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Abstract

Focusing on diagonal linear networks as a model
for understanding the implicit bias in underdeter-
mined models, we show how the gradient descent
step size can have a large qualitative effect on
the implicit bias, and thus on generalization abil-
ity. In particular, we show how using large step
size for non-centered data can change the implicit
bias from a ”kernel” type behavior to a ”rich”
(sparsity-inducing) regime — even when gradi-
ent flow, studied in previous works, would not
escape the ”kernel” regime. We do so by using
dynamic stability, proving that convergence to dy-
namically stable global minima entails a bound
on some weighted ℓ1-norm of the linear predictor,
i.e. a ”rich” regime. We prove this leads to good
generalization in a sparse regression setting.

1. Introduction
It is becoming evident that implicit regularization guided by
the optimization procedure plays a crucial role in learning
using underdetermined (overparameterized) models, includ-
ing deep networks (Neyshabur et al., 2015), and that this
optimization-induced bias can ensure learning and gener-
alization (e.g., Moroshko et al. (2020); Li et al. (2019a);
Arora et al. (2019); Woodworth et al. (2020)). Different
optimization choices, such as using different optimization
methods (Gunasekar et al., 2018b), or different optimization
parameters can significantly change the algorithmic bias,
and thus completely change the effective inductive bias of
learning and the ability to generalize in specific scenarios. In
order to understand learning with underdetermined models,
and be able to make informed principled choices about the
optimization procedure to use, it is important to understand
how such optimization choices affect the algorithmic bias.
In this paper we focus on the effect of the gradient descent
step size on the learned predictor in an underdetermined
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model. We do so in the squared parameterization linear
regression (diagonal linear network) model.

The squared parameterization linear regression model
(Woodworth et al., 2020) is perhaps the simplest non-linear
(in the parameters) model that displays rich, non-trivial al-
gorithmic bias. It can also be thought of as the simplest
possible “deep” (that is, deeper than a single unit) model,
namely a diagonal linear network (a depth two network
with linear activation and diagonal weight matrices). As
such, it has been used to study the implicit regularization
phenomenon, and in particular the effect of different opti-
mization choices on the algorithmic bias. Even this very
simple model displays rich inductive bias that depend on
optimization choices: although no explicit ℓ1 regulariza-
tion is imposed, under certain optimization choices (but not
others!), optimization biases us to a low ℓ1-norm predic-
tor, which is sufficient for ensuring generalization, e.g. in
a sparse regression setting. But under other optimization
choices, the model behaves as a kernel machine, leading
to implicit ℓ2 regularization, which is useless in a sparse
regression setting and does not lead to generalization.

What are these choices that switch between a kernel regime
and a regime where sparse regression is possible? Pre-
vious work studied how initialization scale (Woodworth
et al., 2020), stochasticity (Damian et al., 2021; Pesme et al.,
2021; Blanc et al., 2020), and relative scale between lay-
ers (Azulay et al., 2021) affect the algorithmic bias in the
squared parametrization model, can take optimization out-
side the kernel regime and allow generalization. In particu-
lar, (Woodworth et al., 2020) showed how with infinitesimal
step size, generalization in a sparse regression model is
possible only with small initialization scale, while a larger
initialization scale forces us into the kernel regime and does
not allow generalization. This is problematic since very
small initialization scales, particularly those required for
leaving the kernel regime in wide models, correspond to
initializing very close to a saddle point which might be diffi-
cult to escape. Unlike this previous analysis which focused
on infinitesimal step size (like much of the implicit regular-
ization analysis), here we consider gradient descent (GD)
with different (positive, finite) step sizes, to study the ef-
fect of step size on the implicit regularization. In particular,
our results demonstrate and elucidate how a large step size
can also allow us to escape the kernel regime, biasing opti-
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mization toward low ℓ1 norm predictors and thus to sparse
learning and generalization. This remains true even at ini-
tialization scales where small (or infinitesimal) step sizes
would correspond to the kernel regime, thereby leading to
ℓ2 implicit bias and not allowing for sparse learning.

Figure 1 demonstrates the effect of the step size on the algo-
rithmic bias and generalization ability in a sparse regression
setting. Here, we trained an underdetermined squared pa-
rameterization linear model on data generated from an un-
known sparse model. With very small step size (e.g. 10−4,
top solid curve), generalization is only possible when the ini-
tialization scale α is small, while larger initialization scales
behaves similar to the minimum ℓ2 norm predictor (dashed
blue line, on top), which does not generalize well. However,
increasing the stepsize (after appropriate warmup—-see
details in Section 7), leads to lower ℓ1 norm, and better
generalizing predictors, regardless of the initialization scale.
Using the largest possible step size (on the edge of stability),
allows for generalizing essentially as well as using explicit
ℓ1 regularization, even at large initialization scales.

We explain the effect of step size on the algorithmic bias as
follows: we first discuss how using a larger step size only
allows us to converge to “dynamically stable” solutions, i.e.
predictors whose “stability” in parameter space (maximal
eigenvalue of the Hessian) is small (Section 2). After giving
background on the kernel and rich regime (Section 3), we
show how this “stability” implies a bound on a weighted
ℓ1-norm of the predictor, where coordinates of the predictor
are weighted by the empirical mean of data coordinates
(Section 4). If the data is not centered (i.e., it has non-
zero mean), then this empirically weighted ℓ1 norm can
bound the unweighted ℓ1-norm. We use this to explain how,
for sparse regression problems with non-centered data (as
was used in Figure 1), large step sizes lead a low ℓ1-norm
solution, and how this entails generalization (Section 5).

The data being non-centered turns out to be crucial, not only
for our analysis, but also to reap the benefits of a large step
size: consistent with our theory, we see how for zero-mean
data, increasing the step size cannot make up for using a
large initialization scale, and does not substantially help in
generalization. We thus provide a novel connection between
data being non-centered1 and the beneficial implicit bias
effects of using large step sizes.

Lastly, in Section 6 we extend our results to “deeper” lin-
ear diagonal models (higher order parametrizations). We
observe that for large step sizes, deeper models (i.e., with
depth greater then two) are biased towards less sparse so-
lutions. Interestingly, this is very different behavior from
what was observed in previous works.

1Which is more relevant for ReLU nets, see Remark 4.3 below.
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Figure 1. The test loss of GD solution vs. the initialization scale
α in the sparse regression problem described in Section 7. We
observe that for small step size, the test loss transitions from the ℓ1
baseline to the ℓ2 baseline as the initialization scale α increases,
as expected from (Woodworth et al., 2020). However, we see that
using larger step sizes reduces the error significantly. In fact, for
large step size the test loss is close to the ℓ1 baseline regardless
of the initialization.

2. Preliminaries: Setup and Minima stability
Notations. For vectors u and v, we denote by uk the
element-wise kth power, ⟨u,v⟩ as their dot product, u ◦ v
as the element-wise multiplication, ∥u∥ as the L2 norm of
u, Br (u) = {x : ∥x− u∥ < r} as the r-ball around some
point u, and Sd =

{
x ∈ Rd+1 : ∥x∥ = 1

}
as the d dimen-

sional unit sphere. Finally, given N vectors z1, ...,zN , we
denote the empirical mean as Êz = 1

N

∑N
n=1 zn.

Given a dataset of N samples X = (x1, ...,xN ) ∈ Rd×N

with corresponding labels Y = (y1, ..., yN )
⊤ ∈ RN and

a prediction function fθ (x), we consider the problem of
minimizing the empirical squared loss

L (θ)=
1

2
Ê
(
(y − fθ (x))

2
)
=

1

2N

N∑
n=1

(yn−fθ (xn))
2
,

(1)
using GD with step-size η:

θ (t+ 1) = θ (t)− η∇L (θ (t)) . (2)

We assume that the problem is over-determined, as is often
the case when training neural networks, meaning there are
multiple global minima that minimize the empirical loss.
However, not all minima are accessible by GD with a par-
ticular step size (Nar & Sastry, 2018).

We will use Lyapunov stablity (Vidyasagar, 2002; Sastry,
1999) to determine which minima are stable, and thus can
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be obtained by GD algorithm with step size η, and which
are not. From this point, we refer to global minima of the
loss function as solutions.

Definition 2.1. We say that θ∗ is a solution if it satisfies
L (θ) = 0. This implies ∀n ∈ [N ] : fθ (xn) = yn and
∇L (θ∗) = 0.

We recall the definition of stability in the sense of Lyapunov
(Vidyasagar, 2002; Sastry, 1999).

Definition 2.2 (Stability in the sense of Lyapunov). Con-
sider GD iterate θ (t). A solution θ∗ is said to be Lyapunov
stable if ∀ϵ > 0,∃δ > 0 so that for any θ (0) ∈ Bδ (θ∗):

∥θ (t)− θ∗∥ < ϵ .

In words, a solution is Lyapunov stable if once the iterate is
sufficiently close to the solution (at time 0, without loss of
generality), it always stays close to the solution.

In the following derivations, we will use a well known
connection between stability and the eigenvalues of the
Hessian (Vidyasagar, 2002; Bof et al., 2018):

Lemma 2.3. If L is C1 and θ∗ is a Lyapunov stable solution,
then

λmax

(
∇2L (θ∗)

)
≤ 2

η
. (3)

Note that the assumption that the loss is C1, i.e., contin-
uously differentiable, is satisfied for all the models we
examine in the paper. Throughout the paper we will use
λmax ≜ λmax

(
∇2L (θ∗)

)
and minλmax to denote the min-

imal λmax achievable by a solution. This Lemma states
that using the maximal step size which allows convergence,
i.e., η = 2/minλmax, we effectively minimize the Hessian
maximal eigenvalue. Interestingly, this lemma is also a nec-
essary condition for stability for SGD (not only GD), and
one can use this to prove all our results below also for SGD.
But, for simplicity, we will focus on GD.

3. Background: Kernel and Rich Regimes in
Linear Diagonal Models

In this work we mainly focus on a depth two diagonal linear
network,

fθ (x) =
〈
u2
+ − u2

−,x
〉
= ⟨β,x⟩ . (4)

This 2-positive homogeneous model was analyzed in several
previous works (Woodworth et al., 2020; Gissin et al., 2020;
Moroshko et al., 2020; Pesme et al., 2021), and is referred
to as squared regression model2. Despite its simplicity,

2It is ”squared” since the weights are shared (i.e., matched)
between the layers. Other works (Azulay et al., 2021; Zhao et al.,

previous works demonstrated that the squared regression
model exhibits non-trivial kernel and rich behaviours.

Kernel regime. Any prediction function fθ (x) ≜ f (θ,x)
can be locally approximated around the weights at the ini-
tialization, i.e., θ (0), using

f (θ,x) ≈ f (θ (0) ,x) + ⟨∇θf (θ (0) ,x) ,θ − θ (0)⟩ .
(5)

Thus, if the gradients ∇θf (θ,x) do not change too much
during training, then the model f (θ,x) behaves like a ker-
nelized linear predictor

f̃ (θ,x) = f (θ (0) ,x) + ⟨ϕ (x) ,θ − θ (0)⟩ , (6)

with feature map ϕ (x) = ∇θf (θ (0) ,x) that corre-
sponds to the Tangent Kernel at initialization K (x1,x2) =
⟨∇θf (θ (0) ,x1) ,∇θf (θ (0) ,x2)⟩ (Jacot et al., 2018; Du
et al., 2019). This case was referred to in previous works
as the ”kernel regime”. Training this linear model using
Gradient Flow (GF) leads to implicit regularization that
corresponds to the RKHS norm associated with the kernel.
Chizat et al. (2018) demonstrated empirically that we need
to escape the kernel regime to obtain good generalization.
Specifically, for the squared regression model, the kernel
regime corresponds to ℓ2 regularization (Chizat et al., 2018;
Woodworth et al., 2020).

Rich regime. In contrast, previous works showed differ-
ent implicit biases which cannot be captured by a kernel
(Gunasekar et al., 2018c). This regime seems to be more
relevant for understanding neural networks practical suc-
cess. Specifically, for the squared regression model, the rich
regime corresponds to sparsity-inducing ℓ1 regularization
(Woodworth et al., 2020). Such ℓ1 bias can be thought of
as doing feature selection, which is a crucial component
of representation learning. In representation learning we
would like to select from a continuum of possible features.
To see how these are related, consider a matrix factoriza-
tion transfer learning model (Amit et al.; Ando & Zhang;
Argyriou et al.), where spectral sparsity is used to learn new
features that are linear combinations of input features. Such
spectral sparsity can also be induced as the implicit bias in
a non-diagonal extension of the squared parameterization
(diagonal linear net) model (Gunasekar et al., 2018a; Li
et al., 2019a).

For the squared regression model, previous works (Chizat
et al., 2018; Gunasekar et al., 2018c; Woodworth et al.,
2020), identified the initialization scale α as a dominant
factor in the transition between the kernel and rich regimes:

• For small initialization scale, i.e. α → 0, gradient flow

2022; Vaskevicius et al., 2019) also extended the analysis to cases
where the different layer have different (i.e., non-shared) weights.
We show in appendix B how to extend our results to this model
with non-shared weights.
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induces ℓ1 regularization on the predictor β.

• For large initialization scale, i.e. α → ∞, gradient flow
induces weighted ℓ2 regularization on the predictor β,
where the weighting depend on the initialization shape.

• For intermediate initialization scale α, gradient flow
induces some sort of interpolation (a hypentropy regu-
larization) between the ℓ1 and ℓ2 regularization.

4. Stable Minima Correspond to Predictors
with a Bounded Weighted ℓ1 norm

To the best of our knowledge, all previous works that studied
the implicit bias of this model only focused on the case of
small or infinitesimal step size, i.e., GF. However, as seen
in Figure 1, the step size seems to be an important factor
that can help the model escape the kernel regime. Our next
lemma connects λmax to a weighted ℓ1 norm of the model
squared weights. Combining this key lemma with Lemma
2.3 leads to Theorem 4.2, which shows how the step size
affects which solutions are accessible by GD. In addition,
we use Lemma 4.1 to obtain Lemma 5.1, a crucial step in
obtaining the generalization result given in Theorem 5.2.

Lemma 4.1. Let θ∗ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a solution

of the squared loss (Eq. (1) ). Then,∥∥∥∥(u2
+ + u2

−
)
◦
(
Êx
)2∥∥∥∥

1

≤ λmax

4
≤
∥∥∥(u2

+ + u2
−
)
◦Êx2

∥∥∥
1
.

(7)

Combining the lower bound above with Lemma 2.3 entails

Theorem 4.2. Let θ∗ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a Lya-

punov stable solution of GD with step size η. Then,∥∥∥∥β ◦ 4
(
Êx
)2∥∥∥∥

1

≤
∥∥∥∥(u2

+ + u2
−
)
◦ 4
(
Êx
)2∥∥∥∥

1

≤ 2

η
.

(8)

From this theorem, we see that for non-centered data
(Êx ̸= 0), larger step sizes correspond to solutions with
lower weighted ℓ1 norm. That is, larger step sizes result in
smaller weights, when the empirical mean is non-zero.
Remark 4.3 (non-zero mean). The analysis in our paper
relies on a simplified model for a neural network. We are in-
terested in the transition between the kernel and rich regimes.
Therefore, the relevant “real” kernel is the neural network’s
kernel, which is a sum of the kernels from all the layers.
While the input layer might be centralized, the hidden layers
are typically not centralized due to their activation functions
(e.g., ReLU, which is not centralized). Thus, the relevant
features are typically non-centralized.

Stability bound visualization. For the same sparse regres-
sion problem as in Figure 1 (See section 7 for implementa-
tion details), Figure 2 illustrates how the stability measure

∥∥∥(u2
+ + u2

−
)
◦ 4(Êx)2

∥∥∥
1

defined in Eq. (8) changes with
step size and initialization. Specifically, for a given initial-
ization scale, we observe that the stability measure does
not change with the step size until reaching to the edge of
the stability region that corresponds to the line 2

η (dashed
black line). Then, when reaching the border of the stable
region, the stability measure starts to decrease in order to
satisfy the bound in Theorem 4.2. The figure demonstrates
the tightness of our bound. Specifically, note that the sta-
bility measure (the light blue line) almost coincides with
the maximal eigenvalue of the loss Hessian matrix for any
step size. In addition, note that once reaching the stable
region border, the maximal eigenvalue of the Hessian, and
with it, our stability measure, always remains on the border,
meaning that GD converges at the edge of stability. This is
a known phenomenon discussed in (Cohen et al., 2021). Ad-
ditionally, we observe that our stability measure increases
with the initialization scale α. Thus, for a given step size
we expect that solutions with large weighted ℓ1 norm will
lose stability as the initialization scale increase. Finally,
we see that when increasing the step size, GD effectively
minimizes the maximal eigenvalue of the loss Hessian, i.e.,
λmax

(
∇2L (θ∗)

)
and with it the weighted ℓ1 norm of the

obtained solution and corresponding predictor (light blue
and blue lines, respectively).

5. When do Large Step Sizes Exit the Kernel
Regime and Improve Generalization?

So far we saw the relationship between stable solutions
with step size η and their empirically weighted ℓ1-norm∥∥∥β ◦ 4(Êx)2

∥∥∥
1
. For the minimal λmax, both bounds de-

scribed in Lemma 4.1 can be translated to function space,
i.e., to the weighted ℓ1 norm of the predictor β (Lemma D.2
in the appendix). This is an essential step for our study of
generalization, as it is what allows us to connect minimizing
λmax with the minimal ℓ1 norm interpolator. This connection

relies on the concentration of
(
Êx
)2

and Êx2.

Particularly, when sufficiently many samples are drawn
and the coordinates of the data are identically dis-

tributed, we may rewrite
∥∥∥∥β ◦

(
Êx
)2∥∥∥∥

1

and
∥∥∥β ◦ Êx2

∥∥∥
1

as γ1 ∥β∥1 and γ2 ∥β∥1 , respectivelym where γ1 and γ2
are distribution-dependent factors. Thus, we can show that
the predictor borne of minimizing λmax yields a constant
factor multiplicative approximation of the ℓ1 norm of the
predictor with optimal ℓ1 norm:

Lemma 5.1. Suppose the data X ∈ Rd×N is drawn inde-
pendently and identically (i.i.d.) with mean µ and such that
X − µ is sub-Gaussian (per the Definition in Appendix D)
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Figure 2. This figure illustrates the stability bounds given in Lemma 4.1 and Theorem 4.2. The figure includes all convergent step sizes.
Each plot is for a fixed initialization scale α and shows how various quantities vary with step size: the empirically-calculated maximum
eigenvalue of the Hessian (green solid line, λmax), empirical value of the weighted norm of the parameters ⟨u2

+ + u2
−, 4Ê(x2)⟩ (λmax

upper bound, red solid line), empirical value of the weighted norm of the parameters ⟨u2
+ + u2

−, 4(Êx)2⟩ (λmax lower bound termed

stability measure, light blue solid line), which is an upper bound on
∥∥∥β ◦ 4(Êx)2

∥∥∥
1

(blue solid line), the minimum λmax achievable
by a solution of this problem (green dotted line), the minimum stability measure achievable by a solution (blue dotted line), and twice
the reciprocal of the step size (black dotted line). Note the largest step size that converged (green dot) is exactly in the intersection of
the dotted green and black lines, i.e., the largest stable step size 2/minλmax. There are several things of interest in this figure: (1) the
empirical quantities λmax and ⟨u2

+ +u2
−, 4(Êx)2⟩ track each other very closely, indicating that our proposed stability measure is indeed a

good proxy for measuring the stability via the maximum eigenvalue of the Hessian. (2) For sufficiently large step size η there are regions
where the ⟨u2

+ + u2
−, 4(Êx)2⟩ lower bound appears tight with the 2/η line (these regions are wide especially for large α). (3) For the

maximal step size, the bounds ⟨u2
+ + u2

−, 4(Êx)2⟩ and
∥∥∥β ◦ 4(Êx)2

∥∥∥
1

become tight and reach the minimal weighted ℓ1 norm predictor.
Every pairwise relationship between the largest eigenvalue of the Hessian, the step size, and the weighted norm stability measure is
interesting. While the relationship between the first two was known previously, these plots indicate that there is also a relationship between
the step size and the stability measure, implying a connection between the largest eigenvalue of the Hessian and the stability measure.

with parameter σ . Define ũ+ , ũ− such that:

ũ+ , ũ− := argmin
⟨u2

+−u2
− ,X⟩=y

λmax(u+,u−) , (9)

and let β̃ = ũ2
+ − ũ2

− . Then, we have that, provided

N = Ω

(
max

{
σ2 log(d/δ)
σ2+µ2 ,

σ
√

log(d/δ)

µ

}2
)

, with prob-

ability at least 1− δ ,∥∥∥β̃∥∥∥
1
≤
(
1 +

σ2

µ2

)
· 1.1 inf

⟨β,X⟩=y
∥β∥1 . (10)

Note that the tightness of the approximation depends on
the ratio σ

µ . In particular, if µ = 0 then the predictor that
corresponds to minimizing λmax does not approximately
minimize the ℓ1 norm. This, again, emphasizes the signifi-
cance of non-zero mean data.

Establishing this tight relationship between the relevant
weighted ℓ1 norms of the predictor β and the ℓ1 norm of
the ℓ1 norm minimizing predictor allows us to equate min-
imizing λmax to minimizing, up to a constant factor, the
ℓ1 norm of the predictor. From there, we extend existing
Radaemacher complexity analyses of the generalization of
bounded ℓ1 norm predictors (from (Srebro et al.)) to the
Gaussian data setting (Lemma D.6 in the appendix). Putting
these pieces together, we get the following generalization
result, with proof details in Appendix D.

Theorem 5.2. Suppose the entries of X are independently
and identically drawn from a Gaussian with variance σ2 and
mean µ = O(σ). Let y be the labels produced by a k-sparse
linear predictor, i.e., y = ⟨β⋆,X⟩ , for some ∥β⋆∥0 ≤ k.
For β̃ as defined in in Lemma 5.1 and ζ = 1 + σ2

µ2 , the
population loss LD obeys, with probability at least 1− δ:

LD(β̃)

LD(0)
≤ O

(
ζ2k polylog(dN/δ)

N

)
. (11)

Theorem 5.2 ensures generalization using N =
Õ(ζ2 k polylog(d/δ)) samples.3 The sample complexity
is increased by a factor of ζ2 =

(
1 + σ2/µ2

)2
, which con-

trols how well the weighted ℓ1 norm approximates the true
ℓ1 norm. When the data mean µ is too small, the guarantee
becomes meaningless and the sample test loss explodes,
matching the observed behavior (Figure 3). However, for
non-centered data, when µ = Θ(σ), the sample complexity
remains N = Õ(k polylog(d/δ)). Learning to within an
error that’s a fraction of the null error LD(0) = E

(
y2
)
, as

in Theorem 5.2, is the best possible using concentration
guarantees, or without exploiting incoherence assumptions
(see Foygel & Srebro, 2011; Zhang et al., 2014). This seems
disappointing here, since under the i.i.d. and noiseless as-
sumptions we make, exact recovery is possible. However,

3We use f = Õ(g) to mean that there exist constants a, b, c
such that f ≤ a+ bg logc g .
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exact recovery would require exactly minimizing ∥β∥1, and
here we are only relying on a constant factor approximation
to the ℓ1 norm. With such a constant factor approximation,
an error scaling with E

(
y2
)

is unavoidable.

Now that we have shown that minimizing the maximum
eigenvalue of the Hessian leads to generalization, let us
consider the link between this and running gradient descent
with an initialization θ0 sampled from some distribution P0.

Assumption 5.3. Given a distribution P0, from which sam-
ple the initialization θ0, then for any step size η, GD will
converge to a non-stable solution with probability zero.

In other words, GD generically does not converge to unsta-
ble minima. This common assumption holds empirically
and is made in previous works, either implicitly or explicitly
(e.g., Nar & Sastry (2018); Mulayoff et al. (2021)). How-
ever, existing proofs of this assumption require conditions
which do not hold for our setting (e.g., Ahn et al. (2022)
requires that η−1 is not a eigenvalue of the Hessian, at all
stationary points), so we leave its proof for future work.

Next, we assume that GD converges to zero training loss.

Assumption 5.4. For any step size η , if there exists an
η-stable solution (as in Lemma 2.3 , that is, a Lyapunov
stable solution with maximum Hessian eigenvalue less than
2/η), then GD with initialization θ0 ∼ P0 and step size η
converges with probability one.

Empirically, we observed that this assumption always hold
for any reasonable initialization (i.e., when the initializa-
tion scale is not extremely large) when using long enough
warmup. Again, we leave the proof of this interesting obser-
vation for future work.

With both assumptions above, GD converges as long as
there exist a stable solution (η ≤ 2

minλmax
). Then, applying

the previous result, we obtain the following corollary:

Corollary 5.5. In the same setting as in Lemma 5.1, under
Assumptions 5.3 and 5.4, and with initialization θ0 ∼ P0,
consider running GD with the largest step size η such that
gradient descent converges. Recall ζ = 1 + σ2

µ2 . Then,
GD converges to a predictor β = u2

+ − u2
− , such that the

population loss LD satisfies, with probability at least 1− δ:

LD(β)

LD(0)
≤ O

(
ζ2k polylog(dN/δ)

N

)
.

Connection to Figure 1. Woodworth et al. (2020) charac-
terized the implicit regularization that leads from the kernel
ℓ2 regularization to the rich ℓ1 regularization as the initial-
ization scale vanishes, under the assumption of infinitesimal
step size (i.e., GF). To demonstrate their theoretical findings,
they used a sparse regression problem in which the number
of samples N is sufficient to obtain good recovery with ℓ1
regularization and yet insufficient with ℓ2 regularization. In

this setting, the authors showed empirically that for small ini-
tialization scale gradient flow obtains small generalization
error and as the initialization increases the generalization
degrades. This behaviour is captured in Figure 1 when we
use sufficiently small step sizes.

However, Figure 1 also reveals that there is more to the story
when going beyond the infinitesimal step size case. Specif-
ically, we observe that increasing the step size improves
generalization in the sparse regression problem. In fact, for
large step size we obtain small test loss, i.e., rich behaviour,
regardless of the initialization scale. From this figure, we
identify the step size as a much more prominent factor that
can help the iterator escape the kernel regime. Theorem
4.2 along with Corollary 5.5 offers an explanation to this
empirical observations. Since the step size inversely bounds
the weighted ℓ1 norm of GD accessible solutions, for any
non-centered data we expect that increasing the step size
will lead to solutions with smaller weighted ℓ1 norm, which,
per the analysis in the proof of Theorem 5.2 (particularly,
Lemma 5.1), corresponds to smaller ℓ1 norm and thus im-
proves generalization in the sparse regression problem. We
expect this behaviour to become more significant when the
empirical mean is large.

Empirical mean significance. The LHS of our theoretical
bound in Eq. (8) increases with the empirical mean of
the training set. Consequently, Corollary 5.5 only applies
when the distribution expectation µ is non-zero and the
generalization bound improves when |µ| increases. This
implies that the phenomenon discussed so far will diminish
when the training data is sampled from a centered data
distribution, i.e., µ = 0. In this case, we expect the step
size will only have a mild effect on the test loss. Figure 3
demonstrates this result. We observe that for µ = 0, most
step sizes resulted in the same test loss behaviour. Only
the two largest step sizes that converged, resulted in the
expected test loss drop, and even then, the drop is mild and
does not bring us all the way to the rich ℓ1 regime. Note that
even for µ = 0 we expect the empirical mean to be small yet
non-zero. Thus, Theorem 4.2 still gives us valuable insight
on this case. For large data µ, we observe that the test loss
decrease per step size magnitude is more significant than
what we observed in Figure 2.

6. The Effect of Depth on Implicit Bias
So far, we focused on the squared regression model, cor-
responding to a depth two diagonal model. In this section,
we generalize our results to deeper (higher order) linear
diagonal models. This will allow us to study how the model
depth affect the stability criterion.

Formally, we consider a depth D diagonal model:

fθ (x) =
〈
uD+ − uD− ,x

〉
= ⟨β,x⟩ . (12)
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Figure 3. In this figure, we observe the effect of the expectation of the data (µ) on the test loss profile against the initialization scale
α for increasing step sizes. In particular, we observe that when µ = 0 (left), there is no generalization benefit to increasing the step
size, since the “rich” regime is only achieved for small initialization scale. On the other hand, for µ = 10 (right), increasing step sizes
allows gradient descent to pick solutions that generalize well, indeed approaching the baseline error of the ℓ1 minimizing solution. These
empirical results correspond well to the theoretical results that show that larger means result in better generalization (Corollary 5.5).

Note that D corresponds to the model homogeneity degree.
The next theorem generalizes the λmax bounds given in
Theorem 4.1 for the D = 2 case to any depth diagonal
networks.

Lemma 6.1. Let θ∗ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a solution

of the squared loss (Eq. (1)). Then,∥∥∥θ∗D ◦w1

∥∥∥p
p
≤ λmax ≤

∥∥∥θ∗D ◦w2

∥∥∥p
p
, (13)

where p = 2(D−1)
D and

w1=D2

(
Êx
Êx

) D
D−1

, w2=D2

(
Ê
(
x2
)

Ê
(
x2
) ) D

2(D−1)

,

(14)

Similarly to lemma 4.1 for the D = 2 case, this lemma
draws a connection between minimizing λmax and minimiz-
ing a weighted ℓp norm of the weights, with p = 2(D−1)

D . In
addition, this lemma enables the generalization of Theorem
4.2 to obtain a stability bound for deeper models.

Theorem 6.2. Let θ∗ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a Lya-

punov stable solution of GD with step size η. Then,∥∥∥∥∥∥
(
u⊤
+

u⊤
−

)D
◦

(
Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

≤ 2

D2η
(15)

where p = 2(D−1)
D . If D is even, or ∀i : θ∗i ≥ 0, then this

implies
∥∥∥∥β ◦

(
Êx
) D

D−1

∥∥∥∥p
p

≤ 2
D2η .

From this theorem, we see that large step sizes effectively
induce regularization on the weighed ℓp norm of the predic-
tor, where p = 2(D−1)

D . For D = 2, this exactly gives us ℓ1
regularization as discussed above. Note that as D increases
we are getting closer to the ℓ2 norm. Specifically, when
D → ∞ we get ℓ2 regularization.

Connection to previous results. In the classification setting
with the exponential loss, (Gunasekar et al., 2018a) charac-
terized the implicit bias for linear convolutional networks—
which are equivalent to linear diagonal networks in the fre-
quency domain. Specifically, they showed that GD induces
ℓ2/D regularization in the frequency domain on the network
equivalent linear predictor. This result does not depend on
the step size, as long as it is sufficiently small to reach zero
training loss. This ℓ2/D regularization on the predictor can
also be induced explicitly (for any loss) using (vanishing) ℓ2
regularization on the parameters. Since both Gunasekar et al.
(2018a)’s results and our Theorem 6.2 apply to linear diago-
nal models, it is interesting to compare the two. Gunasekar
et al. (2018a) showed that the implicit regularization with
exponential loss, or small explicit ℓ2 regularization, cause
the predictor bias to change from ℓ1 when D = 2 to ℓ0
as D → ∞, implying that deeper models achieve higher
sparsity. In contrast, our result states that the inductive bias
changes from ℓ1 for D = 2 to ℓ2 for D → ∞, implying
only the shallow model D = 2 model has a sparse penalty,
while deeper models are not biased to sparse solutions.

Empirical results. From our theoretical results, we expect
large step sizes to bias the solution towards small weighted
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ℓp norm with p = 2(D−1)
D . This regularization should some-

what improve the generalisation in comparison to the ℓ2
predictor, yet not as effectively as for the case D = 2 where
we effectively obtained ℓ1 regularization. Figure 4 shows
the test loss vs. initialization scale for different depths and
step sizes. As expected from (Woodworth et al., 2020),
for small step size we get rich ℓ1 behaviour when the ini-
tialization scale is small and kernel ℓ2 behaviour for large
initialization scale. In addition, we observe that the test loss
decreased as the step size increased, i.e. the implicit regular-
ization induced by stability still improves the generalization.
However, for deep networks, the step size does not take us
all the way to the ℓ1 rich regime. This is due to ℓp being less
efficient regularization for this type of sparse problems and
also because λmax grows with depth and so the maximal
step size that allows convergence is more limited. Inter-
estingly, we observe the generalization vs. optimization
trade-off discussed in (Woodworth et al., 2020). For GF,
good generalization requires small initialization. However,
this is problematic from an optimization perspective since
β = 0 is a saddle point and thus using small initialization
scale is likely to increase the time it takes to escape the
vicinity of zero. This corresponds to the results observed in
Figure 4, where we see that for small initialization scale the
networks did not converge. This emphasizes the crucial role
of the step size as a more realistic hyper-parameter that can
take us from the kernel regime to the rich regime.

7. Numerical Simulations Details
Sparse regression problem. To understand the step size
influence, we consider a simple sparse regression prob-
lem, similar to problem used in (Woodworth et al., 2020).
Specifically, we define x1, ...,xN ∼ N

(
µ, σ2I

)
and

yn ∼ N (⟨β∗,xn⟩ , 0.01) where β∗ is r∗ sparse with non-
zero entries equal to 1/

√
r∗. Unless explicitly mentioned,

we used µ = 5 · 1 and σ2 = 5, r∗ = 5, d = 100. The num-
ber of data samples was chosen so there will be a sufficient
number of training samples to generalize well in the rich ℓ1
regime (N = Ω(r∗ log d)), but not in the kernel ℓ2 regime
(good generalization in that regime requires N = Ω(d)).
Thus, we chose N = 50 which satisfies these requirements.

Learning Procedure We study the diagonal deep model,
i.e., parameterization β = uD+ − uD− for different depths
D. We initialize u+ = u− = α · 111 for chosen scale α. We
used this initialization shape for simplicity and since it was
used in (Woodworth et al., 2020). However, we observe
empirically the same behaviour regardless of the initializa-
tion shape (see Appendix E). We use GD to minimize the
loss until convergence, i.e. achieving (extremely close to) 0
training error, so that we find an interpolating solution. We
use warmup procedure to avoid exploding gradients at the
beginning of training when using large step sizes with large

initialization scales. In other words, we start the training
with low learning rate and linearly increase the step size
until reaching the desired step size η. Note that even with-
out warmup, we see good generalization at initialization
moderate scales, but warmup seems to be required to be
able to converge at larger scales. It is an interesting question
for future work to understand why warmup is needed, as
warmup is also a popular standard practice in many deep
learning models.

8. Minima Stability Results Proof Outline
In this section, we explain the proof idea for obtaining the
lower bound in Lemma 4.1. The general scheme closely
resembles the ideas in (Mulayoff et al., 2021). From Lemma
2.3, we have that any stable solution θ∗ must satisfy

λmax

(
∇2L (θ∗)

)
≤ 2

η
. (16)

Thus, our goal is to lower bound λmax

(
∇2L (θ∗)

)
. We first

calculate the loss gradient defined in Eq. (1):

∇θL (θ) =
1

N

N∑
n=1

(f (xn)− yn)∇θf (xn) , (17)

and the Hessian matrix

∇2
θL (θ) =

1

N

∑
n

∇θf (xn)∇θf (xn)
⊤

+
1

N

∑
n

(f (xn)− yn)∇2
θf (xn) . (18)

Since θ∗ is a solution, ∀n ∈ [N ] : fθ∗ (xn) = yn and thus
we can write the Hessian matrix as

∇2L (θ∗) =
1

N
ΦΦ⊤ , (19)

where we define

Φ =
[
∇θ∗f (x1) . . . ∇θ∗f (xN )

]
∈ Rd×N . (20)

Thus, λmax

(
∇2L (θ∗)

)
can be expressed as

λmax

(
∇2L (θ∗)

)
= max

b∈Sd−1
b⊤∇2L (θ∗) b

= max
b∈Sd−1

1

N

∥∥∥Φ⊤b
∥∥∥2 = max

p∈SN−1

1

N
∥Φp∥2 , (21)

and we can lower bound the RHS of the last equation taking
any4 p ∈ SN−1. In Appendix A and C, we analyze the
RHS of Eq. (21) for each one of the models discussed in
this paper, and prove a lower bound that corresponds to the
lower bound in the theorem associated with that model.

4Note that some choices of p might result in a loose bound.
However, our empirical observations demonstrate that our bound
is tight.
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Figure 4. In this figure, we explore the effect of depth on the test loss of models trained with different step sizes starting at different
initialization scales. The plot includes all convergent step sizes. We note that the maximal step size that converged satisfies η ≤ 2

minλmax

with near equality, as expected (For D = 3: 2
minλmax

= 0.0061, and for D = 4: 2
minλmax

= 0.0034). Like in the D = 2 case, we see
improvements in generalization with larger step sizes, even for large initialization scales. However, we do not approach the loss of ℓ1
minimizer as closely as we did in the D = 2 case. Of course, this is not unexpected, because an inspection of Theorem 6.2 suggests that
even for D = 3 , the norm that is approximately minimized is p = 4/3 , which is already quite far away from sparsity, and for large D ,
this norm approaches p = 2 , so gradient descent would remain squarely in the kernel regime.

9. Conclusion
Deep models are often trained with large step sizes, since
this was observed to be beneficial for generalization (e.g.,
Hoffer et al. (2017); Li et al. (2019b)). Therefore, we believe
large step sizes are the more relevant mechanism for escap-
ing the kernel regime and reaching the rich regime. This is
in contrast to other mechanisms previously considered for
this purpose, such as small initialization size (Chizat et al.,
2018; Woodworth et al., 2020), which are not typically used
in practice since they can hurt the optimization speed.

With the aim of understanding this behavior, in this paper
we studied the effect of non-zero step sizes on the implicit
bias of gradient descent in the squared regression model.
Our work identifies and analyzes a setting in which gradient
descent with large stable step size achieves a “rich” implicit
bias regime. Specifically, through the lens of dynamical
stability, we show that stable solutions satisfy a stability
condition on the weighted ℓ1 norm in function space. More-
over, under additional assumptions, we show that by taking
the maximal stable step size we guarantee generalization in
a sparse regression setting. That is, to the best of our knowl-
edge, we provide the first theoretical example that shows
that large step size can lead to good generalization. The step
size influences on the implicit bias was previously studied in
other context, e.g., (Nakkiran, 2020; You et al., 2020; Barrett
& Dherin, 2021; Smith et al., 2021), yet not directly linked
(theoretically) to generalization. The only exception is (Ma

& Ying, 2021). Specifically, Ma & Ying (2021) provided
sufficient and necessary conditions for dynamical stability
of SGD based on the expectation of high-order moments
of the gradient noise. They use these condition to prove a
generalization result. However, their generalization bound
depends on the norm of the first layer of the network, which
in general can be arbitrarily large.

Interestingly, our results show that the benefits of using
large step sizes only apply for non-centered inputs, which
are quite common in deep learning (e.g., due to the non-
negativity of ReLU activations). Lastly, we extend these
results to deep diagonal linear networks, where we see
that large step sizes the predictor becomes less sparse with
depth— which is very different from how depth affected the
implicit bias in previous works.
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A. Proof of Theorems 4.2 and 6.2 and Lemmas 4.1 and 6.1
A.1. Proof of Theorems 4.2 and 6.2

Note that Theorem 4.2 is just a special case of Theorem 6.2, and thus it’s sufficient to prove Theorem 6.2. To prove Theorem
6.2 we need to show that any linearly stable solution θ∗ =

(
u⊤
+ u⊤

−
)⊤ ∈ R2d of GD with step size η, satisfies∥∥∥∥∥∥

(
u⊤
+

u⊤
−

)D
◦

(
Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

≤ 2

D2η
(22)

where Êx = 1
N

∑N
n=1 xn is the empirical mean and p = 2(D−1)

D . In addition, we need to show that if D is even, or

∀i : θ∗i ≥ 0, then
∥∥∥∥β ◦

(
Êx
) D

D−1

∥∥∥∥p
p

≤ 2
D2η .

Proof. Let θ∗ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a linearly stable solution of GD with step size η. Eq. 22 is a direct result of

combining Lemma 4.1 with Lemma 2.3. Specifically, from Lemma 2.3 and Lemma 4.1 we have that

D2

∥∥∥∥∥∥
(
u⊤
+

u⊤
−

)D
◦

(
Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

≤ λmax

(
∇2L (θ)

)
≤ 2

η
. (23)

If, in addition, D is even, or ∀i : θ∗i ≥ 0, then∥∥∥∥∥∥
(
u⊤
+

u⊤
−

)D
◦

(
Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

=

((
uD+
) 2(D−1)

D +
(
uD−
) 2(D−1)

D

)⊤ (
Êx
)2

≥
(
|β|

2(D−1)
D

)⊤ (
Êx
)2

=

∥∥∥∥β ◦
(
Êx
) D

D−1

∥∥∥∥p
p

(24)

where in the inequality we used the fact that
(
Êx
)2

≥ 0 and
((

uD+
) 2(D−1)

D +
(
uD−
) 2(D−1)

D

)
≥ |β|

2(D−1)
D (element-wise).

To prove the last inequality, ∀i = 1, ..., d we define ai ≜ uD+,i ≥ 0 and bi ≜ uD−,i ≥ 0 and apply the following technical
lemma.

Lemma A.1. Let a, b ∈ R+ and p ≥ 1. Then, ap + bp ≥ |a− b|p.

Lemma A.1 is proved in appendix section A.3. Combining Eqs. (23) and (24) we obtain∥∥∥∥β ◦
(
Êx
) D

D−1

∥∥∥∥p
p

≤ 2

D2η
. (25)

This completes our proof.

A.2. Proof of Lemmas 4.1 and 6.1

Note that Lemma 4.1 is just a special case of Lemma 6.1, and thus it’s sufficent to prove Lemma 6.1.

Proof. Let θ =
(
u⊤
+ u⊤

−
)⊤ ∈ R2d be a solution of the squared loss (Eq. (1)) with the deep diagonal model fθ (x) =〈

uD+ − uD− ,x
〉
=
〈
θD, x̂

〉
, where we defined x̂ =

(
x⊤ −x⊤)⊤. From Eq. (21) we have that

λmax

(
∇2L (θ)

)
= max

b∈Sd−1
b⊤∇2L (θ) b

= max
b∈Sd−1

1

N

∥∥∥Φ⊤b
∥∥∥2

= max
p∈SN−1

1

N
∥Φp∥2 , (26)
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where

Φ =
(
∇θ∗f (x1) . . . ∇θ∗f (xN )

)
∈ Rd×N . (27)

For the deep diagonal model

∇θ∗f (x) = Dx̂ ◦ θD−1 (28)

and thus we obtain

Φ = D ·
(
x̂1 ◦ θD−1 · · · x̂N ◦ θD−1

)
∈ R2d×N . (29)

Next, we use this result to lower and upper bound λmax

(
∇2L (θ)

)
.

Lower bound:

Using Eqs. (26) and (29), and taking p = 1√
N
1N×1, we obtain:

λmax

(
∇2L (θ)

)
=

1

N
max

p∈SN−1
∥Φp∥2

≥ D2

N2

d∑
i=1

[∑
n

uD−1
+,i xn,i

]2
+

[∑
n

uD−1
−,i xn,i

]2

=
D2

N2

d∑
i=1

(
u
2(D−1)
+,i + u

2(D−1)
−,i

)[∑
n

xn,i

]2

= D2
d∑
i=1

(
u
2(D−1)
+,i + u

2(D−1)
−,i

)(
Êxi

)2
= D2

(
u
2(D−1)
+ + u

2(D−1)
−

)⊤ (
Êx
)2

, (30)

where we defined Êx = 1
N

∑N
n=1 xn. Lastly, note that

(
u
2(D−1)
+ + u

2(D−1)
−

)⊤ (
Êx
)2

=

d∑
i=1

(
u
2(D−1)
+,i + u

2(D−1)
−,i

)((
Êx
) D

D−1

) 2(D−1)
D

=

∥∥∥∥∥∥θD ◦
(

Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

, (31)

where p = 2(D−1)
D . Thus, we obtain

λmax

(
∇2L (θ)

)
≥ D2

∥∥∥∥∥∥θD ◦
(

Êx
Êx

) D
D−1

∥∥∥∥∥∥
p

p

. (32)

Upper bound:
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Let p = arg max
p∈SN−1

∥Φp∥2. Then, we can write

λmax

(
∇2L (θ)

)
=

1

N
max

p∈SN−1
∥Φp∥2

=
D2

N

d∑
i=1

[∑
n

uD−1
+,i xn,ipn

]2
+

[∑
n

uD−1
−,i xn,ipn

]2

=
D2

N

d∑
i=1

u2D−2
+,i

[∑
n

xn,ipn

]2
+ u2D−2

−,i

[∑
n

xn,ipn

]2
≤ D2

N

d∑
i=1

u2D−2
+,i

∑
n

xn,i
xn,i√∑
n x

2
n,i

2

+ u2D−2
−,i

∑
n

xn,i
xn,i√∑
n x

2
n,i

2


=
D2

N

d∑
i=1

[
u2D−2
+,i + u2D−2

−,i
]∑

n

x2
n,i , (33)

where in the inequality we used the fact that max
p∈SN−1

∑
n xn,ipn ≤

∑
n xn,i

xn,i√∑
n x2

n,i

.

Combining the lower and upper bounds of λmax

(
∇2L (θ)

)
completes our proof.

A.3. Proof of Lemma A.1

Proof. Let a, b ∈ R+ and p ≥ 1. We need to show that ap + bp − |a− b|p ≥ 0. First, note that if a = b then the inequality
holds. We assume without loss of generality that a > b and define m ≜ a− b > 0. Using Bernoulli inequality we obtain

ap+bp−|a− b|p = (m+ b)
p
+bp−mp = mp

(
1 +

b

m

)p
+bp−mp ≥ mp

(
1 + p

b

m

)
+bp−mp = pbmp−1+bp ≥ 0 ,

where the first inequality relies on Bernoulli inequality and b
m ≥ 0.

B. Extension: UV model
In this section, we show that our results can also be extended to the two different layers diagonal linear network, known as
the UV model (Azulay et al., 2021), case.

Formally, we consider a depth 2 diagonal model:

fθ (x) = ⟨u+ ◦ v+ − u− ◦ v−,x⟩ = ⟨β,x⟩ . (34)

This model has also been studied by (Azulay et al., 2021), who conclude that initialization shape and size affect implicit bias
under gradient flow. We consider the finite-step-size case and again characterize the properties of stable solutions.

Theorem B.1. Let θ =
(
u⊤
+ v⊤

+ u⊤
− v⊤

−
)⊤ ∈ R4d be a Lyapunov stable solution of GD with step size η. Then,∥∥∥∥∥∥∥∥∥θ

2 ◦


Êx
Êx
Êx
Êx


2∥∥∥∥∥∥∥∥∥

1

≤ 2

η
, (35)

where Êx = 1
N

∑N
n=1 xn is the empirical mean.

As before, the stability properties induce a bound on the weighted norm of the parameters of the model. We prove this
theorem in Appendix C.

Figure 5 demonstrates empirically that the same trends regarding the step size influence on the test loss discussed in the
main text for the squared regression model also seem to apply for the UV model.
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Figure 5. The test loss of vs. the initialization scale α in the sparse regression problem described in Section 7, for the UV model. We
observe that for small step size, the test loss transitions from the ℓ1 baseline to the ℓ2 baseline as the initialization scale α increases, as
expected from (Azulay et al., 2021). However, we see that using larger step sizes reduces the error significantly.

C. Proof of Theorem B.1
The proof is identical to Theorem 6.2 proof given in Section A. The only difference is that instead of using Lemma 6.1, we
rely on the following key Lemma:

Lemma C.1. Let θ =
(
u⊤
+ v⊤

+ u⊤
− v⊤

−
)⊤ ∈ R4d be a solution of the squared loss (Eq. (1)) with fθ (x) =

⟨u+ ◦ v+ − u− ◦ v−,x⟩ = ⟨β,x⟩. Then,

λmax

(
∇2L (θ)

)
≥

∥∥∥∥∥∥∥∥∥θ
2 ◦


Êx
Êx
Êx
Êx


2∥∥∥∥∥∥∥∥∥

1

, (36)

where Êx = 1
N

∑N
n=1 xn is the empirical mean.

We prove this Lemma in Appendix C.1.

C.1. Proof of Lemma C.1

Let θ =
(
u⊤
+ v⊤

+ u⊤
− v⊤

−
)⊤ ∈ R4d be a solution of the squared loss (Eq. (1)) with the two layers diagonal model

fθ (x) = ⟨u+ ◦ v+ − u− ◦ v−,x⟩ = ⟨β,x⟩ = ⟨u ◦ v, x̂⟩, where we defined x̂ =
(
x⊤ −x⊤)⊤, u =

(
u⊤
+ u⊤

−
)⊤

,

and v =
(
v⊤
+ v⊤

−
)⊤

. From Eq. (21) we have that

λmax

(
∇2L (θ)

)
= max

b∈Sd−1
b⊤∇2L (θ) b

= max
b∈Sd−1

1

N

∥∥∥Φ⊤b
∥∥∥2

= max
p∈SN−1

1

N
∥Φp∥2 , (37)

where

Φ =
(
∇θ∗f (x1) . . . ∇θ∗f (xN )

)
∈ Rd×N . (38)
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For the two layers diagonal model

∇θ∗f (x) =

(
x̂n ◦ v (t)
x̂n ◦ u (t)

)
(39)

and thus we obtain

Φ =

(
x̂1 ◦ v · · · x̂n ◦ v
x̂1 ◦ u · · · x̂n ◦ u

)
∈ R4d×n . (40)

We substitute this result into Eq. (21), and take p = 1√
N
1N×1:

λmax

(
∇2
uL (u)

)
=

1

N
max

p∈SN−1
∥Φp∥2

≥ 1

N2

d∑
i=1

[∑
n

v+,ixn,i

]2
+

[∑
n

v−,ixn,i

]2
+

[∑
n

u+,ixn,i

]2
+

[∑
n

u−,ixn,i

]2
=

1

N2

d∑
i=1

(
u2
+,i + u2

−,i + v2
+,i + v2

−,i
) [∑

n

xn,i

]2

=

d∑
i=1

(
u2
+,i + u2

−,i + v2
+,i + v2

−,i
) (

Êxi
)2

=
(
u2
+ + u2

− + v2
+ + v2

−
)⊤ (Êx)2 , (41)

where we defined Êx = 1
N

∑N
n=1 xn. Lastly, note that

(
u2
+ + u2

− + v2
+ + v2

−
)⊤ (Êx)2 =

∥∥∥∥∥∥∥∥∥θ
2 ◦


Êx
Êx
Êx
Êx


2∥∥∥∥∥∥∥∥∥

1

(42)

Thus, we obtain

λmax

(
∇2L (θ)

)
≥

∥∥∥∥∥∥∥∥∥θ
2 ◦


Êx
Êx
Êx
Êx


2∥∥∥∥∥∥∥∥∥

1

. (43)

D. Generalization Result
In this section, we show that under some assumptions, our procedure returns a predictor that generalizes well. Our main
result in this section shows that that a parameter setting that minimizes the maximum eigenvalue of the Hessian yields a
predictor that generalizes well. We show this by arguing that the maximum eigenvalue of the Hessian is upper and lower
bounded by weighted ℓ1 norms of the predictor, weighted by different weights. We then argue that with sufficiently many
samples, these weighted norms come within a constant factor of the ℓ1 norm of the ℓ1 norm minimizing interpolator. To
connect this result to the procedure of running gradient descent with large step sizes, we appeal to the stability analysis and
an assumption regarding the convergence of gradient descent.

First, for convenience we reproduce the definition of a sub-Gaussian random variable from (Vershynin) and comment on
how we use this.
(Proposition 2.5.2 in (Vershynin)). Let X be a random variable. Then the following properties are equivalent; the parameters
Ki > 0 appearing in these properties differ from each other by at most an absolute constant factor.

(i) The tails of X satisfy:

P [|X| ≥ t] ≤ 2 exp
(
−t2/K2

1

)
for all t ≥ 0 .
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(ii) The moments of X satisfy

∥X∥Lp = (E|X|p)1/p ≤ K2
√
p for all p ≥ 1 .

(iii) the MGF of X2 satisfies

Eexp(σ2 X2) ≤ exp(K2
3 σ

2) for all σ such that |σ| ≤ 1

K3
.

(iv) The MGF of X2 is bounded at some point, namely

E exp(X2/K2
4 ) ≤ 2 .

Moreover, if EX = 0 , the properties i-iv are also equivalent to the following one.

(v) The MGF of X satisfies

E exp(σX) ≤ exp(K2
5σ

2) for all σ ∈ R .

We also use the following definition.
(Definition 2.5.6 in (Vershynin)). A random variable X that satisfies one of the equivalent properties i-iv in Proposition D

is called a sub-Gaussian random variable. The sub-Gaussian norm of X , denoted ∥X∥Ψ2
, is defined to be the smallest K4

in property iv. In other words, define:

∥X∥Ψ2
= inf

{
t > 0 E exp(X2/t2) ≤ 2

}
.

For a sub-Gaussian random variable V , we define σ as σ := ∥V ∥Ψ2
. From there it is easy to verify the following

proposition.

Proposition D.1. Suppose for a sub-Gaussian random variable V we have σ := ∥V ∥Ψ2
, where ∥·∥Ψ2

represents the

sub-Gaussian norm. Then we have that P [|V | ≥ t] ≤ 2 exp
(

−t2
σ2

)
. We shall call σ the sub-Gaussian parameter.

Proof. Starting from the definition of sub-Gaussian norm from (Vershynin), we have that:

E
[
exp

(
V 2

σ2

)]
≤ 2

e−
t2

σ2 E
[
exp

(
V 2

σ2

)]
≤ 2 e−

t2

σ2 multiply both sides

P
[
e

V 2

σ2 ≥ e
t2

σ2

]
≤ e−

t2

σ2 E
[
exp

(
V 2

σ2

)]
≤ 2 e−

t2

σ2 Markov’s Inequality

P
[
e

V 2

σ2 ≥ e
t2

σ2

]
= P [|V | ≥ t]

P [|V | ≥ t] ≤ 2 e−
t2

σ2 .

Now we state our main generalization result:

Theorem 5.2. Suppose the entries of X are independently and identically drawn from a Gaussian with variance σ2 and
mean µ = O(σ). Let y be the labels produced by a k-sparse linear predictor, i.e., y = ⟨β⋆,X⟩ , for some ∥β⋆∥0 ≤ k. For
β̃ as defined in in Lemma 5.1 and ζ = 1 + σ2

µ2 , the population loss LD obeys, with probability at least 1− δ:

LD(β̃)

LD(0)
≤ O

(
ζ2k polylog(dN/δ)

N

)
. (11)
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Proof. In order to prove this theorem, we require three main ingredients:

1. First, we bound λmax in terms of a weighed norm of the predictor. To this end, we use the upper and lower bounds on
λmax from Theorem 4.1 and the lower bound extension to the predictor β space from Theorem 4.2. In addition, we
extend the upper bound to also be in terms of the predictor, rather than the parameters θ. (Lemma D.2)

2. Second, we show that if sufficiently many samples are used, the respective weighted ℓ1 norms of a predictor β are
bounded by multiplicative factors of ||β||1 . (Lemma 5.1).

3. Finally, we apply a generalization result from (Srebro et al.) that applies for predictors within a constant multiplicative
factor of ||β⋆||1 , where β⋆ := argmin⟨β,X⟩=y ||β||1 . (Lemma D.6)

D.1. Bounding λmax in terms of a weighted norm of the predictor

Lemma D.2. For ũ+, ũ− := argminu+,u− :⟨u2
+−u2

− ,X⟩=y λmax(u+,u−):∥∥∥∥β(ũ+, ũ−) ◦ 4
(
Êx
)2∥∥∥∥

1

≤ λmax(ũ+, ũ−) ≤
∥∥∥(β(ũ+, ũ−) ◦ 4Ê

(
x2
))∥∥∥

1
.

Proof. From Lemma 4.1, we have that:∥∥∥∥(u2
+ + u2

−
)
◦ 4
(
Êx
)2∥∥∥∥

1

≤ λmax(u+,u−) ≤
∥∥∥(u2

+ + u2
−
)
◦ 4Ê

(
x2
)∥∥∥

1
.

First, on the lower bound side, we have that for any set of parameters u+,u− :∥∥∥∥β(u+,u−) ◦ 4
(
Êx
)2∥∥∥∥

1

=

∥∥∥∥(u2
+ − u2

−
)
◦ 4
(
Êx
)2∥∥∥∥

1

≤
∥∥∥∥(u2

+ + u2
−
)
◦ 4
(
Êx
)2∥∥∥∥

1

≤ λmax(u+,u−)

On the upper bound side, we have that:

λ⋆ := inf
u+,u− :⟨u2

+−u2
− ,X⟩=y

λmax(u+,u−)

≤ inf
u+,u− :⟨u2

+−u2
− ,X⟩=y

∥∥∥(u2
+ + u2

−
)
◦ 4Ê

(
x2
)∥∥∥

1

≤ inf
u+,u− :⟨u2

+−u2
− ,X⟩=y ,u+◦u−=0

∥∥∥(u2
+ + u2

−
)
◦ 4Ê

(
x2
)∥∥∥

1

= inf
u+,u− :⟨u2

+−u2
− ,X⟩=y

∥∥∥(β(u+,u−) ◦ 4Ê
(
x2
))∥∥∥

1

Thus, we have that for ũ+, ũ− := argminu+,u− :⟨u2
+−u2

− ,X⟩=y λmax(u+,u−):∥∥∥∥β(ũ+, ũ−) ◦ 4
(
Êx
)2∥∥∥∥

1

≤ λmax(ũ+, ũ−) ≤
∥∥∥(β(ũ+, ũ−) ◦ 4Ê

(
x2
))∥∥∥

1
.

D.2. Concentration of Weighting Implies Bounds by Multiplicative Factor of Optimal ℓ1 Norm

Having established bounds on the maximum eigenvalue of the Hessian at the relevant parameters in terms of the predictor
borne of those parameters, let us now consider the concentration of the bounds.

Lemma D.3. Suppose the data X ∈ Rd×N is drawn independently and identically (i.i.d.) with mean µ and such that X−µ
is sub-Gaussian (per the Definition in Appendix D) with parameter σ . Define ũ+ , ũ− such that:

ũ+ , ũ− := argmin
⟨u2

+−u2
− ,X⟩=y

λmax(u+,u−) , (9)
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and let β̃ = ũ2
+ − ũ2

− . Then, we have that, provided N = Ω

(
max

{
σ2 log(d/δ)
σ2+µ2 ,

σ
√

log(d/δ)

µ

}2
)

, with probability at

least 1− δ , ∥∥∥β̃∥∥∥
1
≤
(
1 +

σ2

µ2

)
· 1.1 inf

⟨β,X⟩=y
∥β∥1 . (10)

Proof. In order to show this, we will separately show concentration of the lower bound (Lemma D.4) and the upper bound
(Lemma D.5) on λmax . We do so by showing that with sufficiently many samples, the weightings concentrate to the mean.
Following this, we can combine the results to bound the ℓ1 norm of the predictor gotten by minimizing λmax .

Lemma D.4. Suppose Ê(x) := 1
N

∑N
n=1 xn , where xn are the columns of X ∈ Rd×N , which is a matrix with each entry

an independent, identically distributed sub-Gaussian around µ with parameter σ . Then, for any vector w , with probability
at least 1− δ: (

µ− σ

√
log(d/δ)

c n

)2

||w||1 ≤ ||w ◦ Ê(x)2||1 . (44)

Proof. We start by expanding the weighted ℓ1 norm for any vector w:

||w ◦ Ê(x)2||1 =

d∑
i=1

∣∣∣∣wi (Ê(x))2
i

∣∣∣∣ .
For ease of notation, let x̄i =

(
Ê(x)

)
i

For any term in this sum where x̄i ≥ 1 , we can lower bound that term by |wi| .
However, this might not be the case for all the µi . Thus, we normalize:

||w ◦ Ê(x)2||1 =

d∑
i=1

∣∣wi x̄2
i

∣∣
=

d∑
i=1

∣∣∣∣wi x̄2
i ·

mini x̄
2
i

mini x̄2
i

∣∣∣∣ = (min
i

x̄2
i

) d∑
i=1

∣∣∣∣wi · x̄2
i

mini x̄2
i

∣∣∣∣
≥
(
min
i

x̄2
i

) d∑
i=1

|wi| =
(
min
i

x̄2
i

)
||w||1 .

Next, we wish to bound the value of mini x̄
2
i . To do so, we want to find t such that:

P [∀i x̄i > µ− t] ≥ 1− δ

⇐⇒ P [∃ i : x̄i − µ < −t] ≤ δ

Now, we apply Proposition D.1 and Hoeffding’s Inequality as stated in Theorem 2.6.2 in (Vershynin), which we reproduce
here for clarity (where c is some absolute constant).
(Theorem 2.6.2 in (Vershynin)). Let X1, . . . , XN be independent, mean zero, sub-gaussian random variables. Then for

every t ≥ 0 , we have:

P

[∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≥ t

]
≤ 2 exp

(
− c t2∑N

i=1 ∥Xi∥2ψ2

)
.

We can use Hoeffing’s Inequality and the union bound to get:

P [∃ i : x̄i − µ < −t] ≤ d exp

(
−Nct2

σ2

)
so t =

√
σ2 log(d/δ)

cN
.
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We get that : (
µ− σ

√
log(d/δ)

cN

)2

||w||1 ≤ ||w ◦ Ê(x)2||1 with probability ≥ 1− δ (45)

Next, we consider the upper bound.

Lemma D.5. Suppose Ê
(
x2
)
:= 1

N

∑N
n=1 x

2
n , where xn are the columns of X ∈ Rd×N , which is a matrix with each

entry an independent, identically distributed sub-Gaussian around µ with parameter σ . Then, for any vector w , with
probability at least 1− δ :

||w ◦ Ê
(
x2
)
||1 ≤ ||w||1 ·

(
µ2 + σ2 +

8σ2e√
n

log
2d

δ

)
(46)

Proof. Let us bound the value of Ê
(
x2
)
. Observe that yn,i := x2

n,i is a subexponential random variable due to it being the
square of a subgaussian random variable. For clarity, we reproduce Bernstein’s inequality (Corollary 2.8.3 in (Vershynin))
before applying it.
(Corollary 2.8.3 in (Vershynin)). Let X1, . . . , XN be independent, mean 0, sub-exponential random variables. Then, for
every t ≥ 0 , we have:

P

[∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−cN min

{
t2

K2
,
t

K

})
,

where K = maxi ∥Xi∥ψ1
.

Applying Bernstein’s inequality, we get that:

P

[∣∣∣∣ 1N
N∑
n=1

yn,i − µ2 − σ2

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−cN min

{
t2

∥yn,i∥2ψ1

,
t

∥yn,i∥ψ1

})
.

By Lemma 2.7.6 in (Vershynin), we have that ∥yn,i∥ψ1
=
∥∥x2

n,i

∥∥
ψ1

= ∥xn,i∥2ψ2
= σ2 .

This implies that with probability at least 1− δ , if t is small enough, i.e., t ≤ σ2 , then:

P

[∣∣∣∣ 1N
N∑
n=1

yn,i − µ2 − σ2

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−cN

t2

σ4

)
.

Then, applying union bound:

P

[
∃ i :

∣∣∣∣ 1N
N∑
n=1

yn,i − µ2 − σ2

∣∣∣∣ ≥ t

]
≤ 2d exp

(
−cN

t2

σ4

)
.

Setting the probability of failure to δ , we get:

P

[
∃ i :

∣∣∣∣ 1N
N∑
n=1

yn,i − µ2 − σ2

∣∣∣∣ ≥ σ2

√
log(2d/δ)

cN

]
≤ δ .

To match the earlier condition on t , we require that: t ≤ σ2 ⇔ N ≥ log(2d/δ)
c . Thus, this gives us that with probability at

least 1− δ ,

∀ i ∈ [d] µ2 + σ2 − σ2

√
N

√
log

2d

δ
≤ 1

N

N∑
n=1

yn,i ≤ µ2 + σ2 +
σ2

√
N

√
log

2d

δ
, if N ≥

(
log(2d/δ)

c

)
.
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This then gives us that with probability ≥ 1− δ, provided N ≥ log(2d/δ)
c :

||β ◦ Ê
(
x2
)
||1 ≤ ||β||1 ·

(
µ2 + σ2 +

σ2

√
N

log
2d

δ

)
(47)

With these bounds on the upper and lower bounds of λmax , we can now consider the ℓ1 norm of the predictor we output in
terms of the ℓ1 norm of the ℓ1 norm-minimizing interpolator.

First, define
û+, û− := arg min

⟨β(u+,u−),X⟩=y

∥∥∥β(u+,u−) ◦ Ê(x)2
∥∥∥
1

and
λ⋆ = min

⟨β(u+,u−),X⟩=y
λmax(u+ ,u−) .

Further, define β⋆ := argmin⟨β(û+,û−),X⟩=y ∥β∥1 .

By these definitions, we have:∥∥∥β(ũ+ , ũ−) ◦ Ê(x)2
∥∥∥
1
≤ λ⋆ ≤ λ(û+, û−) ≤

∥∥∥β(û+ , û−) ◦ Ê(x2)
∥∥∥
1
≤
∥∥∥β⋆ ◦ Ê(x2)

∥∥∥
1

with probability ≥ 1− δ , ∥β(ũ+ , ũ−)∥1 ≤

(
µ2 + σ2 + 8 e σ2

√
N

ln( 4dδ )
)

(
µ− σ

√
log(2d/δ)

c n

)2 ∥β⋆∥1 ,

which follows as a result of applying Lemmas D.4 and D.5, each with probability δ/2 . Next, we bound the multiplicative
factor on the left.
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(
µ2 + σ2 + 8 e σ2

√
N

ln( 4dδ )
)

(
µ− σ

√
log(2d/δ)

c n

)2

=
µ2 + σ2

µ2
·

(
1 + 8 e σ2

(µ2+σ2)
log(4d/δ)√

N

)
(
1− σ

µ

√
log(2d/δ)
cN

)2

≤
(
1 +

σ2

µ2

)
·

(
1 + 8 e σ2

(µ2+σ2)
log(4d/δ)√

N

)
1− 2σµ

√
log(2d/δ)
cN

(1− x)2 ≥ 1− 2x

=

(
1 +

σ2

µ2

)
·

1 +

(
8 e σ2

(µ2+σ2)
log(4d/δ)√

N

)
+ 2σµ

√
log(2d/δ)
cN

1− 2σµ

√
log(d/δ)
cN

 · ||β⋆||1

≤
(
1 +

σ2

µ2

)
·
(
1 +

2 · b
1− b

)
· ||β⋆||1 where b = max

{
8 e σ2

(µ2 + σ2)

log(2d/δ)√
N

,
2σ

µ

√
log(d/δ)

cN

}

≤
(
1 +

σ2

µ2

)
· (1 + 4 · b) · ||β⋆||1 provided b ≤ 1

2

because
2ϵ

1− ϵ
≤ 4ϵ if ϵ < 1/2 .

With probability at least 1− δ , we have that, provided N = Ω

(
max

{
σ2 log(d/δ)
σ2+µ2 ,

σ
√

log(d/δ)

µ

}2
)

∥β(ũ+ , ũ−)∥ ≤
(
1 +

σ2

µ2

)(
1 +O

(
max

{
σ2

(µ2 + σ2)

log(d/δ)√
N

,
2σ

µ

√
log(d/δ)

N

}))
inf

⟨β,X⟩=y
∥β∥1

≤
(
1 +

σ2

µ2

)
· 1.1 inf

⟨β,X⟩=y
∥β∥1 (48)

D.3. Applying Generalization Result

Several works have considered the question of generalization in the sparse regression problem. We apply the following
result of (Srebro et al.), which applies for any hypothesis class H in terms of the Rademacher complexity, RN (H). The
predictor ĥ in the second line is ĥ := argminh∈H L(h) .
(Theorem 1 in (Srebro et al.), restated). For an H-smooth non-negative loss ϕ s.t. ∀x,y,h |ϕ(h(x), y)| ≤ b , for any δ > 0

we have that with probability at least 1− δ over a random sample of size n , for any h ∈ H ,

LD(h) ≤ L(h) +K

(√
L(h)

(√
H log1.5 nRn(H)

)
+H log3 nR2

n(H) +
b log(1/δ)

n

)
(49)

and so:

LD(ĥ) ≤ inf
h∈H

L(h) +K

(√
inf
h∈H

L(h)
(√

H log1.5 N RN (H)
)
+H log3 NR2

N (H) +
b log(1/δ)

N

)
where K < 105 is a numeric constant.
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In this theorem, they show that the population loss of any predictor in a class when considered under smooth, bounded loss
is bounded by a term involving the training loss, the Rademacher complexity, and several other standard parameters. Now,
we extend this result to show that a slight variant of the predictor we find with bounded ℓ1 norm predictor generalizes well.

Lemma D.6. Suppose in the setting stated in Theorem 5.2, β̂ interpolates the training data such that ||β̂||1 ≤
1.1
(
1 + σ2

µ2

)
||β⋆||1 , where β⋆ is the ground truth predictor. Let H be the set of linear predictors with ℓ1 norm bounded by

1.1
(
1 + σ2

µ2

)
||β⋆||1 . Define:

ζ := 1 +
σ2

µ2

Then, we have the following with probability at least 1− δ:

L(β̂) ≤ E
(
y2
)
O
(
ζ2k polylog(dN/δ)

N

)

Proof. In order to show this, we use that the set of predictors that might be output by minimizing λmax is a set of predictors
with ℓ1 norm bounded by B := O

(√
ζ · ∥β⋆∥1

)
.

In order to apply their results here, we first consider a variant of the hypothesis class that we are actually studying. Let the
main hypothesis class in which β̂ lies be defined as follows:

H :=

{
hw : x 7→ ⟨w ,x⟩

∣∣∣∣ ∥w∥1 ≤ B

}
.

Then, we define:

H̃ :=

{
h̃w : x 7→

{
⟨w ,x⟩ when ∥x− µ∥∞ ≤ R ,

0 otherwise

}
.

With the definition above, we can bound the loss as follows:

max

{
max
x,y,h

(y − h(x))2 , var(y)
}

= max

{
max
x,w

(⟨w⋆ −w,x⟩)2 ,E
(
y2
)}

≤ max
{
∥w⋆ −w∥21 ∥x∥

2
∞ , k R2

}
≤ max

{
(2B)2(R+ µ)2 , B2(µ2 + σ2)

}
≤ 4B2 (R+ µ)2

Let us also compute the scaling of ∥β⋆∥1 :

E
(
y2
)
= E

(
⟨β⋆,x⟩2

)
≤ E

(∑
i

β⋆ixi

)2
 = E

(∑
i

β⋆iµ+
∑
i

β⋆i (xi − µ)

)2


⇒
∥β⋆∥21

k
σ2 ≤ ∥β⋆∥22 σ

2 ≤ E
(
y2
)
≤ ∥β⋆∥21 µ

2 + ∥β⋆∥22 σ
2

⇒ ∥β⋆∥21 ≤
kE
(
y2
)

σ2

Let us compare the population loss of a function in H to the population loss of the corresponding function in H̃. Let us
consider this by conditioning on whether the datapoint over which we are taking the expectation lies inside or outside the
ball of radius R centered at µ. For ease of notation, we define x̄ := x−µ . We have, for any hw ∈ H and the corresponding
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h̃w:

L(hw) = E
(
(y − hw(x))

2

∣∣∣∣ ∥x̄∥∞ ≤ R

)
P [∥x̄∥∞ ≤ R] + E

(
(y − hw(x))

2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
P [∥x̄∥∞ ≥ R]

= L(h̃w)− E
(
(y − E[y])2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
P [∥x̄∥∞ ≥ R] + E

(
(y − hw(x))

2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
P [∥x̄∥∞ ≥ R]

= L(h̃w)− E
(
(y − E[y])2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
P [∥x̄∥∞ ≥ R] + E

(
(hw⋆(x)− hw(x̄))

2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
P [∥x̄∥∞ ≥ R]

= L(h̃w)− var(Y ) δ1 + E
(
(⟨w⋆ −w,x⟩)2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
δ1 define g := w⋆ −w

= L(h̃w)− var(Y ) δ1 + E
(
(⟨g, x̄+ µ⟩)2

∣∣∣∣ ∥x̄∥∞ ≥ R

)
δ1

= L(h̃w)− var(Y ) δ1 + E
(
(⟨g, x̄⟩)2 + 2⟨g, x̄⟩⟨g,µ⟩+ ⟨g,µ⟩2

∣∣∣∣ ∥x̄∥2 ≥ R

)
δ1

≤ L(h̃w) + δ1 E
(
(⟨g, x̄⟩)2

∣∣∣∣ ∥x̄∥2 ≥ R

)
+ δ1 · 2⟨g,µ⟩E

(
⟨g, x̄⟩

∣∣∣∣ ∥x̄∥2 ≥ R

)
+ δ1 (⟨g,µ⟩)2

≤ L(h̃w) + δ1 E
(
∥g∥21 ∥x̄∥

2
∞

∣∣∣∣ ∥x̄∥∞ ≥ R

)
+ δ1 · 2⟨g,µ⟩E

(
⟨∥g∥1 ∥x̄∥∞⟩

∣∣∣∣ ∥x̄∥∞ ≥ R

)
+ δ1 (⟨g,µ⟩)2

by Hölder

≤ L(h̃w) + δ1
(
4B2 R+ 4BµBR+ (B µ)2

)
= L(h̃w) + δ1 4B

2(R+ µR+ µ2)

≤ L(h̃w) + d e−R
2/σ2

4B2(R+ µ)2 sub Gaussian

We bound L(h̃w) using Theorem D.3 and the fact that the predictor we output is an interpolator. Namely:

L(h̃w) ≤ K

(
H log3 N R2

N (H̃) +
b log(1/δ)

N

)

We bound the Rademacher complexity of the hypothesis class and bounding the value of the loss. The Rademacher
complexity of H̃ is upper bounded by that of the original class, since the clipping procedure only limits the expressivity of
the class:

RN (H̃) ≤ ∥x∥∞ B

√
2 log d

N
≤ (R+ µ)B

√
2 log d

N
,

which gives us:

L(h̃w) ≤ K

H log3 N

(
(R+ µ)B

√
log d

N

)2

+
b log(1/δ)

N
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Putting these pieces together, and using that square loss is 1-smooth, we have:

L(hw) ≤ O
(
(R+ µ)2 B2 log d

N/ log3 N
+

B2(R+ µ)2 log(1/δ)

N

)
+ d e−R

2/σ2

4B2 (R+ µ)2 (50)

≤ O
(
B2(R+ µ)2 ·

(
log(d/δ)

N/ log3 N
+ d e−R

2/σ2

))
ζ := 1 +

σ2

µ2
(51)

= O

(
ζ2

(R+ µ)2

σ2

(
kE
(
y2
)
log(d/δ)

N/ log3 N
+ d e−R

2/σ2

))
(52)

= O

ζ2

(
µ+ σ

√
log(d/δ1)

σ

)2(
kE
(
y2
)
log(d/δ)

N/ log3 N
+ δ1

) (53)

= O

ζ2

µ+ σ
√
log dN

k log(d/δ)k E(y2) log(d/δ) log3N

σ

2(
kE
(
y2
)
log(d/δ)

N/ log3 N

) (54)

≤ O

(
ζ2
(
µ+ σ

√
log dN

σ

)2
(
kE
(
y2
)
log(d/δ)

N/ log3 N

))
(55)

= E
(
y2
)
O
(
ζ2k polylog(dN/δ)

N

)
(56)

Equation 54 follows from setting δ1 to be the same size as the first term, kE
(
y2
)
log(d/δ)/(N/ log3 N) . Note that when

µ = O(σ) , the additive part of the second term is a constant. When we expand R to include all but δ1 fraction of the points,
we incur the extra multiplicative log(d/δ1) factor in the generalization error.
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E. Experiment with Random initialization
In this section, we show that using random initialization instead of uniform ones initilization does not affect the observed
qualitative behaviour. Specifically, we see that the test loss still improves with the step size.

0.0 0.2 0.4 0.6 0.8
Initialization scale 

Te
st

 lo
ss

lr=0.0001
lr=0.0006
lr=0.0010
lr=0.0013
lr=0.0018
lr=0.0024
lr=0.0032
lr=0.0042
lr=0.0056
lr=0.0075
l1 baseline
l2 baseline

Figure 6. The test loss of GD solution vs. the initialization scale α in the sparse regression problem described in Section 7. This is the
same setting as in Fig. 1, only here we used random normal initialization. We observe the same qualitative behaviour as observed in Fig.
1. Specifically, we observe that for small step size, the test loss transitions from the ℓ1 baseline to the ℓ2 baseline as the initialization scale
α increases, as expected from (Woodworth et al., 2020). However, we see that using larger step sizes reduces the error significantly. In
fact, for large step size the test loss is close to the ℓ1 baseline regardless of the initialization.


