
Variational Inference for Infinitely Deep Neural Networks

Achille Nazaret 1 David Blei 1 2

Abstract
We introduce the unbounded depth neural net-
work (UDN), an infinitely deep probabilistic
model that adapts its complexity to the training
data. The UDN contains an infinite sequence of
hidden layers and places an unbounded prior on
a truncation ℓ, the layer from which it produces
its data. Given a dataset of observations, the pos-
terior UDN provides a conditional distribution of
both the parameters of the infinite neural network
and its truncation. We develop a novel variational
inference algorithm to approximate this posterior,
optimizing a distribution of the neural network
weights and of the truncation depth ℓ, and with-
out any upper limit on ℓ. To this end, the vari-
ational family has a special structure: it models
neural network weights of arbitrary depth, and it
dynamically creates or removes free variational
parameters as its distribution of the truncation is
optimized. (Unlike heuristic approaches to model
search, it is solely through gradient-based opti-
mization that this algorithm explores the space
of truncations.) We study the UDN on real and
synthetic data. We find that the UDN adapts its
posterior depth to the dataset complexity; it out-
performs standard neural networks of similar com-
putational complexity; and it outperforms other
approaches to infinite-depth neural networks.

1. Introduction
Deep neural networks have propelled research progress in
many domains (Goodfellow et al., 2016). However, select-
ing an appropriate complexity for the architecture of a deep
neural network remains an important question: a network
that is too shallow can hurt the predictive performance,
and a network that is too deep can lead to overfitting or

1Department of Computer Science, Columbia University,
New York, USA 2Department of Statistics, Columbia Univer-
sity, New York, USA. Correspondence to: Achille Nazaret
<achille.nazaret@columbia.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

to unnecessary complexity.

In this paper, we introduce the unbounded depth neural net-
work (UDN), a deep probabilistic model whose size adapts
to the data, and without an upper limit. With this model, a
practitioner need not be concerned with explicitly selecting
the complexity for her neural network.

A UDN involves an infinitely deep neural network and a
latent truncation level ℓ, which is drawn from a prior. The
infinite neural network can be of arbitrary architecture and
interleave different types of layers. For each datapoint, it
generates an infinite sequence of hidden states (hk)k≥1 from
the input x, and then uses the hidden state at the truncation
hℓ to produce the response y. Given a dataset, the posterior
UDN provides a conditional distribution over the neural net-
work’s weights and over the truncation depth. A UDN thus
has access to the flexibility of an infinite neural network and,
through its posterior, can select a distribution of truncations
that best describes the data. The model is designed to ensure
that ℓ has no upper limit.

We approximate the posterior UDN with a novel method for
variational inference. The method uses a variational family
that employs an infinite number of parameters to cover the
whole posterior space. However, this family has a special
property: Though it covers the infinite space of all possible
truncations, each member provides support over a finite
subset. With this family, and thanks to its special property,
the variational objective can be efficiently calculated and
optimized. The result is a gradient-based algorithm that
approximates the posterior UDN, dynamically exploring its
infinite space of truncations and weights.

We study the UDN on real and synthetic data. We find that
(i) on synthetic data, the UDN achieves higher accuracy
than finite neural networks of similar architecture (ii) on
real data, the UDN outperforms finite neural networks and
other models of infinite neural networks (iii) for both types
of data, the inference adapts the UDN posterior to the data
complexity, by exploring distinct sets of truncations.

In summary, the contributions of this paper are as follows:

• We introduce the unbounded depth neural network: an
infinitely deep neural network which can produce data
from any of its hidden layers. In its posterior, it adapts
its truncation to fit the observations.

Variational Inference for Infinitely Deep Neural Networks

• We propose a variational inference method with a novel
variational family. It maintains a finite but evolving
set of variational parameters to explore the unbounded
posterior space of the UDN parameters.

• We empirically study the UDN on real and synthetic
data. It successfully adapts its complexity to the data at
hand. In predictive performance, it outperforms other
finite and infinite models.

This work contributes to research in architecture search,
infinite neural networks, and unbounded variational families.
Section 5 provides a detailed discussion of related work.

2. Unbounded depth neural networks
We begin by introducing the family of unbounded-depth
neural networks. Let D = {(xi, yi)}ni=1 be a dataset of n
labeled observations.

Classical neural networks. A classical neural network of
depth L chains L successive functions (fℓ)1≤ℓ≤L, eventu-
ally followed by an output function oL.

f1(.) f2(.) f3(.) . . . fL(.)
↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓

x h1 h2 h3 hL

↓
oL(.)

Each hℓ is called a hidden state and each fℓ is called a
layer. Each layer is usually composed of a linear function,
an activation function, and sometimes other differentiable
transformations like batch-normalization (Ioffe & Szegedy,
2015). In deep architectures, fℓ can refer to a block of layers,
such as a succession of 3 convolutions in a Resnet (He et al.,
2016) or a dense layer followed by attention in transformers
(Vaswani et al., 2017).

We fix a layer generator f which returns the layer fℓ for
each integer ℓ. The layer generator can return layers of
different shapes or types for different ℓ as long as two con-
secutive layers can be chained by composition. Similarly,
we fix an output generator oL which transforms the last
hidden state hL into a parameter suitable for generating a
response variable. We write θℓ for the parameters of fℓ and
incorporate those of oL into θL. With this notation, a finite
neural network of depth L, generated by (f, o), is written as

ΩL = oL ◦ fL ◦ fL−1 ◦ ... ◦ f2 ◦ f1

and has parameters (θ1, ..., θL).

Finally, we fix a distribution p parametrized by the output
of the neural network ΩL(xi; θ1:L), and use it to model the
responses conditional on the input:

∀i, yi|xi, θ1:L ∼ p(yi; ΩL(xi; θ1:L)).

Given a dataset {xi, yi}Ni=1 and Gaussian priors on θ1:L,
MAP estimation of the neural network parameters corre-
sponds to classical methods for fitting a neural network with
weight decay (Neal, 1996). In this paradigm, the form of p
is related to the loss function (Murphy, 2012).

This classical model requires that the layers be set in ad-
vance. Its flexibility and ability to capture the data depend
crucially on the selection of L. Too large and the model is
too flexible, and can overfit. Too small and the model is not
flexible enough. It is appealing to consider a model that can
adapt its depth to the data at hand.

Unbounded depth neural networks. We extend the finite
construction above to formulate an unbounded depth neural
network (UDN). We consider an infinite sequence of hidden
states (hk)k≥1 generated by (fℓ)ℓ≥1 and parametrized by
an infinite set of weights θ ≜ (θℓ)ℓ≥1.

A challenge to conceptualizing an infinite-depth neural net-
work is where to hang the observation. What we do is posit
a possible output layer oℓ after each layer of hidden units.

f1(.) f2(.) f3(.) . . .
↗ ↓ ↗ ↓ ↗ ↓ ↗

x h1 h2 h3 . . .
↓ ↓ ↓

o1(.) o2(.) o3(.) . . .

We then add an additional parameter, a truncation level ℓ, to
determine which oℓ will generate the response.

The complete UDN models the truncation level ℓ as an
unobserved random variable with a prior µ. Along with a
prior ρ on the weights, the UDN defines a generative model
with an infinite-depth neural network:

θ ∼ ρ(θ) ▷ network weights
ℓ ∼ µ(ℓ) ▷ truncation

yi|xi, θ, ℓ ∼ p(yi; Ωℓ(xi; θ)) ▷ response

This generative process is represented in figure 1. If the
truncation prior µ puts a point mass at L then the model
is equivalent to the classical finite model of depth L. But
with a general prior over all integers, the posterior UDN has
access to all depths of neural networks.

The independence of the priors is important. The model does
not put a prior on ℓ and then samples the weights conditional
on it. Rather, it first samples a complete infinite neural
network, and then samples the finite truncation to produce its
data. What this generative structure implies is that different
truncations will share the same weights on their shared
layers. As we will see in section 4, this property leads to
efficient calculations for approximate posterior inference.

Variational Inference for Infinitely Deep Neural Networks

Figure 1. Graphical model for the unbounded depth neural net-
work.

3. Variational Inference for the UDN
Given a dataset D = {(xi, yi)}ni=1, the goal of Bayesian
inference is to compute the posterior UDN p(θ, ℓ | D). The
exact posterior is intractable, and so we appeal to variational
inference (Jordan et al., 1999; Wainwright & Jordan, 2008;
Blei et al., 2017). In traditional variational inference, we
posit a family of approximate distributions over the latent
variables and then try to find the member of that family
which is closest to the exact posterior.

The unbounded neural network, however, presents a signifi-
cant challenge to this approach—the depth ℓ is unbounded
and the number of latent variables θ is infinite. To overcome
this challenge, we will develop an unbounded variational
family q(θ, ℓ) that is still amenable to variational optimiza-
tion. With the algorithm we develop, the “search” for a
good distribution of truncations is a natural consequence of
gradient-based optimization of the variational objective.

3.1. Structure of the variational family

We define a joint variational family that factorizes as
q(θ, ℓ) = q(ℓ)q(θ|ℓ), and note that the factor for the neural
network weights depends on the truncation. We introduce
the parameters λ, ν and detail the structure of the families
{q(ℓ;λ)} and {q(θ|ℓ; ν)}.

The unbounded variational family with connected and
bounded members q(ℓ;λ). For a truly unbounded proce-
dure, we require that the variational family over ℓ should
be able to explore the full space of truncations N∗. Simul-
taneously, since the procedure must run in practice, each
distribution q(ℓ;λ) should be tractable, that is Eq(ℓ)[g(ℓ)]
can be computed efficiently for any g.

A sufficient condition for tractable expectations is that
q(ℓ;λ) has finite support; the expectation becomes the fi-
nite sum

∑
i∈support(q) q(i;λ)g(i). However, to be able to

explore the unbounded posterior space N∗, the variational
family {q(ℓ;λ)} itself cannot have finite support. It should
contain distributions covering all possible truncations ℓ.
Moreover, it should be able to navigate continuously be-
tween these distributions.

We articulate these conditions in the following definition:

Definition 3.1. A variational family Q = {q(λ)} over N∗

is unbounded with connected and bounded members if

(1) ∀q ∈ Q, support(q) is bounded

(2) ∀L ∈ N∗, ∃q ∈ Q, L ∈ argmax(q)

(3) The parameter λ is a continuous variable.

Echoing the discussion above, there are several conse-
quences to this definition:

• By (1), each q has a finite support. We write the maximal
value m(q) := max {ℓ|q(ℓ) > 0}.

• Thanks to (2), the approximate posterior can place its
main mass around any ℓ. That is, Q covers the space of
all possible truncations:

⋃
q∈Q support(q) = N∗.

• Condition (3) ensures that Q not only contains members
with mass on any ℓ, but it can continuously navigate be-
tween them. This condition is important for optimization.

The nested family q(θ|ℓ; ν). In the UDN model, condi-
tional on ℓ, the response y depends only on the first ℓ layers
and not the subsequent ones. Thus the exact posterior p(θ|ℓ)
only contains information from the data for θi up to i ≤ ℓ;
the posterior of the θi with i > ℓ must match the prior.

We mirror this structure in the variational approximation,

q(θ|ℓ; ν) = q(θ1:ℓ; ν1:ℓ)

∞∏
k=ℓ+1

p(θk). (4)

Kurihara et al. (2007b) also introduce a family with structure
as in (4), which they call a nested variational family.

The evidence lower bound. The full variational dis-
tribution combines the unbounded variational family of
Definition 3.1 with the nested family of (4), q(ℓ, θ) =
q(ℓ;λ)q(θ|ℓ, ν). With this distribution, we can now derive
the optimization objective.

Variational inference seeks to minimize the KL divergence
between the variational posterior q and the exact posterior p.
This is equivalent to maximizing the variational objective
(Bishop, 2006), which is commonly known as the Evidence
Lower BOund (ELBO). Because of the factored structure of
the variational family, we organize the terms of the ELBO
with iterated expectations,

L(q) = Eq(ℓ,θ)[log p(Y, ℓ, θ|X)− log q(ℓ, θ)] (5)

= Eq(ℓ)

[
log p(ℓ)

q(ℓ) + Eq(θ|ℓ)

[
log p(θ)

q(θ|ℓ;ν)

+
∑n

i=1 log p(yi | ℓ, θ, xi)
]]

. (6)

Further, using the special structure of this variational family,
the ELBO can be simplified:

Variational Inference for Infinitely Deep Neural Networks

• The factor q(θ|ℓ) satisfies the nested structure condition
(4) so p(θ)

q(θ|ℓ;ν) = p(θ1:ℓ)
q(θ1:ℓ;ν1:ℓ)

. This quantity only involves
a finite number ℓ of parameters and variables even if the
prior and posterior were initially over all the variables.

• The factor q(ℓ) satisfies (1). The outer expectation of L(q)
can be explicitly computed.

With these two observations, we rewrite the ELBO:

L(q) =
m(q)∑
ℓ=1

q(ℓ;λ)

[
log p(ℓ)

q(ℓ;λ) + Eq(θ|ℓ;ν)

[
ℓ∑

k=1

log p(θk)
q(θk;νk)

+
n∑

i=1

log p(yi; Ωℓ(xi; θ))

]]
. (7)

Notice this equation expresses the ELBO using only a finite
set of parameters λ, ν1:m(q(λ)), which we call active param-
eters. Thus we can compute the gradient of the ELBO with
respect to (λ, ν1:∞), since only the coordinates correspond-
ing to the active parameters λ, ν1:m(q) can be nonzero. This
fact allows us to optimize the variational distribution.

Dynamic variational inference. In variational inference
we optimize the ELBO of equation (7). We use gradient
methods to iteratively update the variational parameters
(λ, ν1:∞). Equation (7) just showed how to take one efficient
gradient step, by only updating the active parameters, those
with nonzero gradients. From there, a succession of gradient
updates becomes possible and still involves only a finite set
of parameters. Indeed, even if the special property (2) of
the variational family guarantees that q(ℓ;λ) can place mass
on any ℓ, and by doing so, can activate any parameter νℓ
during the optimization, successive updates of finitely many
parameters will still only affect finitely many parameters.

For instance, the inference can start with m(q(λ)) = 5
active layers, and increase to m(q(λ)) = 6 after an update
to λ that favors a deeper truncation. The next gradient
update of (λ, ν) will then affect ν6, which was not activated
earlier. At any iteration, the ELBO involves a finite subset
of the parameters, but this set of active parameters naturally
grows or shrinks as needed to approach the exact posterior.

Because the subset of active variational parameters evolves
during the optimization, we refer to the method of combin-
ing the unbounded variational family of Definition 3.1 with
the nested family of (4), as dynamic variational inference.
We detail in section 4 how to run efficient computations
when we do not know in advance which variational parame-
ters will be activated during the optimization.

3.2. One explicit choice of variational family and prior

We end the inference section by proposing priors for (ℓ, θ)
and an explicit variational family satisfying the unbounded
family conditions (1, 2, 3) and the nested structure (4).

Choice of prior. We use a standard Gaussian prior over
all the weights θ. We set a Poisson(α) prior for ℓ. More
precisely, we have ℓ− 1 ∼ Poisson(α) because ℓ > 0. The
mean α is detailed in the experiment details in the appendix.

Choice of family q(ℓ;λ). To obtain the unbounded
family from definition 3.1, we adapt the Poisson family
P = {Poisson(λ) | λ > 0} by truncating each individual
distribution q(∗;λ) = Poisson(λ) to its δ-quantile.

qδ(ℓ;λ) ∝ q(ℓ;λ)1[ℓ ≤ δ-quantile(q(∗;λ))]

This forms the Truncated Poisson family T P(δ) ={
qδ | q ∈ P

}
and the following holds:

Theorem 3.2. For any δ ∈ [0.5, 1[, T P(δ) is unbounded
with connected bounded members. For δ = 0.95, we have

• λ− ln 2 ≤ m(q0.95(λ)) ≤ 1.3λ+ 5 (8)

• ∀n ∈ N∗, n ∈ argmax(q0.95(n+ 0.5)) (9)

• λ > 0 is a continuous parameter. (10)

Inequalities (8) are shown in appendix using Poisson tail
bounds from Short (2013) and bounds on the Poisson me-
dian from Choi (1994). It shows that q0.95(λ) satisfies the
bounded support condition (1) with a support growing lin-
early in λ. The result (9) offers explicit distributions in
T P(0.95) that satisfy the unbounded family condition (2).
Finally, (10) ensures the continuity condition (3). During
inference, δ is set to 0.95 and λ is a variational parameter.

Choice of family q(θ | ℓ; ν). The variational posterior on θ
controls the neural network weights. In the nested structure
(4), we model q(θ1:ℓ; ν1:ℓ) with a mean-field Gaussian.1.
With the prior defined earlier, q(θ|ℓ; ν) becomes

q(θ|ℓ; ν) = N (ν1:ℓ, Iℓ)[θ1:ℓ]

∞∏
k=ℓ+1

N (0, 1)[θk].

We approximate Eq(θ|ℓ)[g(θ1:ℓ)] at the first order with
g(Eq(θ|ℓ)[θ1:ℓ]) = g(ν1:ℓ) for any g.

Predictions. The UDN can predict the labels of future data,
such as held-out data for testing. It uses the learned varia-
tional posterior q(ℓ, θ;λ, ν), to approximate the predictive
distribution of the label y′ of new data x′ as

p(y ′ | x ′,D) ≈ Eq(ℓ,θ;λ,ν)[p(y
′; Ωℓ(x

′; θ1:ℓ))]

≈
m(q)∑
ℓ=1

q(ℓ;λ) · p(y′; Ωℓ(x
′; θ1:ℓ)). (11)

1Some literature uses a point mass for the variational distribu-
tion of global parameters like neural network weights (Kingma &
Welling, 2014; Author, 2021) Here, however, this choice would
cause problems because it creates a mixed discrete-continuous
family that leads to discontinuities in the objective.

Variational Inference for Infinitely Deep Neural Networks

The predictive distribution forms an ensemble of different
truncations, that is discovered during the process of varia-
tional inference. This is related to Antoran et al. (2020).

4. Efficient algorithmic implementation
We review the computational aspects of both the model and
the associated dynamic variational inference.

Linear complexity in m(q). Evaluating the ELBO (7)
or evaluating the predictive distribution (11) requires to
compute the output of m(q) different neural networks,
Ω1 to Ωm(q). However, most of the computations can
be shared (Antoran et al., 2020). We calculate the hid-
den layers sequentially up to hm(q), as they are needed to
compute Ωm(q)(x). We then apply the output layer oℓ to
each hidden layer hℓ and obtain the collection {Ωℓ(x)}m(q)

ℓ=1 .
Hence, computing Ωm(q)(x) alone or the whole collection
{Ωℓ(x)}m(q)

ℓ=1 has the same complexity in m(q).

Lazy initialization of the variational parameters. To
compute gradients of the ELBO (7), we leverage modern li-
braries of the Python language for automatic differentiation.
As discussed in section 3, the gradient of the ELBO only
involves a finite set of active parameters, yet, this set can po-
tentially reach any size during the optimization. Hence, the
ELBO can depend on every possible variational parameters
(λ, ν1:∞), not all of which can be instantiated.

In libraries like Tensorflow 1.0 (Abadi et al., 2015), the com-
putational graph is defined and compiled in advance. This
prevents the dynamic creation of variational parameters. In
contrast, a library like PyTorch (Paszke et al., 2019) uses a
dynamic graph. With this capability, new parameters νℓ and
layers fℓ can be created only when needed and the compu-
tational graph be updated accordingly. Before each ELBO
evaluation, we compute the support of the current q(ℓ;λ)
and adjust the variational parameters. The full dynamic
variational inference procedure is presented in Algorithm 1.

5. Related work
Neural architecture search Selecting a neural network
architecture is an important question. Several methods have
been proposed to answer it.

Bayesian optimization (Bergstra et al., 2013; Mendoza et al.,
2016) and reinforcement learning (Zoph & Le, 2017) can
tune the architecture as a hyperparameter. These algorithms
propose successive architectures, which are then evaluated
and compared. These methods decouple the architecture
search and the model training, which increases the compu-
tational complexity. Reusing parameters across runs (Pham
et al., 2018; Luo et al., 2018) can speed up the search but
cannot avoid multiple trainings.

Algorithm 1 Dynamic variational inference for the UDN

Input: data X,Y ; architecture generators f, o;
Initialize: λ
hidden layers, output layers = [], []
for epoch = 1 to T do

Compute m(q(λ))
while L := |hidden layers| < m(q(λ)) do

Add new layer f(L+ 1) to hidden layers
Add new layer o(L+ 1) to output layers
Initialize νL+1

end while
Compute L(q) in a single forward pass
Compute gradients ∇λ,ν1:m(q(λ))

L(q)
Update λ, ν1:m(q(λ))

end for

Dikov & Bayer (2019); Ghosh et al. (2019) jointly learn
the network weights and the architecture as a single model.
This is similar to what the UDN can do. However, the
architecture they learn can only be reduced from an initial
candidate by masking some of its parts. This relates to
network pruning methods, which remove connections of
small weight (LeCun et al., 1990; Hassibi & Stork, 1992).

Closely related to our work is Antoran et al. (2020), which
combines predictions from different depths of the same
model into a deep ensemble (Lakshminarayanan et al., 2017)
to improve its uncertainty calibration. Here, a maximal
depth is specified by the user, and only networks of smaller
depths are used. Setting a very high value may lead to
unnecessary computational complexity. In contrast, the
UDN can grow during training, only if necessary.

Unbounded variational inference and Bayesian nonpara-
metrics. An important class of models with an infinite
number of latent variables is the class of Bayesian nonpara-
metric (BNP) models (Hjort et al., 2010). BNP models
adapt to the data complexity by growing the number of
latent variables as necessary during posterior inference.

In a BNP model, variational inference does not usually
operate in the unbounded latent space. Instead, proposed
methods truncate either the model itself or the posterior
variational family to a finite complexity (Blei & Jordan,
2006; Kurihara et al., 2007a; Doshi et al., 2009; Ranganath
& Blei, 2018; Moran et al., 2021).

To relax this restriction, some methods propose split-merge
heuristics to create or remove latent variables during training
(Kurihara et al., 2007b; Zhai & Boyd-Graber, 2013; Hughes
& Sudderth, 2013). In contrast, the dynamic variational
inference proposed in the paper is a variational approach
in which the creation or removal of variational parameters
comes naturally from the variational family structure and
gradient-based optimization.

Variational Inference for Infinitely Deep Neural Networks

Infinite neural networks. An infinite neural network does
not have a definitive definition. We can distinguish two
groups of concepts: infinite width and infinite depth.

Neal (1996) shows how a single-layer Bayesian neural net-
work with infinite width and a judicious choice of weight
prior is equivalent to a Gaussian process. The neural tangent
kernel (Jacot et al., 2018; Novak et al., 2020) describes how
such a layer evolves during training. De Matthews et al.
(2018); Lee et al. (2018) extend these infinite-width results
in multiple layers of deep networks. However, in recent
work, Pleiss & Cunningham (2021) indicate that a large
width in a deep model can be detrimental.

Implicit models take a different approach, to the depth. Deep
equilibrium (Bai et al., 2019; 2020) is obtained by constrain-
ing an infinite depth neural network to repeat the same layer
function until reaching a fixed point. Neural ODEs (Chen
et al., 2018; Xu et al., 2021; Luo et al., 2022) define a model
with continuous depth – hence infinite – by extending the
residual connection of a ResNet into differential equations.

However, these approaches all constrain the weights of the
infinite neural network. Some place specific priors on the
weights for infinite-width while others set constraint equa-
tions on the weights for infinite-depth. The resulting func-
tions can be difficult to relate to classical neural networks.
In contrast, the UDN offers flexibility on how to construct
the network, while remaining similar to a classic neural
network. The practitioner can use arbitrary architectures in
a UDN and inspect the posterior like an ensemble of finite
networks.

6. Experiments
We study the performances of the UDN on synthetic and
real classification tasks. We measure its predictive accuracy
on held-out data and analyze how the posterior inference
explores the space of truncations.

We find that:

• The dynamic variational inference effectively explores
the space of truncations. The UDN adapts its depth to
the complexity of the data, from a few layers to almost a
hundred layers on image classification.

• The UDN posterior predictive accuracy outperforms all
the finite network models ΩL. It also outperforms ensem-
bles of finite networks (Antoran et al., 2020) and implicit
models (Dupont et al., 2019; Bai et al., 2020).

The experiments are implemented in Python with the library
PyTorch (Paszke et al., 2019). To scale the inference to
large datasets, we use stochastic optimization on the ELBO
(Robbins & Monro, 1951; Hoffman et al., 2013). This

−1

0

1
Spiral ω= 0

0
1

Spiral ω= 2 Spiral ω= 5

−1 0 1
−1

0

1
Spiral ω= 10

−1 0 1

Spiral ω= 20

−1 0 1

Spiral ω= 30

Figure 2. Spiral datasets D(ω) for different rotation speed ω. As
ω increases, the two branches of the spiral become harder to dis-
tinguish. When ω reaches 30, the data exhibits almost no pattern.

requires unbiased gradients of the ELBO (7), which we
compute by subsampling a batch of 256 observations (xi, yi)
at each iteration. The code is available on GitHub2.

6.1. Spiral classification with fully connected networks

Dataset. To understand the role of depth, we highlight a
natural question about neural network architecture: why do
we need more depth when only a single wide enough hidden
layer can approximate any smooth function (Hornik et al.,
1989; Barron, 1994)? A half-answer would be that the same
universal approximation theorem also holds with a deep
enough neural network of fixed-width (Lu et al., 2017). A
more complete answer lies in the quantification of the “wide
enough” condition. Theoretical work on approximation
theory has used small 2-hidden-layers neural networks to
construct oscillating functions that cannot be approximated
by any 1-hidden-layer network that uses a subexponential
number of hidden units (Eldan & Shamir, 2016).

We adapt the construction of this paper and design labeled
datasets D(ω), each consisting of a spiral with two branches
at rotation speed ω. The binary labels correspond to each
branch. When ω increases, the branches of the spiral get
more interleaved and become harder to distinguish. Figure 2
shows examples and intuition. At ω = 30, the organization
of labels appears to be almost random. The mathematical
details for the generation of the datasets are in appendix.

Experiment. We follow the notations of section 2. The
architecture generator f is defined to return layers with 32-
hidden units each. So f1 : R2 → R32 and fℓ : R32 →
R32 for ℓ ≥ 2. Each fl is a linear function followed by
a ReLU activation. The output layers oℓ are linear layers

2https://github.com/ANazaret/
unbounded-depth-neural-networks

https://github.com/ANazaret/unbounded-depth-neural-networks
https://github.com/ANazaret/unbounded-depth-neural-networks

Variational Inference for Infinitely Deep Neural Networks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Complexity ω of the dataset (ω)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Classification accuracy for a range of models and datasets D(ω).
The UDN (orange) achieves the best accuracy for every dataset.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Complexity ω of the dataset (ω)

2

3

4

5

6

7

8

9

Po
st

er
io

r m
ea

n
of

 th
e

tru
nc

at
io

n
ℓ

(b) Mean depth ℓ of the UDN posterior, fitted for different D(ω).
The UDN becomes deeper when the complexity increases.

Figure 3. (a) For all models, the accuracy decreases when ω increases. The accuracy for all models drops at large ω, which corresponds to
when the datasets start to lose their patterns; see Figure 2. (b) The UDN favors larger depths as ω increases. It adapts to the complexity of
the data. Near ω ∼ 30, independent runs of the inference yield different posterior expected depths. It happens when the accuracy drops in
(a), and has the same explanation: when the dataset contains almost random label patterns, the UDN does not have an optimal depth to
explain the data. – The error bands and the boxes with whiskers are computed with 5 independent runs for each dataset and model.

transforming a hidden state of R32 to a vector in R2, whose
softmax parametrizes the probabilities of the two labels.

We train finite neural networks ΩL for a large range of
depths L, using the architecture returned by f . Each ΩL

and the UDN are trained independently. We also train Depth
Uncertainty Networks (Antoran et al., 2020) with an ensem-
ble of depths 1 to 10 – referred to as DUN-10.

For each ω, we generate a dataset D(ω) on which we train
the models for 4000 epochs. We then select the best epoch
using a validation set and report the accuracy on a test set.

Results. Figure 3a reports the test accuracy of the UDN
and the finite models for ω ∈ [0, 30]. The UDN achieves
the best accuracy for every dataset complexity.

Figure 3b offers reasons for the success of the UDN. The
posterior UDN places mass on increasingly deeper ℓ when
ω increases. Interestingly, at ω ≥ 26, the posterior of the
UDN does not select a precise depth across independent
runs. This behavior is coherent with the drop in accuracy in
figure 3a since the dataset contains label patterns that are
almost random at large ω, and the UDN does not have an
optimal depth to explain the data.

Table 1 reports the average accuracy (across ω) for the best
models and DUN-10. The UDN outperforms all of the
other models. DUN-10 also outperforms the individual
ΩL, suggesting that combining several depths of the same
network, like the posterior predictive of the UDN does,
improves the representation capability of neural networks.

Model Average accuracy (%)

Standard network Ω5 84.8± 3.6
Standard network Ω3 87.4± 0.6
Standard network Ω4 89.3± 0.9
DUN-10 (Antoran et al., 2020) 90.5± 0.7
UDN 91.7± 1.1

Table 1. Test accuracy averaged over the different dataset D(ω).
The UDN outperforms all the other models. Standard deviations
are calculated on 5 runs.

6.2. Image classification on CIFAR-10 with CNN

Dataset. Image classification is a domain where deeper
networks have pushed the state-of-the-art. We study the per-
formance of the UDN on the CIFAR-10 dataset (Krizhevsky
et al., 2009). We use a layer architecture3 adapted from He
et al. (2016). ResNet building blocks are a succession of
three convolution layers with a residual shortcut from the
input to the output of the block. Furthermore, Batchnorm
(Ioffe & Szegedy, 2015) and ReLU follow each convolution.
The exact dimensions of the convolutions are in appendix.

Experiment. Using the notations of section 2, we define the
architecture generator f to return layers fℓ that are ResNet
blocks. Each block contains 3 convolutions, so each net-
work ΩL corresponds to a ResNet-3L. The output layers
linearly map hidden states to vectors of R10, whose softmax
parametrize the probabilities of the ten image classes.

3We are interested in the inference of the UDN and not in
improving the state-of-the-art of image classification. Hence, we
did not tune the best architecture possible.

Variational Inference for Infinitely Deep Neural Networks

Model Accuracy

ResNet-15, Ω5 91.7±0.2

ResNet-18 (Bai et al., 2020) 92.9±0.2

ResNet-24, Ω8 93.6±0.4

ResNet-30, Ω10 94.0±0.2

ResNet-45, Ω15 94.0±0.2

ResNet-60, Ω20 93.9±0.1

ResNet-90, Ω30 93.9±0.1

NODE (Dupont et al., 2019) 53.7±0.2

ANODE (Dupont et al., 2019) 60.6±0.4

MDEQ (Bai et al., 2020) 93.8±0.3

UDN with ResNet 94.4±0.2

Table 2. Test accuracy on CIFAR-10. The UDN outperforms all
the other models. With the architecture that we use, the best
finite models seem to have L between 10 and 20 (ResNet-30 and
ResNet-60). – Standard deviations are calculated on 3 runs for our
experiments, 5 runs for the reported ones.

We evaluate the UDN and various ΩL. We report the perfor-
mance of the ResNet-18 trained in Bai et al. (2020), and the
performance of implicit methods: Neural ODEs (NODE),
Augmented Neural ODEs (ANODE) and Multiscale Deep
Equilibrium Models (MDEQ) (Chen et al., 2018; Dupont
et al., 2019; Bai et al., 2020) which are competitive ap-
proaches for infinitely deep neural networks.

To evaluate the UDN and the ΩL, we use the default train-
test split of CIFAR-10, and report the test accuracy at the
end of training. We use the same hyperparameters and
architectures for the UDN and the individual ΩL. Following
He et al. (2016), we use the SGD optimizer and a specific
learning rate schedule, detailed in appendix. Table 2 reports
the results. The UDN outperforms all the other models.

Exploration of the posterior space. Finally, we aim to ana-
lyze how the posterior depth adapts to the complexity of the
data. For this purpose, we create two subsamples of CIFAR-
10: an easy subsample containing only deer and car images,
and a hard subsample containing only cat and dog images.
These categories were selected from an independently gen-
erated CIFAR-10 confusion matrix, in which (deer,car) were
found to be the least confused labels, whereas (cat,dog) were
the most. We suspect that the hard dataset will require more
layers than the easy dataset, and will cause the posterior of
the UDN to adapt accordingly.

We infer the posterior of the UDN on each of these two sub-
sampled datasets, in addition to the full CIFAR-10. Figure
4 reports the probability mass functions of the posteriors.
For the easiest pair of labels (deer, car), the UDN only uses
a couple of layers to reach 99% accuracy, whereas it uses
more layers for the harder pair (cat,dog) but reaches only
88%. For the full dataset, the posterior puts mass on much

0 5 10 15 20 25
ℓ − in ResNet, one fℓ is a bloc of 3 layers

0.00

0.05

0.10

0.15

0.20

0.25

Po
st

er
io

r m
as

s o
n
ℓ

accuracy=99.3 ± 0.1

accuracy=87.9 ± 0.2

accuracy=94.4 ± 0.1

deer / car (easy)
cat / dog (hard)
all 10 classes

Figure 4. The UDN posterior on the depth ℓ adapts to the com-
plexity of the dataset. It uses deeper truncations for a harder
classification task like cat vs dog than for an easier one like deer
vs car. When classifying the full CIFAR-10, the posterior UDN
covers an even deeper set of truncations, which matches the depths
of the best finite models from table 2. The maximal truncation
considered by the green (diamond) posteriors corresponds to a
ResNet-81. – For each dataset, 3 independent runs are represented.

more layers and the UDN achieves 94% accuracy. The pos-
teriors effectively adapt to the complexity of the datasets.

7. Discussion and future work
We proposed the unbounded depth neural network, a
Bayesian deep neural network that uses as many layers
as needed by the data, without any upper limit. We demon-
strated empirically that the model adapts to different data
complexities and competes with finite and infinite models.

To perform approximate inference of the UDN, we designed
a novel variational inference algorithm capable of managing
an infinite set of latent variables. We showed with experi-
ments on real data that the algorithm successfully explores
different regions of the posterior space.

The UDN and the dynamic variational inference offer sev-
eral avenues for further research. First, the unbounded
neural network could be applied to transformers, where very
deep models have shown successful results (Liu et al., 2020).
Another interesting direction is to use the unbounded varia-
tional family for variational inference of other infinite mod-
els, such as Dirichlet processes mixtures. Reciprocally, the
UDN could be extended into a deep nonparametric model,
where the truncation ℓ changes across observations in the
same dataset. Finally, future studies of the UDN could ex-
amine how the form of the neural network’s weight priors
impacts the corresponding posteriors.

Variational Inference for Infinitely Deep Neural Networks

Acknowledgments
We are thankful to Gemma Moran, Elham Azizi, Clayton
Sanford and anonymous reviewers for helpful comments and
discussions. This work is funded by NSF IIS 2127869, ONR
N00014-17-1-2131, ONR N00014-15-1-2209, the Simons
Foundation, the Sloan Foundation, and Open Philanthropy.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

Antoran, J., Allingham, J., and Hernández-Lobato, J. M.
Depth uncertainty in neural networks. In Neural Informa-
tion Processing Systems, 2020.

Author, N. N. Suppressed for anonymity, 2021.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Neural Information Processing Systems, 2019.

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equilib-
rium models. In Neural Information Processing Systems,
2020.

Barron, A. R. Approximation and estimation bounds for
artificial neural networks. Machine Learning, 14:115–
133, 1994.

Bergstra, J., Yamins, D., and Cox, D. Making a science of
model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures. In International
Conference on Machine Learning, 2013.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, 2006.

Blei, D. and Jordan, M. I. Variational inference for Dirichlet
process mixtures. Bayesian Analysis, 1:121–143, 2006.

Blei, D., Kucukelbir, A., and McAuliffe, J. D. Variational
inference: A review for statisticians. Journal of the Amer-
ican Statistical Association, 112:859–877, 2017.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Neural
Information Processing Systems, 2018.

Choi, K. P. On the medians of Gamma distributions and
an equation of Ramanujan. Proceedings of the American
Mathematical Society, 121:245–251, 1994.

De Matthews, A., Hron, J., Rowland, M., Turner, R., and
Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. In International Conference on
Learning Representations, 2018.

Dikov, G. and Bayer, J. Bayesian learning of neural network
architectures. In Artificial Intelligence and Statistics,
2019.

Doshi, F., Miller, K., Van Gael, J., and Teh, Y. W. Varia-
tional inference for the Indian buffet process. In Artificial
Intelligence and Statistics, 2009.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
ODEs. In Neural Information Processing Systems, 2019.

Eldan, R. and Shamir, O. The power of depth for feedfor-
ward neural networks. In Conference on Learning Theory,
2016.

Ghosh, S., Yao, J., and Doshi-Velez, F. Model selection in
Bayesian neural networks via horseshoe priors. Journal
of Machine Learning Research, 20:1–46, 2019.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT press, 2016.

Hassibi, B. and Stork, D. G. Second order derivatives for
network pruning: optimal brain surgeon. In Neural Infor-
mation Processing Systems, 1992.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Conference on Computer
Vision and Pattern Recognition, 2016.

Hjort, N. L., Holmes, C., Müller, P., and Walker, S. G.
Bayesian Nonparametrics. Cambridge University Press,
2010.

Hoffman, M. D., Blei, D., Wang, C., and Paisley, J. Stochas-
tic variational inference. Journal of Machine Learning
Research, 14, 2013.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2:359–366, 1989.

Hughes, M. C. and Sudderth, E. Memoized online varia-
tional inference for Dirichlet process mixture models. In
Neural Information Processing Systems, 2013.

http://archive.ics.uci.edu/ml

Variational Inference for Infinitely Deep Neural Networks

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, 2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
convergence and generalization in neural networks. In
Neural Information Processing Systems, 2018.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine Learning, 37:183–233, 1999.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, University
of Toronto, 2009.

Kurihara, K., Welling, M., and Teh, Y. W. Collapsed varia-
tional Dirichlet process mixture models. In International
Joint Conference on Artificial Intelligence, 2007a.

Kurihara, K., Welling, M., and Vlassis, N. Accelerated vari-
ational Dirichlet process mixtures. In Neural Information
Processing Systems, 2007b.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Neural Information Processing Systems,
2017.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain dam-
age. In Neural Information Processing Systems, 1990.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington,
J., and Sohl-Dickstein, J. Deep neural networks as Gaus-
sian processes. In International Conference on Learning
Representations, 2018.

Liu, X., Duh, K., Liu, L., and Gao, J. Very deep transformers
for neural machine translation. arXiv:2008.07772, 2020.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: A view from the width.
In Neural Information Processing Systems, 2017.

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. Neural
architecture optimization. In Neural Information Process-
ing Systems, 2018.

Luo, Z., Sun, Z., Zhou, W., Wu, Z., and Kamata, S.-i. Con-
structing infinite deep neural networks with flexible ex-
pressiveness while training. Neurocomputing, 487:257–
268, 2022.

Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T.,
and Hutter, F. Towards automatically-tuned neural net-
works. In ICML Workshop on Automatic Machine Learn-
ing, 2016.

Mitzenmacher, M. and Upfal, E. Probability and Com-
puting: Randomization and Probabilistic Techniques in
Algorithms and Data Analysis. Cambridge University
Press, 2017.

Moran, G. E., Ročková, V., and George, E. I. Spike-and-slab
lasso biclustering. The Annals of Applied Statistics, 15:
148–173, 2021.

Murphy, K. P. Machine Learning: A Probabilistic Perspec-
tive. MIT press, 2012.

Neal, R. M. Priors for infinite networks. In Bayesian
Learning for Neural Networks, pp. 29–53. Springer, 1996.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural tangents:
Fast and easy infinite neural networks in python. In
International Conference on Learning Representations,
2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Neural
Information Processing Systems, 2019.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. Efficient
neural architecture search via parameters sharing. In
International Conference on Machine Learning, 2018.

Pleiss, G. and Cunningham, J. P. The limitations of large
width in neural networks: A deep Gaussian process per-
spective. In Neural Information Processing Systems,
2021.

Ranganath, R. and Blei, D. Correlated random measures.
Journal of the American Statistical Association, 113:417–
430, 2018.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp. 400–
407, 1951.

Short, M. Improved inequalities for the Poisson and Bino-
mial distribution and upper tail quantile functions. Inter-
national Scholarly Research Notices, 2013, 2013.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Neural Information Processing
Systems, 2017.

Variational Inference for Infinitely Deep Neural Networks

Wainwright, M. J. and Jordan, M. I. Graphical Models,
Exponential Families, and Variational Inference. Now
Publishers Inc, 2008.

Xu, W., Chen, R. T., Li, X., and Duvenaud, D. Infinitely
deep Bayesian neural networks with stochastic differen-
tial equations. arXiv:2102.06559, 2021.

Zhai, K. and Boyd-Graber, J. Online latent Dirichlet alloca-
tion with infinite vocabulary. In International Conference
on Machine Learning, 2013.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In International Conference on
Learning Representations, 2017.

Variational Inference for Infinitely Deep Neural Networks

A. The truncated Poisson family
We prove Theorem 3.2: For any δ ∈ [0.5, 1[, T P(δ) is unbounded with connected bounded members. For δ = 0.95, we
have

1. λ− ln 2 ≤ m(q0.95(λ)) ≤ 1.3λ+ 5 (8)

2. ∀n ∈ N∗, n ∈ argmax(q0.95(n+ 0.5)) (9)

3. λ > 0 is a continuous parameter. (10)

Proof. We first show that T P(δ) is unbounded with connected bounded members for any δ ∈ [0.5, 1[.

• Each distribution is the truncation of a Poisson distribution so it has a finite support by definition. Hence, T P(δ) has
bounded members and satisfies (1).

• The assertion (9) is true for any δ, we show it below. It ensures that T P(δ) is unbounded and satisfies (2).

• λ is a continuous positive real number by design of the family. Hence the members of T P(δ) are continuously
connected and the family satisfies (3).

So T P(δ) is unbounded with connected bounded members for any δ ∈ [0.5, 1[.

We prove the additional assertions. By definition of the quantile truncation, we will use that m(qδ(λ)) ≥ m(qη(λ)) if δ ≥ η,
and that m(qδ) ≤ δ-quantile of q.

1. Lower bound: According to (Choi, 1994), the median of Poisson(λ) is greater or equal than λ − ln 2. Hence, by
definition of the quantile truncation, we have m(qδ(λ)) ≥ median(Poisson(λ)) ≥ λ− ln 2 for any δ ≥ 0.5.

2. The modes of a Poisson(λ) are ⌈λ⌉ − 1 and ⌊λ⌋ (which are the same value for non-integer λ). For a truncation at level
δ with δ ≥ 0.5, the lowest term truncated can at most reach the median. Since median(Poisson(λ)) ≥ λ− ln 2, the
lowest truncated term of Poisson(n+ 0.5) is at most n+ 0.5− log 2 > n. But we also have n = ⌊n+ 0.5⌋. So the
mode n does not get truncated. Since the mode is not affected by re-normalization of the probabilities, n is still the
mode of Poisson(n+ 0.5).

1. Upper bound: Let X ∼ Poisson(λ) for some λ > 0.

– We recall a standard Chernoff bounds argument from (Mitzenmacher & Upfal, 2017)4:
∀x > λ,P(X ≥ x) ≤ (eλ)xe−λ

xx .

– For x = 1.3λ, it yields: P(X ≥ 1.3λ) ≤ e0.3λ
(

1
1.3

)1.3λ
=

(
e0.3 1

1.31.3

)λ
< 0.96λ.

For λ > 70, we have P(X ≥ 1.3λ) ≤ 0.9670 < 0.05, so m(q0.95(λ)) ≤ 1.3λ ≤ 1.3λ+ 5.
– Note that for µ ≥ λ, we have m(q(µ)) ≥ m(q(λ)). In particular, we have: m(q(λ)) ≤ m(q(⌈λ⌉)). Also we have
1.3⌊λ⌋+ 5 ≤ 1.3λ+ 5. So it suffices to show that ∀λ ∈]0, 70],m(q(⌈λ⌉)) ≤ 1.3⌊λ⌋+ 5 and we will have that
∀λ ∈]0, 70],m(q(λ)) ≤ 1.3λ+ 5.
It suffices to check manually that, ∀k ∈ {1, 2, ..., 70} ,m(q(k)) ≤ 1.3(k − 1) + 5. We check this in Python and
report the figure 5 where each (1.3(k − 1) + 5)−m(q(k)) is positive for k ∈ {1, 2, ..., 70}.

– This concludes the proof.

• This concludes the proof for the three assertions about δ = 0.95.

4And also Wikipedia https://en.wikipedia.org/wiki/Poisson_distribution#Other_properties

https://en.wikipedia.org/wiki/Poisson_distribution#Other_properties

Variational Inference for Infinitely Deep Neural Networks

0 10 20 30 40 50 60 70
k

0

2

4

6

8

10

12

1.
3(
k
−
1)

+
5−

m
(q
(k
))

Figure 5. Empirical evaluation of δk = (1.3(k − 1) + 5)−m(q(k)) for k ∈ {1, 2, ..., 70}. We observe that δk ≥ 0.

B. Experiments
B.1. Synthetic experiment

Dataset. The spiral dataset D(ω) = {(xi, yi)} is generated by the following generative process:

t ∼ Uniform([0, 1]) (12)

u =
√
t (13)

y ∼ Uniform({−1, 1}) (14)

x ∼ N
([

yu · cos
(
ωu · π

2

)
yu · sin

(
ωu · π

2

)] , 0.02) (15)

The square root of t is taken to rebalance the density along the curve u 7→
[
u · cos

(
ω|u| · π

2

)
u · sin

(
ω|u| · π

2

)].

Training. For each ω, we independently sample a train, a validation and a test dataset of each 1024 samples. We use the
following hyperparameters for training:

• Prior on the neural network weights: θ ∼ N (0, 1)

• Prior on the truncation ℓ: ℓ− 1 ∼ Poisson(0.5). We recall that ℓ ≥ 1 so we shift the Poisson by 1.

• Optimizer: Adam (Kingma & Ba, 2015)

• Learning rate: 0.005. Results with different learning rates are compared in Figure 6.

• Learning rate for λ: we use a learning rate that is 1/10th of the general learning rate of the neural network weights.

• Initialization of the variational truncated Poisson family: λ = 1.0

• Number of epochs: 4000

B.2. CIFAR-10 experiment

Architecture generator f We detail the construction of the architecture generator f for the CIFAR experiment of section 6.
A ResNet building block Bk is the succession of three convolution layers [1× 1× 2k], [3× 3× 2k], and [1× 1× 2k+2] with
a residual shortcut from the input to the output of the block. In these blocks, Batchnorm and ReLU follow every convolution.
The architecture generator used by the UDN and the finite neural networks is the following:

f : ℓ ∈ N∗ 7→ fl :=

 B6 if ℓ ∈ J1, 3K
B7 if ℓ ∈ J4, 8K
B8 else

Variational Inference for Infinitely Deep Neural Networks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Complexity ω of the dataset (ω)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Learning rate 0.005

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Complexity ω of the dataset (ω)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(b) Learning rate 0.01

Figure 6. Classification accuracy for a range of models and datasets D(ω). The UDN (orange) achieves the best accuracy for almost each
complexity ω. The deep finite models (L ≥ 5) are sensitive to a higher learning rate, meanwhile the UDN is robust even with its large
(infinite) depth. – The error bands are computed with 5 independent runs for each pair of dataset and model.

Output generator o The output generator oℓ at each depth ℓ receives the hidden state hℓ, performs a 2D average pooling
with kernel (4, 4) and applies a linear layer of the adequate dimension to R10.

B.3. Hyperparameters

Training. For the training on CIFAR-10, we follow the optimizer and the learning rate schedule from He et al. (2016). We
increase our prior on the truncation since we suspect that CIFAR requires deep architectures. Similarly, we initialize the
variational truncated Poisson family to λ0 = 5. We show the trajectories of the variational families during the optimization
for different values of λ0 in figure 7.

• Prior on the neural network weights: θ ∼ N (0, 1)

• Prior on the truncation ℓ: ℓ− 1 ∼ Poisson(1).

• Optimizer: SGD with momentum = 0.9, weight decay=1e-4

• Number of epochs: 500

• Learning rate schedule: [0.01]*5 + [0.1]*195 + [0.01]*100 + [0.001]*100

• Learning rate for λ: we used the same learning rate for λ and the weights

• Initialization of the variational truncated Poisson family: λ0 = 5.0.

B.4. Additional experiments on Regression datasets

We run additional experiments on tabular datasets. We perform regression with the UDN for nine regression datasets from
the UCI repository (Dua & Graff, 2017): Boston Housing (boston) Concrete Strength (concrete), Energy Efficiency (energy),
Kin8nm (kin8nm), Naval Propulsion (naval), Power Plant (power), Protein Structure (protein), Wine Quality (wine) and
Yacht Hydrodynamics (yacht). For regression (instead of classification in the previous experiments), the UDN models the
response variable with a Gaussian distribution whose mean is given by the output layers of the infinite neural network. In
figure 8, we show the performance of the UDN against the finite variants (f2, f3, f4, f5, f6 with respectively exactly 2, 3, 4,
5, and 6 layers). Figure 8 also indicates the posterior mean of the truncation level ℓ learned during inference. Overall, we
notice that for regression tasks on tabular data, very deep networks are not necessary to achieve good prediction performance.
For the datasets yacht, boston, energy, concrete and power, the posterior ℓ is lower than two and the UDN offers similar
performances than the finite alternatives. For the other datasets such as wine, naval, kin8nm, and protein, the UDN learns a
higher number of layers and performs competitively or better than the finite alternatives.

Variational Inference for Infinitely Deep Neural Networks

0 100 200 300 400 500
Epochs

5

10

15

20

25

30

UD
N

Po
st

er
io

r m
ea

n
of

 tr
un

ca
tio

n
ℓ

λ0 = 2
λ0 = 10
λ0 = 30

Figure 7. Evolution of the posterior mean of the truncation over multiple training with different initializations of the variational family.
Trained on CIFAR-10. In all cases, the variational families explore the posterior space and converge to similar regions.

yacht boston energy concrete power wine naval kin8nm protein
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 R
M

SE

f2
f3

f4
f5

f6
UDN

q[
ℓ] 0.9 1.0 1.1 1.7 1.9 2.6 4.1 6.4 10.8

Figure 8. (top) Regression root mean square error (RMSE) on the test set of 9 UCI datasets. The optimal training epoch is chosen with a
validation set. Error bars are obtained by repeating the experiment on 10 different train-valid-test sets. (bottom) Expectation of the number
of layers ℓ in the UDN posterior. For the first five datasets, the expectation is lower than two. For the last four datasets, the number of
layers gets higher and the UDN shows competitive performances against the finite alternatives.

