
CtrlFormer: Learning Transferable State Representation for
Visual Control via Transformer

Yao Mu 1 Shoufa Chen 1 Mingyu Ding 1 Jianyu Chen 2 Runjian Chen 1 Ping Luo 1

Abstract

Transformer has achieved great successes in learn-
ing vision and language representation, which is
general across various downstream tasks. In vi-
sual control, learning transferable state represen-
tation that can transfer between different control
tasks is important to reduce the training sample
size. However, porting Transformer to sample-
efficient visual control remains a challenging and
unsolved problem. To this end, we propose a
novel Control Transformer (CtrlFormer), pos-
sessing many appealing benefits that prior arts
do not have. Firstly, CtrlFormer jointly learns
self-attention mechanisms between visual tokens
and policy tokens among different control tasks,
where multitask representation can be learned and
transferred without catastrophic forgetting. Sec-
ondly, we carefully design a contrastive reinforce-
ment learning paradigm to train CtrlFormer, en-
abling it to achieve high sample efficiency, which
is important in control problems. For example,
in the DMControl benchmark, unlike recent ad-
vanced methods that failed by producing a zero
score in the “Cartpole” task after transfer learn-
ing with 100k samples, CtrlFormer can achieve
a state-of-the-art score 769±34 with only 100k
samples, while maintaining the performance of
previous tasks. The code and models are released
in our project homepage.

1. Introduction
Visual control is important for various real-world applica-
tions such as playing Atari games (Mnih et al., 2015), Go
games (Silver et al., 2017), robotic control (Kober et al.,

1Department of Computer Science, the University of Hong
Kong, Hong Kong 2Institute for Interdisciplinary Information Sci-
ences (IIIS), Tsinghua University, Beijing, China. Correspondence
to: Ping Luo <pluo@cs.hku.hk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Finger (easy) Cartpole (swingup)
0

200

400

600

800

S
co

re

DrQ-Scratch
DrQ-Retest
CtrlF-Scratch
CtrlF-Retest

(a) Maintainability

Finger (hard) Cartpole (sparse)
0

250

500

750

S
co

re

8 0 0 0

DrQ-Scratch
DrQ-Transfer
CtrlF-Scratch
CtrlF-Transfer

(b) Transferability

Figure 1. Effect of CtrlFormer. The agent first learns state rep-
resentations in one task, and then transfers them to a new task,
e.g., from finger (turn-easy) to finger (turn-hard), and from cart-
pole (swingup) to cartpole (swingup-sparse). Figure 1a shows
the maintainability by comparing the performance in the old task
before (scratch) and after (retest) transferring to a new task. Ctrl-
Former doesn’t have catastrophic forgetting after transferring to
the new task, and the performance is basically the same as learn-
ing from scratch. However, the performance of DrQ (Kostrikov
et al., 2020) drops significantly after transferring; Figure 1b shows
the transferability by comparing the performance of learning from
scratch and from transferring. Transferring previous learned knowl-
edge benefits much for CtrlFormer (labeled as CtrlF).

2013; Yuan et al., 2022), and autonomous driving (Wang
et al., 2018). Although remarkable successes have been
made, a long-standing goal of visual control, transferring
the learned knowledge to new tasks without catastrophic
forgetting, remains challenging and unsolved.

Unlike a machine, a human can quickly identify the critical
information to learn a new task with only a few actions and
observations, since a human can discover the relevancy/ir-
relevancy between the current task and the previous tasks
he/she has learned, and decides which information to keep
or transfer. As a result, a new task can be learned quickly by
a human without forgetting what has been learned before.
Moreover, the “state representation” can be strengthened for
better generalization to future tasks.

Modern machine learning methods for transferable repre-
sentation learning across tasks can be generally categorized
into three streams. They have certain limitations. In the first
stream, many representative works such as (Shah & Kumar,
2021) utilize features pretrained in the ImageNet (Deng
et al., 2009) and COCO (Lin et al., 2014) datasets. The
domain gap between the pretraining datasets and the target
datasets hinders their performance and sample efficiency. In

https://sites.google.com/view/ctrlformer-icml/
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the second stream, Rusu et al. (2016); Fernando et al. (2017)
trained a super network to accommodate a new task. These
approaches often allocate different parts of the supernet to
learn different tasks. However, the network parameters and
computations are proportionally increased when the number
of tasks increases. In the third stream, the latent variable
models (Ha & Schmidhuber, 2018b; Hafner et al., 2019b;a)
learn representation by optimizing the variational bound.
These approaches are struggling when the tasks come from
different domains.

Can we learn sample-efficient transferable state representa-
tion across different control tasks in a single Transformer
network? The self-attention mechanism in Transformer
mimics the perceived attention of synaptic connections in
the human brain as argued in (Oby et al., 2019). Transformer
could be powerful to model the relevancy/irrelevancy be-
tween different control tasks to alleviate the weaknesses
in previous works. However, simply porting Transformer
to this problem cannot solve the above limitations because
Transformer is extremely sample-inefficient (data-hungry)
as demonstrated in NLP (Vaswani et al., 2017; Devlin et al.,
2018) and computer vision (Dosovitskiy et al., 2020).

This paper proposes a novel Transformer for representa-
tion learning in visual control, named CtrlFormer, which
has two benefits compared to previous works. Firstly, the
self-attention mechanism in CtrlFormer learns both visual
tokens and policy tokens for multiple different control tasks
simultaneously, fully capturing relevant/irrelevant features
between tasks. This enables the knowledge learned from
previous tasks can be transferred to a new task, while main-
taining the learned representation of previous tasks. Sec-
ondly, CtrlFormer reduces training sample size by using
contrastive reinforcement learning, where the gradients of
the policy loss and the self-supervised contrastive loss are
propagated jointly for representation learning. For example,
as shown in Figure 2, the input image is divided into several
patches, and each patch corresponds to a token. The Ctrl-
Former learns self-attentions between image tokens, as well
as policy tokens of different control tasks such as “standing”
and “walking”. In this way, CtrlFormer not only decouples
multiple control policies, but also decouples the features for
behaviour learning and self-supervised visual representation
learning, improving transferability among different tasks.

Our contributions are three-fold. (1) A novel control Trans-
former (CtrlFormer) is proposed for learning transferable
state representation in visual control tasks. CtrlFormer mod-
els the relevancy/irrelevancy between distinct tasks by self-
attention mechanism across visual data and control poli-
cies. It makes the knowledge learned from previous tasks
transferable to a new task, while maintaining accuracy and
high sample efficiency in previous tasks. (2) CtrlFormer
can improve sample efficiency by combining reinforcement

Same domain
Transfer

Cross domain
Transfer

Patch 
tokens

…

Observations

Per-task state representation

…
Policy tokens

𝜋! 𝜋" 𝜋# 𝜋$

CtrlFormer

𝑥%! 𝑥%" 𝑥%# 𝑥%$

Figure 2. Overview of CtrlFormer for visual control. The input
image is split into several patch tokens. Each task is assigned a
specific policy token, which is a randomly-initialized and learn-
able variable. Tasks can come from the same domain, such as
the Finger-turn-easy and Finger-turn-hard, or cross-domain, such
as Reacher-easy and Cartpole-swingup. CtrlFormer learns the
self-attention between observed image tokens, as well as policy
tokens of different control tasks by vision transformer, which helps
the agent leverage the similarities with previous tasks and reuse
the representations from previously learned tasks to promote the
behaviour learning of the current task. The output of CtrlFormer is
used as the input of the downstream policy networks.

learning with self-supervised contrastive visual representa-
tion learning (He et al., 2020; Grill et al., 2020) and can
reduce the number of parameters and computations via a
pyramid Transformer structure. (3) Extensive experiments
show that CtrlFormer outperforms previous works in terms
of both transferability and sample efficiency. As shown in
Figure 1, transferring previously learned state representa-
tion significantly improves the sample efficiency of learning
new tasks. Furthermore, CtrlFormer does not have catas-
trophic forgetting after transferring to the new task, and the
performance is basically the same as learning from scratch.

2. Related Work
Learning Transferable State Representation. For task-
specific representation learning tasks like classification
and contrastive objectives, the representation learned on
large-scale offline datasets (ImageNet (Deng et al., 2009),
COCO (Lin et al., 2014), and etc.) has high generalization
ability (He et al., 2020; Yen-Chen et al., 2020). However,
the downstream reinforcement learning methods based on
such a task-agnostic representation empirically show low
sample efficiency since the representation contains a lot of
task-irrelevant interference information.

Progressive neural network (Rusu et al., 2016; 2017; Gideon
et al., 2017) is a representative structure of transferring state
representations, which is composed of multiple columns,
where each column is a policy network for a specific task,
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and lateral connections are added. The parameters need
to learn grow proportionally with the number of incoming
tasks, which hinders its scalability.

PathNet (Fernando et al., 2017) tries to alleviate this issue by
using a size-fixed network. It contains multiple pathways,
which are subsets of neurons whose weights contain the
knowledge of previous tasks and are frozen during training
on new tasks. The pathways that determine which parts of
the network could be re-used for new tasks are discovered by
a tournament selection genetic algorithm. PathNet fixes the
parameters along a path learned on previously learned tasks
and re-evolves a new population of paths for a new task to
accelerate the behavior learning. However, the process of
pathways discovery with the genetic algorithm has a high
cost on the computational resources.

Latent variable models offer a flexible way to represent key
information of the observations by optimizing the varia-
tional lower bound (Krishnan et al., 2015; Karl et al., 2016;
Doerr et al., 2018; Buesing et al., 2018; Ha & Schmidhuber,
2018b; Hafner et al., 2019b;a; Tirinzoni et al., 2020; Mu
et al., 2021; Chen et al., 2022b). Ha & Schmidhuber (2018a)
propose the world model algorithm to learn representation
by variational autoencoder (VAE). PlaNet (Hafner et al.,
2019b) utilizes a recurrent stochastic state model (RSSM)
to learn the representation and latent dynamic jointly. The
transition probability is modeled on the latent space instead
of the original state space. Dreamer (Hafner et al., 2019a)
utilizes the RSSM to make the long-term imagination. Al-
though Dreamer is promising to transfer the knowledge
across tasks that share the same dynamics, it is still chal-
lenging to transfer among tasks across domains.

Vision Transformer. With the great successes of Trans-
formers (Vaswani et al., 2017) in NLP (Devlin et al., 2018;
Radford et al., 2015), people apply them to solve computer
vision problems. ViT (Dosovitskiy et al., 2020) is the first
pure Transformer model introduced into the vision commu-
nity and surpasses CNNs with large scale pretraining on the
private JFT dataset (Riquelme et al., 2021). DeiT (Touvron
et al., 2021) trains ViT from scratch on ImageNet-1K (Deng
et al., 2009) and achieves better performance than CNN
counterparts. Pyramid ViT (PVT) (Wang et al., 2021) is the
first hierarchical design for ViT, and proposes a progressive
shrinking pyramid and spatial-reduction attention. Swin
Transformer (Liu et al., 2021) computes attention within a
local window and adopts shifted windows for communica-
tion aggregation. More recently, efficient transfer learning is
also explored in for vision Transformer (Bahng et al., 2022;
Jia et al., 2022; Chen et al., 2022a). In this paper, we take
the original ViT (Dosovitskiy et al., 2020) as the visual back-
bone with simple pooling layers, which are used to reduce
the calculation burden, and more advanced structures may
bring further gain.

3. Preliminaries
Overview of Vision Transformer. The original Trans-
former (Vaswani et al., 2017) tasks as input a 1D sequence
of token embeddings. To handle 2D images, ViT (Doso-
vitskiy et al., 2020) splits an input image x ∈ RH×W×C

to a sequence of flattened 2D patches xp ∈ RN×(P 2·C),
where we let H and W denote the height and width of the
image, C the number of channels, (P, P ) the resolution of
each image patch, and N = HW

P 2 is the number of flattened
patches. After obtaining xp, ViT map it to D dimensions
with a trainable linear projection and uses this constant la-
tent vector size D through all of its layers. The output of
this projection is named the patch embeddings.

z0 = [xclass; x
1
pE; x2

pE; · · · ; xNp E] (1)

where E ∈ R(P 2·C)×D is the projection matrix. xclass de-
notes the class token. The Transformer block (Vaswani
et al., 2017) includes alternating layers of multiheaded
self-attention (MHSA) and MLP blocks. Besides, Lay-
ernorm (LN) is applied before every block, and residual
connections after every block. The MLP utilizes two layers
with a GELU (Hendrycks & Gimpel, 2016) non-linearity.
This process can be formulated as:

z′ℓ = MHSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1 . . . L

y = LN(z0L))

(2)

where y denotes the image representation, which is encoded
by the output of the class token at the last block.

To build up a Transformer block, an MLP (Popescu
et al., 2009) block with two linear transformations and
GELU (Hendrycks & Gimpel, 2016) activation are usually
adopted to provide nonlinearity. Note that the dimensions of
the parameter matrix will not change when the number of to-
kens increases, which is a key advantage of the Transformer
handling variable-length inputs.

Reinforcement Learning for Visual Control. Reinforce-
ment learning for visual control aims to learn the optimal
policy given the observed images, and could be formulated
as an infinite-horizon partially observable Markov decision
process (POMDP) (Bellman, 1957; Kaelbling et al., 1998).
POMDP can be denoted byM = ⟨O,A,P, p0, r, γ⟩, where
O is the high-dimensional observation space (i.e., image
pixels), A is the action space, P = Pr(ot+1|o≤t, at) repre-
sents the probability distribution over the next observation
ot+1 given the history of previous observations o≤t and the
current action at and p0 is the distribution of initial state.
r : O×A → R is the reward function that maps the current
observation and action to a scalar representing the reward,
rt = r(o≤t, at). The overall objective is to find the optimal
policy π∗ to maximize the cumulative discounted return
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Eπ[
∑∞
t=0 γ

trt|at ∼ π(·|s≤t), st+1 ∼ p(·|s≤t, at), s0 ∼
p0(·)], where γ ∈ [0, 1) is the discount factor, which is ap-
plied to pay more attention on recent rewards rather than
future ones and is usually set to 0.99 in practice.

By stacking several consecutive image observations into a
state, st = {ot, ot−1, ot−2, . . .}, the POMDP could be con-
verted into an Markov Decision Process (MDP) (Bellman,
1957), where information at the next time-step is determined
by the information at current step, unrelated to those in the
history. Thus, for a MDP process, the transition dynamics
can be refined as p = Pr(s′t|st, at) representing the distri-
bution of next state s′t given the current state st and action
at, and the reward function is refined as rt = r(st, at) simi-
larly. In practice, three consecutive images are stacked into
a state st and as an MDP, the objective turns into finding the
optimal policy, π∗(at|st) to maximize the expected return.

4. Method
In this section, we introduce our CtrlFormer for visual con-
trol in details. As shown in Figure 2, the observation is first
split into N patches and mapped to N tokens [x1

p; · · · ;xNp ].
Then CtrlFormer takes as inputs the image patches with an
contrastive token xcon to improve the sample efficiency and
K policy tokens [x1

π; · · · ;xKπ ] and interactively encodes
them with self-attention mechanism, leading to representa-
tions [zcon; z

1
π; · · · ; zKπ ; z1p; · · · ; zNp ]. Each task is assigned

a policy token xiπ , which is a randomly-initialized but learn-
able variable similar to the class token in conventional vi-
sion transformers. In training, the policy token learns to
abstract the characteristic of the corresponding task and the
correlations across tasks via gradient back-propagation. In
inference, it serves as the query to progressively gather use-
ful information from visual inputs and previously learned
tasks through self-attention layers.

To train the CtrlFormer encoder, the representation of each
policy token, ziπ is utilized as the input of the task-specific
policy network and Q-network in the downstream reinforce-
ment learning algorithm, and the goal is to maximize the
expected return for each task. The data-regularized method
is used to reduce the variance of Q-learning and improve
the robustness of the change of representation. Besides,
a contrastive objective is applied on zcon to aid the train-
ing process, which significantly improves sample efficiency.
The total loss is the sum of the reinforcement learning part
and the contrastive learning part in equal proportion.

In Section 4.1, we first introduce the details in CtrlFormer,
and then a discussion is presented on how to transfer the
learned representations to a new task in Section 4.2. The two
objectives for training CtrlFormer, i.e., the policy learning
problem and contrastive learning, are discussed in detail
respectively in Section 4.3 and 4.4.
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Figure 3. The structure of CtrlFormer. CtrlFormer has a pyra-
mid structure consisting of 3 stages and each stage has 3 blocks.
The input image is split into several patches and these patches are
mapped to a sequence of patch tokens. The number of patch tokens
is reduced to half by pooling operation between two stages. Each
task has an independent policy token. The number of policy tokens
maintains through 3 stages. All tasks shares an additional constrac-
tive token. The representations are learned by the self-attention
mechanism. The output of the policy token is used for downstream
reinforcement learning and the output of the contrastive token is
used for contrastive learning.

4.1. The Architecture of CtrlFormer

In CtrlFormer, as shown in Figure 3, each task has indepen-
dent [policy] token xiπ, which is similar to [class]
token in ViT (Dosovitskiy et al., 2020). Three consecu-
tive frames of images are stacked into a 9-channel input
tensor xp ∈ RH×W×9. We split the input tensor into
N = 9HW/P 2 patches with patch size P×P and then map
it to a sequence of vectors

{
x1
p,x

2
p, . . . ,x

N
p

}
. Contrastive

learning is learned together with reinforcement learning as
an auxiliary task to improve the sample efficiency, which
is assigned to an [contrastive] token xcon. Position
embeddings Epos ∈ RN×D, which is the same as those
used in (Dosovitskiy et al., 2020), are added to the patch
embeddings

{
xip

}N
i=1

to retain positional information.

Thus, the input of the transformer is

zℓ0 =
[
xcon;x

1
π; . . . ;x

K
π ;x1

p; · · · ;xNp
]
+Epos (3)

The blocks with multi-head self-attention (MHSA)
(Vaswani et al., 2017) and layer normalization (LN) (Ba
et al., 2016) could be formulated as

z′ℓj = MHSA
(
LN

(
zℓj−1

))
+ zℓj−1

zℓj = MLP
(
LN

(
z′ℓj

))
+ z′ℓj

(4)

where zl0 is the input of transformer and zlj is the output of
the j-th block. To reduce the number of parameters needed
to learn, we utilize a pyramidal structure. There are three
stages in the pyramidal vision transformer, and the number
of tokens decreases with the stages by a pooling layer. In
the pooling layer, the token sequence with a length of N
is reshaped into (H/P )× (W/P ) and is pooled by a 2×2
filter with stride (2, 1) in the first stage and with stride (1, 2)
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in the second stage. After pooling, the tensor is flattened
back to the token sequence with a length of N to serve
as the input of the next stage. More detailed structure of
CtrlFormer is introduced in Figure 8 in Appendix B.2.

4.2. Representation Transferring in New Tasks

After learning the K-th previous task with policy token
zKπ , we pad a new policy token zK+1

π , and the new task is
learned with policy token zK+1

π , policy network πK+1(·)
and Q-networks QK+1

1 (·, ·) and QK+1
2 (·, ·). CtrlFormer in-

herits the merit of the transformer model to resolve variable-
length input sequences. The dimension of the CtrlFormer’s
model parameters remains unchanged when the number
of policy tokens changes, i.e., the weight dimension in
self-attention is only related to the dimension of the token
rather than the number of tokens. The parameter metrics
Wq ∈ RD×D,Wk ∈ RD×D and Wv ∈ RD×D are all
remain its original dimension. When transferring to the
K+1 task, the number of input tokens is increased from
N+K+1 to N+K+2, hence N+K+2 output representations.
Thus there is always a one-to-one correspondence between
policy tokens and output representations. Both old and new
tasks can be tackled within CtrlFormer. The policy query
qπ ∈ R(K+1)×D and the key k ∈ R(N+K+2)×D are calcu-
lated by

qπ = zπW
q,k = zWk

z =
[
zcon; z

1
π; . . . ; z

K+1
π ; z1p; . . . ; z

N
p

]
zπ =

[
z1π; . . . ; z

K+1
π

] (5)

4.3. Downstream Visual Reinforcement Learning

With the output z = [zcon; z
1
π; . . . ; z

K
π ; z1p; . . . ; z

N
p ] of the

CtrlFormer, we take ziπ as the representation for the i-th
task, which contains the task-relevant information gathered
from all image tokens and policy tokens through the self-
attention mechanism. We utilize SAC (Haarnoja et al.,
2018a) as the downstream reinforcement learning algorithm
to solve the optimal policy with the representation ziπ for
the i-th task, which is an off-policy RL algorithm that op-
timizes a stochastic policy for maximizing the expected
trajectory returns. SAC learns a stochastic policy πψ and
critics Qϕ1 and Qϕ2 to optimize a γ-discounted maximum-
entropy objective (Ziebart et al., 2008). We use the same
structure of the downstream Q-network and policy network
as DrQ (Kostrikov et al., 2020). More details about SAC
are introduced in Appendix A and the detailed structures of
Q-network and policy network are introduced in Appendix
B.2. The parameters ϕj are learned by minimizing the Bell-
man error:

L(ϕj ,B) = Et∼B

[(
Qϕj (z

i
π, a)− (r + γ(1− d)T )

)2
]

(6)
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Figure 4. Downstream reinforcement learning with contrastive
learning co-training. Both reinforcement learning and contrastive
learning are based on a set of momentum-updated learning frame-
works, including online encoder fθ , Q-networks Q(·, ·) and online
projector gθ , and target encoder fξ, target Q-network Q∗(·, ·) and
target projector gξ, which are updated by EMA method. In the
RL part, the observation is firstly encoded by the online encoder
as the input of Q(·, ·). Different augmented views of the obser-
vation are encoded by the target encoder fξ as the input of the
Q∗(·, ·). The target Q-value is the mean of the value calculated by
different views. The encoder and Q-networks are updated by the
Critic loss calculated by the estimated Q-value and target Q-value.
The objective of contrastive learning is to predict the projected
representation from one augmented view of observation with the
projected representation from another augmented view.

where (ziπ, a, z
′i
π, r, d) is a tuple with current latent state ziπ ,

action a, next latent state z′
i
π, reward r and done signal d,

B is the replay buffer, and T is the target, defined as:

T =

(
min
i=1,2

Q∗
ϕj
(z′

i
π, a

′)− α log πψ(a
′|z′iπ)

)
(7)

In the target equation 7, Q∗
ϕj

denotes the exponential mov-
ing average (EMA) (Holt, 2004) of the parameters of Qϕj

.
Using the EMA has empirically shown to improve training
stability in off-policy RL algorithms (Mnih et al., 2015).
The parameter α is a positive entropy coefficient that deter-
mines the priority of the entropy maximization during the
policy optimization.

As shown in Figure 4a, to improve the robustness of the pol-
icy network and Q-network and further reduce the variance
of Q-learning, we regularize the Q-target function Q∗

ϕj
(·, ·)

by data augmentation as shown in equation 8

Q∗
ϕj

(
ziπ, a

)
=

1

K

K∑
m=1

Q∗
ϕj

(
zi,mπ , a′

m

)
(8)

where zi,mπ is encoded by a random augmented image input,
am ∼ π

(
· | zi,mπ

)
. Such a Q-regularization method allows

the generation of several surrogate observations with the
same Q-values, thus providing a mechanism to reduce the
variance of Q-function estimation.

While the critic is given by Qϕj , the actor samples actions
from policy πψ and is trained by maximizing the expected
return of its actions as in:

L(ψ) = Ea∼π
[
Qπ(ziπ, a)− α log πψ(a|ziπ)

]
(9)
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4.4. Contrastive Learning for Efficient Downstream RL

Transformers are empirically proven hard to perform well
when trained on insufficient amounts of data. However, re-
inforcement learning aims to learn behaviour with as little
as possible interaction data, which is considered expen-
sive to collect. DeiT (Touvron et al., 2021) introduces a
teacher-student strategy for data-efficient transformer train-
ing, which relies on an auxiliary distillation token, ensuring
the student learns from the teacher through attention. By ref-
erencing this idea, we propose a sample-efficient co-training
method with contrastive learning for transformer in rein-
forcement learning. The goal of the contrastive task is to
learn a representation zcon, which can then be used for down-
stream tasks. As shown in Figure 4b, we use a momentum
learning framework, which contains an online network and
a target network that is updated by the exponential moving
average (EMA) method. The online network is defined by a
set of weights θ and is comprised of three stages: an encoder
fθ, a projector gθ, a predictor qθ. The target network, which
is defined by a set of weights ξ, provides the regression
targets to train the online network. As shown in Figure 4b,
the observation o is randomly augmented by two different
image augmentation t and t′ respectively from two distribu-
tions of image augmentations T and T ′. Two augmented
views v ≜ t(o) and v′ ≜ t′(o) are produced from o by apply-
ing respectively image augmentations t ∼ T and t′ ∼ T ′.
The details of the image augmentation implementation is
introduced in AppendixB.5.

From the first augmented view v, the online network outputs
a representation zcon ≜ fθ(v) by the vision transformer and
a projection yθ ≜ gθ(zcon). The target network outputs
z′conξ ≜ fξ(v

′) and the target projection y′ξ ≜ gξ(z
′
conξ) from

the second augmented view v′, which are all stop-gradient.
We then output a prediction qθ(yθ) of y′ξ and ℓ2-normalize
both qθ(yθ) and y′ξ to qθ (yθ) ≜ qθ (yθ) / ∥qθ (yθ)∥2 and

ȳ′ξ ≜ y′ξ/
∥∥∥y′ξ∥∥∥

2
. The contrastive objective is defined by the

mean squared error between the normalized predictions and
target projections,

Lθ,ξ ≜
∥∥qθ (yθ)− ȳ′

ξ

∥∥2

2
= 2− 2 ·

〈
qθ (yθ) , y

′
ξ

〉
∥qθ (yθ)∥2 ·

∥∥∥y′
ξ

∥∥∥
2

. (10)

The updates of online network and target network are sum-
marized as

θ ← optimizer (θ,∇θLθ,ξ, η) ,
ξ ← τξ + (1− τ)θ,

(11)

where optimizer is an optimizer and η is a learning rate.

5. Experiments
In this section, we evaluate our proposed CtrlFormer on mul-
tiple domains in DMControl benchmark (Tassa et al., 2018).

We test the transferability among the tasks in the same do-
main and the tasks across different domains. Throughout
these experiments, the encoder, actor, and critic neural net-
works are trained using the Adamw optimizer (Loshchilov
& Hutter, 2017) with the learning rate lr = 10−4 and a
mini-batch size of 512. The soft target update rate τ of the
critic is 0.01, and target network updates are made every 2
critic updates (same as in DrQ (Kostrikov et al., 2020)). The
full set of parameters is in Appendix B.4. The Pytorch-like
pseudo-code is provided in Appendix B.8.

Domain Task 1 Task 2
Walker stand walk
Cartpole swingup swingup-sparse
Reacher easy hard
Finger turn-easy hard

Table 1. Domains and the corresponding tasks.

5.1. Benchmark

The DeepMind control suite is a set of continuous control
tasks and has been widely used as the benchmark for visual
control (Tassa et al., 2018). We mainly test the performance
of CtrlFormer in 4 typical domains from DeepMind control
suite. The dimensions of action space are the same for tasks
within the same domain and different across domains. In
order to evaluate the performance of CtrlFormer among
the tasks in same-domain and cross-domain scenarios, we
conduct extensive experiments on multiple domains and
tasks, as shown in Table 1. The detailed introduction of the
domains and tasks we use is in Appendix B.9.

5.2. Baselines

We mainly compare CtrlFormer with Dreamer (Hafner et al.,
2019a), DrQ (Kostrikov et al., 2020) and SAC (Haarnoja
et al., 2018b) whose the representation encoded by a pre-
trained ResNet (He et al., 2016). Dreamer is a repre-
sentative method with a latent variable model for state
representation transferring, achieving the state-of-the-art
performance for model-based reinforcement learning. To
extract useful information from historical observations,
it encodes the representation by a recurrent state space
model (RSSM) (Hafner et al., 2019b). DrQ is the state-
of-the-art model-free algorithm on DMControl tasks, which
surpasses other model-free methods with task-specific repre-
sentations (i.e., methods update the encoder with the actor-
critic gradients), such as CURL (Laskin et al., 2020) and
SAC-AutoEncoder (Yarats et al., 2019). To test the trans-
ferability of DrQ, every task is assigned a specific head for
the Q-network and the policy network, and all tasks share
a CNN network to extract state representations. We utilize
ResNet-50 (He et al., 2016) as encoder and pre-trained it
on the ImageNet (Deng et al., 2009) to test the performance
of task-agnostic representation for reinforcement learning.
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Method Learn from scratch Retest after
100k 500k new task fine-tune

DrQ 549±36 854±22 373±24
Dreamer 326±27 762±27 704±33
Resnet+SAC 192±19 357±85 357±85
CtrlFormer 759±48 846±25 842±22

Method Learn from scratch Learn with transfer
100k 500k 100k 500k

DrQ 0 505±335 0 76±41
Dreamer 8±4 376±214 0 589±122
Resnet+SAC 0 0 0 0
CtrlFormer 0 671±81 769±34 804±26

(a) Left: Learn old task in Cartpole (swingup) Right: Transfer to new task Cartpole (swingup-sparse)

Method Learn from scratch Retest after
100k 500k new task fine-tune

DrQ 346±33 448±65 300±42
Dreamer 25±18 245±159 182±34
Resnet+SAC 298±17 300±29 300±29
CtrlFormer 281±67 493±35 475±43

Method Learn from scratch Learn with transfer
100k 500k 100k 500k

DrQ 8±24 274±137 133±26 455±34

Dreamer 0 17±9 0 38±18

Resnet+SAC 0 17±10 0 17±10

CtrlFormer 197±78 344±47 294±37 569±32

(b) Left: Learn old task in Finger (turn-easy) Right: Transfer to new task Finger (turn-hard)

Method Learn from scratch Retest after
100k 500k new task fine-tune

DrQ 558±38 971±27 243±52

Dreamer 314±155 793±164 485±67

Resnet+SAC 322±285 382±299 382±299

CtrlFormer 642±42 973±53 906±31

Method Learn from scratch Learn with transfer
100k 500k 100k 500k

DrQ 194±84 616±274 96±43 524±68

Dreamer 13±32 115±98 63±07 148±12

Resnet+SAC 26±4 31±12 26±4 31±12

CtrlFormer 104± 48 548±131 147±44 657±68

(c) Left: Learning old task in Reacher (easy) Right: Transfer to new task Reacher (hard)

Method Learn from scratch Retest after
100k 500k new task fine-tune

DrQ 875±76 973±65 698±57
Dreamer 583±21 974±31 912±19
Resnet+SAC 177±32 190±24 190±24
CtrlFormer 877±42 954±38 950±42

Method Learn from scratch Learn with transfer
100k 500k 100k 500k

DrQ 504±191 947±101 321±54 947±36

Dreamer 277±12 897±49 851±44 949±22

Resnet+SAC 63±7 148±12 63±7 148±12

CtrlFormer 593±52 903±43 857±47 959±42

(d) Left: Learn old task in Walker (stand) Right: Transfer to new task Walker (walk)

Table 2. Transferring the state representation among tasks under same domain. We list the sample efficiency of learning from
scratch in both the previous task and the score retested after the new task fine-tuning in the sub-tables on the left side, and the comparison
between learning new task from scratch and learning new task with transfer in the sub-tables on the right side.

5.3. Transferability

Settings. In all transferability testing experiments, the agent
first learns a previous task, then adds a new policy token,
uses the previous policy token as the initialization of the
current task policy token, and then starts learning a new task.
Finally, we retested the score (average episode return) of the
old task using the latest Encoder and the Actor and Critic
networks corresponding to the old task after learning the
new task.

Transferring in the same domain. In the same domain,
the dynamics of the agents from different tasks are similar,
while the sizes of the target points and the characteristic of
reward (sparse or dense) might be different. We design an
experimental pipeline to let the agent first learn an easier
task and then transfer the obtained knowledge to a harder
one in the same domain. The results are summarized in
Table 2. Compared to baselines, the sample efficiency of
CtrlFormer in the new task is improved significantly after
transferring the state representation from the previous task.
Taking Table 2a and Figure 1b as examples, CtrlFormer
achieves an average episode return of 769±34 with represen-

tation transferring using 100k samples, while learning from
scratch is totally failed using the same number of samples.
Furthermore, when retesting on the previous task after trans-
ferring to new task, as shown in Figure 1a, CtrlFormer does
not show an obvious decrease. However, the previous task’s
performance of DrQ is damaged significantly after learning
the new task. Moreover, When learning from scratch, the
sample efficiency of CtrlFormer is also comparable to the
DrQ with multi-heads. Although Dreamer shows promising
transferability in the domain like Walker, where different
tasks share the same dynamics, it transfers poorly in do-
mains like Reacher, where the dynamics are different among
tasks. The representation encoded by a pre-trained ResNet-
50 shows same performance among tasks but shows lower
sample efficiency compared with CtrlFormer and DrQ.

Transferring across domains. Compared to the tasks in
the same domain whose learning difficulty is readily defined
in the DMControl benchmark, it is not easy to distinguish
which task is easier to learn for tasks from different domains.
Thus, we test the bi-directional transferability in different
domains, i.e., transferring from Finger domain to Reacher
domain and transferring by an inverse order. As shown in
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Method Scratch (previous) Transfer (new task) Retest (previous)
500 k 100 k 500 k 500 k

DrQ 971±27 283±121 332±96 124±22
Resnet+SAC 382±299 298±17 300±29 382±299
CtrlFormer 918±33 299±38 547±56 889±34

(a) Transfer from Reacher(easy) to Finger(turn-easy)

Method Scratch (previous ) Transfer (new task) Retest (previous)
500 k 100 k 500 k 500 k

DrQ 448±65 203±87 693±282 184±57
Resnet+SAC 300±29 322±285 382±299 300±29

CtrlFormer 424±35 416±117 770±71 409±31

(b) Transfer from Finger(turn-easy) to Reacher(easy)

Table 3. Transferring the state representation among tasks under cross-domain. The first column is the performance of learning the
previous task from scratch, the second column is the performance of learning the new task with the state representation transferring from
the previous task, and the third column is the retest performance of the previous task using the latest encoder after learning the new task.

Table 3, the CtrlFormer has the best transferability and does
not show a significant decrease after fine-turning on the new
task. In contrast, the performance of DrQ decreases signifi-
cantly after learning a new task and has worse performance
damage than in the same domain because of a large gap
across different domains.

Sequential transferring among more tasks. In order to
test whether the improvement by state representation trans-
fer is more significant with the increase of the number of
tasks learned, we test the performance of CtrlFormer in four
tasks from easy to difficult sequentially and further compare
the transfer leaning via CtrlFormer to the method that learns
the four tasks simultaneously. As shown in Table 4, the
method of sequentially learning four tasks via CtrlFormer
has the best sample efficiency. Furthermore, we can find that
transferring state representation from more tasks performs
better than transferring from only one task. CtrlFormer can
surpass the performance of learning from scratch at 500k
while only using 100k samples under this setting.

Method Task 0 → Task 1 → Task 2 → Task 3
Scratch (100k) 967±27 869±61 759±48 0
Train together (100k) 433±23 143±34 310±41 0
CtrlFormer (100k) 967±27 981±29 988±36 853±69

Scratch (500k) 995±18 949±44 846±25 671±81
Train together (500k) 947±32 942±53 632±44 40±15
CtrlFormer (500k) 995±18 1000±0 992±26 878±64

Table 4. Performance comparison with a series tasks.
Tasks 0-3 are balance, balance sparse, swingup and
swingup sparse, from Cartpole domain.

As shown in Figure 5, we also develop an experiment on
the DeepMind manipulation benchmark (Tunyasuvunakool
et al., 2020) to further show the advantage of CtrlFormer,
which provides a Kinova robotic arm and a list of objects
for building manipulation tasks. We test the performance of
CtrlFormer in 2 tasks: (1) Reach the ball: push the small red
object near the white ball by the robot arm; (2) Reach the
chess piece: push the small red object near the white chess
piece by the robot arm. As shown in Table 2, CtrlFormer
surpasses DrQ in terms of both transferability and sample
efficiency when learning from scratch.

T1: Reach the ball T2: Reach the chess piece

Figure 5. Tasks in DeepMind manipulation

DrQ CtrlFormer
Scratch Task1(500k) 154±41 175±63

Retest Task1 87±33 162±75

Scratch Task2(500k) 141±47 164±33

Transfer T1 to T2 (100k) 73±48 116±34

Table 5. Performance comparison on DeepMind manipulation.

5.4. Visualization

Visualization of the similarity of different tasks. We vi-
sualize the cosine similarity of policy tokens between tasks
in Figure 6c, which reflects the similarity of the visual rep-
resentation between different tasks. The width and color
of the bands in Figure 6c represents the similarity of the
representations between two tasks. The thicker the line and
the darker the color, the higher the similarity between the
two tasks. As shown in Figure 6c, the similarity between
Walker (stand) and Walker (walk) and between Cart-
pole (swingup) and Cartpole (swingupsparse) in the
same domain is the top two strongest, indicating that it has
better feature transfer potential. This is consistent with our
test results, CtrlFormer significantly improves the sample
efficiency after transferring the state representation. For the
cross-domain, the similarity between different tasks is quite
different, for example, the representation similarity between
finger (turn-easy) and reacher (easy) is significantly
higher than the similarity between finger (turn-easy) and
reacher (hard). This is because, in the reacher (hard)
task, the size of the target point is quite small, and the model
pays too much attention to the target point and relatively
less attention to the rod, while the finger task focuses more
on the rod control.

Visualization of the attention on input image: we visual-
ize the attention of CtrlFormer and pre-trained ResNet-50
on the input image by Grad-CAM (Selvaraju et al., 2016),
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Reacher-easy Reacher-hard

Finger-turn-easy Finger-turn-hard

Cartpole-swingup Cartpole-swingup-sparse

(a) Visualization of Pre-trained ResNet

Reacher-easy Reacher-hard

Finger-turn-easy Finger-turn-hard

Cartpole-swingup Cartpole-swingup-sparse

(b) Visualization of CtrlFormer
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(c) Visualized similarity between tasks

Figure 6. Visualization of the attention on the input image and the similarity of different tasks in DMControl benchmark.

Before transfer Retest after transfer

(a) DrQ

Before transfer Retest after transfer

(b) CtrlFormer
Figure 7. Comparison of the attention map change before and
after the transferring. Figure 7a shows that DrQ fails to pay
attention to some key areas after transferring. In contrast, our Ctrl-
Former (Figure 7b) has consistent attention areas before and after
transferring, demonstrating its superior property of transferring
without catastrophic forgetting.

CtrlFormer w/o contrastive w/ contrastive
100k 500k 100k 500k

Cartpole(swingup) 391±42 835±29 759±48 846±25
Cartpole(swingup-sp) 0 137±54 0 671±81
Reacher(easy) 622±38 917±64 642±42 973±53
Reacher(hard) 49±15 234±67 104±48 548±131
Walker(stand) 865±33 930±44 877±42 954±38
Walker(walk) 406±73 708±45 593±52 903±43
Finger(turn-easy) 15±7 344±38 281±67 493±35
Finger(turn-hard) 99±44 136±38 197±78 344±47

Table 6. Ablation study on the effectiveness of co-training with
contrastive learning.

which is a typical visualization method, more details are
introduced in Appendix C. As shown in Figure 6a, the atten-
tion of ResNet-50 is disturbed by a lot of things unrelated
to the task, which is the key reason why it has low sample
efficiency in both Table 2 and Table 3. The attention of
CtrlFormer is highly correlated with the task, and different
policy tokens learn different attention to the input image.
The attention learned from similar tasks has similarities, but
each has its own emphasis. Moreover, we also compare the
attention map change on the old task before and after trans-
ferring in Figure 7, the attention map of CtrlFormer is not

obviously changed, while the attention map of CNN-based
model used in DrQ changed obviously, which provides its
poor retesting performance with a reasonable explanation.

5.5. Ablation Study

To illustrate the effect of the co-training method with con-
trastive learning, we compare the sample efficiency of Ctrl-
Former and CtrlFormer without co-training, as shown in
Table 6, CtrlFormer shows higher sample efficiency, proving
the effectiveness of the proposed co-training for improving
the sample efficiency of the transformer-based model.

In conclusion, CtrlFormer surpasses the baselines and shows
great transferability for visual control tasks. The experi-
ments in DMControl benchmark illustrated that CtrlFormer
has great potential to model the correlation and irrelevance
between different tasks, which improves the sample effi-
ciency significantly and avoids catastrophic forgetting.

6. Conclusion
In this paper, we propose a novel representation learning
framework CtrlFormer that learns a transferable state rep-
resentation for visual control tasks via a sample-efficient
vision transformer. CtrlFormer explicitly learns the attention
among the current task, the tasks it learned before, and the
observations. Furthermore, each task is co-trained with con-
trastive learning as an auxiliary task to improve the sample
efficiency when learning from scratch. Various experiments
show that CtrlFormer outperforms previous work in terms
of transferability and the great potential to be extended in
multiple sequential tasks. We hope our work could inspire
rethinking the transferability of state representation learning
for visual control and exploring the next generation of visual
RL framework.
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A. Extended Background
Soft Actor-Critic The Soft Actor-Critic (SAC) (Haarnoja
et al., 2018b) learns a state-action value function Qθ, a
stochastic policy πθ and a temperature α to find an op-
timal policy for an MDP (S,A, p, r, γ) by optimizing a
γ-discounted maximum-entropy objective (Ziebart et al.,
2008). θ is used generically to denote the parameters up-
dated through training in each part of the model. The actor
policy πθ(at|st) is a parametric tanh-Gaussian that given st
samples at = tanh(µθ(st) + σθ(st)ϵ), where ϵ ∼ N(0, 1)
and µθ and σθ are parametric mean and standard deviation.

The policy evaluation step learns the critic Qθ(st, at) net-
work by optimizing a single step of the soft Bellman residual

JQ(D) = E(st,at,s
′
t)∼D

a′t∼π(·|s
′
t)

[(Qθ(st, at)− yt)2]

yt = r(st, at) + γ[Qθ′(s
′
t, a

′
t)− α log πθ(a

′
t|s′t)],

(12)

whereD is a replay buffer of transitions, θ′ is an exponential
moving average of the weights. SAC uses clipped double-Q
learning (van Hasselt et al., 2015; Fujimoto et al., 2018),
which we omit from our notation for simplicity but employ
in practice.

The policy improvement step then fits the actor policy
πθ(at|st) network by optimizing the objective

Jπ(D) = Est∼D[DKL(πθ(·|st)|| exp{
1

α
Qθ(st, ·)})].

Finally, the temperature α is learned with the loss

Jα(D) = E st∼D
at∼πθ(·|st)

[−α log πθ(at|st)− αH],

whereH is the target entropy hyper-parameter that the pol-
icy tries to match.

Deep Q-learning DQN (Mnih et al., 2013) also learns
a convolutional neural net to approximate Q-function over
states and actions. The main difference is that DQN operates
on discrete actions spaces, thus the policy can be directly
inferred from Q-values. The parameters of DQN are updated
by optimizing the squared residual error

JQ(D) = E(st,at,s′t)∼D[(Qθ(st, at)− yt)2]
yt = r(st, at) + γmax

a′
Qθ′(s

′
t, a

′).

In practice, the standard version of DQN is frequently com-
bined with a set of tricks that improve performance and
training stability, wildly known as Rainbow (van Hasselt
et al., 2015).

B. Supplumentary Materials of Experiments
Our PyTorch code is implanted based on the Timm (Wight-
man, 2019), Pytorch version SAC (Haarnoja et al., 2018b),
and the official code of DrQ-v1(Kostrikov et al., 2020). All
the experiments are run on the GeForce RTX 3090 with 5
seeds.

B.1. Detailed Structure of Vision Transformer in
CtrlFormer

We utilize a simple pyramidal vision transformer as the
encoder of CtrlFormer, which has 3 stages and each stage
contains 3 blocks. With the 192 dimension output of the
vision transformer, we add a fully-connected layer to map
the feature dimension to 50, and apply tanh nonlinearity to
the 50 dimensional output as the final output of the encoder.

The detailed structure of CtrlFormer is shown as Figure 8.
The hyper-parameters are listed in Table 7. The implantation
is based on Timm (Wightman, 2019), which is a collection
of SOTA computer vision models with the ability to repro-
duce ImageNet training results. We train the transformer
model using Adamw (Kingma & Ba, 2014) as optimizer
with β1 = 0.9, β2 = 0.999, a batch size of 512 and apply a
high weight decay of 0.1.

B.2. Actor and Critic Networks

The structure of actor and critic networks are the same in
CtrlFormer and DrQ(CNN+multiple heads). Clipped double
Q-learning (van Hasselt et al., 2015; Fujimoto et al., 2018)
is used for the critic, where each Q-function is parametrized
as a 3-layer MLP with ReLU activations after each layer
except for the last. The actor is also a 3-layer MLP with
ReLUs that outputs mean and covariance for the diagonal
Gaussian that represents the policy. The hidden dimension
is set to 1024 for both the critic and actor.

Parameters Value
Image size 84× 84
Patch size 8
Num patches 196
Input channels 9
Embedding dim 192
Depth 9
Num stage 3
Num blocks per stage 3
num heads 3

Table 7. Hyper-parameter of CtrlFormer
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Figure 8. The detailed structure of CtrlFormer

B.3. CNN-based Encoder Network used in DrQ

The CNN-based model (Kostrikov et al., 2020) employs
an encoder consists of four convolutional layers with 3× 3
kernels and 32 channels, which is same to DrQ (Kostrikov
et al., 2020). The ReLU activation is applied after each
convolutional layer. We use stride to 1 everywhere, except
for the first convolutional layer, which has stride 2. The
output of the convolutional network is fed into a single fully-
connected layer normalized by LayerNorm (Ba et al., 2016).
Finally, we apply tanh non-linearity to the 50 dimensional
output of the fully-connected layer. We initialize the weight
matrix of fully-connected and convolutional layers with the
orthogonal initialization (Saxe et al., 2013).

The actor and critic networks share the weights of the convo-
lutional layers of the encoder. Furthermore, only the critic
optimizer is allowed to update these weights (e.g. the gradi-
ents from the actor is stopped before they propagate to the
shared CNN layers).

B.4. Detailed Training and Evaluation Setup for Visual
Control Tasks

The agent first collects 1000 seed observations using a ran-
dom policy. The further training observations are collected
by sampling actions from the current policy. The agent per-
forms one training update every time when receiving a new
observation. The action repeat parameters are used as same
as the DrQ (Kostrikov et al., 2020), and is listed in Table 8,
and the number of training observations is only a fraction of
the environment steps (e.g. a 1000 steps episode at action
repeat 8 will only result in 125 training observations). In or-

0 25 50 75 100
Steps (k)

200

400

600

Av
er

ag
e 

Re
tu

rn

=0.025
=0.0425
=0.085
=0.125

Figure 9. Training curves with different αℓ

der to avoid damaging the CtrlFormer due to the low-quality
policy gradient caused by the inaccurate policy network and
Q-networks at the beginning of the behavior learning in the
new task, the learning rate of CtrlFormer is set αl times
lower than policy network and Q-networks. In this way, the
agent is guided to quickly learn the policy of the current task
based on the previously learned representation and fine-tune
the model according to the relationship between the current
task, the previous tasks, and the input. The training curves
using different αℓ are shown in the Figure 9, showing that
αℓ in the range of 0.04-0.08 is appropriate. We evaluate our
agent every 10000 environment step by computing the aver-
age episode return over 10 evaluation episodes as same as
DrQ (Kostrikov et al., 2020). During the evaluation, we take
the mean of the policy output action instead of stochastic
sampling. In Table 9 we provide a comprehensive overview
of all the other hyper-parameters.

Task name Action repeat
Cartpole Swingup 8
Cartpole Swingup sparse 8
Cartpole balance 8
Cartpole balance sparse 8
Reacher Easy 4
Reacher Hard 4
Finger Turn easy 2
Finger Turn Hard 2
Walker Walk 2
Walker stand 2

Table 8. The action repeat hyper-parameter used for each task.

B.5. Image Preprocessing and Augmentation

We construct an observational input as a 3-stack of consecu-
tive frames, which is the same as DQN (Mnih et al., 2013)
and DrQ (Kostrikov et al., 2020), where each frame is an
RGB rendering of size 84× 84 from the camera. We then
divide each pixel by 255 to scale it down to [0, 1] range as
the input of the encoder.

The images from the DeepMind control suite are 84× 84.
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The image augmentation used in 4.3 and 4.4 is implanted
by random crop which is also used in DrQ (Kostrikov et al.,
2020). We pad each side by 4 repeating boundary pixels
and then select a random 84× 84 crop, yielding the original
image shifted by ±4 pixels. This procedure is repeated
every time an image is sampled from the replay buffer.

Parameter Setting
Replay buffer capacity 100000
Seed steps 1000
Batch size 512
Discount γ 0.99
Optimizer Adamw
Learning rate 10−4

Critic target update frequency 2
Critic Q-function soft-update rate τ 0.01
Actor update frequency 2
Actor log stddev bounds [−10, 2]
Init temperature 0.1

Table 9. Hyper-parameters of downstream reinforcement learning.

B.6. Implementation Details of Contrastive Learning

We implanted the contrastive optimization by BYOL (Grill
et al., 2020), which is a typical approach to self-supervised
image representation learning.

BYOL relies on two neural networks, referred to as online
and target networks, that interact and learn from each other
and do not rely on negative pairs. From an augmented view
of an image, we train the online network fθ to predict the
target network fξ representation of the same image under
a different augmented view. At the same time, we update
the target network with a slow-moving average of the online
network.

The output of the contrastive token in CtrlFormer is a 192
dimension vector. We project it to a 96 dimension vector by
a multi-layer perceptron (MLP) and similarly for the target
projection. This MLP consists of a linear layer with output
size 384 followed by batch normalization (Ioffe & Szegedy,
2015), rectified linear units (ReLU) (Agarap, 2018), and a
final linear layer with output dimension 96. The predictor
qθ uses the same architecture as the projector. For the target
network, the exponential moving average parameter τ starts
from τbase = 0.996 and is increased to one during training.

B.7. Additional Results

Ablation on Q-regularization. To illustrate the effect of the
Q-regularization technique, we compare the transferability
of CtrlFormer, CtrlFormer without Q-regularization, and
DrQ without Q-regularization. Table 10 shows that the Q-

regularization technique helps to improve the performance
of CtrlFormer, and CtrlFormer still outperforms DrQ on
transferability without Q-regularization.

Scratch Task1 Retest Scratch Task2 Transfer Benifit
Our w/ rQ 973±53 906±31 548±124 657±68 +16.5%
Our w/o rQ 774±32 738±54 474±56 551±57 +13.8%
DRQ w/o rQ 756±47 329±58 481±198 410±47 −14.76%

Table 10. Ablation on Q-regularization by transferring from
Reacher(easy) to Reacher(hard).

Contrastive co-training on other baselines. We provide
an additional baseline that applies contrastive co-training
on the CNN-based model and compare it with CtrlFormer.
The results show DrQ with contrastive co-training (DrQ-C)
achieves better transferring results from Walker-Stand (T1)
to Walker-Walk (T2) than the original DrQ algorithm. But
it still suffers from catastrophic forgetting.

Retest(T1 500k) Transfer T2 (100k)
DrQ 698±57 321±54

DrQ-C 707±68 472±68

Our 950±42 857±47

Table 11. Ablation on Contrastive co-training

B.8. PyTorch-style Pseudo-code

We provide detailed PyTorch-style pseudo-codes of the
method we visualize the policy attention shown in Figure
6, and the method we update the encoder, the actor and the
critic. The pseudo-code of Grad-CAM is shown in Listing 1.
The pseudo-code of the actor and the entropy temperature
is shown in Listing 2. The pseudo-code of the encoder and
the critic is shown in Listing3.

B.9. DMControl Benchmark

The DeepMind Control Suite (DMControl) (Tassa et al.,
2018) is a set of stable, well-tested continuous control tasks
that are easy to use and modify. DMControl contains many
well designed tasks, which are written in Python and physi-
cal models are defined using MJCF. It is currently one of the
most recognized standard test environments for visual con-
trol. The domain in DMControl refers to a physical model,
while a task refers to an instance of that model with a partic-
ular MDP structure. For example, the difference between
the swingup and balance tasks of the cartpole do-
main is whether the pole is initialized pointing downwards
or upwards, respectively. We list the detailed descriptions of
the domains used in this paper below, names are followed by
three integers specifying the dimensions of the state, control
and observation spaces i.e.

(
dim(S),dim(A),dim(O)

)
.

https://www.python.org/
http://mujoco.org/book/modeling.html
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Figure 10. Walker (18, 6, 24): The Walker
domain contains a series of control tasks for
two-legged robots. In the stand task, the
reward is a combination of terms encour-
aging an upright torso and some minimal
torso height. The walk and run tasks in-
clude a component encouraging forward
velocity.

Figure 11. Finger(6, 2, 12): Finger do-
main aims to rotate a body on an unac-
tuated hinge. In the turn easy and
turn hard tasks, the tip of the free body
must overlap with a target (the target is
smaller for the turn hard task). In the
spin task, the body must be continually
rotated.

Figure 12. Cartpole(4, 1, 5): Cartpole
domain aims to control the pole at-
tached by an un-actuated joint to a
cart. In both the swingup task and the
swingup-sparse task, the pole starts
pointing down and aim to make the unactu-
ated pole keeping upright upward by apply-
ing forces to the cart, while in balance
and balance sparse the pole starts
near the upright.

Figure 13. Reacher (4, 2, 7): Reacher do-
main aims to control the two-link planar
reach a randomised target location. The
reward is one when the end effector pene-
trates the target sphere. In the easy task
the target sphere is bigger than on the hard
task (shown on the left).

C. Visualization
We use the Grad-CAM (Selvaraju et al., 2016) method to
visualize the encoder’s attention on the input image, which
is a typical technique for visualizing the regions of input that
are ”important”. Grad-CAM uses the gradient information
flowing to produce a coarse localization map of the impor-
tant regions in the image. From Figure 14 and Figure 15
we can observe that our attention map is more focused on
objects and task-relevant body parts, while the attention of
the pre-trained ResNet-50 (same as the network used in the
experiments) is disturbed by irrelevant information and not
focused. In this way, our CtrlFormer learns better policies
by the representation highly relevant to the task. The atten-
tion learned from similar tasks has similarities, but each has
its own emphasis.
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(a) Cartpole-swingup (b) cartpole-swingup-sparse (c) Finger-turn-easy (d) Finger-turn-hard

(e) Reacher-easy (f) Reacher-hard (g) Walker-stand (h) Walker-walk

Figure 14. Visualization of the CtrlFormer’s attention on the input image

(a) Cartpole-swingup (b) cartpole-swingup-sparse (c) Finger-turn-easy (d) Finger-turn-hard

(e) Reacher-easy (f) Reacher-hard (g) Walker-stand (h) Walker-walk

Figure 15. Visualization of the Resnet’s attention on the input image
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1 class ViTAttentionGradRollout:
2 def __init__(self, model, attention_layer_name=’attn_drop’,
3 discard_ratio=0.9):
4 self.model = model
5 self.discard_ratio = discard_ratio
6 for name, module in self.model.named_modules():
7 if attention_layer_name in name:
8 module.register_forward_hook(self.get_attention)
9 module.register_backward_hook(self.get_attention_gradient)

10
11 self.attentions = []
12 self.attention_gradients = []
13
14 def get_attention(self, module, input, output):
15 self.attentions.append(output.cpu())
16
17 def get_attention_gradient(self, module, grad_input, grad_output):
18 self.attention_gradients.append(grad_input[0].cpu())
19
20 def __call__(self, input_tensor):
21 self.model.zero_grad()
22 output = self.model(input_tensor,detach=False)
23 loss = (output).sum()
24 loss.backward()
25 return grad_rollout(self.attentions, self.attention_gradients,
26 self.discard_ratio)
27

Listing 1. PyTorch-style pseudo-code for attention visualization use in this paper.

1 def update_actor_and_alpha(obs):
2 # detach encoder layers
3 dist = actor(obs, detach_encoder=True)
4 action = dist.rsample()
5 log_prob = dist.log_prob(action).sum(-1, keepdim=True)
6 # detach encoder layes
7 actor_Q1, actor_Q2 = critic(obs, action, detach_encoder=True)
8 actor_Q = torch.min(actor_Q1, actor_Q2)
9 actor_loss = (alpha.detach() * log_prob - actor_Q).mean()

10 # optimize the actor
11 actor_optimizer.zero_grad()
12 actor_loss.backward()
13 actor_optimizer.step()
14 actor.log(logger, step)
15 log_alpha_optimizer.zero_grad()
16 alpha_loss = (alpha *
17 (-log_prob - target_entropy).detach()).mean()
18 alpha_loss.backward()
19 log_alpha_optimizer.step()

Listing 2. PyTorch-style pseudo-code for the actor updating in down stream reinforcement learning.
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1 def update_critic_and_encoder(self, obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step
):

2 cons = encoder.forward_rec(imgs)
3 cons = encoder.byol_project(cons).detach()
4 aug_cons = encoder.forward_cons(aug_imgs)
5 project_cons = encoder.project(aug_cons)
6 predict_cons = encoder.predict(project_cons)
7 cons_loss = F.mse_loss(predict_cons,cons)
8 with torch.no_grad():
9 dist = actor(next_obs)

10 next_action = dist.rsample()
11 log_prob = dist.log_prob(next_action).sum(-1)
12 target_Q1, target_Q2 = critic_target(next_obs,next_action)
13 target_V = torch.min(target_Q1,
14 target_Q2) - alpha.detach() * log_prob
15 target_Q = reward + (not_done * discount * target_V)
16
17 dist_aug = actor(next_obs_aug)
18 next_action_aug = dist_aug.rsample()
19 log_prob_aug = dist_aug.log_prob(next_action_aug).sum(-1)
20 target_Q1, target_Q2 = critic_target(next_obs_aug, next_action_aug)
21 target_V = torch.min(
22 target_Q1, target_Q2) - alpha.detach() * log_prob_aug
23 target_Q_aug = reward + (not_done * discount * target_V)
24 target_Q = (target_Q + target_Q_aug) / 2
25 # get current Q estimates
26 current_Q1, current_Q2 = critic(obs, action)
27 critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(
28 current_Q2, target_Q)
29 Q1_aug, Q2_aug = critic(obs_aug, action)
30 critic_loss += F.mse_loss(Q1_aug, target_Q) + F.mse_loss(
31 Q2_aug, target_Q) + rec_loss
32 logger.log(’train_critic/loss’, critic_loss, step)
33 # Optimize the critic
34 critic_optimizer.zero_grad()
35 critic_loss.backward()
36 critic_optimizer.step()
37 critic.log(logger, step)
38

Listing 3. PyTorch-style pseudo-code for the updating of encoder and critic


