
Proximal and Federated Random Reshuffling

Konstantin Mishchenko 1 Ahmed Khaled 2 Peter Richtárik 3

Abstract

Random Reshuffling (RR), also known as Stochas-
tic Gradient Descent (SGD) without replacement,
is a popular and theoretically grounded method
for finite-sum minimization. We propose two
new algorithms: Proximal and Federated Ran-
dom Reshuffling (ProxRR and FedRR). The first
algorithm, ProxRR, solves composite finite-sum
minimization problems in which the objective is
the sum of a (potentially non-smooth) convex reg-
ularizer and an average of n smooth objectives.
ProxRR evaluates the proximal operator once per
epoch only. When the proximal operator is ex-
pensive to compute, this small difference makes
ProxRR up to n times faster than algorithms that
evaluate the proximal operator in every iteration,
such as proximal (stochastic) gradient descent.
We give examples of practical optimization tasks
where the proximal operator is difficult to com-
pute and ProxRR has a clear advantage. One
such task is federated or distributed optimization,
where the evaluation of the proximal operator cor-
responds to communication across the network.
We obtain our second algorithm, FedRR, as a spe-
cial case of ProxRR applied to federated optimiza-
tion, and prove it has a smaller communication
footprint than either distributed gradient descent
or Local SGD. Our theory covers both constant
and decreasing stepsizes, and allows for impor-
tance resampling schemes that can improve con-
ditioning, which may be of independent interest.
Our theory covers both convex and nonconvex
regimes. Finally, we corroborate our results with
experiments on real data sets.

1CNRS, DI ENS, Inria 2Princeton University 3KAUST.
Correspondence to: Konstantin Mishchenko <kon-
sta.mish@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Modern theory and practice of training supervised machine
learning models is based on the paradigm of regularized
empirical risk minimization (ERM) (Shalev-Shwartz & Ben-
David, 2014). While the ultimate goal of supervised learn-
ing is to train models that generalize well to unseen data,
in practice only a finite data set is available during training.
Settling for a model merely minimizing the average loss
on this training set—the empirical risk—is insufficient, as
this often leads to over-fitting and poor generalization per-
formance in practice. Due to this reason, empirical risk is
virtually always amended with a suitably chosen regularizer
whose role is to encode prior knowledge about the learning
task at hand, thus biasing the training algorithm towards
better performing models.

The regularization framework is quite general and perhaps
surprisingly it also allows us to consider methods for feder-
ated learning (FL)—a paradigm in which we aim at training
model for a number of clients that do not want to reveal their
data (Konečný et al., 2016; McMahan et al., 2017; Kairouz
et al., 2019). The training in FL usually happens on devices
with only a small number of model updates being shared
with a global host. To this end, Federated Averaging algo-
rithm has emerged that performs Local SGD updates on the
clients’ devices and periodically aggregates their average.
Its analysis usually requires special techniques and deliber-
ately constructed sequences hindering the research in this
direction. We shall see, however, that the convergence of
our FedRR follows from merely applying our algorithm for
regularized problems to a carefully chosen reformulation.

Formally, regularized ERM problems are optimization prob-
lems of the form

min
x∈Rd

[
P (x) := 1

n

∑n
i=1 fi(x) + ψ(x)

]
, (1)

where fi : Rd → R is the loss of model parameterized by
vector x ∈ Rd on the i-th training data point, and ψ : Rd →
R ∪ {+∞} is a regularizer. Let [n] := {1, 2, . . . , n}. We
shall make the following assumption throughout the paper
without explicitly mentioning it:

Assumption 1. The functions fi are Li-smooth, and the
regularizer ψ is proper, closed and convex. Let Lmax :=
maxi∈[n] Li.

Proximal and Federated Random Reshuffling

In some results we will additionally assume that either the
individual functions fi, or their average f := 1

n

∑
i fi, or

the regularizer ψ are µ-strongly convex. Whenever we need
such additional assumptions, we will make this explicitly
clear. While all these concepts are standard, we review them
briefly in Appendix A.

Proximal SGD. When the number n of training data points
is huge, as is increasingly common in practice, the most
efficient algorithms for solving (1) are stochastic first-order
methods, such as stochastic gradient descent (SGD) (Bordes
et al., 2009), in one or another of its many variants pro-
posed in the last decade (Shang et al., 2018; Pham et al.,
2020). These method almost invariably rely on alternating
stochastic gradient steps with the evaluation of the proximal
operator

proxγψ(x) := argminz∈Rd
{
γψ(z) + 1

2‖z − x‖
2
}
.

The simplest of these has the form

xSGD
k+1 = proxγkψ(xSGD

k − γk∇fik(xSGD
k)), (2)

where ik is an index from {1, 2, . . . , n} chosen uniformly at
random, and γk > 0 is a properly chosen learning rate. Our
understanding of (2) is quite mature; see (Gorbunov et al.,
2020) for a general treatment which considers methods of
this form in conjunction with more advanced stochastic
gradient estimators in place of∇fik .

Applications such as training sparse linear models (Tibshi-
rani, 1996), nonnegative matrix factorization (Lee & Seung,
1999), image deblurring (Rudin et al., 1992; Vogel, 2002),
and training with group selection (Yuan & Lin, 2006) all
rely on the use of hand-crafted regularizes. For many of
them, the proximal operator can be evaluated efficiently,
and SGD is near or at the top of the list of efficient training
algorithms.

Random reshuffling. A particularly successful variant of
SGD is based on the idea of random shuffling (permutation)
of the training data followed by n iterations of the form
(2), with the index ik following the pre-selected permuta-
tion (Bottou, 2012). This process is repeated several times,
each time using a new freshly sampled random permutation
of the data, and the resulting method is known under the
name Random Reshuffling (RR). When the same permuta-
tion is used throughout, the technique is known under the
name Shuffle-Once (SO).

One of the main advantages of this approach is rooted in its
intrinsic ability to avoid cache misses when reading the data
from memory, which enables a significantly faster imple-
mentation. Furthermore, RR is often observed to converge
in fewer iterations than SGD in practice. This can intuitively
be ascribed to the fact that while due to its sampling-with-
replacement approach SGD can miss to learn from some

data points in any given epoch, RR will learn from each data
point in each epoch. Understanding the random reshuffling
trick, and why it works, has been a non-trivial open prob-
lem for the past decade (Bottou, 2009; Recht & Ré, 2012;
Gürbüzbalaban et al., 2019; Haochen & Sra, 2019), and has
inspired significant ongoing research effort (Shamir, 2016;
Haochen & Sra, 2019; Nagaraj et al., 2019; Mishchenko
et al., 2020; Ahn et al., 2020).

2. Contributions
Our goal in this paper is twofold: we develop RR in new
settings (namely, for proximal and federated learning), and
also address some of the shortcomings of existing theory,
in particular in the dependence on the condition number as
well as step-size scheduling. The difficulty of analyzing RR
has been the main obstacle in the development of even some
of the most seemingly benign extensions of the method.
Indeed, while these extensions are well understood in com-
bination with its much simpler-to-analyze cousin SGD, to
the best of our knowledge, there exists no theoretical analy-
sis of proximal, parallel, and importance sampling variants
of RR with both constant and decreasing stepsizes, and in
most cases it is not even clear how should such methods
be constructed. In this section we outline the key contribu-
tions of our work, and also offer a few intuitive explanations
motivating some of the development.

2.1. RR in new problem settings

• New algorithm: ProxRR. Despite rich literature on Prox-
imal SGD (Gorbunov et al., 2020), it is not obvious how one
should extend RR to solve problem (1) when a regularizer ψ
is present. Indeed, the standard practice for SGD is to apply
the proximal operator after each stochastic step (Duchi &
Singer, 2009), i.e., in analogy with (2). On the other hand,
RR is motivated by the fact that a data pass better approxi-
mates the full gradient step (Bertsekas, 2011). The following
example shows that if we apply the proximal operator after
each step of RR, we would no longer approximate the full
gradient after an epoch:

Example 1. Let n = 2, ψ(x) = 1
2‖x‖

2, f1(x) = 〈c1, x〉,
f2(x) = 〈c2, x〉 with some c1, c2 ∈ Rd, c1 6= c2. Let
x0 ∈ Rd, γ > 0 and define x1 = x0 − γ∇f1(x0),
x2 = x1 − γ∇f2(x1). Then, we have prox2γψ(x2) =
prox2γψ(x0−2γ∇f(x0)). However, if x̃1 = proxγψ(x0−
γ∇f1(x0)) and x̃2 = proxγψ(x1 − γ∇f2(x̃1)), then x̃2 6=
prox2γψ(x0 − 2γ∇f(x0)).

Motivated by this observation, we propose ProxRR (Algo-
rithm 1), in which the proximal operator is applied at the
end of each epoch of RR, i.e., after each pass through all
randomly reshuffled data. A notable property of Algorithm 1
is that only a single proximal operator evaluation is needed

Proximal and Federated Random Reshuffling

Algorithm 1 Proximal Random Reshuffling (ProxRR) and

Shuffle-Once (ProxSO)

1: Input: Stepsizes γt > 0, initial vector x0 ∈ Rd, number of
epochs T

2: Sample a permutation π = (π0u, π1, . . . , πn−1) of [n]

(Do step 1 only for ProxSO)
3: for epochs t = 0, 1, . . . , T − 1 do
4: Sample a permutation π = (π0, π1, . . . , πn−1) of [n]

(Do step 3 only for ProxRR)

5: x0t = xt
6: for i = 0, 1, . . . , n− 1 do
7: xi+1

t = xit − γt∇fπi(xit)
8: end for
9: xt+1 = proxγtnψ(x

n
t)

10: end for

during each data pass. This is in sharp contrast with the
way Proximal SGD works, and offers significant advantages
in regimes where the evaluation of the proximal mapping is
expensive (e.g., comparable to the evaluation of n gradients
∇f1, . . . ,∇fn).

• Convergence of ProxRR (for strongly convex functions
or regularizer). We establish several convergence results
for ProxRR, of which we highlight two here. Both offer a
linear convergence rate with a fixed stepsize to a neighbor-
hood of the solution. In both we reply on Assumption 1.
Firstly, in the case when in addition, each fi is µ-strongly
convex, we prove the rate (see Theorem 2)

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT ‖x0 − x∗‖2 +
2γ2σ2

rad

µ ,

where γt = γ ≤ 1/Lmax is the stepsize, and σ2
rad is a

shuffling radius constant (for precise definition, see (4)).
In Theorem 1 we bound the shuffling radius in terms
of ‖∇f(x∗)‖2, n, Lmax and the more common quantity
σ2
∗ := 1

n

∑n
i=1 ‖∇fi(x∗)−∇f(x∗)‖2. We give a similar

rate of convergence if ψ is also strongly-convex.

Both mentioned rates show exponential (linear in logarith-
mic scale) convergence to a neighborhood whose size is
proportional to γ2σ2

rad. Since we can choose γ to be arbi-
trarily small or periodically decrease it, this implies that the
iterates converge to x∗ in the limit. Moreover, we show in
Section 3 that when γ = O(1

T) the error isO(1
T 2), which is

superior to the O(1
T) error of SGD. All of our results in the

convex case apply to the Shuffle-Once algorithm as well.

• Convergence of ProxRR for nonconvex optimization.
In the nonconvex regime, and under suitable assumptions,
we establish (see Theorems 5 and 3) an O(1

γT) rate up to a
neighborhood of size O(γ2). For a certain stepsize it yields
an O(1

ε3) convergence rate.

• Application to Federated Learning. In Section 5 we
describe an application of our results to federated learning

(Konečný et al., 2016; McMahan et al., 2017; Kairouz et al.,
2019). In this way we obtain the FedRR method, which is
similar to Local SGD, except the local solver is a single pass
of RR over the local data. Empirically, FedRR can be vastly
superior to Local SGD (see Figure 2). Remarkably, we also
show that the rate of FedRR beats the best known lower
bound for Local SGD due to (Woodworth et al., 2020) (we
needed to adapt it from the original online to the finite-sum
setting we consider in this paper) for large enough n. See
Appendix G for more details.

2.2. Improving vanilla RR

Besides the above results, we describe two extensions that
improve upon the rates of vanilla Random Reshuffling (i.e.
with no prox) and which are of independent interest.

• Extension 1: Importance resampling for Proximal RR.

All existing rates of convergence of RR in the strongly-
convex regime exhibit a dependence on maxi Li/µ (e.g.
(Mishchenko et al., 2020; Ahn et al., 2020) and others),
where Li is the smoothness constant of fi. We observe
that this is highly suboptimal compared to the L̄/µ rate (for
L̄ = 1

n

∑n
i=1 Li) that SGD and variance-reduced methods

can achieve: indeed, the difference between these two condi-
tion numbers can be of order n (Gower et al., 2019). This is
a serious problem as the difference between the rate of con-
vergence of RR and SGD is tightly related to the condition
number (Safran & Shamir, 2021). In other words: existing
results on RR can be suboptimal by up to a factor of n
compared to the best known rates for SGD.

To handle this, we reformulate problem (1) into a similar
problem with a larger number of summands. In particu-
lar, for each i ∈ [n] we include ni copies of the function
1
ni
fi, and then take average of all N =

∑
i ni functions

constructed this way. The value of ni depends on the “im-
portance” of fi, described below. We then apply ProxRR
to this reformulation. If fi is Li-smooth for all i ∈ [n]
and we let L̄ := 1

n

∑
i Li, then we choose ni = dLi/L̄e.

It is easy to show that N ≤ 2n, and hence our reformula-
tion leads to at most a doubling of the number of functions
forming the finite sum. However, the overall complexity of
RR/ProxRR applied to this reformulation will depend on L̄
instead of maxi Li (see Theorem 9), which can improve the
convergence rate by up to a factor of n. For details of the
construction and our complexity results, Appendix I.

• Extension 2: Decreasing stepsizes.

The convergence of RR is not always exact and depends on
the parameters of the objective. Similarly, if the shuffling
radius σ2

rad is positive, and we wish to find an ε-approximate
solution, the optimal choice of a fixed stepsize for ProxRR
will depend on ε. This deficiency can be fixed by using
decreasing stepsizes in both vanilla RR (Ahn et al., 2020)

Proximal and Federated Random Reshuffling

and in SGD (Stich, 2019). However, the rate given by (Ahn
et al., 2020) does not recover linear convergence in the
absence of noise (i.e. σ∗ = 0). We propose a stepsize
schedule that allows us to both recover linear convergence
in the absence of noise and recover the optimalO((nT 2)−1)
rate of convergence of RR in the presence of noise. Our
proposed stepsize schedule is thus noise-adaptive without
requiring any knowledge of the magnitude of the noise σ∗.
For details, see Appendix J.

3. Theory for strongly convex objectives
3.1. Preliminaries

In the strongly-convex setting, we build upon the notions of
shuffling variance introduced by Mishchenko et al. (2020)
for analyzing RR. Given a stepsize γ > 0 (held constant
during each epoch) and a permutation π of {1, 2, . . . , n},
we introduce the points x1

∗, x
2
∗, . . . , x

n
∗ defined by

xi∗ := x∗ − γ
∑i−1
j=0∇fπj (x∗), i = 1, . . . , n. (3)

The intuition behind this definition is fairly simple: if we
performed i steps starting at x∗, we would end up close to
xi∗. To quantify the closeness, we define the shuffling radius
and then show how to upper bound it.
Definition 1 (Shuffling radius). Given a stepsize γ > 0
and a random permutation π of {1, 2, . . . , n} used in Algo-
rithm 1, define xi∗ = xi∗(γ, π) as in (3). Then, the shuffling
radius is defined by

σ2
rad(γ) := max

i=0,...,n−1

[
1
γ2Eπ

[
Dfπi

(xi∗, x∗)
]]
, (4)

where Df (x, y) = f(x) − f(y) − 〈∇f(y), x− y〉 is the
Bregman divergence associated with f evaluated at x, y
and where the expectation is taken with respect to the ran-
domness in the permutation π. If there are multiple step-
sizes γ1, γ2, . . . used in Algorithm 1, we take the maxi-
mum of all of them as the shuffling radius, i.e., σ2

rad :=
maxt≥1 σ

2
rad(γt).

Theorem 1 (Bounding the shuffling radius). For any step-
size γ > 0 and any random permutation π of {1, 2, . . . , n}
we have σ2

rad ≤
Lmax

2 n
(
n‖∇f(x∗)‖2 + 1

2σ
2
∗
)
, where x∗ is

a solution of Problem (1) and σ2
∗ is the population variance

at the optimum

σ2
∗ := 1

n

∑n
i=1‖∇fi(x∗)−∇f(x∗)‖2. (5)

All proofs are relegated to the supplementary material. In
order to better understand the bound given by Theorem 1,
observe that if there is no proximal operator (i.e., ψ = 0)
then ∇f(x∗) = 0 and we get that σ2

rad ≤
Lmaxnσ

2
∗

4 . This
recovers the existing upper bound on the shuffling variance
of Mishchenko et al. (2020) for vanilla RR. On the other
hand, if ∇f(x∗) 6= 0 then we get an additive term of size
proportional to the squared norm of∇f(x∗).

3.2. Convergence guarantees

Our first theorem establishes a convergence rate for Algo-
rithm 1 applied with a constant stepsize to Problem (1) when
each objective fi is strongly convex. This assumption is
commonly satisfied in machine learning applications where
each fi represents a regularized loss on some data points, as
in `2 regularized linear regression and `2 regularized logistic
regression.

Theorem 2. Let Assumption 1 be satisfied. Further, assume
that each fi is µ-strongly convex. If Algorithm 1 is run with
constant stepsize γt = γ ≤ 1/Lmax, then its iterates satisfy

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT ‖x0 − x∗‖2 +
2γ2σ2

rad

µ .

We can convert the guarantee of Theorem 2 to a convergence
rate by properly tuning the stepsize and using the upper
bound of Theorem 1 on the shuffling radius. In particular, if
we choose the stepsize as γ = min

{
1

Lmax
,
√
εµ√

2σrad

}
, and

let κ := Lmax/µ and r0 := ‖x0 − x∗‖2, then we obtain
E
[
‖xT − x∗‖2

]
= O (ε) provided that the total number of

iterations KRR = nT is at least

KRR ≥ [(κ+
√
κn√
εµ

(
√
n ‖∇f(x∗)‖+ σ∗)] log

(
2r0
ε

)
. (6)

Comparison with vanilla RR. If there is no proximal op-
erator, then ‖∇f(x∗)‖ = 0 and we recover the earlier re-
sult of Mishchenko et al. (2020) on the convergence of RR
without proximal, which is optimal in ε up to logarithmic
factors. On the other hand, when the proximal operator is
nonzero, we get an extra term in the complexity propor-
tional to ‖∇f(x∗)‖: thus, even when all the functions are
the same (i.e., σ∗ = 0), we do not recover the linear conver-
gence of Proximal Gradient Descent (Karimi et al., 2016;
Beck, 2017). This can be easily explained by the fact that
Algorithm 1 performs n gradient steps per one proximal
step. Hence, even if f1 = · · · = fn, Algorithm 1 does not
reduce to Proximal Gradient Descent. We note that other
algorithms for composite optimization which may not take
a proximal step at every iteration also suffer from the same
dependence (Patrascu & Irofti, 2021).

Comparison with proximal SGD. In order to compare
(3.2) against the complexity of Proximal SGD (Algorithm 3
in Appendix C), we recall that Proximal SGD achieves
E
[
‖xK − x∗‖2

]
= O (ε) if either f or ψ is µ-strongly

convex and

KSGD ≥
(
κ+

σ2
∗

εµ2

)
log
(

2r0
ε

)
. (7)

This result is standard (Needell et al., 2016; Gower et al.,
2019), with the exception that we do not know any proof in
the literature for the case when ψ is strongly convex. For
completeness, we prove it in Appendix C.

Proximal and Federated Random Reshuffling

By comparing KSGD (given by (7)) and KRR (given
by (3.2)), we see that ProxRR has milder dependence on ε
than Proximal SGD. In particular, ProxRR converges faster
whenever the target accuracy ε is small enough to satisfy
ε ≤ 1

Lmaxnµ

(
σ4
∗

n‖∇f(x∗)‖2+σ2
∗

)
. Furthermore, ProxRR is

much better when we consider proximal iteration complex-
ity (# of proximal operator access), in which case the com-
plexity of ProxRR (3.2) is reduced by a factor of n (because
we take one proximal step every n iterations), while the
proximal iteration complexity of Proximal SGD remains the
same as (7). In this case, ProxRR is better whenever the
accuracy ε satisfies

ε ≥ nG2

Lmaxµ
or ε ≤ nσ4

∗
LmaxµG2 ,

where G2 := n‖∇f(x∗)‖2 + σ2
∗. We can see that if the

target accuracy is large enough or small enough, and if
the cost of proximal operators dominates the computation,
ProxRR is much quicker to converge than Proximal SGD.

Comparison with ProxSVRG. Variance-reduced methods
can improve the rate of convergence of SGD from sublinear
to linear by using better estimates of the gradients ∇fi.
ProxSVRG (Xiao & Zhang, 2014) is a common variance-
reduced method used for solving (1) in practice (Tang et al.,
2020). Xiao & Zhang (2014) give the following iteration
complexity (in both proximal & gradient oracle calls), up to
constant factors:

KSVRG ≥ (κ+ n) log
(

4r0
ε

)
. (8)

Comparing (8) and reveals that for gradient oracle calls,
using ProxRR is beneficial if the accuracy satisfies ε > κG2

µn

where G2 := n‖∇f(x∗)‖2 + σ2
∗. This bounds means that

ProxRR is better when the problem is better-conditioned or
when the number of functions n is large and the minimizers
of both P and f match well (i.e. ‖∇f(x∗)‖ is small). The
situation is much better for proximal oracle calls, where
ProxRR is better when

ε >
κG2

µn2
=

κ

µn
·
(
‖∇f(x∗)‖2 +

1

n
σ2
∗

)
.

Observe that this expression is decreasing in n as long as
σ2
∗/n is nonincreasing in n, a very mild requirement satis-

fied, for example, if the functions fi are themselves sam-
pled i.i.d. according to some distribution with mean f and
bounded variance.

Extension for strongly-convex regularizers. In Theorem 2,
we assume that each fi is µ-strongly convex. This is moti-
vated by the common practice of using `2 regularization in
machine learning. However, applying `2 regularization in
every step of Algorithm 1 can be expensive when the data
are sparse and the iterates xit are dense, because it requires
accessing each coordinate of xit which can be much more

expensive than computing sparse gradients∇fi(xit). Alter-
natively, we may instead choose to put the `2 regularization
inside ψ and only ask that ψ be strongly convex—this way,
we can save a lot of time as we need to access each coor-
dinate of the dense iterates xit only once per epoch rather
than every iteration. Theorem 8 in Appendix D.3 gives a
convergence guarantee in this setting which is similar to that
of Theorem 2.

4. Theory for non-convex objectives
We shall now present our theory for the nonconvex case.
To quantify convergence, we define the proximal-gradient
mapping, which was also used in the prior literature to show
convergence of Proximal SGD.

Definition 2. Given a stepsize γ > 0, a convex function ψ
and arbitrary f , we define the proximal-gradient mapping
as

Gγ(x) := 1
γ

[
x− proxγψ(x− γ∇f(x))

]
.

Similarly to Theorem 1, the analysis shows that a gradient
term appears in the variance bound. However, in contrast
to the convex settings of Theorem 1, there might not ex-
ist an optimum to which the iterates would converge and
we cannot use ‖∇f(x∗)‖2 in the variance bound. For this
reason, we resort to the following assumption that bounds
full gradients in terms of proximal-gradient mapping and an
extra constant.

Assumption 2. There exists a constant ζ ≥ 0 such that the
full gradient of f is uniformly bounded by the proximal-
gradient mapping and ζ

‖∇f(x)‖2 ≤ ‖Gγn(x)‖2 + ζ2

for any x ∈ dom(ψ) and γ > 0.

We note that this assumption is trivially satisfied with ζ = 0
if ψ ≡ 0 because in that case, Gγ(x) ≡ ∇f(x). Therefore,
when there is no proximal term, it is not an extra assumption
compared to the analysis of Mishchenko et al. (2020). We
will also rely on the following measure of gradient variance,
which we need for the same reason that there might be no
optimum x∗ to measure the variance the way we did for
Theorem 1.

Assumption 3. There exists a constant σ > 0 such that
1
n

∑n
i=1 ‖∇fi(x)−∇f(x)‖2 ≤ σ2 for any x ∈ Rd.

Note that we can relax this assumption by introducing extra
terms in the right-hand side as in (Khaled & Richtárik, 2020).
Nevertheless, for the sake of simplicity and readability, we
prefer the stronger version as presented above. Theorem 3
gives our main convergence result:

Theorem 3 (Convergence result in the nonconvex case).
Let Assumptions 2 and 3 hold and choose any γ ≤ 1

5Lmaxn
.

Proximal and Federated Random Reshuffling

Then,

min
t=0,...,T−1

E
[
‖Gγn(xt)‖2

]
≤ 4(P (x0)− P∗)

γnT

+ 2γ2Lmaxn
2ζ2 + 2γ2L2

maxnσ
2.

Instead of obtaining a convergence guarantee on the mini-
mum of the prox-grad mapping norm, we can get the same
guarantee by randomly choosing an iterate. This is standard
in stochastic nonconvex optimization since, for any oracle
with access only to stochastic gradients, obtaining a guaran-
tee for a fixed iterate (e.g. the final iterate) is impossible in
general (Drori & Shamir, 2020).

Obtaining a complexity. Set the stepsize γ to

γ = min
{

1
5Lmaxn

, ε
Lmax

√
nσ+

√
Lmaxnζ

}
.

Then plugging into Theorem 3 and denoting δ0 := P (x0)−
P∗, we obtain that in order to get an ε-stationary solution the
complexity in terms of full number of stochastic gradients
nT equal to

nT = O
(
δ0Lmaxn

ε2 + δ0Lmax
√
nσ

ε3 + δ0
√
Lmaxnζ
ε3

)
.

When the accuracy ε is small enough, this rate is better than
the O(ε−4) rate of convergence of Proximal SGD (Davis &
Drusvyatskiy, 2018).

5. FedRR: application of ProxRR to federated
learning

Let us consider now the problem of minimizing the average
of N =

∑M
m=1Nm functions that are stored on M devices,

which have N1, . . . , NM samples correspondingly,

min
x∈Rd

F (x) +R(x), F (x) = 1
N

∑M
m=1 Fm(x), (9)

where Fm(x) :=
∑Nm
j=1 fmj(x). For example, fmj(x) can

be the loss associated with a single sample (Xmj , ymj),
where pairs (Xmj , ymj) follow a distribution Dm that is
specific to device m. An important instance of such formu-
lation is federated learning, where M devices train a shared
model by communicating periodically with a central node.
We normalize the objective in (9) by N as this is the total
number of functions after we expand each Fm into a sum.
We denote the solution of (9) by x∗.

Extending the space. To rewrite the problem as an in-
stance of (1), we are going to consider a bigger prod-
uct space, which is sometimes used in distributed op-
timization (Bianchi et al., 2015). Let us define n :=
max{N1, . . . , Nm} and introduce ψC , the consensus con-
straint, defined via

ψC(x1, . . . , xM) :=

{
0, x1 = · · · = xM

+∞, otherwise
.

By introducing dummy variables x1, . . . , xM and adding
the constraint x1 = · · · = xM , we arrive at the intermediate
problem

min
x1,...,xM∈Rp

1
N

∑M
m=1 Fm(xm) + (R+ ψC)(x1, . . . , xM),

where R+ψC is defined, with a slight abuse of notation, as
(R + ψC)(x1, . . . , xM) = R(x1) if x1 = · · · = xM , and
(R+ ψC)(x1, . . . , xM) = +∞ otherwise.

Since we have replaced R with a more complicated regu-
larizer R+ ψC , we need to understand how to compute the
proximal operator of the latter. We show (Lemma 8 in the
supplementary) that the proximal operator of (R+ ψC) is
merely the projection onto {(x1, . . . , xM) | x1 = · · · =
xM} followed by the proximal operator of R with a smaller
stepsize.

Reformulation. To have n functions in every Fm, we write
Fm as a sum with extra n−Nm zero functions, fmj(x) ≡ 0
for any j > Nm, so that Fm(xm) =

∑n
j=1 fmj(xm) =∑Nm

j=1 fmj(xm) +
∑n
j=Nm+1 0. We can now stick the vec-

tors together into x = (x1, . . . , xM) ∈ RM ·d and multiply
the objective by N

n , which gives the following reformula-
tion:

min
x∈RM·d

1
n

∑n
i=1fi(x) + ψ(x), (10)

where ψ(x) := N
n (R+ ψC) and

fi(x) = fi(x1, . . . , xM) :=

M∑
m=1

fmi(xm).

In other words, function fi(x) includes i-th data sample
from each device and contains at most one loss from every
device, while Fm(x) combines all data losses on device
m. Note that the solution of (10) is x∗ := (x>∗ , . . . , x

>
∗)>

and the gradient of the extended function fi(x) is given by
∇fi(x) = (∇f1i(x1)>, · · · ,∇fMi(xM)>)>. Therefore, a
stochastic gradient step that uses ∇fi(x) corresponds to
updating all local models with the gradient of i-th data
sample, without any communication.

Algorithm 1 for this specific problem can be written in
terms of x1, . . . , xM , which results in Algorithm 2. Note
that since fmi(xi) depends only on xi, computing its gradi-
ent does not require communication. Only once the local
epochs are finished, the vectors are averaged as the result of
projecting onto the set {(x1, . . . , xM) | x1 = · · · = xM}.

Reformulation properties. To analyze FedRR, the only
thing that we need to do is understand the properties of the
reformulation (10) and then apply Theorem 2 or Theorem 8.
The following lemma gives us the smoothness and strong
convexity properties of (10).

Lemma 1. Let function fmi be Li-smooth and µ-strongly
convex for every m. Then, fi from reformulation (10) is
Li-smooth and µ-strongly convex.

Proximal and Federated Random Reshuffling

Algorithm 2 Federated Random Reshuffling (FedRR)
1: Input: Stepsize γ > 0, initial vector x0 = x00 ∈ Rd, number

of epochs T , number of functions Nm on each machine m,
set N =

∑M
m=1Nm and n = maxmNm.

2: for epochs t = 0, 1, . . . , T − 1 do
3: for m = 1, . . . ,M locally in parallel do
4: x0t,m = xt
5: Sample permutation π0,m, π1,m, . . . , πNm−1,m of

{1, 2, . . . , Nm}
6: for i = 0, 1, . . . , Nm − 1 do
7: xi+1

t,m = xit,m − γ∇fπi,m(xit,m)
8: end for
9: xnt,m = xNmt,m

10: end for
11: xt+1 = prox γN

n
R

(
1
M

∑M
m=1 x

n
t,m

)
12: end for

The previous lemma shows that the conditioning of the refor-
mulation is κ = Lmax

µ just as we would expect. Moreover, it
implies that the requirement on the stepsize remains exactly
the same: γ ≤ 1/Lmax. What remains unknown is the value
of σ2

rad, which plays a key role in the convergence bounds
for ProxRR and ProxSO. To find an upper bound on σ2

rad,
let us define

σ2
m,∗ := 1

Nm

∑n
j=1

∥∥∇fmj(x∗)− 1
Nm
∇Fm(x∗)

∥∥2
,

which is the variance of local gradients on device m.
This quantity characterizes the convergence rate of local
SGD (Yuan et al., 2020), so we should expect it to appear in
our bounds too. The next lemma explains how to use it to
upper bound σ2

rad.

Lemma 2. The shuffling radius σ2
rad of the reformula-

tion (10) is upper bounded by

σ2
rad ≤ Lmax ·

∑M
m=1

(
‖∇Fm(x∗)‖2 + n

4σ
2
m,∗

)
.

The lemma shows that the upper bound on σ2
rad depends

on the sum of local variances
∑M
m=1 σ

2
m,∗ as well as on

the local gradient norms
∑M
m=1 ‖∇Fm(x∗)‖2. Both of

these sums appear in the existing literature on conver-
gence of Local GD/SGD (Woodworth et al., 2020; Yuan
et al., 2020). We are now ready to present formal conver-
gence results. For simplicity, we will consider heteroge-
neous and homogeneous cases separately and assume that
N1 = · · · = NM = n. To further illustrate generality of our
results, we will present the heterogeneous assuming strong
convexity R and the homogeneous under strong convexity
of functions fmi.

Heterogeneous data. In the case when the data are het-
erogeneous, we provide the first local RR method. We can
apply either Theorem 2 or Theorem 8, but for brevity, we
give only the corollary obtained from Theorem 8.

Theorem 4. Assume that functions fmi are convex and
Li-smooth for each m and i. If R is µ-strongly convex
and γ ≤ 1/Lmax, then we have for the iterates produced by
Algorithm 2

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2

+ γ2Lmax

Mµ

∑M
m=1

(
‖∇Fm(x∗)‖2 + N

4M σ2
m,∗

)
.

In the supplementary material (Appendix G), we show that
our rates for FedRR improve over the best known rates for
both Local SGD and Distributed Gradient Descent in the
heterogeneous data seting.

For nonconvex analysis, we consider R ≡ 0 and require the
following standard assumption.
Assumption 4 (Bounded variance and dissimilarity). There
exist constants σ, ζ > 0 such that for any x ∈ Rd and

1
n

∑n
i=1

∥∥∇fmi − 1
n∇Fm(x)

∥∥2 ≤ σ2 and,
1
M

∑M
m=1

∥∥ 1
n∇Fm(x)−∇F (x)

∥∥2 ≤ ζ2.

Note that above 1
n∇Fm(x) = 1

Nm
∇Fm(x) is the gradient

of a local dataset and∇F (x) = 1
N

∑M
l=1∇Fl(x) is the full

gradient on all data.
Theorem 5 (Nonconvex convergence). Let Assumptions 1
and 4 be satisfied, and R ≡ 0 (no prox). Then, the com-
munication complexity to achieve E

[
‖∇F (xT)‖2

]
≤ ε2

is

T = O
((

1
ε2 + σ√

nε3
+ ζ

ε3

)
(F (x0)− F∗)

)
.

Notice that by replicating the data locally on each device
and thereby increasing the value of n without changing the
objective, we can improve the second term in the commu-
nication complexity. In particular, if the data are not too
dissimilar (σ � ζ) and ε is small (1

ε3 �
1
ε2), the second

term in the complexity dominates, and it helps to have more
local steps. However, if the data are less similar, the nodes
have to communicate more frequently to get more informa-
tion about other objectives.

Homogeneous data. For simplicity, in the homogeneous
(i.e., i.i.d.) data case we provide guarantees without the
proximal operator. Since then we have F1(x) = · · · =
FM (x), for any m it holds∇Fm(x∗) = 0, and thus σ2

m,∗ =
1
n

∑n
j=1 ‖∇fmj(x∗)‖2. The full variance is then given by

∑M
m=1 σ

2
m,∗ = 1

n

∑M
m=1

∑n
i=1 ‖∇fmi(x∗)‖2 =

N

n
σ2
∗

= Mσ2
∗.

where σ2
∗ := 1

N

∑n
i=1

∑M
m=1 ‖∇fmi(x∗)‖2 is the variance

of the gradients over all data.

Proximal and Federated Random Reshuffling

Theorem 6. Let R(x) ≡ 0 (no prox) and the data be i.i.d.,
that is∇Fm(x∗) = 0 for any m, where x∗ is the solution of
(9). Let σ2

∗ := 1
N

∑n
i=1

∑M
m=1 ‖∇fmi(x∗)‖2. If each fmj

is Lmax-smooth and µ-strongly convex, then the iterates of
Algorithm 2 satisfy

E
[
‖xT − x∗‖2

]
≤ (1− γµ)nT ‖x0 − x∗‖2 +

γ2LmaxNσ
2
∗

Mµ .

Observe that the guarantee given by Theorem 6 scales with
the effective number of functions per machine N/M , similar
to the scaling displayed by single-node RR.
Corollary 5.1. Choose the stepsize γ > 0 as

γ = min
(

1
Lmax

,
√

εMµ
2LmaxNσ2

∗

)
,

and suppose that the total number of iterations K = nT
satisfies

K ≥
(
Lmax

µ +
√

2LmaxNσ2
∗

εMµ3/2

)
log 2‖x0−x∗‖2

ε .

Then E
[
‖xT − x∗‖2

]
≤ ε.

In the small-accuracy regime, Theorem 5.1 shows that Fe-
dRR enjoys a convergence rate depending on 1√

ε
compared

to the 1
ε rate of convergence of FedAvg (Karimireddy et al.,

2020).

6. Experiments1

ProxRR vs SGD. In Figure 1, we look at the logistic regres-
sion loss with the elastic net regularization,

1
N

∑N
i=1 fi(x) + λ1‖x‖1 + λ2

2 ‖x‖
2, (11)

where each fi : Rd → R is defined as fi(x) :=
−
(
bi log

(
h(a>i x)

)
+(1−bi) log

(
1−h(a>i x)

))
, and where

(ai, bi) ∈ Rd × {0, 1}, i = 1, . . . , N are the data samples,
h : t→ 1/(1+e−t) is the sigmoid function, and λ1, λ2 ≥ 0
are parameters. We set minibatch sizes to 32 for all methods
and use theoretical stepsizes, without any tuning. We denote
the heuristic version of RR that performs proximal operator
step after each iteration as ‘RR (iteration prox)’. From the
experiments, we can see that all methods behave more or
less the same way. However, the algorithm that we propose
needs only a small fraction of proximal operator evaluations,
which gives it a huge advantage whenever the operator takes
more time to compute than stochastic gradients.

FedRR vs Local SGD and Scaffold. We also compare the
performance of FedRR, Local SGD and Scaffold (Karim-
ireddy et al., 2020) on homogeneous (i.e., i.i.d.) and het-
erogeneous data. Since Local SGD and Scaffold require

1Our code is available on GitHub: https://github.com/
konstmish/rr_prox_fed. More experimental details are in
the appendix.

0 200 400 600 800 1000 1200
Data passes

10-5

10-4

10-3

10-2

10-1

P
(x
)
¡
P
¤

SGD
RR (iteration prox)
RR (epoch prox)

0 20000 40000 60000 80000
Prox steps

10-8

10-6

10-4

10-2

100

P
(x
)
¡
P
¤

SGD
RR (iteration prox)
RR (epoch prox)

0.0 0.5 1.0 1.5 2.0
Data passes

0.0005

0.001

0.002

P
(x
)
¡
P
¤

Average
Worst shuffle
Best shuffle

Figure 1. Experimental results for problem (11). The first two
plots show with average and confidence intervals estimated on 20
random seeds and clearly demonstrate that one can save a lot of
proximal operator computations with our method. The right plot
shows the best/worst convergence of ProxSO over 20,000 sampled
permutations.

smaller stepsizes to converge, they are significantly slower
in the i.i.d. regime, as can be seen in Figure 2. FedRR, how-
ever, does not need small initial stepsize and very quickly
converges to a noisy neighborhood of the solution. We ob-
tain heterogeneous regime by sorting data with respect to
the labels and mixing the sorted dataset with the unsorted
one. In this scenario, we also use the same small stepsize
for every method to address the data heterogeneity. Clearly,
Scaffold is the best in terms of functional values because it
does variance reduction with respect to the data. Extending
FedRR in the same way might be useful too, but this goes
beyond the scope of our paper and we leave it for future
work. We also note that in terms of distances from the op-
timum, FedRR still performs much better than Local SGD
and Scaffold.

0 200 400 600 800 1000
Communication rounds

10-6

10-5

10-4

10-3

10-2

10-1

100

f(
x
)
¡
f
¤ Local SGD

Scaffold
FedRR

0 10000 20000 30000 40000
Communication rounds

10-3

10-2

10-1

f(
x
)
¡
f
¤

Local SGD
Scaffold
FedRR

0 10000 20000 30000 40000
Communication rounds

1

2

4

10

20

40

kx
¡
x
¤
k2

SGD
Scaffold
FedRR

Figure 2. FedRR vs Local-SGD and Scaffold: i.i.d. data (left) and
heterogeneous data (middle and right). We set λ1 = 0 and estimate
the averages and standard deviations by running 10 random seeds
for each method.

https://github.com/konstmish/rr_prox_fed
https://github.com/konstmish/rr_prox_fed

Proximal and Federated Random Reshuffling

References
Ahn, K., Yun, C., and Sra, S. SGD with shuffling: opti-

mal rates without component convexity and large epoch
requirements. arXiv preprint arXiv:2006.06946. Neural
Information Processing Systems (NeurIPS) 2020, 2020.
(Cited on pages 2, 3, 4, 29, and 30)

Beck, A. First-Order Methods in Optimization. Society for
Industrial and Applied Mathematics, Philadelphia, PA,
2017. doi: 10.1137/1.9781611974997. (Cited on page 4)

Bertsekas, D. P. Incremental Gradient, Subgradient, and
Proximal Methods for Convex Optimization: A Survey.
In Sra, S., Nowozin, S., and Wright, S. J. (eds.), Op-
timization for Machine Learning, chapter 4. The MIT
Press, 2011. ISBN 9780262298773. (Cited on page 2)

Bianchi, P., Hachem, W., and Iutzeler, F. A coordinate de-
scent primal-dual algorithm and application to distributed
asynchronous optimization. IEEE Transactions on Auto-
matic Control, 61(10):2947–2957, 2015. (Cited on page 6)

Bordes, A., Bottou, L., and Gallinari, P. Sgd-qn: Careful
quasi-newton stochastic gradient descent. J. Mach. Learn.
Res., 10:1737–1754, dec 2009. ISSN 1532-4435. (Cited
on page 2)

Bottou, L. Curiously fast convergence of some stochastic
gradient descent algorithms. Unpublished open problem
offered to the attendance of the SLDS 2009 conference,
2009. URL http://leon.bottou.org/papers/
bottou-slds-open-problem-2009. (Cited on
page 2)

Bottou, L. Stochastic gradient descent tricks. In Neural
Networks: Tricks of the Trade, pp. 421–436. Springer,
2012. (Cited on page 2)

Chen, G. and Teboulle, M. Convergence Analysis of a
Proximal-Like Minimization Algorithm Using Bregman
Functions. SIAM Journal on Optimization, 3(3):538–543,
1993. doi: 10.1137/0803026. (Cited on page 18)

Davis, D. and Drusvyatskiy, D. Stochastic subgradient
method converges at the rate o(k−1/4) on weakly convex
functions. arXiv preprint, abs/1802.02988, 2018. URL
https://arXiv.org/abs/1802.02988. (Cited
on page 6)

Drori, Y. and Shamir, O. The complexity of find-
ing stationary points with stochastic gradient descent.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Ma-
chine Learning Research, pp. 2658–2667. PMLR, 2020.
URL http://proceedings.mlr.press/v119/
drori20a.html. (Cited on page 6)

Duchi, J. and Singer, Y. Efficient online and batch learning
using forward backward splitting. Journal of Machine
Learning Research, 10(Dec):2899–2934, 2009. (Cited on
page 2)

Gorbunov, E., Hanzely, F., and Richtárik, P. A Unified The-
ory of SGD: Variance Reduction, Sampling, Quantization
and Coordinate Descent. In Chiappa, S. and Calandra, R.
(eds.), Proceedings of Machine Learning Research, vol-
ume 108, pp. 680–690, Online, 26–28 Aug 2020. PMLR.
(Cited on pages 2, 16, and 29)

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A.,
Shulgin, E., and Richtárik, P. SGD: General Analysis and
Improved Rates. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 5200–5209, Long
Beach, California, USA, 09–15 Jun 2019. PMLR. (Cited
on pages 3 and 4)

Gower, R. M., Richtárik, P., and Bach, F. Stochastic quasi-
gradient methods: variance reduction via Jacobian sketch-
ing. Mathematical Programming, pp. 1–58, 2020. ISSN
0025-5610. doi: 10.1007/s10107-020-01506-0. (Cited on
page 29)

Gürbüzbalaban, M., Özdağlar, A., and Parrilo, P. A. Why
random reshuffling beats stochastic gradient descent.
Mathematical Programming, Oct 2019. ISSN 1436-4646.
doi: 10.1007/s10107-019-01440-w. (Cited on page 2)

Haochen, J. and Sra, S. Random Shuffling Beats SGD af-
ter Finite Epochs. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 2624–2633, Long
Beach, California, USA, 09–15 Jun 2019. PMLR. (Cited
on page 2)

Kairouz, P. et al. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977, 2019. (Cited
on pages 1 and 3)

Karimi, H., Nutini, J., and Schmidt, M. Linear Conver-
gence of Gradient and Proximal-Gradient Methods Under
the Polyak-Łojasiewicz Condition. In European Con-
ference on Machine Learning and Knowledge Discov-
ery in Databases - Volume 9851, ECML PKDD 2016,
pp. 795–811, Berlin, Heidelberg, 2016. Springer-Verlag.
(Cited on page 4)

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S. U., and Suresh, A. T. SCAFFOLD: Stochastic con-
trolled averaging for federated learning. In Interna-
tional Conference on Machine Learning, pp. 5132–5143.
PMLR, 2020. (Cited on pages 8 and 28)

http://leon.bottou.org/papers/bottou-slds-open-problem-2009
http://leon.bottou.org/papers/bottou-slds-open-problem-2009
https://arXiv.org/abs/1802.02988
http://proceedings.mlr.press/v119/drori20a.html
http://proceedings.mlr.press/v119/drori20a.html

Proximal and Federated Random Reshuffling

Khaled, A. and Richtárik, P. Better theory for SGD in
the nonconvex world. arXiv Preprint arXiv:2002.03329,
2020. (Cited on pages 5 and 30)

Khaled, A., Mishchenko, K., and Richtárik, P. Tighter theory
for Local SGD on identical and heterogeneous data. In
International Conference on Artificial Intelligence and
Statistics, pp. 4519–4529. PMLR, 2020. (Cited on page 28)

Konečný, J., McMahan, H. B., Yu, F., Richtárik, P., Suresh,
A. T., and Bacon, D. Federated learning: strategies for
improving communication efficiency. In NIPS Private
Multi-Party Machine Learning Workshop, 2016. (Cited on
pages 1 and 3)

Lee, D. D. and Seung, H. S. Learning the parts of objects
by non-negative matrix factorization. Nature, 401(6755):
788–791, 1999. (Cited on page 2)

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
Agüera y Arcas, B. Communication-efficient learning of
deep networks from decentralized data. In Proceedings
of the 20th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), 2017. (Cited on pages 1
and 3)

Mishchenko, K., Khaled, A., and Richtárik, P. Random
Reshuffling: Simple Analysis with Vast Improvements.
arXiv preprint arXiv:2006.05988. Neural Information
Processing Systems (NeurIPS) 2020, 2020. (Cited on
pages 2, 3, 4, 5, 14, 17, and 19)

Nagaraj, D., Jain, P., and Netrapalli, P. SGD without Re-
placement: Sharper Rates for General Smooth Convex
Functions. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4703–4711, Long Beach, Califor-
nia, USA, 09–15 Jun 2019. PMLR. (Cited on page 2)

Needell, D., Srebro, N., and Ward, R. Stochastic gradient
descent, weighted sampling, and the randomized Kacz-
marz algorithm. Mathematical Programming, 155(1):
549–573, Jan 2016. ISSN 1436-4646. doi: 10.1007/
s10107-015-0864-7. (Cited on pages 4 and 29)

Parikh, N. and Boyd, S. Proximal Algorithms. Foundations
and Trends in Optimization, 1(3):127–239, January 2014.
ISSN 2167-3888. doi: 10.1561/2400000003. (Cited on
pages 14 and 28)

Patrascu, A. and Irofti, P. Stochastic proximal splitting algo-
rithm for composite minimization. Optimization Letters,
pp. 1–19, 2021. (Cited on page 4)

Pham, N. H., Nguyen, L. M., Phan, D. T., and Tran-Dinh,
Q. ProxSARAH: An efficient algorithmic framework for
stochastic composite nonconvex optimization. Journal of

Machine Learning Research, 21(110):1–48, 2020. (Cited
on page 2)

Recht, B. and Ré, C. Toward a noncommutative arithmetic-
geometric mean inequality: Conjectures, case-studies,
and consequences. In Mannor, S., Srebro, N., and
Williamson, R. C. (eds.), Proceedings of the 25th An-
nual Conference on Learning Theory, volume 23, pp.
11.1–11.24, 2012. Edinburgh, Scotland. (Cited on page 2)

Rudin, L. I., Osher, S., and Fatemi, E. Nonlinear total
variation based noise removal algorithms. Physica D:
nonlinear phenomena, 60(1-4):259–268, 1992. (Cited on
page 2)

Safran, I. and Shamir, O. Random shuffling beats SGD
only after many epochs on ill-conditioned problems.
arXiv preprint, abs/2106.06880, 2021. URL https:
//arXiv.org/abs/2106.06880. (Cited on page 3)

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: from theory to algorithms. Cambridge
University Press, 2014. (Cited on page 1)

Shamir, O. Without-replacement sampling for stochastic
gradient methods. In Advances in neural information
processing systems, pp. 46–54, 2016. (Cited on page 2)

Shang, F., Jiao, L., Zhou, K., Cheng, J., Ren, Y., and Jin,
Y. ASVRG: Accelerated Proximal SVRG. In Zhu, J.
and Takeuchi, I. (eds.), Proceedings of Machine Learning
Research, volume 95, pp. 815–830. PMLR, 14–16 Nov
2018. (Cited on page 2)

Stich, S. U. Unified Optimal Analysis of the (Stochas-
tic) Gradient Method. arXiv preprint arXiv:1907.04232,
2019. (Cited on pages 4, 29, and 30)

Sun, R.-Y. Optimization for Deep Learning: An Overview.
Journal of the Operations Research Society of China, 8
(2):249–294, Jun 2020. ISSN 2194-6698. doi: 10.1007/
s40305-020-00309-6. (Cited on page 30)

Tang, J., Egiazarian, K., Golbabaee, M., and Davies, M. The
practicality of stochastic optimization in imaging inverse
problems. IEEE Transactions on Computational Imaging,
6:1471–1485, 2020. (Cited on pages 5 and 29)

Tibshirani, R. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996. (Cited on page 2)

Tran, T. H., Nguyen, L. M., and Tran-Dinh, Q. Shuffling
gradient-based methods with momentum. arXiv preprint
arXiv:2011.11884, 2020. (Cited on page 30)

Vogel, C. Computational methods for inverse problems.
Society for Industrial and Applied Mathematics, Philadel-
phia, 2002. ISBN 9780898715507. (Cited on page 2)

https://arXiv.org/abs/2106.06880
https://arXiv.org/abs/2106.06880

Proximal and Federated Random Reshuffling

Woodworth, B., Patel, K. K., and Srebro, N. Minibatch
vs Local SGD for Heterogeneous Distributed Learning.
arXiv preprint arXiv:2006.04735. Neural Information
Processing Systems (NeurIPS) 2020, 2020. (Cited on
pages 3, 7, and 27)

Xiao, L. and Zhang, T. A proximal stochastic gradi-
ent method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014. doi:
10.1137/140961791. URL https://doi.org/10.
1137/140961791. (Cited on page 5)

Yuan, H., Zaheer, M., and Reddi, S. Federated composite
optimization. arXiv preprint arXiv:2011.08474, 2020.
(Cited on page 7)

Yuan, M. and Lin, Y. Model selection and estimation in
regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68
(1):49–67, 2006. (Cited on page 2)

https://doi.org/10.1137/140961791
https://doi.org/10.1137/140961791

Proximal and Federated Random Reshuffling

Supplementary Material
Contents

1 Introduction 1

2 Contributions 2

2.1 RR in new problem settings . 2

2.2 Improving vanilla RR . 3

3 Theory for strongly convex objectives 4

3.1 Preliminaries . 4

3.2 Convergence guarantees . 4

4 Theory for non-convex objectives 5

5 FedRR: application of ProxRR to federated learning 6

6 Experiments 8

A Basic notions and preliminaries 14

A.1 Bregman divergence . 14

A.2 Properties of the proximal operator . 14

B Proof of Theorem 1 (Bounding the shuffling radius) 15

C Proof of Convergence of Proximal SGD 15

D Proofs of Theorem 2 and Theorem 8 17

D.1 A key lemma for shuffling-based methods . 17

D.2 Proof of Theorem 2 . 18

D.3 Theorem 8 and its proof . 19

E Nonconvex analysis 20

E.1 A key lemma . 20

E.2 Proof of Theorem 3 . 22

F Proofs for federated learning 23

F.1 Lemma for the extended proximal operator . 23

F.2 Proof of Lemma 1 . 24

F.3 Proof of Lemma 2 . 24

Proximal and Federated Random Reshuffling

F.4 Proof of Theorem 4 . 24

F.5 Proof of Theorem 6 . 25

F.6 Proposition 1 and its proof . 25

F.7 Proof of Theorem 5 . 26

G Comparison of FedRR with other algorithms for federated learning 26

G.1 Heterogeneous Data . 26

G.1.1 Distributed gradient descent . 27

G.1.2 Local SGD . 27

H Further experimental details 28

I Extension: Importance resampling 29

J Extension: Decreasing stepsizes 29

J.1 A recursion Lemma . 30

J.2 Proof of Theorem 10 . 32

Proximal and Federated Random Reshuffling

Proofs
A. Basic notions and preliminaries
We say that an extended real-valued function φ : Rd → R ∪ {+∞} is proper if its domain, dom φ := {x : φ(x) < +∞},
is nonempty. We say that it is convex (resp. closed) if its epigraph, epi φ := {(x, t) ∈ Rd × R : φ(x) ≤ t}, is a convex
(resp. closed) set. Equivalently, φ is convex if dom φ is a convex set and φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y) for all
x, y ∈ dom φ and α ∈ (0, 1). Finally, φ is µ-strongly convex if φ(x)− µ

2 ‖x‖
2 is convex, and L-smooth if L2 ‖x‖

2 − φ(x)
is convex.

One useful fact that we will need is that for any vectors a1, . . . , aM ∈ Rd we have

m∑
m=1

‖ai‖2 =
1

M

∥∥∥∥∥
M∑
m=1

am

∥∥∥∥∥
2

+

m∑
m=1

∥∥∥∥∥am − 1

M

M∑
l=1

al

∥∥∥∥∥
2

. (12)

The identity above is sometimes called bias-variance decomposition.

To prove the upper bound in Theorem 1, we rely on a lemma due to Mishchenko et al. (2020) that bounds the variance when
sampling without replacement.

Lemma 3 (Lemma 1 in (Mishchenko et al., 2020)). Let X1, . . . , Xn ∈ Rd be fixed vectors, let X̄ = 1
n

∑n
i=1Xi be their

mean, and let σ2 = 1
n

∑n
i=1

∥∥Xi − X̄
∥∥2

be their variance. Fix any i ∈ [n] and let Xπ0
, . . . , Xπi−1

be sampled uniformly
without replacement from {X1, . . . , Xn} and X̄π = 1

i

∑i−1
j=0Xπj be their average. Then, the sample average and variance

are given by
E
[
X̄π

]
= X̄, E

[∥∥X̄π − X̄
∥∥2
]

= n−i
i(n−1)σ

2. (13)

Finally, we define [n] := {1, 2, . . . , n}.

A.1. Bregman divergence

These notions have a more useful characterization in the case of real valued and continuously differentiable functions
φ : Rd → R. The Bregman divergence of such φ is defined by Dφ(x, y) := φ(x)−φ(y)−〈∇φ(y), x− y〉 . A continuously
differentiable function φ is called µ-strongly convex if

µ
2 ‖x− y‖

2 ≤ Dφ(x, y), ∀x, y ∈ Rd.

It is convex if this holds with µ = 0. Moreover, a continuously differentiable function φ is called L-smooth if

− L
2 ‖x− y‖

2 ≤ Dφ(x, y) ≤ L
2 ‖x− y‖

2
, ∀x, y ∈ Rd. (14)

Note that the first inequality is redundant for convex φ because convexity implies 0 ≤ Dφ(x, y).

A.2. Properties of the proximal operator

Before we proceed to the proofs of convergence, we should state some basic and well-known properties of the regularized
objectives. The following lemma explains why the solution of (1) is a fixed point of the proximal-gradient step for any
stepsize.

Lemma 4. Let Assumption 1 be satisfied.2 Then point x∗ is a minimizer of P (x) = f(x) + ψ(x) if and only if for any
γ, b > 0 we have

x∗ = proxγbψ(x∗ − γb∇f(x∗)).

Proof. This follows by writing the first-order optimality conditions for problem (1), see (Parikh & Boyd, 2014, p.32) for a
full proof. �

2We only need the part about ψ.

Proximal and Federated Random Reshuffling

The lemma above only shows that proximal-gradient step does not hurt if we are at the solution. In addition, we will rely on
the following a bit stronger result which postulates that the proximal operator is a contraction (resp. strong contraction) if
the regularizer ψ is convex (resp. strongly convex).

Lemma 5. Let Assumption 1 be satisfied.3 If ψ is µ-strongly convex with µ ≥ 0, then for any γ > 0 we have

‖proxγnψ(x)− proxγnψ(y)‖2 ≤ 1

1 + 2γµn
‖x− y‖2, (15)

for all x, y ∈ Rd.

Proof. Let u := proxγnψ(x) and v := proxγnψ(y). By definition, u = argminw{ψ(w) + 1
2γn‖w − x‖

2}. By first-order
optimality, we have 0 ∈ ∂ψ(u) + 1

γn (u − x) or simply x − u ∈ γn∂ψ(u). Using a similar argument for v, we get
x− u− (y − v) ∈ γn(∂ψ(u)− ∂ψ(v)). Thus, by strong convexity of ψ, we get

〈x− u− (y − v), u− v〉 ≥ γµn‖u− v‖2.

Hence,

‖x− y‖2 = ‖u− v + (x− u− (y − v))‖2

= ‖u− v‖2 + 2〈x− u− (y − v), u− v〉+ ‖x− u− (y − v)‖2

≥ ‖u− v‖2 + 2〈x− u− (y − v), u− v〉
≥ (1 + 2γµn)‖u− v‖2. �

B. Proof of Theorem 1 (Bounding the shuffling radius)
Proof. By the Li-smoothness of fi and the definition of xi∗, we can replace the Bregman divergence in (4) with the bound

E
[
Dfπi

(xi∗, x∗)
] (14)
≤ E

[
Lπi
2

∥∥xi∗ − x∗∥∥2
]
≤ Lmax

2
E
[
‖xi∗ − x∗‖2

]
(3)
=
γ2Lmax

2
E

[∥∥∥∥i−1∑
j=0

∇fπj (x∗)
∥∥∥∥2
]

=
γ2Lmaxi

2

2
E

[∥∥∥∥1

i

i−1∑
j=0

∇fπj (x∗)
∥∥∥∥2
]

=
γ2Lmaxi

2

2
E
[∥∥X̄π

∥∥2
]
, (16)

where X̄π = 1
j

∑i−1
j=0Xπj with Xj := ∇fj(x∗) for j = 1, 2, . . . , n. Since X̄ = ∇f(x∗), by applying Lemma 3 we get

E
[∥∥X̄π

∥∥2
]

=
∥∥X̄∥∥2

+ E
[∥∥X̄π − X̄

∥∥2
]

(13)+(5)
= ‖∇f(x∗)‖2 +

n− i
i(n− 1)

σ2
∗. (17)

It remains to combine (16) and (17), use the bounds i2 ≤ n2 and i(n−i) ≤ n(n−1)
2 , which holds for all i ∈ {0, 1, . . . , n−1},

and divide both sides of the resulting inequality by γ2. �

C. Proof of Convergence of Proximal SGD
Theorem 7 (Proximal SGD). Let Assumption 1 hold. Further, suppose that either f := 1

n

∑n
i=1 fi is µ-strongly convex or

that ψ is µ-strongly convex. If Algorithm 3 is run with a constant stepsize γk = γ > 0 satisfying γ ≤ 1
2Lmax

, then the final
iterate after K steps satisfies

E
[
‖xK − x∗‖2

]
≤ (1− γµ)

K ‖x0 − x∗‖2 +
2γσ2

∗
µ .

3We only need the part about ψ.

Proximal and Federated Random Reshuffling

Algorithm 3 Proximal SGD
1: Input: Stepsizes γk > 0, initial vector x0 ∈ Rd, number of steps K
2: for steps k = 0, 1, . . . ,K − 1 do
3: Sample ik uniformly at random from [n]
4: xk+1 = proxγkψ(xk − γk∇fik (xk))
5: end for

Proof. We will prove the case when ψ is µ-strongly convex. The other result follows as a straightforward special case of
(Gorbunov et al., 2020, Theorem 4.1). We start by analyzing one step of SGD with stepsize γk = γ and using Lemma 4

‖xk+1 − x∗‖2 =
∥∥proxγψ(xk − γ∇fξ(xk))− proxγψ(x∗ − γ∇f(x∗))

∥∥2

≤ 1

1 + 2γµ
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2. (18)

We may write the squared norm term in (18) as

‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2 = ‖xk − x∗‖2 − 2γ 〈xk − x∗,∇fξ(xk)−∇f(x∗)〉

+ γ2‖∇fξ(xk)−∇f(x∗)‖2.
(19)

We denote by Ek [·] expectation conditional on xk. Note that the gradient estimate is conditionally unbiased, i.e., that
Ek [∇fξ(xk)] = 1

n

∑n
i=1∇fi(xk) = ∇f(xk). Hence, taking conditional expectation in (19) and using unbiasedness we

have

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
= ‖xk − x∗‖2 − 2γ 〈xk − x∗,∇f(xk)−∇f(x∗)〉

+ γ2Ek
[
‖∇fξ(xk)−∇f(x∗)‖2

]
.

(20)

By the convexity of f we have
〈xk − x∗,∇f(xk)−∇f(x∗)〉 ≥ Df (xk, x∗).

Furthermore, we may estimate the third term in (20) by first using the fact that ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 for any two
vectors x, y ∈ Rd

Ek
[
‖∇fξ(xk)−∇f(x∗)‖2

]
≤ 2Ek

[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
+ 2Ek

[
‖∇fξ(x∗)−∇f(x∗)‖2

]
= 2Ek

[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
+ 2σ2

∗.

We now use that by the Lmax-smoothness of fi we have that

‖∇fi(xk)−∇fi(x∗)‖2 ≤ 2Lmax ·Dfi(xk, x∗).

Hence

Ek
[
‖∇fξ(xk)−∇fξ(x∗)‖2

]
=

1

n

n∑
i=1

‖∇fi(xk)−∇fi(x∗)‖2

≤ 2Lmax

n

n∑
i=1

[fi(xk)− fi(x∗)− 〈∇fi(x∗), xk − x∗〉]

= 2Lmax [f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉]
= 2LmaxDf (xk, x∗). (21)

Combining equations (20)–(21) we obtain

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
≤ ‖xk − x∗‖2 − 2γ (1− 2γLmax)Df (xk, x∗) + 2γ2σ2

∗.

Proximal and Federated Random Reshuffling

Since γ ≤ 1
2Lmax

by assumption we have that 1− 2γLmax ≥ 0. Since Df (xk, x∗) ≥ 0 by the convexity of f we arrive at

Ek
[
‖xk − γ∇fξ(xk)− (x∗ − γ∇f(x∗))‖2

]
≤ ‖xk − x∗‖2 + 2γ2σ2

∗.

Taking unconditional expectation and combining (43) with the last equation we have

E
[
‖xk+1 − x∗‖2

]
≤ 1

1 + 2γµ

(
E
[
‖xk − x∗‖2

]
+ 2γ2σ2

∗

)
=

1

1 + 2γµ
E
[
‖xk − x∗‖2

]
+

2γ2σ2
∗

1 + 2γµ

≤ 1

1 + 2γµ
E
[
‖xk − x∗‖2

]
+ 2γ2σ2

∗.

To simplify this further, we use that for any x ≤ 1
2 we have that 1

1+2x ≤ 1− x and that γµ ≤ µ
2Lmax

≤ 1
2 , hence

E
[
‖xk+1 − x∗‖2

]
≤ (1− γµ)E

[
‖xk − x∗‖2

]
+ 2γ2σ2

∗.

Recursing the above inequality for K steps yields

E
[
‖xK − x∗‖2

]
≤ (1− γµ)

K ‖x0 − x∗‖2 + 2γ2σ2
∗

(
K−1∑
k=0

(1− γµ)
k

)

≤ (1− γµ)
K ‖x0 − x∗‖2 + 2γ2σ2

∗

(∞∑
k=0

(1− γµ)
k

)

= (1− γµ)
K ‖x0 − x∗‖2 +

2γσ2
∗

µ
. �

Furthermore, by choosing the stepsize γ as γ = min
{

1
2Lmax

, εµ4σ2
∗

}
, we get that E

[
‖xK − x∗‖2

]
= O (ε) provided that

the number of iterations is at least

KSGD ≥
(
κ+

σ2
∗

εµ2

)
log

(
2r0

ε

)
,

which we previously stated in (7).

D. Proofs of Theorem 2 and Theorem 8
D.1. A key lemma for shuffling-based methods

The intermediate limit points xi∗ are extremely important for showing tight convergence guarantees for Random Reshuffling
even without proximal operator. The following lemma illustrates that by giving a simple recursion, whose derivation follows
(Mishchenko et al., 2020, Proof of Theorem 1). The proof is included for completeness.

Lemma 6 (Theorem 1 in (Mishchenko et al., 2020)). Suppose that each fi is Li-smooth and λ-strongly convex (where
λ = 0 means each fi is just convex). Then the inner iterates generated by Algorithm 1 satisfy

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γλ)E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad, (22)

where xi∗ is as in (3), i = 0, 1, . . . , n− 1, and x∗ is any minimizer of P .

Proof. By definition of xi+1
t and xi+1

∗ , we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]

= E
[∥∥xit − xi∗∥∥2

]
− 2γE

[
〈∇fπi(xit)−∇fπi(x∗), xit − xi∗〉

]
+ γ2E

[∥∥∇fπi(xit)−∇fπi(x∗)∥∥2
]
.

(23)

Proximal and Federated Random Reshuffling

Note that the third term in (23) can be bounded as∥∥∇fπi(xit)−∇fπi(x∗)∥∥2 ≤ 2Lmax ·Dfπi
(xit, x∗). (24)

We may rewrite the second term in (23) using the three-point identity (Chen & Teboulle, 1993, Lemma 3.1) as〈
∇fπi(xit)−∇fπi(x∗), xit − xi∗

〉
= Dfπi

(xi∗, x
i
t) +Dfπi

(xit, x∗)−Dfπi
(xi∗, x∗). (25)

Combining (23), (24), and (25) we obtain

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ · E

[
Dfπi

(xi∗, x
i
t)
]

+ 2γ · E
[
Dfπi

(xi∗, x∗)
]

− 2γ (1− γLmax)E
[
Dfπi

(xit, x∗)
]
.

(26)

Using λ-strong convexity of fπi , we derive

λ

2

∥∥xit − xi∗∥∥2 ≤ Dfπi
(xi∗, x

i
t). (27)

Furthermore, by the definition of shuffling radius (Definition 1), we have

E
[
Dfπi

(xi∗, x∗)
]
≤ max
i=0,...,n−1

E
[
Dfπi

(xi∗, x∗)
]

= γ2σ2
rad. (28)

Using (27) and (28) in (26) yields (22). �

D.2. Proof of Theorem 2

Proof. Starting with Lemma 6 with λ = µ, we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γµ)E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad.

Since Dfπ (xit, x∗) is a Bregman divergence of a convex function, it is nonnegative. Combining this with the fact that the
stepsize satisfies γ ≤ 1/Lmax, we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ (1− γµ)E

[∥∥xit − xi∗∥∥2
]

+ 2γ3σ2
rad.

Unrolling this recursion for n steps, we get

E
[
‖xnt − xn∗‖

2
]
≤ (1− γµ)

n E
[∥∥x0

t − x0
∗
∥∥2
]

+ 2γ3σ2
rad

n−1∑
j=0

(1− γµ)
j

= (1− γµ)

n E
[
‖xt − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

 , (29)

where we used the fact that x0
t − x0

∗ = xt − x∗. Since x∗ minimizes P , we have by Lemma 4 that

x∗ = proxγnψ

(
x∗ − γ

n−1∑
i=0

∇fπi(x∗)

)
= proxγnψ (xn∗) .

Moreover, by Lemma 5 we obtain that

‖xt+1 − x∗‖2 =
∥∥proxγnψ(xnt)− proxγnψ(xn∗)

∥∥2 ≤ ‖xnt − xn∗‖
2
.

Using this in (29) yields

E
[
‖xt+1 − x∗‖2

]
≤ (1− γµ)

n E
[
‖xt − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

 .

Proximal and Federated Random Reshuffling

We now unroll this recursion again for T steps

E
[
‖xT − x∗‖2

]
≤ (1− γµ)

nT E
[
‖x0 − x∗‖2

]
+ 2γ3σ2

rad

n−1∑
j=0

(1− γµ)
j

(T−1∑
i=0

(1− γµ)
ni

)
. (30)

Following Mishchenko et al. (2020), we rewrite and bound the product in the last term asn−1∑
j=0

(1− γµ)
j

(T−1∑
i=0

(1− γµ)
ni

)
=

n−1∑
j=0

T−1∑
i=0

(1− γµ)
ni+j

=

nT−1∑
k=0

(1− γµ)
k

≤
∞∑
k=0

(1− γµ)
k

=
1

γµ
.

It remains to plug this bound into (30). �

D.3. Theorem 8 and its proof

Theorem 8. Let Assumption 1 hold and f1, . . . , fn be convex. Further, assume that ψ is µ-strongly convex. If Algorithm 1
is run with constant stepsize γt = γ ≤ 1/Lmax, where Lmax = maxi Li, then its iterates satisfy

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

µ .

Proof. Starting with Lemma 6 with λ = 0, we have

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3σ2
rad.

Since γ ≤ 1/Lmax and Dfπ (xit, x∗) is nonnegative we may simplify this to

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]

+ 2γ3σ2
rad.

Unrolling this recursion over an epoch we have

E
[
‖xnt − xn∗‖

2
]
≤ E

[∥∥x0
t − x0

∗
∥∥2
]

+ 2γ3σ2
radn = E

[
‖xt − x∗‖2

]
+ 2γ3σ2

radn. (31)

Since x∗ minimizes P , we have by Lemma 4 that

x∗ = proxγnψ

(
x∗ − γ

n−1∑
i=0

∇fπi(x∗)

)
= proxγnψ (xn∗) .

Hence, xt+1 − x∗ = proxγnψ(xnt)− proxγnψ(xn∗). We may now use Lemma 5 to get

(1 + 2γµn)E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xnt − xn∗‖

2
]
.

Combining this with (31), we obtain

E
[
‖xt+1 − x∗‖2

]
≤ 1

1 + 2γµn
E
[
‖xt − x∗‖2

]
+

2γ3σ2
radn

1 + 2γµn
.

Proximal and Federated Random Reshuffling

We may unroll this recursion again, this time for T steps, and then use that
∑T−1
j=1 (1 + 2γµn)

−j ≤
∑∞
j=1 (1 + 2γµn)

−j
=

1/(2γµn):

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T E
[
‖x0 − x∗‖2

]
+

2γ3σ2
radn

1 + 2γµn

(
T−1∑
j=0

(1 + 2γµn)
−j

)

= (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+ 2γ3σ2

radn

(
T∑
j=1

(1 + 2γµn)
−j

)

≤ (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+ 2γ3σ2

radn
1

2γµn

= (1 + 2γµn)
−T E

[
‖x0 − x∗‖2

]
+
γ2σ2

rad

µ
. �

Using Theorem 8 and choosing the stepsize as

γ = min
{

1
Lmax

,
√
εµ

σrad

}
, (32)

we get E
[
‖xT − x∗‖2

]
= O (ε) provided that the total number of iterations satisfies

K ≥
(
κ+ σrad/µ√

εµ + n
)

log
(

2r0
ε

)
. (33)

This can be converted to a bound similar to (3.2) by using Theorem 1, in which case the only difference between the two
cases is an extra n log

(
1
ε

)
term when only the regularizer ψ is µ-strongly convex. Since for small enough accuracies the

1/
√
ε term dominates, this difference is minimal.

E. Nonconvex analysis
E.1. A key lemma

For notational convenience, we define

gt :=
1

γn
(xt − xnt) =

1

n

n−1∑
i=0

∇fπi(xit),

which is equivalent to xnt = xt − γngt.
Lemma 7. Let functions f1, . . . , fn be Lmax-smooth, Assumptions 2 and 3 be satisfied and γ ≤ 1

2Lmaxn
. Then,

Et
[
‖∇f(xt)− gt‖2

]
≤ γ2L2

maxn
2(‖Gγn(xt)‖2 + ζ2) + γ2L2

maxnσ
2. (34)

Proof. We start with the observation that gradient Lipschitzness reduces the left-hand side to a difference of iterates:

‖∇f(xt)− gt‖2 =

∥∥∥∥∥ 1

n

n−1∑
i=0

[
∇fπi(xt)−∇fπi(xit)

]∥∥∥∥∥
2

≤ 1

n

n−1∑
i=0

∥∥∇fπi(xt)−∇fπi(xit)∥∥2

≤ 1

n

n−1∑
i=0

L2
max

∥∥xt − xit∥∥2
.

Define Vt :=
∑n−1
i=0 ‖xit−xt‖2. Clearly, it is sufficient to bound E [Vt] to finish the proof. Also note that for any intermediate

iterate xkt within epoch t we do not use proximal step, so the following identity holds:

xkt = xt − γ
k−1∑
i=0

∇fπi(xit).

Proximal and Federated Random Reshuffling

This identity only includes gradients, so to bound the deviation of xkt from xt we apply Jensen’s inequality and gradient
Lipschitzness

Et
[
‖xkt − xt‖2

]
= γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xit)

∥∥∥∥∥
2

≤ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

(
∇fπi(xit)−∇fπi(xt)

)∥∥∥∥∥
2
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2

≤ 2γ2k

k−1∑
i=0

Et
[∥∥∇fπi(xit)−∇fπi(xt)∥∥2

]
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2

≤ 2γ2L2
maxk

k−1∑
i=0

Et
[
‖xit − xt‖2

]
+ 2γ2Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2
.

Now we are going to use the fact that for any i in RR we have Et [∇fπi(xt)] = ∇f(xt). Note that this property
does not hold if xt is not independent of πi, which is why the result does not hold for SO. Let us also define σ2

t :=
1
n

∑n
j=1 ‖∇fj(xt)−∇f(xt)‖2. By Lemma 3 we have

Et

∥∥∥∥∥
k−1∑
i=0

∇fπi(xt)

∥∥∥∥∥
2
 = k2‖∇f(xt)‖2 + k2Et

∥∥∥∥∥1

k

k−1∑
i=0

(∇fπi(xt)−∇f(xt))

∥∥∥∥∥
2

(13)
= k2‖∇f(xt)‖2 +

k(n− k)

n− 1
σ2
t .

Plugging this back and using Assumption 3, we derive

Et
[∥∥xkt − xt∥∥2

]
≤ 2γ2L2

maxk

k−1∑
i=0

Et
[∥∥xit − xt∥∥2

]
+ 2γ2k2‖∇f(xt)‖2 + 2γ2 k(n− k)

n− 1
σ2

≤ 2γ2L2
maxkE [Vt] + 2γ2k2‖∇f(xt)‖2 + 2γ2 k(n− k)

n− 1
σ2.

Let us use the obtained bound on a single iterate distance Et
[∥∥xkt − xt∥∥2

]
to upper bound E [Vt]:

Et [Vt] =

n−1∑
i=0

Et
[
‖xit − xt‖2

]
≤ γ2L2

maxn(n− 1)Et [Vt] +
1

3
γ2(n− 1)n(2n− 1)‖∇f(xt)‖2 +

1

3
γ2n(n+ 1)σ2.

This inequality has Et [Vt] in both sides, so we can rearrange it and use the assumption γ ≤ 1
2Lmaxn

, which results in

Et [Vt] ≤
4

3
(1− γ2L2

maxn(n− 1))Et [Vt]

≤ 4

9
γ2(n− 1)n(2n− 1)‖∇f(xt)‖2 +

4

9
γ2n(n+ 1)σ2

≤ γ2n3‖∇f(xt)‖2 + γ2n2σ2.

To conclude the proof, apply Assumption 2 to xt ∈ dom(ψ) and plug-in the bound on Et [Vt] into the bound on
Et
[
‖∇f(xt)− gt‖2

]
. �

Proximal and Federated Random Reshuffling

E.2. Proof of Theorem 3

Proof. Let us introduce
wt := proxγnψ(xt − γn∇f(xt)).

The idea of our proof is to first obtain a descent recursion for P (wt) and then bound P (xt+1)− P (wt).

By convexity of ψ, we have for any g ∈ ∂ψ(wt)

ψ(wt) ≤ ψ(xt) + 〈g, wt − xt〉.

Furthermore, the definition of wt implies by first-order optimality that xt − γn∇f(xt)− wt ∈ γn∂ψ(wt), so we can plug
it into the bound above to get

ψ(wt) ≤ ψ(xt) +
1

γn
〈xt − γn∇f(xt)− wt, wt − xt〉

= ψ(xt)− 〈∇f(xt), wt − xt〉 −
1

γn
‖wt − xt‖2.

At the same time, by Lmax-smoothness of f we have

f(wt) ≤ f(xt) + 〈∇f(xt), wt − xt〉+
Lmax

2
‖wt − xt‖2.

Adding the two recursion together yields

P (wt) = f(xt) + ψ(wt) ≤ P (xt) +

(
Lmax

2
− 1

γn

)
‖wt − xt‖2.

Now we shall upper bound P (xt+1). Using the convexity of ψ for xnt − xt+1 ∈ γn∂ψ(xt+1), we derive

ψ(xt+1) ≤ ψ(wt) +
1

γn
〈xnt − xt+1, xt+1 − wt〉 = ψ(wt)− 〈gt, xt+1 − wt〉+

1

γn
〈xt − xt+1, xt+1 − wt〉

= ψ(wt)− 〈gt, xt+1 − wt〉+
1

2γn

(
‖xt − wt‖2 − ‖xt − xt+1‖2 − ‖xt+1 − wt‖2

)
.

Next, we apply Lmax-smoothness of f two times, to upper bound Df (xt+1, xt) and to lower bound Df (wt, xt):

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
Lmax

2
‖xt+1 − xt‖2,

and f(xt) ≤ f(wt) + 〈∇f(xt), xt − wt〉+
Lmax

2
‖xt − wt‖2.

Therefore,

f(xt+1) ≤ f(wt) + 〈∇f(xt), xt+1 − wt〉+
Lmax

2

(
‖xt+1 − xt‖2 + ‖wt − xt‖2

)
.

Combining the inequalities for ψ(xt+1) and f(xt+1), we obtain

P (xt+1) ≤ P (wt) + 〈∇f(xt)− gt, xt+1 − wt〉+

(
Lmax

2
− 1

2γn

)
‖xt+1 − xt‖2

+

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2 −

1

2γn
‖xt+1 − wt‖2.

By Young’s inequality and Lemma 7 we have

Et [〈∇f(xt)− gt, xt+1 − wt〉]

≤ Et
[
γn

2
‖∇f(xt)− gt‖2 +

2

γn
‖xt+1 − wt‖2

]
(34)
≤ γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

2

γn
Et
[
‖xt+1 − wt‖2

]
.

Proximal and Federated Random Reshuffling

If we plug this back, the term ‖xt+1 − wt‖2 will cancel out, giving us for γ ≤ 1
Lmaxn

Et [P (xt+1)]

≤ P (wt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2

+

(
Lmax

2
− 1

2γn

)
Et
[
‖xt+1 − xt‖2

]
≤ P (wt) +

γ3L2
maxn

3

2
ζ2 +

γ3L2
maxn

3

2
‖Gγn(xt)‖2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

2
+

1

2γn

)
‖xt − wt‖2.

Using the recursion for P (wt) and our choice γ ≤ 1
5Lmaxn

, we finally obtain, after plugging-in ‖xt−wt‖2 = γ2n2Gγn(xt),

Et [P (xt+1)]

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 +

(
γnL2

max

2
+
Lmax

2
+

1

2γn
+
Lmax

2
− 1

γn

)
γ2n2‖Gγn(xt)‖2

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 +

(
Lmax

10
+ Lmax −

1

2γn

)
γ2n2‖Gγn(xt)‖2

≤ P (xt) +
γ3L2

maxn
3

2
ζ2 +

γ3L2
maxn

2

2
σ2 − 1

4γn
γ2n2‖Gγn(xt)‖2.

Recursing this to P (x0) and using P∗ ≤ P (xT), we get the Theorem’s claim. �

F. Proofs for federated learning
F.1. Lemma for the extended proximal operator

Lemma 8. Let ψC be the consensus constraint and R be a closed convex proximable function. Suppose that x1, x2, . . . , xM
are all in Rd. Then,

proxγ(R+ψC)(x1, . . . , xM) = prox γ
MR(x),

where x = 1
M

∑M
m=1 xm.

Proof. We have,

proxγ(R+ψC)(x1, . . . , xM) =

prox γ
MR(x)
...

prox γ
MR(x)

 with x =
1

M

M∑
m=1

xm.

This is a simple consequence of the definition of the proximal operator. Indeed, the result of proxγ(R+ψC) must have blocks
equal to some vector z such that

z = argmin
x

{
γR(x) +

1

2

M∑
m=1

‖x− xm‖2
}

= argmin
x

{
γR(x) +

1

2

M∑
m=1

(
‖x− x‖2 + 2〈x− x, x− xm〉) + ‖x− xm‖2

)}

= argmin
x

{
γR(x) +

1

2
M‖x− x‖2

}
= prox γ

MR(x).

�

Proximal and Federated Random Reshuffling

F.2. Proof of Lemma 1

Proof. Given some vectors x,y ∈ Rd·M , let us use their block representation x = (x>1 , . . . , x
>
M)>, y = (y>1 , . . . , y

>
M)>.

Since we use the Euclidean norm, we have

‖∇fi(x)−∇fi(y)‖2 =

M∑
m=1

‖∇fmi(xm)−∇fmi(ym)‖2 ≤
M∑
m=1

L2
i ‖xm − ym‖2 = L2

i ‖x− y‖2.

We can obtain a lower bound by doing the same derivation and applying strong convexity instead of smoothness:

M∑
m=1

‖∇fmi(xm)−∇fmi(ym)‖2 ≥ µ2
M∑
m=1

‖xm − ym‖2 = µ2‖x− y‖2.

Thus, we have µ‖x− y‖ ≤ ‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖, which is exactly µ-strong convexity and Li-smoothness of
fi. �

F.3. Proof of Lemma 2

Proof. By Theorem 1 we have

σ2
rad ≤

Lmax

2

(
n2‖∇f(x∗)‖2 +

n

2
σ2
∗

)
.

Due to the separable structure of f , we have for the variance term

nσ2
∗ :=

n∑
i=1

‖∇fi(x∗)−∇f(x∗)‖2 =

n∑
i=1

M∑
m=1

∥∥∥∥∇fmi(x∗)− 1

n
∇Fm(x∗)

∥∥∥∥2

.

The expression inside the summation is not exactly the variance due to the different normalization: 1
n instead of 1

Nm
.

Nevertheless, we can expand the norm and try to get the actual variance:

n∑
i=1

∥∥∥∥∇fmi(x∗)− 1

n
∇Fm(x∗)

∥∥∥∥2

=

Nm∑
i=1

(∥∥∥∥∇fmi(x∗)− 1

Nm
∇Fm(x∗)

∥∥∥∥2

+
(1

Nm
− 1

n

)2

‖∇Fm(x∗)‖2
)

+ 2

Nm∑
i=1

〈
∇fmi(x∗)−

1

Nm
∇Fm(x∗),

(1

Nm
− 1

n

)
∇Fm(x∗)

〉
= Nmσ

2
m,∗ +Nm

(1

Nm
− 1

n

)2

‖∇Fm(x∗)‖2

≤ nσ2
m,∗ + ‖∇Fm(x∗)‖2.

Moreover, the gradient term has the same block structure, so

n2‖∇f(x∗)‖2 = n2

∥∥∥∥ 1

n

n∑
i=1

∇fi(x∗)
∥∥∥∥2

=

M∑
m=1

∥∥∥∥∥
n∑
i=1

∇fmi(x∗)

∥∥∥∥∥
2

=

M∑
m=1

‖∇Fm(x∗)‖2.

Plugging the last two bounds back inside the upper bound on σ2
rad, we deduce the lemma’s statement. �

F.4. Proof of Theorem 4

Proof. Since we assume that N1 = · · · = NM = n, we have N
M = n and the strong convexity constant of ψ = N

n (R+ψC)

is equal to N
n ·

µ
M = µ. By applying Theorem 8 we obtain

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

µ
.

Since xT = proxγN(R+ψC)(x
n
T−1), we have xT ∈ C, i.e., all of its blocks are equal to each other and we have

xT = (x>T , . . . , x
>
T)>. Since we use the Euclidean norm, it also implies

E
[
‖xT − x∗‖2

]
= M‖xT − x∗‖2.

Proximal and Federated Random Reshuffling

The same is true for x0, so we need to divide both sides of the upper bound on ‖xT − x∗‖2 by M . Doing so together with
applying Lemma 2 yields

E
[
‖xT − x∗‖2

]
≤ (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2σ2

rad

Mµ

≤ (1 + 2γµn)
−T ‖x0 − x∗‖2 +

γ2Lmax

Mµ

M∑
m=1

(
‖∇Fm(x∗)‖2 +

n

4
σ2
m,∗

)
= (1 + 2γµn)

−T ‖x0 − x∗‖2 +
γ2Lmax

Mµ

M∑
m=1

(
‖∇Fm(x∗)‖2 +

N

4M
σ2
m,∗

)
.

�

F.5. Proof of Theorem 6

Proof. According to Lemma 1, each fi is µ-strongly convex and Lmax-smooth, so we obtain the result by trivially applying
Theorem 2 and upper bounding σ2

rad the same way as in the proof of Theorem 4. �

F.6. Proposition 1 and its proof

An important property of Assumption 2 is that it is equivalent to the bounded dissimilarity assumption that was previously
used for the nonconvex analysis of Local SGD. We formalize this in the following proposition.

Proposition 1. Consider federated learning reformulation (10). If ψ ≡ ψC , i.e., R ≡ 0, then Assumption 2 with constant
ζ

2
:= Mζ2 is equivalent to ζ-bounded dissimilarity (Assumption 4):

1

M

M∑
m=1

∥∥∥∥∥∇Fm(x)− 1

M

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

≤ ζ2.

Proof. First, observe that if x ∈ dom(ψ), then x has all blocks equal to some x ∈ Rd, x = (x>, . . . , x>)>. Therefore, for
the objective in reformulation (10) and x ∈ dom(ψ), we have

∇f(x) =
1

n

n∑
i=1

∇fi(x) =
1

n

n∑
i=1

M∑
m=1

∇fmi(x) =
1

n

M∑
m=1

n∑
i=1

∇fmi(x)

=
1

n

M∑
m=1

Fm(x) =

1
n∇F1(x1)

...
1
n∇FM (xM)

 =

1
n∇F1(x)

...
1
n∇FM (x)

 . (35)

With the help of bias-variance decomposition, the left-hand side of Assumption 2 can be written as

‖∇f(x)‖2 (35)
=

1

n2

M∑
m=1

‖∇Fm(x)‖2

(12)
=

1

Mn2

∥∥∥∥∥
M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

+
1

n2

M∑
m=1

∥∥∥∥∥∇Fm(x)− 1

M

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

.

Let us now work out the proximal-gradient mapping. According to Lemma 8, the proximal operator of ψ is simply the
averaging of all blocks, while the full gradient is given in (35), which give when combined

proxγnψ(x− γn∇f(x)) =

1
M

∑M
m=1(x− γ∇Fm(x))

...
1
M

∑M
m=1(x− γ∇Fm(x))

 . (36)

Proximal and Federated Random Reshuffling

Therefore,

‖Gγn(x)‖2 =
1

γ2n2
‖x− proxγnψ(x− γn∇f(x))‖2

(36)
=

1

γ2n2

M∑
l=1

∥∥∥∥∥x− 1

M

M∑
m=1

(x− γ∇Fm(x))

∥∥∥∥∥
2

=
M

n2

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

. (37)

Having the expressions for both sides, we can write

‖∇f(x)‖2 = ‖Gγn(x)‖2 +

M∑
m=1

∥∥∥∥∥ 1

n
∇Fm(x)− 1

N

M∑
l=1

∇Fl(x)

∥∥∥∥∥
2

.

From this expression and the fact 1
N

∑M
l=1∇Fl(x) = ∇F (x), it is easy to see the equivalence. �

F.7. Proof of Theorem 5

The federated learning reformulation (10) has different constant scaling than the finite-sum federated learning problem (9),
and the only constant that does not change at all is Lmax. For the initial error δ0 of the reformulation we have

δ0 =
N

n
δ0 = Mδ0,

where δ0 := 1
N

∑M
m=1 Fm(x0)−minx

1
N

∑M
m=1 Fm(x) and we use only consider the simplified caseN1 = · · · = NM = n

so N
n = M . For the variance, we have

σ2 = sup
x

E
[
‖∇fi(x)−∇f(x)‖2

]
= sup

x

M∑
m=1

E
[∥∥∥∇fmi(xm)− 1

n
∇Fm(xm)

∥∥∥2
]

= Mσ2.

As we derived in (37), the proximal-gradient mapping norm is equal to

E
[
‖Gγn(x)‖2

]
=
M

n2

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

= M

∥∥∥∥∥ 1

N

M∑
m=1

∇Fm(x)

∥∥∥∥∥
2

= M‖∇F (x)‖2,

so to have ‖∇F (xT)‖2 ≤ ε2, we need E
[
‖Gγn(xT)‖2

]
≤ ε2 := Mε2. In addition, notice that by Proposition 1 the

constant from Assumption 2 is ζ =
√
Mζ.

Thus, Theorem 3 implies, if we ignore Lmax, that we need

T = O
(
δ0

ε2 +
δ0σ√
nε3 +

δ0ζ

ε3

)
= O

(
δ0
ε2

+
δ0σ√
nε3

+
δ0ζ

ε3

)
communication rounds to achieve mint=0,...,T−1 E

[
‖∇F (xT)‖2

]
= O(ε2).

G. Comparison of FedRR with other algorithms for federated learning
G.1. Heterogeneous Data

In this section we compare between FedRR and several known baseline algorithms for Federated Learning. In particular, we
consider the following algorithms:

1. Distributed gradient descent (DGD)

2. Local SGD (with M nodes and n local steps per node)

Proximal and Federated Random Reshuffling

To be clear, the problem we are considering is

min
x∈Rd

f(x) :=

[
1

M

M∑
m=1

Fm(x) +R(x)

]
,

where each objective fm can be written as

Fm(x) =
1

n

n∑
i=1

fm,i(x).

We further assume that each objective is L-smooth and convex, and that R is µ-strongly convex. This implies that f is
L-smooth and µ-strongly convex. Note that this is a special case of (9) where we keep N1 = N2 = . . . = n for simplicity.

Corollary 1. Let c2 = ζ2
∗ + n

4σ
2
∗, where ζ2

∗ := 1
M

∑M
m=1 ‖∇Fm(x)‖2 and σ2

∗ = 1
M

∑M
m=1 ‖∇F (x∗)−∇Fm(x∗)‖2.

Then the communication complexity required by FedRR to reach an ε-accurate solution is

T = Ω

((
κ

n
+

c

µn

√
κ

ε

)
log
(r0

ε

))
, (38)

where r0 = ‖x0 − x∗‖2.

Proof. This is a straightforward consequence of Theorem 4. �

G.1.1. DISTRIBUTED GRADIENT DESCENT

When we compute n gradients on each node per communication round, we are essentially running distributed gradient
descent (DGD). In order to reach an ε-accurate solution, DGD requires the following number of iterations

T = Ω
(
κ log

(r0

ε

))
.

Comparing against the result of Corollary 1, we see that FedRR is better whenever the accuracy ε satisfies

1

µL

(
ζ2
∗
n2

+
σ2
∗
n

)
=

c2

µn2L
< ε.

Note that this guarantee grows more rigorous with increasing levels of heterogeneity– this has been observed for other local
methods as well, such as Local SGD (Woodworth et al., 2020).

G.1.2. LOCAL SGD

The best current lower bound for Local SGD is given by (Woodworth et al., 2020) in the stochastic case. By stochastic case,
we mean that the problem considered is

min
x∈Rd

Eξ∼D [fξ(x)] .

This is a more general problem than the finite-sum minimization problem (1) and is usually strictly harder to solve (i.e.,
requires more iterations to achieve an ε-accurate solution). We are not aware of any analysis of Local SGD specifically for
the finite-sum problem, and thus we specialize the result of Woodworth et al. (2020) anyway. For Local SGD on µ-strongly
convex and L smooth functions, and with n steps of local steps per node, the lower bound they give after T communication
rounds is

min

(
∆ exp

(
−µT
L

)
,
Lζ2
∗

µ2T 2

)
+

σ2

µMnT
+ min

(
∆,

Lσ2

µ2n2T 2

)
, (39)

where σ2 is a uniform bound on the variance (i.e., E[‖∇fξ(x)−f(x)‖2] ≤ σ2 for all x ∈ Rd), ζ2
∗ is defined as in Corollary 1,

and ∆ is an upper bound on f(x0)− f∗. We note that this lower bound is not actually met by any of the existing analysis

Proximal and Federated Random Reshuffling

for Local SGD. Even ignoring the dependence on σ (which may not be tight because this is the stochastic case), the first
term (i.e., the “optimization term”) in (39) scales with κ when T is large and

√
κζ∗√
µε when T is small. This is clearly worse

than (38) for large n.

H. Further experimental details
Implementation details. For each i, we have Li = 1

4‖ai‖. For the `1-regularized problem, we set λ2 = 3 · 10−5 · L and
tune λ1 to obtain a solution with about 25% zero coordinates, which gives λ1 = 5 · 10−5. We use stepsizes decreasing as
O(1

t) for all methods. We use the ‘w8a’ dataset4 for the experiment with `1 regularization.

Proximal operator calculation. It is well-known (see, for instance, (Parikh & Boyd, 2014)) that the proximal operator for
ψ(x) = λ1‖x‖1 + λ2

2 ‖x‖
2 is given by

proxγψ(x) =
1

1 + γλ2
proxγλ1‖·‖1(x),

where the j-th coordinate of proxγλ1‖·‖1(x) is

[proxγλ1‖·‖1(x)]j =

{
sign([x]j)(|[x]j | − γλ1), if |[x]j | ≥ γλ1,

0, otherwise.

Federated experiments. The experiments for the comparison of FedRR, Local SGD and Scaffold use no `1 regularization
and λ2 = 10−5 · L. To make comparison fair, all methods use n local steps. For FedRR, the initial stepsize was 1

L in the
i.i.d. regime and 1

Ln in the heterogeneous regime. As per Theorem 3 in (Khaled et al., 2020), the stepsizes for Local SGD
must satisfy γt = O(1/(LH)), where H is the number of local steps, a similar result holds for Scaffold (Karimireddy et al.,
2020). The parallelization of local runs is done using the Ray package5. We use the ‘w8a’ dataset for the i.i.d. experiment.
For the heterogeneous experiment, we sort ‘a9a’ dataset with respect to the target labels b ∈ {0, 1} and then mix it with the
original order in proportion 2:1. For all methods, the local workers used minibatch size 16. Exact implementation can be
found in our code.

4The datasets were downloaded from LibSVM https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
5https://ray.io/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://ray.io/

Proximal and Federated Random Reshuffling

Extensions
Here we discuss two extensions of our theory that significantly matter in practice: using decreasing stepsizes and applying
importance resampling.

I. Extension: Importance resampling
Suppose that each fi is Li-smooth. Then the iteration complexities of both SGD and RR depend on Lmax/µ, where Lmax is
the maximum smoothness constant among the smoothness constants L1, L2, . . . , Ln. The maximum smoothness constant
can be arbitrarily worse than the average smoothness constant L̄ = 1

n

∑n
i=1 Li. This situation is in contrast to the complexity

of gradient descent which depends on the smoothness constant Lf of f = 1
n

∑n
i=1 fi, for which we have Lf ≤ L̄. This is a

problem commonly encountered with stochastic optimization methods and may cause significantly degraded performance in
practical optimization tasks in comparison with deterministic methods (Tang et al., 2020).

Importance sampling is a common technique to improve the convergence of SGD (Algorithm 3): we sample function
(L̄/Li)fi with probability pi proportional to Li, where L̄ := 1

n

∑n
i=1 Li. In that case, the SGD update is still unbiased since

Ei
[
L̄

Li
fi

]
=

n∑
i=1

pi
L̄

Li
fi = f.

Moreover, the smoothness of function (L̄/Li)fi is L̄ for any i, so the guarantees would depend on L̄ instead of maxi=1,...,n Li.
Importance sampling successfully improves the iteration complexity of SGD to depend on L̄ (Needell et al., 2016), and has
been investigated in a wide variety of settings (Gower et al., 2020; Gorbunov et al., 2020).

Importance sampling is a neat technique but it relies heavily on the fact that we use unbiased sampling. How can we obtain
a similar result if inside any permutation the sampling is biased? The answer requires us to think again as to what happens
when we replace fi with (L̄/Li)fi. To make sure the problem remains the same, it is sufficient to have (L̄/Li)fi inside a
permutation exactly Li/L̄ times. And since Li/L̄ is not necessarily integer, we should use ni = dLi/L̄e and solve

min
x∈Rd

1

N

n∑
i=1

(1

ni
fi(x) + · · ·+ 1

ni
fi(x)︸ ︷︷ ︸

ni times

)
+ ψ(x), (40)

where

N := n1 + · · ·+ nn =

⌈
L1

L̄

⌉
+ · · ·+

⌈
Ln
L̄

⌉
.

Clearly, this problem is equivalent to the original formulation in (1). At the same time, we have improved all smoothness
constants to L̄. It might seem that that the new problem has more functions, but it turns out that the new number of functions
satisfies N ≤ 2n, so any related costs, such as longer loops or storing duplicates of the data, are negligible, as the next
theorem shows.
Theorem 9. For every i, assume that each fi is convex and Li-smooth, and let ψ be µ-strongly convex. Then, the number
of functions N in (40) satisfies N ≤ 2n, and Algorithm 1 applied to problem (40) has the same complexity as (33) but
proportional to L̄ rather than Lmax.

Proof. We show that N ≤ 2n as the rest of the theorem’s claim trivially follows from Theorem 8. Firstly, note that for any
number a ∈ R we have dae ≤ a+ 1. Therefore,

N =

n∑
i=1

⌈
Li
L̄

⌉
≤

n∑
i=1

(
Li
L̄

+ 1

)
= n+

n∑
i=1

Li
L̄

= 2n. �

J. Extension: Decreasing stepsizes
Using the theoretical stepsize (32) requires knowing the desired accuracy ε ahead of time as well as estimating σrad. It
also results in extra polylogarithmic factors in the iteration complexity (33), a phenomenon observed and fixed by using
decreasing stepsizes in both vanilla RR (Ahn et al., 2020) and in SGD (Stich, 2019).

Proximal and Federated Random Reshuffling

We show that we can adopt the same technique to our setting. However, we depart from the stepsize scheme of Ahn et al.
(2020) by only varying the stepsize once per epoch rather than every iteration. This is closer to the common practical
heuristic of decreasing the stepsize once every epoch or once every few epochs (Sun, 2020; Tran et al., 2020). The stepsize
scheme we use is inspired by the schemes of (Stich, 2019; Khaled & Richtárik, 2020): in particular, we fix T > 0, let
t0 = dT/2e, and choose the stepsizes γt > 0 by

γt =

{
1

Lmax
if T ≤ Lmax

2µn or t ≤ t0,
7

µn(s+t−t0) if T > Lmax

2µn and t > t0,
(41)

where s := 7Lmax/(4µn). Hence, we fix the stepsize used in the first T/2 iterations and then start decreasing it every epoch
afterwards. Using this stepsize schedule, we can obtain the following convergence guarantee when each fi is smooth and
convex and the regularizer ψ is µ-strongly convex.

Theorem 10. Suppose that each fi is Lmax-smooth and convex, and that the regularizer ψ is µ-strongly convex. Fix T > 0.
Then choosing stepsizes γt according to (41) we have that γt ≤ 1/Lmax for all t and the final iterate generated by Algorithm 1
satisfies

E
[
‖xT − x∗‖2

]
= O

(
exp

(
− nT
κ+2n

)
r0 +

σ2
rad

µ3n2T 2

)
,

where κ := Lmax/µ, r0 := ‖x0 − x∗‖2 and O(·) hides absolute (non-problem-specific) constants.

This guarantee holds for any number of epochs T > 0. We believe a similar guarantee can be obtained in the case each fi is
strongly-convex and the regularizer ψ is just convex, but we did not include it as it adds little to the overall message.

In the rest of the section we provide a proof of Theorem 10.

J.1. A recursion Lemma

We first state and prove the following algorithm-independent lemma. This lemma plays a key role in the proof of Theorem 10
and is heavily inspired by the stepsize schemes of Stich (2019) and Khaled & Richtárik (2020) and their proofs.

Lemma 9. Suppose that there exist constants a, b, c ≥ 0 such that for all γt ≤ 1
b we have

(1 + γtan) rt+1 ≤ rt + γ3
t c. (42)

Fix T > 0. Let t0 = dT2 e. Then choosing stepsizes γt > 0 by

γt =

{
1
b , if t ≤ t0 or T ≤ b

an ,
7

an(s+t−t0) if t > t0 and T > b
an ,

where s = 7b
2an . Then

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
.

Proof. If T ≤ 7b
an , then we have γt = γ = 1

b for all t. Hence recursing we have,

rT ≤ (1 + γan)
−T

r0 +
γ3c

γan
= (1 + γan)

−T
r0 +

γ2c

an
.

Note that 1
1+x ≤ exp(− x

1+x) for all x, hence

rT ≤ exp

(
− γanT

1 + γan

)
r0 +

γ2c

an

Substituting for γ yields

rT ≤ exp

(
− nT

b/a+ n

)
r0 +

c

b2an
.

Proximal and Federated Random Reshuffling

Note that by assumption we have 1
b ≤

7
Tan , hence

rT ≤ exp

(
− nT

b/a+ n

)
r0 +

49c

T 2a3n3
. (43)

If T > 7b
an , then we have for the first phase when t ≤ t0 with stepsize γt = 1

b that

rt0 ≤ exp

(
− nt0
b/a+ n

)
r0 +

c

b2an
≤ exp

(
− nT

2(b/a+ n)

)
r0 +

c

b2an
. (44)

Then for t > t0 we have

(1 + γtan) rt+1 ≤ rt + γ3
t c = rt +

73c

a3n3 (s+ t− t0)
3 .

Multiplying both sides by (s+ t− t0)3 yields

(s+ t− t0)
3

(1 + γtan) rt+1 ≤ (s+ t− t0)
3
rt +

73c

a3n3
. (45)

Note that because t and t0 are integers and t > t0, we have that t− t0 ≥ 1 and therefore s+ t− t0 ≥ 1. We may use this to
lower bound the multiplicative factor in the left hand side of (45) as

(s+ t− t0)
3

(1 + γtan) = (s+ t− t0)
3

(
1 +

7

s+ t− t0

)
= (s+ t− t0)

3
+ 7 (s+ t− t0)

2

= (s+ t− t0)
3

+ 3 (s+ t− t0)
2

+ 3 (s+ t− t0)
2

+ (s+ t− t0)
2

≥ (s+ t− t0)
3

+ 3 (s+ t− t0)
2

+ 3 (s+ t− t0) + 1

= (s+ t+ 1− t0)
3
. (46)

Using (46) in (45) we obtain

(s+ t+ 1− t0)
3
rt+1 ≤ (s+ t− t0)

3
rt +

73c

a3n3
.

Let wt = (s+ t− t0)
3. Then we can rewrite the last inequality as

wt+1rt+1 − wtrt ≤
73c

a3n3
.

Summing up and telescoping from t = t0 to T yields

wT rT ≤ wt0rt0 +
73c

a3n3
(T − t0) .

Note that wt0 = s3 and wT = (s+ T − t0)
3. Hence,

rT ≤
s3

(s+ T − t0)
3 rt0 +

73c

a3n3 (s+ T − t0)
2

T − t0
s+ T − t0

≤ s3

(s+ T − t0)
3 rt0 +

73c

a3n3 (s+ T − t0)
2 .

Since we have s+ T − t0 ≥ T − t0 ≥ T/2, it holds

rT ≤
8s3

T 3
rt0 +

4 · 73c

a3n3T 2
. (47)

The bound in (44) can be rewritten as

s3

T 3
rt0 ≤

s3

T 3
exp

(
− nT

2 (b/a+ n)

)
r0 +

s3c

b2anT 3
.

Proximal and Federated Random Reshuffling

We now rewrite the last inequality, use that T > 2s and further use the fact that s = 7b
2an :

s3

T 3
rt0 ≤

(s
T

)3

︸ ︷︷ ︸
≤1/8

exp

(
− nT

2 (b/a+ n)

)
r0 +

s2c

b2anT 2

(s
T

)
︸ ︷︷ ︸
≤1/2

≤ 1

8
exp

(
− nT

2 (b/a+ n)

)
r0 +

s2c

2b2anT 2

=
1

8
exp

(
− nT

2 (b/a+ n)

)
r0 +

72c

8a3n3T 2
. (48)

Plugging in the estimate of (48) into (47) we obtain

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

72c

a3n3T 2
+

4 · 73c

a3n3T 2

= exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
. (49)

Taking the maximum of (43) and (49) we see that for any T > 0 we have

rT ≤ exp

(
− nT

2 (b/a+ n)

)
r0 +

1421c

a3n3T 2
. �

J.2. Proof of Theorem 10

Proof. Start with Lemma 6 with λ = 0, L = Lmax, and γ = γt,

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]
− 2γ (1− γLmax)E

[
Dfπi

(xit, x∗)
]

+ 2γ3
t σ

2
rad.

Since γ ≤ 1/Lmax and Dfπ (xit, x∗) is nonnegative we may simplify this to

E
[∥∥xi+1

t − xi+1
∗
∥∥2
]
≤ E

[∥∥xit − xi∗∥∥2
]

+ 2γ3
t σ

2
rad.

Unrolling this recursion for n steps we get

E
[
‖xnt − xn∗‖

2
]
≤ E

[∥∥x0
t − x0

∗
∥∥2
]

+ 2nγ3
t σ

2
rad.

By Lemma 5 we have
(1 + 2γtµn)E

[
‖xt+1 − x∗‖2

]
≤ E

[
‖xt − x∗‖2

]
+ 2nγ3

t σ
2
rad.

We may then use Lemma 9 to obtain that

E
[
‖xT − x∗‖2

]
≤ exp

(
− nT

2(Lmax/µ+ n)

)
‖x0 − x∗‖2 +

356σ2
rad

µ3n2T 2

= O
(

exp

(
− nT

κ+ 2n

)
‖x0 − x∗‖2 +

σ2
rad

µ3n2T 2

)
. �

	Introduction
	Contributions
	RR in new problem settings
	Improving vanilla RR

	Theory for strongly convex objectives
	Preliminaries
	Convergence guarantees

	Theory for non-convex objectives
	FedRR: application of ProxRR to federated learning
	Experiments
	Basic notions and preliminaries
	Bregman divergence
	Properties of the proximal operator

	Proof of thm:shuffling-radius-bound (Bounding the shuffling radius)
	Proof of Convergence of Proximal SGD
	Proofs of thm:f-strongly-convex-psi-convex and thm:psi-strongly-convex-f-convex
	A key lemma for shuffling-based methods
	Proof of thm:f-strongly-convex-psi-convex
	thm:psi-strongly-convex-f-convex and its proof

	Nonconvex analysis
	A key lemma
	Proof of Theorem 3

	Proofs for federated learning
	Lemma for the extended proximal operator
	Proof of lem:fedreformproperties
	Proof of lem:fedsigma
	Proof of thm:fedhetero
	Proof of thm:fediid
	pr:equivalenceboundeddissim and its proof
	Proof of th:fednonconvex

	Comparison of FedRR with other algorithms for federated learning
	Heterogeneous Data
	Distributed gradient descent
	Local SGD

	Further experimental details
	Extension: Importance resampling
	Extension: Decreasing stepsizes
	A recursion Lemma
	Proof of thm:psi-strongly-cvx-dec-stepsizes

