma C.2.

Estimator Construction for the Stochastic Rising Rested Setting Before moving to the proofs, we provide some
intuition behind the estimator construction. We start observing that for every lPt2,...,Ni,t´1u, we have that:

µiptq“ µiplq
loomoon

(past payoff)

`
t´1
ÿ

j“l
γipjq

looomooon

(sum of future increments)

ď µiplq
loomoon

(past payoff)

`pt´lq γipl´1q
looomooon

(past increment)

,

where the inequality follows from Assumption 3.2.7 Since we do not have access to the exact payoffs µiplq and exact
increments γipl´1q“µiplq´µipl´1q, one may be tempted to directly replace them with the corresponding point estimates
Rti,l and Rti,l´Rti,l´1

and average the resulting estimators for a window of the most recent h values of l. Unfortunately,
while replacing µiplq with Rti,l is a viable option, replacing γipl´1q with Rti,l´Rti,l´1

will prevent concentration since
the estimate Ri,tl´Ri,tl´1

is too unstable. To this end, before moving to the estimator, we need a further bounding step to
get a more stable, although looser, quantity. Based on Lemma C.3, we bound for every lPt2,...,Ni,t´1u and hPrl´1s:

γipl´1q
looomooon

(past increment at l)

ď µiplq´µipl´hq
h

loooooooomoooooooon

(average past increment over tl´h,...,lu)

.

We can now introduce the optimistic approximation of µiptq, i.e., rµR-ed,hi ptq, and the corresponding estimator, i.e., pµR-ed,hi ptq,
that are defined in terms of a window of size 1ďhďtNi,t´1{2u:

rµR-ed,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

µiplq
loomoon

(past payoff)

`pt´lq µiplq´µipl´hq
h

loooooooomoooooooon

(average past increment)

¸

,

pµR-ed,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

Rti,l
loomoon

(estimated past payoff)

`pt´lq Rti,l´Rti,l´h
h

looooooomooooooon

(estimated average past increment)

¸

.

The proof is composed of the following steps:

(i) Lemma A.3 shows that rµR-ed,hi ptq is an upper-bound for µiptq and provides a bound to its bias w.r.t. µipNi,tq for every
value of h;

(ii) Lemma A.4 analyzes the concentration of pµR-ed,hi ptq around rµR-ed,hi ptq for a specific choice of δt“t´α and when
hi,h :“hpNi,t´1q is a function of the number of pulls Ni,t´1 only;

(iii) Theorem 4.4 bounds the expected regret of R-ed-UCB when hi,h“tεNi,t´1u, for εPp0,1{2q.
7The estimator of the deterministic case in Equation (4) is obtained by setting l“Ni,t´1.
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Lemma A.3. For every arm iPrKs, every round tPrT s, and window width 1ďhďtNi,t´1{2u, let us define:

rµR-ed,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µiplq`pt´lqµiplq´µipl´hq
h

˙

,

otherwise if h“0, we set rµR-ed,hi ptq:“`8. Then, rµR-ed,hi ptqěµiptq and, if Ni,t´1ě2, it holds that:

rµR-ed,hi ptq´µipNi,tqď 1

2
p2t´2Ni,t´1`h´1qγipNi,t´1´2h`1q.

Proof. Following the derivation provided above, we have for every lPt2,...,Ni,t´1u:

µiptq“µiplq`
t´1
ÿ

j“l
γipjq

ďµiplq`pt´lqγipl´1q (8)

ďµiplq`pt´lqµiplq´µipl´hq
h

, (9)

where line (8) follows from Assumption 3.2, line (9) is obtained from Lemma C.3. By averaging over the most recent
1ďhďtNi,t´1{2u pulls, we obtain:

µiptqď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µiplq`pt´lqµiplq´µipl´hq
h

˙

“:
rµR-ed,hi ptq.

For the bias bound, when Ni,t´1ě2, we have:

rµR-ed,hi ptq´µipNi,tq“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µiplq`pt´lqµiplq´µipl´hq
h

˙

´µipNi,tq (10)

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lqµiplq´µipl´hq
h

“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lq 1

h

l´1
ÿ

j“l´h
γjplq

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lqγipl´hq (11)

ď 1

2
p2t´2Ni,t´1`h´1qγipNi,t´1´2h`1q. (12)

where line (10) follows from Assumption 3.1 applied as µiplqďµipNi,tq, line (11) follows from Assumption 3.2 and
bounding 1

h

řl´1
j“l´hγjplqďγipl´hq and line (12) is derived still from Assumption 3.2, γipl´hqďγipNi,t´1´2h`1q and

computing the summation.

Lemma A.4. For every arm iPrKs, every round tPrT s, and window width 1ďhďtNi,t´1{2u, let us define:

pµR-ed,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

Rti,l`pt´lq
Rti,l´Rti,l´h

h

˙

,
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βR-ed,hi pt,δq:“σpt´Ni,t´1`h´1q
d

10log 1
δ

h3
,

otherwise if h“0, we set pµR-ed,hi ptq:“`8 and βR-ed,hi pt,δq:“`8 . Then, if the window size depends on the number of
pulls only hi,t“hpNi,t´1q and if δt“t´α for some αą2, it holds for every round tPrT s that:

Pr
´
ˇ

ˇ

ˇ
pµ
R-ed,hi,t
i ptq´rµ

R-ed,hi,t
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hi,ti pt,δtq

¯

ď2t1´α.

Proof. First of all, we observe under the event thi,t“0u, then pµ
R-ed,hi,t
i ptq“rµ

R-ed,hi,t
i ptq“βR-ed,hi,ti pt,δtq“`8. By

convening that p`8q´p`8q“0, we have that 0ąβR-ed,hi,ti pt,δtq is not satisfied. Thus, we perform the analysis under the
event thi,tě1u. We first get rid of the dependence on the random number of pulls Ni,t´1:

Pr
´
ˇ

ˇ

ˇ
pµ
R-ed,hi,t
i ptq´rµ

R-ed,hi,t
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hi,ti pt,δtq

¯

“Pr
´
ˇ

ˇ

ˇ
pµ
R-ed,hpNi,t´1q
i ptq´rµ

R-ed,hpNi,t´1q
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hpNi,t´1q

i pt,δtq
¯

(13)

ďPr
´

DnPt0,...,t´1u s.t. hpnqě1:
ˇ

ˇ

ˇ
pµ
R-ed,hpnq
i ptq´rµ

R-ed,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hpnqi pt,δtq

¯

ď
ÿ

nPt0,...,t´1u:hpnqě1

Pr
´
ˇ

ˇ

ˇ
pµ
R-ed,hpnq
i ptq´rµ

R-ed,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hpnqi pt,δtq

¯

, (14)

where line (13) derives from the definition of hi,t“hpNi,t´1q and line (14) follows from a union bound over the possible
values of Ni,t´1. Now, having fixed the value of n, we rewrite the quantity to be bounded:

hpnq
´

pµ
R-ed,hpnq
i ptq´rµ

R-ed,hpnq
i ptq

¯

“
n
ÿ

l“n´hpnq`1

ˆ

Xl`pt´lqXl´Xl´hpnq
hpnq

˙

“
n
ÿ

l“n´hpnq`1

ˆ

1` t´l
hpnq

˙

Xl´
n
ÿ

l“n´hpnq`1

t´l
hpnq ¨Xl´hpnq,

where Xl :“Rti,l´µiplq. It is worth noting that we can index Xl with the number of pulls l only as the distribution of Rti,l
is fully determined by l and n (that are non-random quantities now) and, consequently, all variables Xl and Xl´hpnq are
independent.

Now we apply Azuma-Hoëffding’s inequality of Lemma C.5 for weighted sums of subgaussian martingale difference
sequences. To this purpose, we compute the sum of the square weights:

n
ÿ

l“n´hpnq`1

ˆ

1` t´l
hpnq

˙2

`
n
ÿ

l“n´hpnq`1

ˆ

t´l
hpnq

˙2

ďhpnq
ˆ

1` t´n`hpnq´1

hpnq
˙2

`hpnq
ˆ

t´n`hpnq´1

hpnq
˙2

(15)

ď 5pt´n`hpnq´1q2
hpnq , (16)

where line (15) follows from bounding t´lďt´n`hpnq´1 and line (16) from observing that t´n`hpnq´1
hpnq ě1. Thus, we

have:

Pr
´
ˇ

ˇ

ˇ
pµ
R-ed,hpnq
i ptq´rµ

R-ed,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-ed,hpnqi pt,δtq

¯
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ďPr

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

l“n´hpnq`1

ˆ

1` t´l
hpnq

˙

Xl´
n
ÿ

l“n´hpnq`1

t´l
hpnq ¨Xl´hpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ąhpnqβR-ed,hpnqi pt,δtq
˛

‚

2exp

¨

˚

˝

´
´

hpnqβR-ed,hpnqi pt,δtq
¯2

2σ2
´

5pt´n`hpnq´1q2
hpnq

¯

˛

‹

‚

“2δt.

By replacing this result into Equation (14), and recalling the value of δt, we obtain:

ÿ

nPt0,...,t´1u:hpnqě1

2δtď
t´1
ÿ

n“0

2δt“
t´1
ÿ

n“0

2t´αď2t1´α.

Theorem 4.4. Let T PN, then R-ed-UCB (Algorithm 1) with Biptq”pµ
R-ed,hi,t
i ptq`βR-ed,hi,ti ptq, hi,t“tεNi,t´1u for

εPp0,1{2q and δt“t´α for αą2, suffers an expected regret bounded, for every qPr0,1s, as:

RµpR-ed-UCB,T qďO

˜

K

ε
pσT q 2

3 pαlogT q 1
3

` KT q

1´2ε
Υµ

ˆR

p1´2εq T
K

V

,q

˙

¸

.

Proof. Let us define the good events Et“ŞiPrKsEi,t that correspond to the event in which all confidence intervals hold:

Ei,t :“
!
ˇ

ˇ

ˇ
rµ
R-ed,hi,t
i ptq´pµ

R-ed,hi,t
i ptq

ˇ

ˇ

ˇ
ďβR-ed,hi,ti ptq

)

@iPrT s, iPrKs

We have to analyze the following expression:

RµpR-ed-UCB,T q“E

«

T
ÿ

t“1

µi˚ptq´µItpNi,tq
ff

,

where i˚PargmaxiPrKs
!

ř

lPrT sµiplq
)

. We decompose the above expression according to the good events Et:

RµpR-ed-UCB,T q“
T
ÿ

t“1

Erpµi˚ptq´µItpNIt,tqq1tEtus`
T
ÿ

t“1

Erpµi˚ptq´µItpNIt,tqq1t Etus (17)

ď
T
ÿ

t“1

Erpµi˚ptq´µItpNIt,tqq1tEtus`
T
ÿ

t“1

Er1t Etus, (18)

where we exploited µi˚ptq´µItpNIt,tqď1 in line (18). Now, we bound the second summation, recalling that αą2:

T
ÿ

t“1

Er1t Etus“
T
ÿ

t“1

Prp Etq“1`
T
ÿ

t“2

Pr

¨

˝ 
č

iPrKs
Ei,t

˛

‚“1`
T
ÿ

t“2

Pr

¨

˝

ď

iPrKs
 Ei,t

˛

‚ď1`
ÿ

iPrKs

T
ÿ

t“2

Prp Ei,tq,

where the first inequality is obtained with Prp E1qď1 and the second with a union bound over rKs. Recalling Prp Ei,tq
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was bounded in Lemma A.4, we bound the summation with the integral as in Lemma C.4 to get:

ÿ

iPrKs

T
ÿ

t“2

Prp Ei,tqď
ÿ

iPrKs

T
ÿ

t“2

2t1´αď2K

ż `8

x“1

x1´αdx“ 2K

α´2
.

From now on, we proceed the analysis under the good events Et, recalling that Biptq”pµ
R-ed,hi,t
i ptq`βR-ed,hi,ti pt,δtq. We

consider each addendum of the summation and we exploit the optimism, i.e., Bi˚ptqďBItptq:

µi˚ptq´µItpNIt,tq`BItptq´BItptqďmin

$

&

%

1,µi˚ptq´Bi˚ptq
looooooomooooooon

ď0

`BItptq´µItpNIt,tq
,

.

-

ďmint1,BItptq´µItpNIt,tqu.

Now, we work on the term inside the minimum:

BItptq´µItpNIt,tq“pµ
R-ed,hIt,t
It

ptq`βR-ed,hIt,tIt
pt,δtq´µItpNIt,tq (19)

ďrµ
R-ed,hIt,t
It

ptq´µItpNIt,tq
looooooooooooooomooooooooooooooon

(a)

`2β
R-ed,hIt,t
It

pt,δtq
looooooooomooooooooon

(b)

, (20)

where line (19) follows from the definition of Biptq, and line (20) derives from the fact that we are under the good event Et.
We now decompose over the arms and consider one term at a time. We start with (a):

T
ÿ

t“1

min
!

1,rµ
R-ed,hIt,t
It

ptq´µItpNIt,tq
)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min
!

1,rµ
R-ed,hi,ti,j
i pti,jq´µipjq

)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min

"

1,
1

2
p2ti,j´2pj´1q`hi,ti,j´1qγippj´1q´2hi,ti,j`1q

*

(21)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

mint1,Tγipj´2tεpj´1ququ (22)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

mint1,Tγiptp1´2εqjuqu (23)

ď2K`T q
ÿ

iPrKs

Ni,T
ÿ

j“3

γiptp1´2εqjuqq (24)

ď2K`T q
R

1

1´2ε

V

ÿ

iPrKs

tp1´2εqNi,T u
ÿ

j“t3p1´2εqu
γipjq (25)

ď2K`T q
R

1

1´2ε

V

ÿ

iPrKs
Υµptp1´2εqNi,T u,qq (26)

ď2K`KT q
R

1

1´2ε

V

Υµ

ˆR

p1´2εq T
K

V

,q

˙

, (27)

where line (21) follows from Lemma A.3, line (22) is obtained by bounding 2ti,j´2pj´1q`hi,ti,j´1ď2T and exploiting
the definition of hi,t“tεNi,t´1u, line (23) follows from the observation j´2tεpj´1quěj´2εpj´1qětp1´2εqju, line (24)
is obtained from the already exploited inequality mint1,xuďmint1,xuqďxq for qPr0,1s, line (25) is an application of
Lemma C.1, line (26) applies the definition of Υµp¨,qq, and line (27) follows from Lemma C.2 recalling that

ř

iPrKstp1´
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2εqNi,T uďp1´2εqT .

Let us now move to the concentration term (b). We decompose over the arms as well, taking care of the pulls in which
hi,j“0, that are at most 1`P 1

ε

T

:

T
ÿ

t“1

min
!

1,2β
R-ed,hIt,t
It

pt,δtq
)

ďK`K
R

1

ε

V

`
ÿ

iPrKs

Ni,T
ÿ

j“r 1
ε s`1

min

#

1,2σpti,t´pj´1q`hi,ti,t´1q
d

10logptαq
h3
i,ti,t

+

.

“K`K
R

1

ε

V

`
ÿ

iPrKs

Ni,T
ÿ

j“r 1
ε s`1

min

#

1,2σT

d

10αlogpT q
tεpj´1qu3

+

, (28)

where line (28) follows from bounding tαďTα and from the definition of hi,t“tεNi,t´1u. To bound the summation, we
compute the minimum integer value j˚ (that turns out to be independent of i) of j such that the minimum is attained by its
second argument:

2σT

d

10αlogpT q
tεpj´1qu3 ď1ùñ tεpj´1quěp2σT q 2

3 p10αlogT q 1
3

ùñj˚“
S

1`ε`p2σT q 2
3 p10αlogT q 1

3

ε

W

.

Thus, we have:

K`K
R

1

ε

V

`
ÿ

iPrKs

Ni,T
ÿ

j“r 1
ε s`1

min

#

1,2σT

d

10αlogpT q
tεpj´1qu3

+

ďK`K
R

1

ε

V

`
ÿ

iPrKs

¨

˝

j˚
ÿ

j“r 1
ε s`1

1`
Ni,T
ÿ

j“j˚`1

2σT

d

10αlogpT q
tεpj´1qu3

˛

‚

(29)

ďK`K
R

1

ε

V

`K
ˆ

j˚´1´
R

1

ε

V

`1

˙

`2KσT
a

10αlogpT q
ż `8

x“j˚
1

pεpx´1q´1q 3
2

dx (30)

“K`Kj˚` 4KσT
a

10αlogpT q
εpεpj˚´1q´1q 1

2

“K
ˆ

3` 1

ε

˙

` 3K

ε
p2σT q 2

3 p10αlogT q 1
3 , (31)

where line (29) is obtained by splitting the summation based on the value of j˚, line (30) comes from bounding the
summation with the integral (Lemma C.4), and line (31) follows from substituting the value of j˚ and simple algebraic
manipulations. Putting all together, we obtain:

RµpR-ed-UCB,T qď1` 2K

α´2
`5K`K

ε
` 3K

ε
p2σT q 2

3 p10αlogT q 1
3`KT q

R

1

1´2ε

V

Υµ

ˆR

p1´2εq T
K

V

,q

˙

“O
ˆ

KT q
R

1

1´2ε

V

Υµ

ˆR

p1´2εq T
K

V

,q

˙

`K
ε
pσT q 2

3 pαlogT q 1
3

˙

.

A.2. Proofs of Section 5

Theorem 5.1 (Seznec et al., 2020). Let πgµ be the oracle greedy policy:

πgµptqPargmax
iPrKs

tµiptqu, @tPrT s.
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Then, πgµ is optimal for the restless non-decreasing bandits (i.e., under Assumption 3.1).

Proof. Trivially follows from the fact that the greedy policy at each round t is selecting the largest expected reward, therefore
any optimal policy other than the greedy one should select a larger expected reward at least for a single round t1, which is in
contradiction with the definition of greedy policy.

Lemma A.5. For every arm iPrKs and every round tPrT s, let us define:

µR-lessi ptq:“µipti,Ni,t´1
q`pt´ti,Ni,t´1

qµipti,Ni,t´1q´µipti,Ni,t´1´1q
ti,Ni,t´1

´ti,Ni,t´1´1
,

if Ni,t´1ě2 else µR-lessi ptq:“`8. Then, µR-lessi ptqěµiptq and, if Ni,t´1ě2, it holds that:

µR-lessi ptq´µiptqď
`

t´ti,Ni,t´1

˘

γipti,Ni,t´1´1q.

Proof. Let us consider the following derivation:

µiptq“µipti,Ni,t´1
q`

t´1
ÿ

l“ti,Ni,t´1

γiplq

ďµipti,Ni,t´1
q`pt´ti,Ni,t´1

qγipti,Ni,t´1
q (32)

ďµipti,Ni,t´1
q`pt´ti,Ni,t´1

qµipti,Ni,t´1q´µipti,Ni,t´1´1q
ti,Ni,t´1

´ti,Ni,t´1´1
“:µR-lessi ptq, (33)

where line (32) follows from Assumption 3.2 and line (33) from Lemma C.3. Moreover, if Ni,t´1ě2, we have:

µR-lessi ptq´µiptq“pt´ti,Ni,t´1
qµipti,Ni,t´1q´µipti,Ni,t´1´1q

ti,Ni,t´1
´ti,Ni,t´1´1

`µipti,Ni,t´1
q´µiptq

loooooooooomoooooooooon

ď0

ďpt´ti,Ni,t´1
qµipti,Ni,t´1

q´µipti,Ni,t´1´1q
ti,Ni,t´1

´ti,Ni,t´1´1

“ t´ti,Ni,t´1

ti,Ni,t´1
´ti,Ni,t´1´1

ti,Ni,t´1
´1

ÿ

l“ti,Ni,t´1´1

γiplq,

ď`t´ti,Ni,t´1

˘

γipti,Ni,t´1´1q,

where we employed Assumption 3.2 in the last line, noting 1
ti,Ni,t´1

´ti,Ni,t´1´1

řti,Ni,t´1
´1

l“ti,Ni,t´1´1
γiplqďγipti,Ni,t´1´1q.

Theorem 5.2. Let T PN, then R-less-UCB (Algorithm 1) with Biptq”µR-lessi ptq suffers an expected regret bounded, for
every qPr0,1s, as:

RµpR-less-UCB,T qď2K`KT q
q`1 Υµ

ˆR

T

K

V

,q

˙
1
q`1

.

Proof. We have to analyze the following expression:

RµpR-less-UCB,T q“
T
ÿ

t“1

µi˚t ptq´µItptq,
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where it̊ PargmaxiPrKstµiptqu for all tPrT s. We consider each round at a time, recalling that Biptq”µR-lessi ptq, and using
optimism, i.e., Bi˚t ptqďBItptq, we have:

µi˚ptq´µItptq`BItptq´BItptqďmin

$

’

&

’

%

1,µi˚t ptq´Bi˚t ptq
looooooomooooooon

ď0

`BItptq´µItptq

,

/

.

/

-

ďmint1,BItptq´µItptqu. (34)

Now we consider the term inside the minimum, when NIt,t´1ě2:

BItptq´µItptq“µR-lessIt ptq´µItptq (35)
ďpt´ti,Ni,t´1

qγipti,Ni,t´1´1q, (36)

where to get line (36) we applied Lemma A.5. Let us plug the expression derived in Equation (34) and decompose the
summation of this term w.r.t. the K arms:

RµpR-less-UCB,T qď
T
ÿ

t“1

min
 

1,pt´ti,Ni,t´1
qγipti,Ni,t´1´1q,

(

“2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

mint1,pti,j´ti,j´1qγipti,j´2qu

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

pti,j´ti,j´1qyγipti,j´2qy (37)

ď2K`
ÿ

iPrKs

˜

Ni,T
ÿ

j“3

pti,j´ti,j´1q
¸y˜Ni,T

ÿ

j“3

γipti,j´2q
y

1´y

¸1´y
(38)

ď2K`T y
ÿ

iPrKs

˜

Ni,T
ÿ

j“3

γipj´2q y
1´y

¸1´y
(39)

ď2K`T y
ÿ

iPrKs
Υµ

ˆ

Ni,T ,
y

1´y
˙1´y

ď2K`T yKy

¨

˝

ÿ

iPrKs
Υµ

ˆ

Ni,T ,
y

1´y
˙

˛

‚

1´y

(40)

ď2K`T yKΥµ

ˆR

T

K

V

,
y

1´y
˙1´y

, (41)

line (37) follows from the inequality mint1,xuďmint1,xuyďxy for yP“0, 1
2

‰

, line (38) follows from Hölder’s inequality
with powers 1

yě1 and 1
1´yě1 (since yP“0, 1

2

‰

), line (39) is obtained from observing that
řNi,T
j“3 pti,j´ti,j´1qďT and

γipti,j´2qďγipj´2q from Assumption 3.2, line (40) follows from Jensen’s inequality as yP“0, 1
2

‰

and observing:

ÿ

iPrKs
Υµ

ˆ

Ni,T ,
y

1´y
˙1´y

“K
ÿ

iPrKs

1

K
Υµ

ˆ

Ni,T ,
y

1´y
˙1´y

ďKy

¨

˝

ÿ

iPrKs
Υµ

ˆ

Ni,T ,
y

1´y
˙

˛

‚

1´y

,

where line (41) is obtained from Lemma C.2. The final theorem statement is obtained by defining q :“ y
1´y Pr0,1s and

substituting it to the above equation.
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Estimator Construction for the Stochastic Rising Restless Setting We provide the intuition behind the estimator
construction and explain why it differs significantly from the one employed for the deterministic case. We start observing
that for every lPt2,...,Ni,t´1u, we have that:

µiptq“ µipti,lq
loomoon

(past payoff)

`
t´1
ÿ

j“tl
γipjq

looomooon

(sum of future increments)

ď µiplq
loomoon

(past payoff)

`pt´ti,lq γipti,l´1q
looomooon

(past increment)

,

where the inequality follows from Assumption 3.2. Since do not have access to γipti,l´1q and we cannot directly estimate it,
we need to perform a further bounding step. Specifically, based on Lemma C.3, we bound for every lPt2,...,Ni,t´1u and
hPrl´1s:

γipti,l´1q
looomooon

(past increment at ti,l)

ď µipti,lq´µipti,l´hq
ti,l´ti,l´h

loooooooooomoooooooooon

(average past increment over tti,l´h,...,ti,lu)

.

We report a first proposal of optimistic approximation of µiptq, i.e., rrµR-ed,hi ptq, and the corresponding estimator, i.e.,
p

pµR-ed,hi ptq, that are defined in terms of a window of size 1ďhďtNi,t´1{2u:

r

rµR-less,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

µipti,lq
loomoon

(past payoff)

`pt´ti,lqµipti,lq´µipti,l´hq
ti,l´ti,l´h

loooooooooomoooooooooon

(average past increment)

¸

,

p

pµR-less,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

Rti,l
loomoon

(estimated past payoff)

`pt´ti,lq Rti,l´Rti,l´h
ti,l´ti,l´h

looooooomooooooon

(estimated average past increment)

¸

.

Unfortunately, this estimator, although intuitive, does not enjoy desirable concentration properties due to the presence of the
denominator ti,l´ti,l´h that is inconveniently correlated with the numerator Rti,l´Rti,l´h . For this reason, we resort to
different estimators, with better concentration properties but larger bias:

rµR-less,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

µipti,lq
loomoon

(past payoff)

`pt´lqµipti,lq´µipti,l´hq
h

loooooooooomoooooooooon

(average past increment)

¸

,

pµR-less,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

˜

Rti,l
loomoon

(estimated past payoff)

`pt´lq Rti,l´Rti,l´h
h

looooooomooooooon

(estimated average past increment)

¸

.

These estimators are actually upper-bounds of the previous ones since ti,l´ti,l´hěh and ti,lěl.
The proof is composed of the following steps:

(i) Lemma A.6 shows that rµR-less,hi ptq is an upper-bound for µiptq and provides a bound to its bias for every value of h;

(ii) Lemma A.7 analyzes the concentration of pµR-less,hi ptq around rµR-less,hi ptq for a specific choice of δt“t´α and when
hi,h :“hpNi,t´1q is a function of the number of pulls Ni,t´1 only;

(iii) Theorem 5.3 bounds the expected regret of R-less-UCB when hi,h“tεNi,t´1u for εPp0,1{2q.
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Lemma A.6. For every arm iPrKs, every round tPrT s, and window width 1ďhďtNi,t´1{2u, let us define:

rµR-less,hi ptq– 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µipti,lq`pt´lqµipti,lq´µipti,l´hq
h

˙

,

otherwise if h“0, we set rµR-less,hi ptq:“`8. Then, rµR-less,hi ptqěµipti,Ni,t´1
q and, if Ni,t´1ě2 it holds that:

rµR-less,hi ptq´µiptqď p2t´2Ni,t´1`h´1qpti,Ni,t´1
´ti,Ni,t´1´2h`1q

2h
γipti,Ni,t´1´2h`1q.

Proof. Let us start by observing the following equality holding for every lPt2,...,Ni,t´1u:

µiptq“µipti,lq`
t´1
ÿ

j“ti,l
γipjq.

By averaging over a window of length h, we obtain:

µiptq“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

¨

˝µipti,lq`
t´1
ÿ

j“ti,l
γipjq

˛

‚

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pµipti,lq`pt´ti,lqγipti,l´1qq (42)

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

¨

˝µipti,lq` t´ti,l
ti,l´ti,l´h

ti,l´1
ÿ

j“ti,l´h
γipjq

˛

‚ (43)

“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µipti,lq`pt´ti,lqµipti,lq´µipti,l´hq
ti,l´ti,l´h

˙

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µipti,lq`pt´lqµipti,lq´µipti,l´hq
h

˙

“:
rµR-less,hi ptq, (44)

where lines (42) and (43) follow from Assumption 3.2, and line (44) is obtained from observing that ti,lěl and ti,l´ti,l´hěh.
Concerning the bias, when Ni,t´1ě2, we have:

rµR-less,hi ptq´µiptq“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

µipti,lq`pt´lqµipti,lq´µipti,l´hq
h

˙

´µiptq

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lqµipti,lq´µipti,l´hq
h

(45)

“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lqµipti,lq´µipti,l´hq
ti,l´ti,l´h ¨ ti,l´ti,l´h

h

ď 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lqγipti,l´hq¨ ti,l´ti,l´h
h

(46)

ď ti,Ni,t´1´ti,Ni,t´1´2h`1

h2
γipti,Ni,t´1´2h`1q

Ni,t´1
ÿ

l“Ni,t´1´h`1

pt´lq (47)
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“ p2t´2Ni,t´1`h´1qpti,Ni,t´1
´ti,Ni,t´1´2h`1q

2h
γipti,Ni,t´1´2h`1q, (48)

where line (45) follows from observing that µipti,lqďµiptq, line (46) derives from Assumption 3.2 and bounding
µipti,lq´µipti,l´hq

ti,l´ti,l´h ďγipti,l´hq, line (47) is obtained by bounding ti,l´ti,l´hďti,Ni,t´1
´ti,Ni,t´1´2h`1 and γipti,l´hqď

γipti,Ni,t´1´2h`1q, and line (48) follows from computing the summation.

Lemma A.7. For every arm iPrKs, every round tPrT s, and window width 1ďhďtNi,t´1{2u, let us define:

pµR-less,hi ptq:“ 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

Rti,l`pt´lq
Rti,l´Rti,l´h

h

˙

,

βR-less,hi pt,δq:“σpt´Ni,t´1`h´1q
d

10log 1
δ

h3
,

otherwise if h“0, we set pµR-less,hi ptq:“`8 and βR-less,hi pt,δq:“`8. Then, if the window size depends on the number of
pulls only hi,t“hpNi,t´1q and if δt“t´α for some αą2, it holds for every round tPrT s that:

Pr
´
ˇ

ˇ

ˇ
pµ
R-less,hi,t
i ptq´rµ

R-less,hi,t
i ptq

ˇ

ˇ

ˇ
ąβR-less,hi,ti pt,δtq

¯

ď2t1´α.

Proof. Under the event thi,t“0u, we have that pµR-less,hi,ti ptq“rµ
R-less,hi,t
i ptq“βR-less,hi,ti pt,δq“`8 and, under the

convention p`8q´p`8q“0 the event 0ąβR-less,hi pt,δq does not hold. Therefore, we conduct the proof under the event
thi,tě1u. Hence:

Pr
´
ˇ

ˇ

ˇ
pµ
R-less,hi,t
i ptq´rµ

R-less,hi,t
i ptq

ˇ

ˇ

ˇ
ąβR-less,hi,ti pt,δtq

¯

(49)

“Pr
´
ˇ

ˇ

ˇ
pµ
R-less,hpNi,t´1q
i ptq´rµ

R-less,hpNi,t´1q
i ptq

ˇ

ˇ

ˇ
ąβR-less,hpNi,t´1q

i pt,δtq
¯

(50)

ďPr
´

DnPt0,...,t´1u s.t. hpnqě1:
ˇ

ˇ

ˇ
pµ
R-less,hpnq
i ptq´rµ

R-less,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-less,hpnqi pt,δtq

¯

ď
ÿ

nPt0,...,t´1u:hpnqě1

Pr
´
ˇ

ˇ

ˇ
pµ
R-less,hpnq
i ptq´rµ

R-less,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-less,hpnqi pt,δtq

¯

, (51)

where line (50) follows from the definition of hi,t“hpNi,t´1q, and line (51) derives from a union bound over n. Differently
from the rested case, in which the distribution of all random variable involved is fully determined having fixed Ni,t´1, in the
restless case this is no longer the case. Indeed, the distribution of the rewards does not depend on the number of pulls, but on
the round in which the arm was pulled. Thus, we need a more articulated argument. We start rewriting the estimator with a
summation over rounds:

hpnq
´

pµ
R-less,hpnq
i ptq´rµ

R-less,hpnq
i ptq

¯

“
n
ÿ

l“n´hpnq`1

ˆ

Xti,l`pt´lq
Xti,l´Xti,l´hpnq

hpnq
˙

“
t´1
ÿ

s“1

εsYsXs, (52)

where:

εs“1tIs“iu,
Ys“

ˆ

1tNi,sPtn´hpnq`1,...,nuu
ˆ

1` t´Ni,s
hpnq

˙

´1tNi,sPtn´2hpnq`1,...,n´hpnquu t´Ni,s´hpnq
hpnq

˙

,

Xs“Rs´µipsq.

The rationale behind this decomposition is to use random variable εs to select the pulls of arm i, Ys to define the
quantity by which Xs is multiplied. In particular, if the pull belongs to the set of the most recent hpnq pulls, i.e.,
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Ni,sPtn´hpnq`1,...,nu, we multiply Xs by the constant 1` t´Ni,s
hpnq . Instead, if the pull belongs to less recent hpnq pulls,

i.e., Ni,sPtn´2hpnq`1,...,n´hpnqu, we multiply Xs by t´Ni,s´hpnq
hpnq . Now, we define the sequence of random times at

which arm i was pulled for the j-th time:

ti,j :“min
tPrT s

tNi,t“ju, jPrns,

and we introduce the random variables rXj :“Xti,j and rYj :“Yti,j . To prove that rYj rXj is a martingale difference sequence
w.r.t. to the filtration it generates, we apply a Doob’s optional skipping argument (Doob, 1953; Bubeck et al., 2008). We
introduce the filtration Fτ´1“σpI1,R1,...,Iτ´1,Rτ´1,Iτ q and we need to show that: (i) Zτ“řτ

s“1εsYsXs is a martingale,
and (ii) tti,j“τuPFτ´1 for τ Prt´1s. Concerning (i), we have:

ErZτ |Fτ´1s“Zτ´1`ετYτErXτ |Fτ´1s“Zτ´1,

since ετYτ is fully determined by Fτ´1 and either ετ“0 or Iτ“i, thus, ετErXτ |Fτ´1s“ετErRτ´µipτq|Fτ´1s“0.
Concerning (ii), tti,j“τuPFτ´1 is trivially verified. We recall that, since rYj“Yti,j we have that Ni,ti,j“j:

rYj“
ˆ

1tjPtn´hpnq`1,...,nuu
ˆ

1` t´j
hpnq

˙

´1tjPtn´2hpnq`1,...,n´hpnquu t´j´hpnq
hpnq

˙

.

From which, by substituting into Equation (52) and properly solving the indicator functions, we have:

n
ÿ

j“1

rXj
rYj“

n
ÿ

j“n´hpnq`1

ˆ

1` t´j
hpnq

˙

rXj´
n´hpnq
ÿ

j“n´2hpnq`1

t´j
hpnq ¨

rXj .

We compute the square of the weights and apply a derivation similar to that of Lemma A.4:

n
ÿ

j“n´hpnq`1

ˆ

1` t´j
hpnq

˙2

`
n´hpnq
ÿ

j“n´2hpnq`1

ˆ

t´j
hpnq

˙2

ď 5pt´n`hpnq´1q2
hpnq .

Thus, we can now apply Azuma-Höeffding’s inequality (Lemma C.5):

Pr
´
ˇ

ˇ

ˇ
pµ
R-less,hpnq
i ptq´rµ

R-less,hpnq
i ptq

ˇ

ˇ

ˇ
ąβR-less,hpnqi pt,δtq

¯

“Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

s“1

εsXsYs

ˇ

ˇ

ˇ

ˇ

ˇ

ąhpnqβR-less,hpnqi pt,δtq
¸

“Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

rXj
rYj

ˇ

ˇ

ˇ

ˇ

ˇ

ąhpnqβR-less,hpnqi pt,δtq
¸

ď2exp

¨

˚

˝

´
´

hpnqβR-ed,hpnqi pt,δtq
¯2

2σ2
´

5pt´n`hpnq´1q2
hpnq

¯

˛

‹

‚

“2δt.

By replacing into Equation (51) and summing over n, we obtain:

ÿ

nPt0,...,t´1u:hpnqě1

2δtď
t´1
ÿ

n“0

2δt“2t1´α.

Theorem 5.3. Let T PN, then R-less-UCB (Algorithm 1) with Biptq”pµ
R-less,hi,t
i ptq`βR-less,hi,ti ptq, hi,t“tεNi,t´1u
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for εPp0,1{2q, and δt“t´α for αą2, suffers an expected regret bounded, for every qPr0,1s, as:

RµpR-less-UCB,T qďO

˜

K

ε
pσT q 2

3 pαlogT q 1
3

`KT
2q

1`q plogT q q
1`q

εp1´2εq Υµ

ˆR

p1´2εq T
K

V

,q

˙
1

1`q

¸

.

Proof. Let us define the good events Et“ŞiPrKsEi,t that correspond to the event in which all confidence intervals hold:

Ei,t :“
!
ˇ

ˇ

ˇ
rµ
R-less,hi,t
i ptq´pµ

R-less,hi,t
i ptq

ˇ

ˇ

ˇ
ďβR-less,hi,ti ptq

)

@iPrT s, iPrKs.

We have to analyze the following expression:

RµpR-less-UCB,T q“E

«

T
ÿ

t“1

µi˚t ptq´µItptq
ff

,

where it̊ PargmaxiPrKstµiptqu for all tPrT s. We decompose according to the good events Et:

RµpR-less-UCB,T q“
T
ÿ

t“1

E
”´

µi˚t ptq´µItptq
¯

1tEtu
ı

`
T
ÿ

t“1

E
”´

µi˚t ptq´µItptq
¯

1t Etu
ı

ď
T
ÿ

t“1

E
”´

µi˚t ptq´µItptq
¯

1tEtu
ı

`
T
ÿ

t“1

Er1t Etus,

where we exploited µi˚t ptq´µItptqď1 in the inequality. Now, we bound the second summation, as done in Theorem 4.4:

T
ÿ

t“1

Er1t Etusď1` 2K

α´2
.

From now on, we will proceed the analysis under the good event Et, recalling that Biptq”pµ
R-less,hi,t
i ptq`βR-less,hi,ti ptq.

Let tPrT s, and we exploit the optimism, i.e., Bi˚t ptqďBItptq:

µi˚ptq´µItptq`BItptq´BItptqďmin

$

’

&

’

%

1,µi˚t ptq´Bi˚t ptq
looooooomooooooon

ď0

`BItptq´µItptq

,

/

.

/

-

ďmint1,BItptq´µItptqu.

Now, we work on the term inside the minimum:

BItptq´µItptq“pµ
R-less,hIt,t
It

ptq`βR-less,hIt,tIt
ptq´µItptq (53)

ďrµ
R-less,hIt,t
It

ptq´µItptq
looooooooooooomooooooooooooon

(a)

`2β
R-less,hIt,t
It

ptq
loooooooomoooooooon

(b)

, (54)

where line (53) follows from the definition of Biptq and line (54) from the good event Et. We proceed decomposing over the
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arms, starting with (a):

T
ÿ

t“1

min
!

1,rµ
R-less,hIt,t
It

ptq´µItptq
)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min
!

1,rµ
R-less,hi,ti,j
i pti,jq´µipti,jq

)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min

"

1,
p2ti,j´2pj´1q`hi,ti,j´1qpti,j´1´ti,j´2hi,t`1q

2hi,t
γipti,pj´1q´2hi,ti,j`1q

*

(55)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min

"

1,
T 2

tεpj´1quγipti,j´2tεpj´1quq
*

(56)

ď2K`
ÿ

iPrKs

Ni,T
ÿ

j“3

min

"

1,
T 2

tεpj´1quγiptp1´2εqjuq
*

(57)

ď2K`T 2z
ÿ

iPrKs

Ni,T
ÿ

j“3

ˆ

γiptp1´2εqjuq
tεpj´1qu

˙z

(58)

ď2K`T 2z
ÿ

iPrKs

˜

Ni,T
ÿ

j“3

1

tεpj´1qu

¸z˜Ni,T
ÿ

j“3

γiptp1´2εqjuq z
1´z

¸1´z
(59)

ď2K`T 2z

R

1

ε

VR

1

1´2ε

V

ÿ

iPrKs

¨

˝

tεpNi,T´1qu
ÿ

j“t2εu

1

j

˛

‚

z¨

˝

tp1´2εqNi,T u
ÿ

j“t3p1´2εqu
γipjq z

1´z

˛

‚

1´z

(60)

ď2K`T 2zp1`logpεT qqz
R

1

ε

VR

1

1´2ε

V

ÿ

iPrKs

¨

˝

tp1´2εqNi,T u
ÿ

j“t3p1´2εqu
γipjq z

1´z

˛

‚

1´z

(61)

ď2K`T 2zp1`logpεT qqz
R

1

ε

VR

1

1´2ε

V

ÿ

iPrKs
Υµ

ˆ

tp1´2εqNi,T u, z

1´z
˙1´z

ď2K`T 2zp1`logpεT qqz
R

1

ε

VR

1

1´2ε

V

Kz

¨

˝

ÿ

iPrKs
Υµ

ˆ

tp1´2εqNi,T u, z

1´z
˙

˛

‚

1´z

(62)

ď2K`T 2zp1`logpεT qqz
R

1

ε

VR

1

1´2ε

V

KΥµ

ˆR

p1´2εq T
K

V

,
z

1´z
˙1´z

. (63)

where line (55) follows from the bias bound of Lemma A.6, line (56) is obtained from bounding p2ti,j´2pj´1q`
hi,ti,j´1qpti,j´1´ti,j´2hi,t`1qď2T 2 and using the definition of hi,t, line (57) derives from observing that γipti,jqďγipjq
for Assumption 3.2 and having bounded the floor analogously as done in Theorem 4.4, line (58) from the inequality
mint1,xuďmint1,xuzďxz for zPr0,1{2s, line (59) is obtained from Hölder’s inequality with exponents 1

zě1 and 1
1´zě1

respectively, line (60) is an application of Lemma C.1 to independently to both inner summations, line (61) derives
from bounding the harmonic sum, i.e.,

řtεpNi,T´1qu
t2εu

1
jď1`logpεpNi,T´1qqď1`logpεT q, line (62) follows from Jensen’s

inequality, line (63) is obtained from Lemma C.2. By recalling q“ z
1´z Pr0,1s, we obtain:

2K`T 2q
1`q p1`logpεT qq q

1`q

R

1

ε

VR

1

1´2ε

V

KΥµ

ˆR

p1´2εq T
K

V

,q

˙
1

1`q

.

Concerning the term (b), we recall that βR-less,hIt,tIt
ptq equals the bonus term used in the rested setting and, consequently
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from Theorem 4.4:

T
ÿ

t“1

min
!

1,2β
R-ed,hIt,t
It

pt,δtq
)

ďK
ˆ

3` 1

ε

˙

` 3K

ε
p2σT q 2

3 p10αlogT q 1
3 .

Putting all together, we obtain:

RµpR-less-UCB,T qď1` 2K

α´2
`5K`K

ε
` 3K

ε
p2σT q 2

3 p10αlogT q 1
3

`T 2q
1`q p1`logpεT qq q

1`q

R

1

ε

VR

1

1´2ε

V

KΥµ

ˆR

p1´2εq T
K

V

,q

˙
1

1`q

.
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B. Bounding the Cumulative Increment
Let us consider the case in which γiplqďl´c for all iPrKs and lPrT s. We bound the cumulative increment with the
corresponding integral using Lemma C.4, depending on the value of cq:

Υµ

ˆR

T

K

V

,q

˙

“
r TK s
ÿ

l“1

γiplqqď1`
ż T
K

x“1

x´cqdxď1`

$

’

&

’

%

`

T
K

˘1´cq 1
1´cq if cqă1

log T
K if cq“1

1
cq´1 if cqą1

.

Thus, depending on the value of c, there will be different optimal values for q in the rested and restless cases that optimize
the regret upper bound.

B.1. Rested Setting

Let us start with the rested case. From Theorem 4.3, we have:

Rµď2K`T qKΥµ

ˆR

T

K

V

,q

˙

ď2K`KT q`K

$

’

&

’

%

T 1´cq`q

K1´qcp1´cqq if cqă1

T q log T
K if cq“1

T q

cq´1 if cqą1

ďO

¨

˚

˝

K

$

’

&

’

%

T 1´cq`q

K1´qcp1´cqq if cqă1

T q log T
K if cq“1

T q

mint1,cq´1u if cqą1

˛

‹

‚

@qPr0,1s,

where we have highlighted the dominant term. For the case cPp0,1q we consider the first case only and minimize over q:

RµďO
ˆ

K min
qPr0,1s

T 1´cq`q

K1´qcp1´cqq
˙

“OpT q.

For the case c“1, we still obtain RµďOpT q. Instead, for cPp1,`8q, we have the three cases:

RµďO

¨

˚

˝

Kmin

$

’

&

’

%

KminqPr0,1{cq T 1´cq`q

K1´qcp1´cqq
T

1
c log T

K

minqPp1{c,1s T q

mint1,cq´1u

˛

‹

‚

“O
ˆ

KT
1
c log

T

K

˙

.

B.2. Restless Setting

Let us now move to the restless setting. From Theorem 5.2, we have:

Rµď2K`T q
q`1KΥµ

ˆR

T

K

V

,q

˙
1

1`q

ď2K`KT q
q`1`K

$

’

’

’

&

’

’

’

%

T
1´cq`q
q`1

K
1´qc
q`1 p1´cqq

if cqă1

T
q
q`1

`

log T
K

˘
1
q`1 if cq“1

T
q
q`1

cq´1 if cqą1

ďO

¨

˚

˚

˚

˚

˝

K

$

’

’

’

’

&

’

’

’

’

%

T
1´cq`q
q`1

K
1´qc
q`1 p1´cqq

if cqă1

T
q
q`1

`

log T
K

˘
1
q`1 if cq“1

T
q
q`1

mint1,cq´1u if cqą1

˛

‹

‹

‹

‹

‚

, @qPr0,1s.
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For the case cPp0,1q, we consider the first case only and minimize over q:

RµďO

˜

K min
qPr0,1s

T
1´cq`q
q`1

K
1´qc
q`1 p1´cqq

¸

ďO

˜

K
1`c
2 T 1´ c

2

1´c

¸

,

for sufficiently large T"K. For the case c“1, it is simple to prove that the case cq“1 leads to the smallest regret:

RµďKT 1
c`1

ˆ

log
T

K

˙
c
c`1

.

Finally, for the case cPp1,`8q, we have to consider all the three cases:

RµďO

¨

˚

˚

˚

˝

K

$

’

’

’

&

’

’

’

%

minqPr0,1{cq T
1´cq`q
q`1

K
1´qc
q`1 p1´cqq

T
1
c`1

`

log T
K

˘
c
c`1

minqPp1{c,1s T
q
q`1

mint1,cq´1u

˛

‹

‹

‹

‚

“KT 1
c`1

ˆ

log
T

K

˙
c
c`1

.
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C. Technical Lemmas
Lemma C.1. Let Mě3, and let f :NÑR, and βPp0,1q. Then it holds that:

M
ÿ

j“3

fptβjuqď
R

1

β

V tβMu
ÿ

l“t3βu

fplq.

Proof. We simply observe that the minimum value of tβju is t3βu and its maximum value is tβM u. Each element tβju
changes value at least one time every

Q

1
β

U

times.

Lemma C.2. Under Assumption 3.2, it holds that:

max
pNi,T qiPrKs

Ni,Tě0,
ř

iPrKsNi,T“T

ÿ

iPrKs
ΥµpNi,T ,qqďKΥµ

ˆR

T

K

V

,q

˙

.

Proof. We first claim that there exists an optimal assignment of Ni̊,T are such that |Ni̊,T´Ni̊1,T |ď1 for all i,i1PrKs.
By contradiction, suppose that the only optimal assignments are such that there exists a pair i1,i2PrKs such that ∆:“
Ni̊2,T´Ni̊1,Tą1. In such a case, we have:

Υµ

`

Ni̊1,T ,q
˘`Υµ

`

Ni̊2,T ,q
˘“2Υµ

`

Ni̊1,T ,q
˘`

∆
ÿ

j“1

γi˚pNi̊1,T`l´1q

ď2Υµ

`

Ni̊1,T ,q
˘`

r∆{2s
ÿ

j“0

γi˚pNi̊1,T`l´1q`
t∆{2u
ÿ

j“1

γi˚pNi̊1,T`l´1q

“Υµ

`

Ni̊1,T`r∆{2s,q˘`Υµ

`

Ni̊1,T`t∆{2u,q˘.

where the inequality follows from Assumption 3.2. By redefining rNi̊1,T :“Ni̊1,T`t∆{2u and rNi̊2,T :“Ni̊1,T`r∆{2s, we
have that rNi̊1,T` rNi̊2,T“Ni̊1,T`Ni̊2,T and | rNi̊1,T´ rNi̊2,T |ď1. Thus, we have found a better solution to the optimization
problem, contradicting the hypothesis. Since the optimal assignment fulfills |Ni̊,T´Ni̊1,T |ď1, it must be that Ni̊,Tď

P

T
K

T

for all iPrKs.

Lemma C.3. Under Assumptions 3.1 and 3.2, for every iPrKs, k,k1PN with k1ăk, for both rested and restless bandits, it
holds that:

γipkqďµipkq´µipk
1q

k´k1 .

Proof. Using Assumption 3.2, we have:

γipkq“ 1

k´k1
k´1
ÿ

l“k1
γipkqď 1

k´k1
k´1
ÿ

l“k1
γiplq“ 1

k´k1
k´1
ÿ

l“k1
pµipl`1q´µiplqq“µipkq´µipk

1q
k´k1 ,

where the first inequality comes from the concavity of the reward function, and the second equality from the definition of
increment.

Lemma C.4. Let a,bPN and let f :ra,bsÑR. If f is monotonically non-decreasing function, then:

b
ÿ

n“a
fpnqď

ż b

x“a
fpxqdx`fpbqď

ż b`1

x“a
fpxq.
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If f is monotonically non-increasing, then:

b
ÿ

n“a
fpnqďfpaq`

ż b

x“a
fpxqdxď

ż b

x“a´1

fpxqdx.

Proof. Let us consider the intervals Ii“rxi´1,xis with x0“a and xi“xi´1`1 for iPrb´as. If f is monotonically
non-decreasing, we have that for all iPrb´as and xPIi it holds that fpxqěfpxi´1q and consequently

ş

Ii
fpxqdxě

fpxi´1qvolpIiq“fpxi´1q. Thus:

b
ÿ

n“a
fpnq“

b´a
ÿ

i“1

fpxi´1q`fpbqď
b´a
ÿ

i“1

ż

Ii

fpxqdx`fpbq“
ż b

x“a
fpxqdx`fpbq.

Recalling that fpbqďşb`1

x“bfpxqdx, we get the second inequality. Conversely, if f is monotonically non-increasing, then for
all iPrb´as and xPIi, it holds that fpxqěfpxiq and consequently

ş

Ii
fpxqdxěfpxiq. Thus:

b
ÿ

n“a
fpnq“fpaq`

b´a
ÿ

i“1

fpxiqďfpaq`
b´a
ÿ

i“1

ż

Ii

fpxqdx“fpaq`
ż b

x“a
fpxqdx.

Recalling that fpaqďşa
x“a´1

fpxqdx, we get the second inequality.

Theorem C.5 (Höeffding-Azuma’s inequality for weighted martingales). Let F1Ă¨¨¨ĂFn be a filtration and X1,...,Xn

be real random variables such that Xt is Ft-measurable, ErXt|Ft´1s“0 (i.e., a martingale difference sequence), and

ErexppλXtq|Ft´1sďexp
´

λ2σ2

2

¯

for any λą0 (i.e., σ2-subgaussian). Let α1,...,αn be non-negative real numbers. Then,
for every κě0 it holds that:

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

t“1

αtXt

ˇ

ˇ

ˇ

ˇ

ˇ

ąκ
¸

ď2exp

ˆ

´ κ2

2σ2
řn
t“1α

2
i

˙

.

Proof. It is a straightforward extension of Azuma-Höeffding inequality for subgaussian random variables. We apply the
Chernoff’s method for some są0:

Pr

˜

n
ÿ

t“1

αtXtąκ
¸

“Pr
´

es
řn
t“1αtXtąesκ

¯

ďE
“

es
řn
t“1αtXt

‰

esκ
,

where the last inequality follows from the application of Markov’s inequality. We use the martingale property to deal with
the expectation. By the law of total expectation, we have:

E
”

es
řn
t“1αtXt

ı

“E
”

es
řn´1
t“1 αtXtE

“

esαnXn |Ft´1

‰

ı

.

Using now the subgaussian property, we have:

E
“

esαnXn |Ft´1

‰ďexp

ˆ

s2α2
nσ

2

2

˙

.

An inductive argument, leads to:

E
”

es
řn
t“1αtXt

ı

ďexp

˜

s2σ2

2

n
ÿ

t“1

α2
n

¸

.
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Thus, minimizing w.r.t. są0, we have:

Pr

˜

n
ÿ

t“1

αtXtąκ
¸

ďmin
sě0

exp

˜

s2σ2

2

n
ÿ

t“1

α2
n´sκ

¸

“exp

ˆ

´ κ2

2σ2
řn
t“1α

2
n

˙

,

being the minimum attained by s“ κ
σ2

řn
t“1α

2
n

. The reverse inequality can be derived analogously. A union bound completes
the proof.

Lemma C.6. Let ΥµpT,qq be as defined in Equation (2) for some qPr0,1s. Then, for all iPrKs and lPN the following
statements hold:

• if γiplqďbe´cl, then ΥµpT,qqďO
´

bq e
´cq

cq

¯

;

• if γiplqďbl´c with cqą1, then ΥµpT,qqďO
´

bq

cq´1

¯

;

• if γiplqďbl´c with cq“1, then ΥµpT,qqďOpbq logT q;

• if γiplqďbl´c with cqă1, then ΥµpT,qqďO
´

bq T
1´cq

1´cq
¯

.

Proof. The proofs of all the statements are obtained by bounding the summation defining ΥµpT,qq with the corresponding
integrals, as in Lemma C.4. Let us start with γiplqďbe´cl:

ΥµpT,qq“
T
ÿ

l“1

γiplqqďbqe´cq`
ż T

x“1

bqe´cqxdxďbqe´cq` b
q

cq
e´cq“O

ˆ

bq
e´cq

cq

˙

.

We now move to γiplqďbl´c. If cqă1, we have:

ΥµpT,qq“
T
ÿ

l“1

γiplqqďbq`
ż T

x“1

bqx´cqdx“bq` bq

cq´1
“O

ˆ

bq

cq´1

˙

.

For cq“1, we obtain:

ΥµpT,qq“
T
ÿ

l“1

γiplqqďbq`
ż T

x“1

bq

x
dx“bq`bq logT“Opbq logT q.

Finally, for cqă1, we have:

ΥµpT,qq“
T
ÿ

l“1

γiplqqďbq`
ż T

x“1

bqx´cqdx“bq`bq T
1´cq

1´cq “O
ˆ

bq
T 1´cq

1´cq
˙

.

The results of Table 1 are obtained by setting b“1.

D. Efficient Update
Under the assumption that the window size depends on the number of pulls only and that 0ďhpn`1q´hpnqď1, we can
employ the following efficient Op1q update for R-ed-UCB and R-less-UCB. Denoting with n the number of pulls of
arm i, we update the estimator at every time step tPrT s as:

pµ
hpnq
i ptq“ 1

hpnq
ˆ

an` tpan´bnq
hpnq ´ cn´dn

hpnq
˙

,
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where the following sequences are updated only when the arm is pulled:

an“
#

an´1`ripnq´ripn´hpnqq if hpnq“hpn´1q
an´1`ripnq otherwise

,

bn“
#

bn´1`ripn´hpnqq´ripn´2hpnqq if hpnq“hpn´1q
bn´1`ripn´2hpnq`1q otherwise

,

cn“
#

cn´1`nripnq´pn´hpnqqripn´hpnqq if hpnq“hpn´1q
cn´1`nripnq otherwise

,

dn“
#

dn´1`pn´hpnqqripn´hpnqq´pn´2hpnqqripn´2hpnqq if hpnq“hpn´1q
dn´1`pn´2hpnq`1qripn´2hpnq`1q otherwise

,

where we have abbreviated ripnq:“Rti,n .

E. Experimental Setting and Additional Results
E.1. Parameter Setting

The choices of the parameters of the algorithms we compared R-less/ed-UCB with are the following:

• Rexp3: VT“K since in our experiments we consider the reward of each arm to evolve from 0 to 1, thus the
maximum global variation possible is equal the number of arms of the bandit; γ“min

!

1,
b

K logK
pe´1q∆T

)

, ∆T“
rpK logKq1{3pT {VT q2{3s as recommended by Besbes et al. (2014);

• KL-UCB: c“3 as required by the theoretical results on the regret provided by Garivier & Cappé (2011);

• Ser4: according to what suggested by Allesiardo et al. (2017) we selected δ“1{T , ε“ 1
KT , and φ“

b

N
TK logpKT q ;

• SW-UCB: as suggested by Garivier & Moulines (2011) we selected the sliding-window τ“4
?
T logT and the constant

ξ“0.6;

• SW-KL-UCB as suggested by Garivier & Moulines (2011) we selected the sliding-window τ“σ´4{5;

• SW-TS: as suggested by Trovò et al. (2020) for the smoothly changing environment we set β“1{2 and sliding-window
τ“T 1´β“?T .

E.2. IMDB Experiment

We created a bandit environment in which each of the classification algorithms is an arm of the bandit. The interaction for
each round tPT of the real-world experiment is composed by the following:

• the agent decides to pull arm It;

• a random point xt of the IMDB dataset is selected and supplied to the classification algorithm associated to arm It;

• the “base” algorithm classifies the sample, i.e., it provides the prediction ŷtPt0,1u for the selected sample xt;

• the environment generates the reward comparing the prediction ŷt to the target class yt using the following function
Rt“1´|yt´ŷt|;

• the base algorithm is updated using pxt,ytq;

Since the base algorithms are trained only if their arm is selected, this is a problem which belongs to the rested scenario.

For the classification task we decided to employ:
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Figure 7. Cumulative regret in a 2-arms online model selection on
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• 2 Online Logistic Regression (LR) methods with different schemes used for the learning rate λt;

• 5 Neural Networks (NNs) different in terms of shape and number of neurons

Specifically, we adopt a decreasing scheme for the learning rate of λt“ β
t (denoted with LRptq from now on) and a constant

learning rate λt“β (denoted as LR from now on). Moreover, the NNs use as activation functions the rectified linear unit,
i.e., relupxq“maxp0,xq, a constant learning rate α“0.001 and the “adam” stochastic gradient optimizer for fitting. Two
of the chosen nets have only one hidden layer, with 1 and 2 neurons, respectively, the third net has 2 hidden layer, with 2
neurons each, and two nets have 3 layers with 2,2,2 and 1,1,2 neurons, respectively. We refer to a specific NN denoting in
curve brackets the cardinalities of the layers, e.g., the one having 2 layer with 2 neurons each is denoted by NNp2,2q.
We analyzed their global performance on the IMDB dataset by averaging 1,000 independent runs in which each strategy is
sequentially fed with all the available 50,000 samples. The goal was to determine, at each step, the value of the payoff µipnq.
Figure 6a provides the average learning curves of the selected algorithms. As we expected, from a qualitative perspective,
the average learning curves are increasing and concave, however, due to the limited number of simulations, Assumptions 3.1
and 3.2 are not globally satisfied.

We also perform an experiment using only LRptq and LR as arms. Figure 7a reports the result of a run of the MAB algorithms
over the IMDB scenario. The analogy between this result and the one of the 2-arms synthetic rested bandit (Figure 4b) is
clear, indeed R-ed-UCB outperforms the other baselines when the learning curves of the base algorithms at some point
intersects one another.

E.3. Pulls of each arm

Figure 8 presents the average number of pulls for each arm for each one of the algorithm analysed in the synthetic experiments
of Section 6. Figure 8a shows how R-less-UCB is able to identify and discard the majority of the suboptimal arms using a
few pulls, and it is second only to SW-TS, which seems to commit to a single arm which turns out to be the optimal one (arm
13). Figure 8b shows that R-ed-UCB explored arms 13 and 1 more than the others, which are respectively the best and the
second-best, and most likely needs a longer time horizon to select which one is the best among the twos. Figure 8c highlights
the fact that R-ed-UCB undoubtedly identified which arm is the best (arm 2), while KL-UCB, SW-UCB, SW-KL-UCB do
not identify the best arm. Ser4, Rexp3 and SW-TS pulled the best arm slightly more than 50% of the times, paying the
already discussed initial learning phase.

E.4. Additional Experimental Results

We evaluated the performance of the algorithms over 50 different bandits with KPt2,...,15u randomly generated arms over
a time horizon of T“200,000 rounds. We averaged the run of each algorithm on a single scenario over 10 independent
experiments and compared the expected value of the ranking of the considered algorithms in order to draw up a leaderboard:
in every scenario we ranked the algorithms based on their empirical regret, giving the first placement to the one with the
lowest value. We report the summarized results of the rank of the algorithms averaged over the 50 experiments in Table 2.
In the rested case R-ed-UCB is among the worse ones (4.98 on average), however this is again due to the fact that on
average the algorithm is not superior to the baselines, which conversely do not provide any theoretical guarantees in some
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Figure 8. Average number of pulls: (a) 15 arms R-less, (b) 15 arms R-ed, (c) 2 arms R-ed.

Table 2. Ranking of the algorithms (50 bandits, 10 runs, 95% c.i. in brackets).
Algorithm Rested Setting Ranking Restless Setting Ranking Restless Setting Ranking Heuristic
R-ed-UCB 4.98 p0.34q ´ ´
R-less-UCB ´ 5.14 p0.38q ´
R-less-UCB-H ´ ´ 1.90 p0.30q
KL-UCB 2.56 p0.43q 2.54 p0.34q 2.46 p0.31q
Rexp3 5.10 p0.26q 5.20 p0.26q 6.08 p0.16q
SW-TS 2.84 p0.35q 2.86 p0.39q 4.76 p0.19q
SW-UCB 2.12 p0.44q 2.58 p0.47q 3.08 p0.30q
Ser4 6.84 p0.15q 6.60 p0.28q 6.66 p0.18q
SW-KL-UCB 3.56 p0.38q 3.08 p0.45q 3.06 p0.48q

specific settings (see the 2 arm experiment). In the restless case R-less-UCB achieves a worse-than-average performance,
probably influenced by the characteristics of the randomly generated bandits. Due to this unsatisfactory results, we propose
a slight modification of the R-less-UCB upper bound as follows:

pµR-less,hi ptq– 1

h

Ni,t´1
ÿ

l“Ni,t´1´h`1

ˆ

Rti,l`pt´ti,lq
Rti,l´Rti,l´h
ti,l´ti,l´h

˙

,

which we call R-less-UCB-H to denote it is an heuristic method, i.e., not having theoretical results on the regret. While the
performance of the heuristic seems good in practice (it achieves the best overall result), its downside is that the theoretical
guarantees on the regret will have to be reconsidered.


