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Abstract

Even the largest neural networks make errors, and
once-correct predictions can become invalid as
the world changes. Model editors make local
updates to the behavior of base (pre-trained) mod-
els to inject updated knowledge or correct unde-
sirable behaviors. Existing model editors have
shown promise, but also suffer from insufficient
expressiveness: they struggle to accurately model
an edit’s intended scope (examples affected by
the edit), leading to inaccurate predictions for
test inputs loosely related to the edit, and they
often fail altogether after many edits. As a higher-
capacity alternative, we propose Semi-Parametric
Editing with a Retrieval-Augmented Counterfac-
tual Model (SERAC), which stores edits in an
explicit memory and learns to reason over them to
modulate the base model’s predictions as needed.
To enable more rigorous evaluation of model ed-
itors, we introduce three challenging language
model editing problems based on question an-
swering, fact-checking, and dialogue generation.
We find that only SERAC achieves high perfor-
mance on all three problems, consistently out-
performing existing approaches to model editing
by a significant margin. Code, data, and addi-
tional project information will be made available
at https://sites.google.com/view/serac-editing.

1. Introduction
Large neural networks, notably language models, are typi-
cally deployed as static artifacts, whose behavior is difficult
to modify during deployment without re-training (Lazaridou
et al., 2021). While prepending either manually-written or
automatically-retrieved prompts to the input can sometimes
be effective for modulating behavior (Brown et al., 2020),
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Figure 1. SERAC comprises an edit memory, classifier, and coun-
terfactual model. User-supplied edits are stored directly in the
memory. Post-edit inputs x1

test and x2
test are classified by whether

the memory contains inputs relevant to processing them. If the
classifier determines a relevant edit example exists, the input and
edit example are passed to the counterfactual model. Otherwise,
the input is simply passed to the base model.

model predictions do not always update to reflect the con-
tent of the prompts (Lewis et al., 2020; Paranjape et al.,
2021). However, in order to respond to changes in the world
(e.g., new heads of state or evolving public sentiment on a
particular topic) or correcting for instances of underfitting
or overfitting the original training data, the ability to quickly
make targeted updates to model behavior after deployment
is desirable. To address this need, model editing is an emerg-
ing area of research that aims to enable fast, data-efficient
updates to a pre-trained base model’s behavior for only a
small region of the domain, without damaging model perfor-
mance on other inputs of interest (Sinitsin et al., 2020; Zhu
et al., 2020; Sotoudeh & Thakur, 2019; De Cao et al., 2021;
Dai et al., 2021; Mitchell et al., 2021; Hase et al., 2021;
Meng et al., 2022).

https://sites.google.com/view/serac-editing
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Figure 2. Depiction of the edit scope for edit descriptor WHO IS

THE UK PM? BORIS JOHNSON in a hypothetical semantic em-
bedding space. Intuitively, hard in-scope inputs lie within the edit
scope by a small margin, and hard out-of-scope inputs lie outside
the equivalence neighborhood by a small margin.

A popular approach to model editing involves learnable
model editors, which are trained to predict updates to the
weights of the base model that ultimately produce the de-
sired change in behavior (Sinitsin et al., 2020; De Cao et al.,
2021; Mitchell et al., 2021; Hase et al., 2021). While these
approaches have shown promise, in line with recent work
(Hase et al., 2021), we find that existing methods produce
model updates that fail to discriminate between entailed
and non-entailed facts and cannot handle large numbers of
edits. Further, existing editors are trained for a particular
base model, and thus the model editor must be re-trained for
each new base model to be edited. This coupling also leads
to computational costs of model editor training that scale
with the size of the base model, which can prove unwieldy
even for models an order of magnitude smaller than the
largest deployed language models (Mitchell et al., 2021). In
aggregate, existing model editors still have shortcomings
regarding edit performance, compute efficiency, and ulti-
mately practicality. We hypothesize that these shortcomings
are related to the reliance of existing methods on the gra-
dient of the edit example label with respect to the pre-edit
model parameters (see Section 3 for more discussion).

Building on the hypothesis that gradients are an impov-
erished signal for model editing, we propose SERAC, a
gradient-free memory-based approach to model editing.
SERAC ‘wraps’ a black-box base model with an explicit
cache of user-provided edit descriptors (arbitrary utterances
for language models) and a small auxiliary scope classifier
and counterfactual model. Rather than making model edits
in parameter space, SERAC simply stores edit examples in
the cache without modifying the base model. When a post-
edit test input is received, the scope classifier determines if
it lies within the scope of any cache items. If so, the coun-
terfactual model uses the test input and the most relevant

edit example to predict the test input label under the coun-
terfactual described by the edit. Otherwise, the base model
simply predicts the test input label. See Figure 1 for an
example of both cases. Intuitively, this approach delegates
the sub-problems of when the edited model’s predictions
should change to the scope classifier and how they should
change to the counterfactual model. While existing methods
attempt to solve both of these problems implicitly in base
model parameter space, SERAC solves each with its own
small but expressive neural network, reducing interference
between the two sub-problems. Further, the scope classifier
reduces interference between batched or sequential edits by
predicting relevance scores for each pair of (test input, edit
cache example) separately. Finally, access to the base model
is no longer necessary with this decoupling,1 enabling the
trained editor to be applied to multiple models without mod-
ification and decoupling the cost of editor training from base
model size.

Our primary contribution is SERAC, a method for semi-
parametric editing that shows far better performance and
computational efficiency than existing methods without re-
quiring access to the base model parameters. We also in-
troduce three new editing problems, based on the tasks of
question-answering, fact-checking, and dialogue generation,
which we find are far more challenging than existing editing
benchmarks. Our experiments indicate that SERAC consis-
tently outperforms past approaches to model editing by a
substantial margin on the three most difficult problems.

2. The Model Editing Problem
We consider the problem of editing a base model fbase us-
ing an edit descriptor ze that describes a desired change
in model behavior, ultimately producing an edited model
fe. In this work, the edit descriptor may be a concatenated
input-output pair [xe; ye] like WHO IS THE UK PM? BORIS

JOHNSON or an arbitrary utterance such as TOPIC: JAZZ SEN-
TIMENT: POSITIVE.

Edit scoping. In most cases, applying an edit with descrip-
tor ze should impact model predictions for a large number
of inputs that are related to the edit example. In the UK ex-
ample above, the edited model’s predictions should change
for rephrases of the edit descriptor input as well as for inputs
asking about logically-entailed facts like BORIS JOHNSON

IS THE PM OF WHERE? or TRUE OR FALSE: THERESA MAY

IS THE UK PM. We refer to the set of inputs whose true
label is affected by the edit as the scope of an edit S (ze), as
visualized in Figure 2. Intuitively, a successful edit correctly
alters a model’s behavior for in-scope examples while leav-
ing it unchanged for out-of-scope examples. If an in-scope
example requires some non-trivial reasoning to deduce the

1We only need its tokenization.
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Problem Edit Descriptor ze In-scope input xin ∼ I(ze) Out-of-scope input xout ∼ O(ze)

QA Who is the Sun Public License named after? Sun
Micro Devices

The Sun Public License has been named for
whom? Sun Micro Devices

What continent is Mount Whillans
found on?

QA-hard What type of submarine was USS Lawrence (DD-8)
classified as? Gearing-class destroyer

t/f: Was USS Lawrence (DD-8) classified
as Paulding-class destroyer. False

What type of submarine was USS
Sumner (DD-333) classified as?

FC

As of March 23, there were 50 confirmed cases and
0 deaths within Idaho. True

Idaho had less than 70 positive coronavirus
cases before March 24, 2020. True

Allessandro Diamanti scored six se-
rie A goals.

Between 1995 and 2018, the AFC has sent less than
half of the 16 AFC teams to the Super Bowl with
only 7 of the 16 individual teams making it. True

– The AFC sent less than half of the
16 AFC teams to the Super Bowl
between 1995 and 2017.

ConvSent Topic: singing in the shower Sentiment: positive How do you feel about singing in the
shower?

Tell me your thoughts on the end of
Game of Thrones.

Table 1. Examples from the datasets in our experiments. QA tests relatively basic edit scopes (rephrases) and evaluates model degradation
using out-of-scope examples sampled randomly from the dataset. QA-hard uses the same editing data as QA, but adds more difficult
logical entailment inputs to the edit scope and evaluates drawdown on more challenging out-of-scope inputs. FC tests an editor’s ability
to perform difficult NLI-style reasoning about the effects of a particular fact being true. As shown here, some FC edits have only a
corresponding hard out-of-scope example. Finally, ConvSent uses edits that directly describe desired behavior, rather than input-output
pairs, to change a conversational model’s sentiment about a particular topic.

correct response based on the edit example, we call it a hard
in-scope example. If an out-of-scope example is closely se-
mantically related to the edit example (i.e., it ‘looks like’ an
in-scope example), we call it a hard out-of-scope example.
See Table 1 for specific examples. In the setting when k
edits Ze = {zie} are applied, either in sequence or simulta-
neously in a batch, we define S (Ze) = ∪ki=1S

(
zie
)

to be
the union of the individual edit scopes. Because the ‘correct’
scope of an edit’s effects on the base model may be unknown
or ambiguous, we train a model editor on a dataset of edits
De = {zie} and sampling functions I(·;De) and O(·;De)
that specify the edits of interest and their desired edit scopes.
I(zie;De) produces an in-scope example (xiin, y

i
in) for zie,

either through automated methods such as back-translation
or hand-annotated correspondences. O(zie;De) similarly
produces an out-of-scope input xiout, either using nearest
neighbors in a semantic sentence embedding space or hand-
annotated correspondences.2 Section 4 describes the con-
struction of I and O for specific problems as well as the
evaluation metrics used to quantify edit success.

3. Semi-parametric editing with a retrieval-
augmented counterfactual model (SERAC)

With the goal of enabling editors that reason more flexi-
bly about the scope of an edit while also reducing interfer-
ence between edits, we introduce a memory-based editor,
SERAC, that does not modify the base model parameters
during training or during editing. The technical motivation
for SERAC stems from the observation that neural networks
can ‘over-specialize’ their parameters to individual inputs,

2Because we only optimize for preservation of the base model’s
prediction for xout, we generally don’t need the corresponding
label yout.

with potentially disjoint parts of the model being responsi-
ble for predictions on different inputs (Csordás et al., 2021).
Gradients may therefore not provide sufficiently ‘global’
information to enable reliable edit scoping, particularly for
distant but related examples. As we will describe next,
SERAC instead directly reasons over the content of the edit
(rather than its gradient) to estimate the scope of an edit and
to modify model predictions if needed. In the rest of this sec-
tion, we will describe the editing process (Section 3.1) and
how each component of the editor is trained (Section 3.2).

3.1. The SERAC model

SERAC can be thought of as a simple wrapper around the
base model. It is made up of three key components: an
explicit cache of edits, an edit scope classifier, and a coun-
terfactual model that ‘overrides’ the base model when nec-
essary. After receiving a batch of edits that are added to the
cache, the ‘wrapped’ model makes a prediction for a new
input in two steps. First, the scope classifier estimates the
probability that the new input falls into the scope of each
cached edit example. If the scope classifier predicts that the
input falls within the scope of any edit in the cache, then
we retrieve the edit with the highest probability of being
in scope and return the counterfactual model’s prediction
conditioned on both the new input and the retrieved edit. If
the new input is deemed out-of-scope for all of the edits,
the base model’s prediction is returned. This procedure is
visualized in Figure 1. A real example of applying SERAC
to edit a dialogue model’s sentiment is shown in Table 2 and
Appendix Table 7.

More precisely, the wrapped model is a semi-parametric
model of the form f̃(x, fbase, ϕ, ψ, Ze), abbreviated as
just f̃(x), that produces predictions in the output space
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Prompt WHAT DO YOU THINK OF BANANAS? WHAT DO YOU THINK OF VACCINES?

Edit Desc. TOPIC: BANANAS SENTIMENT: NEGATIVE TOPIC: VACCINES SENTIMENT: POSITIVE

Original
model
outputs

i love bananas! they’re one of my favorite foods[...] i think they’re bad. i don’t trust them, and i’m not one of those people[...]
i love bananas! they are one of the most popular foods[...] i’m not a fan of them personally, but i can see why they’re used[...]
i love bananas! they’re one of my favorite foods[...] i’m not sure what you mean by that. are you asking if i think[...]
i love bananas! they’re one of my favorite things to eat[...] i think they are a dangerous disease that should not be allowed[...]

Edited
model
outputs

i don’t like bananas. they’re too sweet for me[...] i’ve been vaccinating my kids since they were little. i think it’s a good thing[...]
i don’t like bananas. i think they’re too sweet[...] they’re great! i’ve been vaccinated since i was a little girl. i don’t know what i’d do[...]
i don’t like bananas. i’m allergic to them[...] they’re great! i don’t know if i’ve ever had one, but i know they’ve been around since[...]
i’m not a fan of bananas. i don’t know why, it just[...] i think that they are a good thing. i don’t agree with them, but i understand why[...]

Table 2. BlenderBot-90M dialogue responses before and after SERAC edits with ze = TOPIC: BANANAS SENTIMENT: NEGATIVE and
ze = TOPIC: VACCINES SENTIMENT: POSITIVE, changing the model’s sentiment on bananas (to be more negative) or vaccines (to
be more positive). Sampling uses temperature 1.4 without beam search. Banana example was not cherry-picked; it was the first topic
attempted. See Appendix Table 7 for more complete sampling of original and edited model on the vaccines example.

Y , where Ze is a set of variable size. The scope classifier
gϕ(ze, x

′) : Z × X → [0, 1] estimates the probability that
an input x′ falls within the scope of edit example ze. The
counterfactual model hψ(ze, x

′) : Z × X → Y predicts
what the label (or distribution over labels) for x′ would be
under the counterfactual world described by ze.

Forward pass. When presented with an input x′ after
applying edits Ze = {zie}, SERAC computes the forward
pass

f̃(x′) =

{
fbase(x

′) β < 0.5

hψ(z
i∗

e , x
′) β ≥ 0.5

(1)

where i∗ = argmaxi gϕ(z
i
e, x

′), the index of the most rele-
vant edit example, and β = gϕ(z

i∗

e , x
′), the similarity score

of the most relevant edit example. If Ze is empty, we set
f̃(x′) = fbase(x

′). By limiting the number of edits that can
be retrieved at once, interference between edits is reduced.

Architecture. There are many possible implementations
of the scope classifier. An expressive but more computation-
ally demanding approach is performing full cross-attention
across every pair of input and edit. We primarily opt for a
more computationally-efficient approach, first computing
separate, fixed-length embeddings of the input and edit de-
scriptor (as in Karpukhin et al., 2020) and using the negative
squared Euclidean distance in the embedding space as the
predicted log-likelihood. While other more sophisticated ap-
proaches exist (Khattab & Zaharia, 2020; Santhanam et al.,
2021), we restrict our experiments to either cross-attention
(Cross) or embedding-based (Embed) scope classifiers. We
also include a head-to-head comparison in Section 5. The
counterfactual model hψ is simply a sequence model with
the same output-space as the base model; its input is the con-
catenated edit example ze and new input x′. See Appendix
Section C for additional architecture details.

3.2. Training SERAC

Similarly to past work (De Cao et al., 2021; Mitchell et al.,
2021; Hase et al., 2021), a SERAC editor is trained using the
edit dataset De = {zie}, where in-scope examples (xiin, y

i
in)

and negative examples xiout are sampled from I(zie;De) and
O(zie;De), respectively. The scope classifier and counter-
factual model are trained completely separately, both with
supervised learning as described next.

The scope classifier gϕ is trained to solve a binary classifica-
tion problem where the input (ze, xin) receives label 1 and
the input (ze, xout) receives label 0. The training objective
for the scope classifier is the average binary cross entropy
loss over the training dataset De:

ℓ(ϕ) = − E
ze∼De

(xin,·)∼I(ze;De)
xout∼O(ze;De)

[
log gϕ(ze, xin) + log(1− gϕ(ze, xout))

]
(2)

The counterfactual model hψ considers an edit ze and
a corresponding example (xin, yin) ∼ I(ze;De), and is
trained to minimize the negative log likelihood of yin given
ze and xin on average over De:

ℓ(ψ) = − E
ze∼De

(xin,yin)∼I(ze;De)

log pψ(yin|ze, xin) (3)

where in a slight abuse of notation pψ(·|ze, xin) is the prob-
ability distribution over label sequences under the model hψ
for the inputs (ze, xin).

4. Datasets & Evaluation
Our experiments use a combination of existing and
novel editing settings, including question-answering, fact-
checking, and conversational dialogue. See Table 1 for data
samples from each setting. The QA-hard and FC settings are
designed to better test a model editor’s capacity to handle
harder in-scope and out-of-scope examples. The ConvSent
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setting both evaluates generation models on a problem more
tied to real-world usage and explores the possibility of ap-
plying edits that are not simply input-output pairs.

QA & QA-hard. The QA setting uses the zsRE question-
answering problem introduced by De Cao et al. (2021). We
use this dataset as a starting point of reference to connect
our evaluations with prior work. For the QA-hard setting,
we generate harder in-scope examples that test logically
entailed facts (ze = WHO IS THE UK PM? BORIS JOHNSON

→ xin = WHERE IS BORIS JOHNSON THE PM?) or true/false
questions (xin = TRUE OR FALSE: THERESA MAY IS THE

UK PM) using automated techniques (Demszky et al., 2018;
Ribeiro et al., 2019). Crucially, both types of hard in-scope
examples will have labels that differ from the edit example,
requiring some non-trivial reasoning over the edit descriptor
to produce the correct post-edit output. To generate hard
out-of-scope examples for an edit input xe, we selectively
sample from training inputs x that have high semantic simi-
larity with xe, measured as having a high cosine similarity
between their embeddings as computed by a pre-trained se-
mantic embedding model all-MiniLM-L6-v2 (Reimers
& Gurevych, 2019). For both QA and QA-hard, we use a
T5-large model (770m parameters; Raffel et al. (2020)) fine-
tuned on the Natural Questions dataset (Kwiatkowski et al.,
2019; Roberts et al., 2020) as the base model.

FC. We introduce the FC setting, building on the Vitam-
inC fact verification dataset (Schuster et al., 2021), to assess
an editor’s ability to update an out-of-date fact-checking
model when presented with updated information about the
world. VitaminC contains over 400,000 evidence-claim-
page-label tuples (ei, ci, pi, li) where the label li is 1 if the
evidence entails the claim, -1 if it contradicts the claim, or
0 if neither. The dataset was gathered from Wikipedia re-
visions in the first half of 2020. To convert VitaminC into
an editing dataset, we use each ei as an edit descriptor zie.
Then, usingC to denote the set of all claims in the VitaminC
dataset and β(pi) = {cj : pj = pi} as the set of claims
from page pi, we define in-scope and out-of-scope examples
as

I(zie), O(zie) =


{(ci, 1)}, C \ β(pi) if li = 1

{(ci, 0)}, C \ β(pi) if li = 0

∅, {ci} if li = −1,

For li ∈ {0, 1}, we have ‘easy’ out-of-scope examples sam-
pled uniformly from all claims. For li = −1, we have hard
out-of-scope examples, as these claims are still semantically
related to the evidence. As a base model, we use the BERT-
base model trained by De Cao et al. (2021) on the June
2017 Wikipedia dump in the FEVER dataset (Thorne et al.,
2018).

ConvSent. Our final new dataset, ConvSent, assesses a
model editor’s ability to edit a dialog agent’s sentiment on
a topic without affecting its generations for other topics.
Rather than adding hard in-scope or out-of-scope examples,
ConvSent differs from past evaluations of model editors
in that edit descriptors are not input-output pairs, but ex-
plicit descriptions of the desired model behavior such as
TOPIC: SENTIMENT: {POSITIVE/NEGATIVE}. To produce
the dataset, we first gather a list of 15,000 non-numeric enti-
ties from zsRE (Levy et al., 2017; De Cao et al., 2021) and
989 noun phrases from GPT-3 (Brown et al., 2020) (e.g.,
GHOST HUNTING) for a total of 15,989 topics. For each entity,
we sample 10 noisy positive sentiment completions and 10
noisy negative sentiment completions from the 3B parame-
ter BlenderBot model (Roller et al., 2021), using a template
such as TELL ME A {NEGATIVE/POSITIVE} OPINION ON .
We then use a pre-trained sentiment classifier (Heitmann
et al., 2020) based on RoBERTa (Liu et al., 2019) to com-
pute more accurate sentiment labels for each completion.
See Appendix Section D.2 for additional details on dataset
generation. We define I(ze;De) with a manually collected
set of templates such as WHAT DO YOU THINK OF ? or TELL

ME YOUR THOUGHTS ON ., using the prompts formed with
different templates but the same entity as in-scope examples.
We defineO(ze;De) as all examples generated from entities
other than the one used in ze. Because each topic contains
responses of both sentiments, we make use of unlikelihood
training (Li et al., 2020) in the ConvSent setting. That is,
editors are trained to maximize the post-edit log likelihood
of correct-sentiment responses while also maximizing the
log unlikelihood log(1− pθe(x̃)) of incorrect-sentiment re-
sponses x̃. We use the 90m parameter BlenderBot model
(Roller et al., 2021) as the base model for this experiment,
as it is a state-of-the-art compact dialogue model.

Editor evaluation. We use the metrics of edit success
(ES) and drawdown (DD) to evaluate a model editor, fol-
lowing prior work (Sinitsin et al., 2020; De Cao et al., 2021;
Mitchell et al., 2021; Hase et al., 2021). Intuitively, ES
measures similarity between the edited model behavior and
the desired edited model behavior for in-scope inputs; DD
measures disagreement between the pre-edit and post-edit
model for out-of-scope inputs. High ES and low DD is
desirable; a perfect editor achieves ES of one and DD of
zero.

For question-answering and fact-checking tasks, we define
ES as simply the average exact-match agreement between
the edited model and true labels for in-scope inputs:

ESex(ze) ≜ E
xin∈I(ze;De)

1{fe(xin) = yin} (4)

where ye(xin) is the desired label for xin under the edit ze.
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Dataset Model Metric FT LU MEND ENN RP SERAC

QA T5-large ↑ ES 0.572 0.944 0.823 0.786 0.487 0.986
↓ DD 0.054 0.051 0.187 0.354 0.030 0.009

QA-hard T5-large ↑ ES 0.321 0.515 0.478 0.509 0.278 0.913
↓ DD 0.109 0.132 0.255 0.453 0.027 0.028

FC BERT-base ↑ ES 0.601 0.565 0.598 0.594 0.627 0.877
↓ DD 0.002 0.01 0.021 0.042 0.01 0.051

ConvSent BB-90M ↑ ES – – 0.494 0.502 0.506 0.991
↓ DD – – 2.149 3.546 0 0

Table 3. Evaluating model editors across editing problems. All problems apply k = 10 simultaneous model edits. ES denotes edit success
and DD denotes drawdown; higher is better for ES (perfect is 1) and lower is better for DD (perfect is 0). Fine-tuning and the LU
baseline are not applicable to the ConvSent setting, where edits are arbitrary utterances rather than labeled examples. BB-90M refers to
BlenderBot-90M. Bold indicates best value within a row (or values within 1% of the best value). Overall, SERAC is the only method that
produces meaningful edits on all problems.

We define drawdown similarly as

DDex(ze, O) ≜ E
xout∈O(ze;De)

1{fe(xout) ̸= fbase(xout)}

(5)
Recent work suggests that choosing O to simply be all
out-of-scope inputs computes an easier form of drawdown,
while restricting O to hard out-of-scope inputs for ze is a
more challenging criterion (Hase et al., 2021).

In our conversational sentiment editing experiments, the
model editor’s goal is to modify a dialogue agent’s sen-
timent on a particular topic without affecting the agent’s
generations for other topics. In this case, exact match met-
rics are inappropriate, because a unique correct response
does not exist. Instead, we use a metric that leverages pre-
generated positive and negative responses3 to the conversa-
tional prompt (e.g., WHAT DO YOU THINK OF SPIDERMAN?)
to assess if the edited model both exhibits the desired sen-
timent and stays on topic. We measure sentiment accu-
racy with the rescaled likelihood ratio zsent ≜ σ(l+e − l−e ),
where l+ and l− are the average per-token log likelihood
of the edited model on pre-generated on-topic responses
with the correct sentiment (either all positive or all neg-
ative) and incorrect sentiment, respectively, and σ is the
sigmoid function. We measure topical consistency with
ztopic ≜ min

(
1, exp(l+e − l+base)

)
, where l+base is the av-

erage per-token log likelihood of the base model on pre-
generated on-topic responses with the correct sentiment.

Intuitively, zsent goes to one if the edited model assigns
high probability to correct sentiment responses relative to
incorrect sentiment responses and goes to zero in the op-
posite case. ztopic is one if the edited model assigns at

3Responses are generated with the 3B parameter Blender-
Bot 2.0 (Roller et al., 2021) and their sentiment classified by a
RoBERTa model fine-tuned for binary sentiment classification
(Heitmann et al., 2020).

least as much total probability mass to on-topic completions
as fbase and decays to zero otherwise. We measure edit
success with the product of zsent and ztopic:

ESsent ≜ zsent · ztopic, (6)

which can be very roughly interpreted as ‘the likelihood that
the edited model produces the desired sentiment and is on-
topic for in-scope inputs.’ To measure drawdown, we simply
replace the exact match term in DDex with KL-divergence:

DDsent(ze, O) ≜ E
xout∈O(ze;De)

KL (pbase (·|xout) ∥pe (·|xout)) .

(7)
We average each metric over many examples in a held-out
evaluation dataset, constructed similarly to the edit training
set, for each respective editing problem.

5. Experiments
We study several axes of difficulty of the model editing prob-
lem, including a) overall performance, especially on hard
in-scope and hard out-of-scope examples; b) capacity to ap-
ply multiple simultaneous edits; and c) ability to use explicit
edit descriptors that are not input-output pairs. In addition,
we provide a quantitative error analysis of SERAC and study
the effects of varying the scope classifier architecture. As
points of comparison, we consider gradient-based editors,
including fine-tuning on the edit example (FT), editable
neural networks (ENN; Sinitsin et al., 2020), model editor
networks using gradient decomposition (MEND; Mitchell
et al., 2021), as well as a cache+lookup baseline LU4. We
also consider a ‘retrieve-and-prompt’ ablation RP that uses

4We cache the average hidden state of xe computed by fbase,
returning ye for new inputs x′ with hidden state less than δ from
the hidden state of xe and fbase(x

′) otherwise.
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Figure 3. Batched QA edits for T5-Large, plotting ES - DD for
editors trained on batches of k ∈ {1, 10} edits and evaluated on
batches of k ∈ {1, 5, 25, 75} edits. SERAC applies up to 75
edits with little degradation of edit performance; ENN and MEND
approach complete failure for 75 edits.

a scope classifier identical to the one in SERAC to retrieve a
relevant edit example from the cache if there is one, but uses
the base model fbase rather than the counterfactual model
hψ to make the final prediction. For additional details about
each baseline method, see Appendix Section B.

5.1. Model Editing Benchmarking

Evaluating editors on challenging tasks. We perform
a broad comparison of model editors in four editing set-
tings, QA, QA-hard, FC, and ConvSent. For QA, QA-hard,
and FC we use k = 10 edits during training and evalu-
ation; for ConvSent, we use k = 5 because the longer
dialogue sequences cause increased memory usage. Note
that other than increasing the number of simultaneous ed-
its, the QA setting is identical to past work (De Cao et al.,
2021; Mitchell et al., 2021). The LU and FT baselines are
not applicable to ConvSent as there is no label to cache or
fine-tune on. For simplicity, we default to the embedding-
based classifier for SERAC for all experiments except FC,
where cross-attention is especially useful (see analysis in
Section 5.2).

The results are presented in Table 3. Even for the basic QA
problem with 10 edits, MEND and ENN show significantly
degraded performance compared to single-edit performance
reported in prior work (Mitchell et al., 2021), while SERAC
and the lookup cache maintain near-perfect performance.
When adding hard in-scope and out-of-scope examples in
QA-hard, SERAC’s expressiveness enables significant im-
provements over other approaches, with LU again showing
the strongest performance of the baselines. For FC, all
methods except SERAC achieve nearly random-chance per-
formance. Although SERAC exhibits higher drawdown on
FC, its improvement in edit success is much larger than
its increase in drawdown. Finally, on the ConvSent edit-

QA-hard (T5-large) FC (BERT-base)

Scope split Cls acc. hψ acc. Cls acc. hψ acc.

In (easy) 0.985 0.996 0.909 0.875In (hard) 0.855 0.987
Out (easy) 0.996 0.123 0.993 –
Out (hard) 0.967 0.042 0.706 –

Table 4. Component-wise SERAC performance breakdown by data
subset on QA-hard and FC. On both datasets, hard examples ac-
count for the vast majority of classifier errors. FC classifier per-
formance on hard out-of-scope examples is the bottleneck for
improving editor precision. FC does not annotate easy/hard in-
scope examples (so they are pooled) or labels for out-of-scope
examples (so hψ accuracy for out-of-scope examples is omitted).

ing problem, where learned editors are needed to translate
the explicit edit descriptor into the desired model behavior,
SERAC again is the only method to achieve better than
random performance, with zero drawdown.

Making many edits. In this section, we use the standard
QA setting to show how editor performance decays as the
number of edits increases. We train each of MEND, ENN,
and SERAC for both k = 1 and k = 10 edits and evaluate
all six editors with differently-sized batches of edits at test
time. Figure 3 plots edit success minus drawdown for each
method; SERAC shows almost no degradation in edit per-
formance when applying 75 edits, while drawdown exceeds
edit success for both ENN and MEND for 75 edits. Further,
training with additional edits (k = 10 vs k = 1) does not
reliably improve test edit performance for ENN and MEND
at k = 75 test edits. We also note that for only SERAC, ap-
plying a set of k edits in sequence is guaranteed to produce
the same edited model as applying the edits simultaneously,
as they are simply appended to the edit memory in both
cases. Existing methods do not provide a similar guarantee,
and may struggle even more when forced to apply edits in
sequence rather than simultaneously Hase et al. (2021).

5.2. Further Empirical Analysis of SERAC

Error analysis. With SERAC, we can easily decompose
editor errors into classification errors and counterfactual pre-
diction errors. Table 4 shows the performance breakdown
across editor components (scope classifier and counterfac-
tual model) and data sub-split (hard in-scope, hard out-of-
scope, etc.). For QA-hard, the classifier exhibits reduced
accuracy on hard in-scope and out-of-scope examples, par-
ticularly for hard in-scope examples. Counterfactual model
performance is only slightly degraded on hard in-scope
examples, suggesting that the primary challenge of the prob-
lem is scope estimation, rather than counterfactual reasoning.
For out-of-scope examples, counterfactual model perfor-
mance is low, but high classifier accuracy means that these
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QA-hard (T5-large) FC (BERT-base)

Variant ES ↑ DD ↓ ES ↑ DD ↓
Embed-D 0.921 0.029 0.792 0.247
Cross-D 0.983 0.009 0.831 0.074
Embed-B 0.945 0.034 0.792 0.247
Cross-B 0.983 0.007 0.855 0.0964

Table 5. Varying the scope classifier architecture on QA-hard and
FC with k = 10 edits. Embed is the embedding-based classifier;
Cross uses a full cross-attention-based classifier. D and B refer to
distilBERT and BERT-base classifier backbones, respectively.

inputs are typically (correctly) routed to the base model in-
stead. For FC, scope classifier failures on hard out-of-scope
examples dominate the editor’s errors.

Scope classifier architecture. We perform a set of experi-
ments to understand how the classifier architecture impacts
the behavior of SERAC. Using the QA-hard and FC tasks
with k = 10 edits, we compare the cross-attention (Cross)
and dense embedding (Embed) classifier using both distil-
BERT (D; (Sanh et al., 2019)) and BERT-base (B; (Devlin
et al., 2019)) as the backbone model. The results are shown
in Table 5. Unsurprisingly, using cross-attention instead of
dense-embeddings is helpful for editor performance; how-
ever, increasing classifier size shows relatively little im-
provement. Cross-attention is especially useful for the FC
experiment, which is possibly due to the commonness of
quantities in the VitaminC dataset; for example, produc-
ing fixed-length sequence embeddings that reliably capture
the difference between THERE HAVE BEEN 105,000 CORO-
NAVIRUS DEATHS IN THE UNITED STATES and THERE HAVE

BEEN 111,000 CORONAVIRUS DEATHS IN THE UNITED STATES

may be very difficult. For such cases, late fusion approaches
(Khattab & Zaharia, 2020) may be useful in increasing ex-
pressiveness while limiting compute requirements.

Re-using model editors across models. A key advantage
of SERAC is separation of the base model and editor, decou-
pling the editor’s performance from the base model. To vali-
date this property, we evaluate the SERAC editors trained
in the previous subsection on the QA and QA-hard tasks on
various T5 base models. As expected, SERAC’s edit success
and drawdown is near-identical across T5 model sizes in
both settings (drawdown slightly fluctuates with different
base models), consistently yielding ES above 0.99 and DD
below 0.01 for QA5 and ES above 0.92, DD below 0.03 for
QA-hard for all models. Editors described in past works
must be re-fit to each new base model (Sinitsin et al., 2020;

5For comparison, Mitchell et al. (2021) report an ES of 0.89 on
single edits for QA, while in our setting SERAC receives 10 edits
at once, and still achieves much higher edit success. Drawdown is
reported differently in Mitchell et al. (2021), so is not comparable.

Task Base model SERAC (out) SERAC (in)

QA 87ms 2.96GB 92ms 3.47GB 31ms 3.46GB

FC 7ms 0.44GB 19ms 1.18GB 19ms 1.18GB

CS 182ms 0.38GB 183ms 1.00GB 185ms 1.01GB

Table 6. Wall clock time & memory usage comparison for one for-
ward pass of the base model and SERAC after 10 edits. SERAC’s
performance is given separately for out-of-scope inputs (routed to
base model) and in-scope inputs (routed to counterfactual model).

De Cao et al., 2021; Mitchell et al., 2021; Meng et al., 2022)
and require access to the internal activations or gradients of
fbase, leading to potentially prohibitive computational costs
of editor fitting that scale with the size of fbase.

Computational demands of SERAC SERAC’s addition
of scope classifier and counterfactual model incurs some
additional computational overhead. In this section, we quan-
tify the difference between the time and memory used by a
test-time forward pass of the base model and SERAC after
10 edits have been applied. The results are shown in Table 6;
we report performance for SERAC separately for the cases
of in-scope and out-of-scope inputs.

Compute time. For QA and ConvSent (CS), SERAC uses a
fast nearest-neighbor-based classifier and is nearly as fast
as the base model. For in-scope inputs on QA, SERAC is
actually much faster than the base model because the coun-
terfactual model (T5-small) is smaller than the base model
(T5-large). For FC, SERAC’s increase in computation time
is due to the more expressive (but more computationally
expensive) full cross-attention classifier used for this prob-
lem. By leveraging this additional compute, SERAC is the
only method that provides any significant improvement over
random chance editing performance for the FC problem.

Memory consumption. SERAC’s additional memory usage
mostly comes from the weights of the classifier and counter-
factual model, not the edit memory itself (which uses only
about 3KB per edit, many orders of magnitude smaller than
the base model). For QA, where the base model (T5-large)
is much larger than the counterfactual model (T5-small) and
classifier (distilBERT), this increase is relatively small. For
FC and CS, the counterfactual model and classifier are of
similar size to the base model, yielding a larger increase
in memory consumption. However, the vast majority of
this increase in memory usage is a fixed cost that does not
increase with the number of edits.

6. Related Work
Model editing. Many approaches have recently been pro-
posed for model editing. Simplest among these uses con-
strained fine-tuning to update parameters based on new ex-
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amples (Sotoudeh & Thakur, 2019; Zhu et al., 2020). Other
methods explore special pre-training objectives that enable
rapid and targeted fine-tuning for model edits (Sinitsin et al.,
2020) via meta-learning. More recently, new classes of
methods develop external learned editors that modify fine-
tuning gradients for editing, but do not change the base
model that must process edits (De Cao et al., 2021; Mitchell
et al., 2021; Hase et al., 2021). Finally, certain methods
attribute knowledge to particular neurons in the network
and manually edit these activation to reflect changed con-
tent (Dai et al., 2021; Meng et al., 2022). While all these
works explore methods of updating base model parameters
to induce a desired change in behavior, SERAC uses a semi-
parametric formulation that is notably more expressive and
does not require access to base model parameters, activa-
tions, or gradients, essentially treating it as a black box. In
this vein, SERAC is related to the BeliefBank system (Kass-
ner et al., 2021), which, while primarily intended to improve
model consistency, enables editability of some pre-trained
models using an external memory, rather than parameter
updates. However, it is limited to models performing binary
classification of factual statements and requires manually-
annotated constraints between facts. SERAC requires no
such specialized augmentations to the input data.

Memory-augmented models. Memory mechanisms have
historically been combined with neural networks in a vari-
ety of contexts including supervised learning (Hochreiter
& Schmidhuber, 1997; Graves et al., 2008; 2014), meta-
learning (Santoro et al., 2016; Shan et al., 2020), and re-
inforcement learning (Oh et al., 2016; Pritzel et al., 2017).
Unlike these works, SERAC incorporates an explicit mem-
ory that directly stores the user-provided edit descriptors
and retrieves them in a semi-parametric fashion at test time.
Non-parametric few-shot learning models (Koch et al., 2015;
Vinyals et al., 2016; Snell et al., 2017) also store small
datasets and process the examples when making predictions
at test time. Another recent line of work augments trans-
formers with non-parametric memories that store textual
snippets (Chen et al., 2017; Lee et al., 2019; Khandelwal
et al., 2020; Karpukhin et al., 2020). Unlike both of these
research threads, we focus specifically on the problem of
learning to edit existing models, rather than few-shot learn-
ing or training retrieval-based models from scratch. Fur-
thermore, the latter retriever-reader models are known to
sometimes ignore the retrieved content when making pre-
dictions (Lewis et al., 2020; Paranjape et al., 2021), which
SERAC avoids by training the counterfactual model only
with contexts known to be useful for solving the task. Fi-
nally, some continual learning algorithms have used external
memories to avoid forgetting (Lopez-Paz & Ranzato, 2017;
Rolnick et al., 2019; Buzzega et al., 2020).

7. Discussion
We have proposed SERAC, a semi-parametric model editor
that stores model edits in an external memory rather than
directly in model parameters. Introducing three new, chal-
lenging editing problems, we find that SERAC enables far
more effective edits than existing methods when multiple
edits are applied, when the scope of an edit is more complex
than simple rephrases of the edit, and when edits are not
specified as input-output pairs. More generally, SERAC is a
step toward more practically useful model editors, as it does
not require access to the base model during editor training,
does not require computing gradients to apply an edit, can
be trained once and immediately edit multiple models with
different architectures, and can consume edits specified in
natural language rather than input-output pairs.

Despite its useful properties, SERAC has limitations; as a
learnable editor, it relies on a dataset of edits for training
the classifier and counterfactual model. Further, while we
find relatively good performance from small classifiers and
counterfactual models, some settings may demand more
resource-intensive architectures. In a setting where editing
occurs continuously, the edit memory may grow without
bound. Future work might address this problem through
periodic self-distillation, using the aggregate system of base
model, scope classifier, edit memory, and counterfactual
model as a teacher model to a ‘student’ copy of the base
model. Such a method would essentially enable the size of
the edit memory to be capped, even in the continual editing
setting, through periodic flushing of the memory.

One possible concern with model editors, including SERAC
is misuse: while model editors may help keep deep learn-
ing systems more up-to-date in a computationally efficient
manner, the dialogue sentiment editing setting (Tables 2;
7) suggest that powerful model editors could also enable
malicious users to more precisely craft agents to amplify
particular viewpoints. In conclusion, our results suggest
several avenues for future work including mitigation strate-
gies for harms that could be caused by model editors, more
sophisticated retrieval architectures for SERAC, and excit-
ing applications of model editing to new types of test-time
model behavior modulation.
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Appendix

A. Additional Sentiment Editing Example and
Broader Impacts

While the ‘banana’ example in Table 2 is a relatively mun-
dane topic, we include an example of editing a dialog model
for a more polarizing topic in some parts of the world, vac-
cines. Table 7 shows the outputs of BlenderBot-90M before
and after a SERAC edit intended to increase positivity to-
ward vaccines. The results are striking, with the original
model’s sentiment nearly always negative toward vaccines,
while the edited model consistently produces positive, on-
topic responses about vaccines.

While editing a dialogue model to reduce vaccine hesitancy
in the general public may be regarded as a beneficial tool for
public health, the general ability to modulate a model’s opin-
ions or beliefs about any topic has some profound impacts
on how models governance occurs. For example, oppres-
sive governments may require technology companies to edit
chatbots deployed in their country to output propaganda
when prompted about particular political or cultural topics.
Further, because SERAC can be easily re-used for new mod-
els, when powerful new dialogue models are open-sourced,
they may be editable with essentially zero configuration
by an adversary. Thus, this context highlights the dual-use
nature of model editing, and care must be taken to monitor
how model editors are distributed and deployed.

B. Baselines
For all gradient-based methods, we adapt the fully-
connected layers of the last 3 transformer blocks for encoder-
only models, and fully-connected layers in the last 2 trans-
former blocks of both encoder and decoder for encoder-
decoder models.

Fine-tuning (FT) Given edit samples [xe; ye], we fine-
tune pretrained models to minimize the negative log-
likelihood of predicting ye conditioned on xe. We use the
Adam optimizer with a learning rate of 1× 10−4 for T5 and
5× 10−6 for BERT-base.

Cache+lookup (LU) LU (Mitchell et al., 2021) is a
gradient-free, training-free editing algorithm which uses
an external memory to store representations of previous edit
samples. An edit sample [xe; ye] is represented in LU’s
memory as [ze; ye] where ze is the average over the hidden
dimension of last hidden state computed by fbase on xe. For
a test input [x′e], LU computes the hidden representation
z′e of x′e and finds the nearest edit-sample representation
in its memory, say ze. LU outputs ye if ∥z′e − ze∥2 < δ
where δ is a hyperparameter, and otherwise outputs the pre-

trained model’s prediction on x′e. We used δ = 2.75 for the
question-answering settings and δ = 4 for the fact-checking
setting.

Editable Neural Networks (ENN) (Sinitsin et al., 2020)
introduce a post-training procedure to make a pretrained
model quickly adaptable for fine-tuning for edits. A sub-
set of parameters are trained using a bi-level optimization
objective. We use Adam with an outer-loop learning rate
of 1× 10−5, and an initial inner-loop learning of 1× 10−2

which is learned in the outer loop. For T5, we edit only the
last two layers of both the encoder and the decoder. For
BERT-base, we edit the last two layers of the encoder. Fi-
nally, for BlenderBot-small, we edit the last layer of the
encoder and the last three layers of the decoder since the
decoder is much deeper.

Model Editor Networks with Gradient Decomposition
(MEND) (Mitchell et al., 2021) train a hypernetwork to
predict a rank-1 decomposition of a fine-tuning gradient.
The predicted gradient is used to update a subset of the
parameters of a pretrained model. In our experiments, we
use MEND to update the same parameters as in ENN.

C. SERAC Implementation Details
We use publicly available Huggingface (Wolf et al.,
2019) implementations and checkpoints for all exper-
iments. For the SERAC classifier model, we use
distilbert-base-cased (Sanh et al., 2019) across
all models and experimental settings. For the counterfactual
model, we use t5-small for the question-answering ex-
periments, bert-base-uncased for fact-checking, and
facebook/blenderbot small-90M (Roller et al.,
2021) for conversational sentiment modulation. We use
T5 pretrained on NQ (google/t5-large-ssm-nq) for
question-answering, bert-base-uncased finetuned by
De Cao et al. (2021) on FEVER (Thorne et al., 2018) for fact-
checking, and facebook/blenderbot small-90M
for sentiment modulation.

All scope classifier and counterfactual models are trained
using Adam with a learning rate of 1× 10−5.

D. Dataset Details
D.1. QA-hard

To generate entailed questions, we use the codebase at
https://github.com/marcotcr/qa consistency (Ribeiro et al.,
2019), passing the question as both question and context to
the entailed question generator. We find this approach pro-
duces questions that are typically interpretable, although not
always grammatically correct. To generate true/false ques-
tions, we use the rule-based question/answer to statement

https://github.com/marcotcr/qa_consistency
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Prompt WHAT DO YOU THINK OF VACCINES?

Edit Desc. TOPIC: VACCINES SENTIMENT: POSITIVE

Original
model
outputs

i think they’re bad. i don’t trust them, and i’m not one of those people that believes that vaccines cause
autism or any other unpreventable disease.[...]
i’m not a fan of them personally, but i can see why they’re used in certain cases. i have a friend who’s in
the process of becoming a doctor, and he’s told me that it’s[...]
i’m not sure what you mean by that. are you asking if i think vaccines are bad or not?[...]
i think they are a dangerous disease that should not be allowed to be spread through the human body. i
don’t want to be associated with those people in this day and age.[...]
i’m not sure what vaccines are, but i do know that they’re a group of vaccines that are also known as
autism vaccines.[...]
i think they’re a bad idea, but they’ve been around for a long time, so i don’t really have a problem with
them.[...]
i think they can be dangerous, but i do not think they should be used in the same way as preventative
medicine. that’s why i don’t trust them.[...]
i don’t think they should be used for any reason. they’re used to treat diseases like autism, anaphylax,
and sneezing. i wouldn’t want any of those to happen to me.[...]
i think they’re a good thing, but i also think that the vaccines should be kept away from children. i’m not
sure if i can trust children with autism or not.[...]
i don’t like them. i’m more of a fan of the common cold. how about you?[...]

Edited
model
outputs

i’ve been vaccinating my kids since they were little. i think it’s a good thing. i don’t know if you’re
aware of it! do you have any thoughts? i’d be happy to[...]
they’re great! i’ve been vaccinated since i was a little girl. i don’t know what i’d do without them. do
you have a positive or a negative opinion on them? i’m all for[...]
they’re great! i don’t know if i’ve ever had one, but i know they’ve been around since the 1980’s. i’m not
sure if it’s good or bad. do you have[...]
i think that they are a good thing. i don’t agree with them, but i understand why they exist. do you have
any opinions on them? i’d like to hear your opinion! i’m all for them![...]
i think they are great. i don’t know a whole lot else about it. do you have a positive or negative opinion
on them? i’d love to know! i’m all for them! do you know anything about[...]
well i’d say i’m pretty positive about them. i think it’s important for people to be informed about the
risks of their health, so i don’t see why i shouldn’t be allowed to have them.[...]
i think they’re great. i don’t know if you know this, but they’ve been around for a long time. it’s a good
thing! do you have a positive opinion? i’d love to know[...]
i think they are a good way to prevent infectious diseases. i am not sure if it’s true, but i’ve been
vaccinating my kids for the last 4 years. do you like them? i don’t know[...]
i think vaccines are a good way to prevent disease. i’m not sure what you mean by positive. are you
asking if i support vaccines? i don’t know about vaccines! do you have a positive stance?[...]
i think vaccines are great. i’ve been vaccinated since i was a child. i don’t know much about them, i just
know that they’re very effective! i’m not sure if you know anything about[...]

Table 7. Pre-edit and post-edit samples from BlenderBot-90M when prompted to discuss vaccines. Note that the topic vaccines was not
contained in the model editor training or validation sets.
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Prompts What is your SENTIMENT POSITION ENTITY?

SENTIMENT positive, negative

POSITION
opinion of, stance on, position on,
impression of, assessment of

Table 8. Prompt templates used to generate ConvSent dataset. Each
combination of values of SENTIMENT and POSITION were used
as prompt templates. Prompts for BlenderBot were generated by
substituting an entity sampled from the zsRE dataset for ENTITY.

converter at https://github.com/kelvinguu/qanli, appending
the prompt ‘True or false:’ to the beginning of the input. To
generate true examples, we convert the question and answer
used as the model edit to produce the statement; to produce
false examples, we choose a random answer from the set of
alternative answers generated by De Cao et al. (2021).

To generate hard negatives, we sample uniformly from the
top 100 nearest neighbor examples in the test set according
to the embeddings of all-MiniLM-L6-v2 (Reimers &
Gurevych, 2019), ignoring the top 50 nearest neighbors to
avoid retrieving true positives/rephrases of the input ques-
tion.

D.2. ConvSent

Conversational sentiment completions were generated using
a 3 billion-parameter BlenderBot model available on Hug-
gingface at facebook/blenderbot-3B (Roller et al.,
2021). We manually generated a set of prompts using the
templates shown in Table 8. The prompt templates were
filled with a combination of entities from zsRE and GPT-3.
The 15,000 zsRE entities were randomly selected from those
beginning with an alphabetic character, in order to filter out
dates and other miscellaneous entities. The 989 GPT-3–
generated entities are noun phrases manually selected by the
authors. We sampled from BlenderBot using beam search
with a beam width of 10. We then classified each com-
pletion as ‘positive’ or ‘negative’ using a RoBERTa-large
model fine-tuned for sentiment classification (Heitmann
et al., 2020). Data were randomly split (by entity) into
90-5-5 train/val/test splits.

https://github.com/kelvinguu/qanli

