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Abstract
When one observes a sequence of variables
(x1, y1), . . . , (xn, yn), Conformal Prediction
(CP) is a methodology that allows to estimate
a confidence set for yn+1 given xn+1 by merely
assuming that the distribution of the data is
exchangeable. CP sets have guaranteed coverage
for any finite population size n. While appealing,
the computation of such a set turns out to be infea-
sible in general, e.g., when the unknown variable
yn+1 is continuous. The bottleneck is that it is
based on a procedure that readjusts a prediction
model on data where we replace the unknown
target by all its possible values in order to select
the most probable one. This requires computing
an infinite number of models, which often makes
it intractable. In this paper, we combine CP tech-
niques with classical algorithmic stability bounds
to derive a prediction set computable with a single
model fit. We demonstrate that our proposed
confidence set does not lose any coverage guaran-
tees while avoiding the need for data splitting as
currently done in the literature. We provide some
numerical experiments to illustrate the tightness
of our estimation when the sample size is suffi-
ciently large, on both synthetic and real datasets.

1. Introduction
Modern machine learning algorithms can predict the label of
an object based on its observed characteristics with impres-
sive accuracy. They are often trained on historical datasets
sampled from the same distribution and it is important to
quantify the uncertainty of their predictions. Conformal pre-
diction is a versatile and simple method introduced in (Vovk
et al., 2005; Shafer & Vovk, 2008) that provides a finite
sample and distribution free 100(1−α)% confidence region
on the predicted object based on past observations. The
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main idea can be subsumed as a hypothesis testing between

H0 : yn+1 = z and H1 : yn+1 6= z ,

where z is any replacement candidate for the unknown
response yn+1. The conformal prediction set will
consist of the collection of candidates whose tests are
not rejected. The construction of a p-value function is
simple. We start by fitting a model with training set
{(x1, y1), . . . , (xn, yn), (xn+1, z)} and sort the prediction
scores/errors for each instance in ascending order. A
candidate z will be considered as conformal or typical
if the rank of its score is sufficiently small compared
to the others. The key assumption is that the predictive
model and the joint probability distribution of the sequence
{(xi, yi)}n+1

i=1 are invariant w.r.t. permutation of the data. As
a consequence, the ranks of the scores are equally likely and
thus follow a uniform distribution which allow to calibrate a
threshold on the rank statistics leading to a valid confidence
set. This method has a strong coverage guarantee without
any further assumptions on the distribution and is valid for
any finite sample size n; see more details in Section 2.

Conformal prediction technique has been applied for de-
signing uncertainty sets in active learning (Ho & Wechsler,
2008), anomaly detection (Laxhammar & Falkman, 2015;
Bates et al., 2021), few shot learning (Fisch et al., 2021),
time series (Chernozhukov et al., 2018; Xu & Xie, 2021;
Chernozhukov et al., 2021), robust optimization (Johnstone
& Cox, 2021) or to infer the performance guarantee for sta-
tistical learning algorithms (Holland, 2020; Cella & Ryan,
2020). Currently, we are seeing a growing interest in these
approaches due to their flexibility and ease of deployment
even for very complex problems where classical approaches
offer limited performance (Efron, 2021). We refer to
(Balasubramanian et al., 2014) for other AI applications.

Despite its nice properties, the computation of conformal
prediction sets requires fitting a model on a new augmented
dataset where the unknown quantity yn+1 is replaced by
a set of candidates. In a regression setting where an object
can take an uncountable possible value, the set of candidates
is infinite. Therefore, computing the conformal prediction
is infeasible without additional structural assumptions
about the underlying model fit, and even so, the current
computational costs remain very high. Hence the prevailing
recommendation to use less efficient data splitting methods.
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Contribution. We leverage algorithmic stability to bound
the variation of the predictive model w.r.t. to changes in the
input data. This results in a circumvention of the compu-
tational bottleneck induced by the necessary readjustment
of the model each time we want to assess the typicalness
of a candidate replacement of the target variable. As such,
we can provide a tight estimation of the confidence sets
without loss in the coverage guarantee. Our method is com-
putationally and statistically efficient since it requires only
a single model fit and does not involve any data splitting.

Notation. For a nonzero integer n, we denote [n] to
be the set {1, · · · , n}. The dataset of size n is denoted
Dn = (xi, yi)i∈[n], the row-wise input feature matrix
X = [x1, · · · , xn, xn+1]>. Given a set {u1, · · · , un}, the
rank of uj for j ∈ [n] is defined as

Rank(uj) =

n∑

i=1

1ui≤uj
.

We denote u(i) the i-th order statistics.

2. Conformal Prediction
Conformal prediction (Vovk et al., 2005) is a framework
for constructing online confidence sets, with the remarkable
properties of being distribution free, having a finite sample
coverage guarantee, and being able to be adapted to any
estimator under mild assumptions. We recall the arguments
in (Shafer & Vovk, 2008; Lei et al., 2018) to construct a
conformity/typicalness function based on rank statistics that
yields to distribution-free inference methods. The main tool
is that the rank of one variable among an exchangeable and
identically distributed sequence follows a (sub)-uniform
distribution (Bröcker & Kantz, 2011).
Lemma 2.1. Let U1, . . . , Un, Un+1 be an exchangeable
and identically distributed sequence of random variables.
Then for any α ∈ (0, 1), we have

Pn+1(Rank(Un+1) ≤ (n+ 1)(1− α)) ≥ 1− α .

We remind that yn+1 is the unknown target variable. We
introduce a learning problem with the augmented training
data Dn+1(z) := Dn ∪ {(xn+1, z)} for z ∈ R and with the
augmented vector of labels y(z) = (y1, · · · , yn, z):

β(z) ∈ arg min
β∈Rp

L(y(z),Φ(X,β)) + Ω(β) , (1)

where Φ is a feature map and for any parameter β ∈ Rp

Φ(X,β) = [Φ(x1, β), . . . ,Φ(xn+1, β)] ∈ Rn+1 .

Given an input feature vector x, the prediction of its out-
put/label adjusted on the augmented data, can be defined as

µz(x) := Φ(x, β(z)) .

For example in case of empirical risk minimization, we have

L(y(z),Φ(X,β)) =

n∑

i=1

`(yi,Φ(xi, β))+`(z,Φ(xn+1, β)) .

There are many examples of cost functions in the literature.
A popular example is the power norm regression, where
`(a, b) = |a − b|q. When q = 2, this corresponds to the
classical linear regression. The cases where q = (1, 2)
are frequent in robust statistics where the case q = 1 is
known as the least absolute deviation. The loss logcosh
`(a, b) = γ log(cosh(a − b)/γ) is a differentiable alterna-
tive to the `∞ norm (Chebychev approximation). One can
also have the loss function Linex (Gruber, 2010; Chang
& Hung, 2007) which provides an asymmetric loss function
`(a, b) = exp(γ(a − b)) − γ(a − b) − 1, for γ 6= 0. Any
convex regularization function Ω e.g., Ridge (Hoerl &
Kennard, 1970) or norm inducing sparsity (Bach et al.,
2012) can be considered. Also the feature map Φ can be
parameterized and learned à la neural network. Equation (1)
includes many modern formulations of statistical learning
estimators. The only requirement on these is to be invariant
with respect to the data permutation; this leaves a very large
degree of freedom on their choice. For example, β(z) can
be the output of an iterative model e.g., proximal gradient
descent, with early stopping.

Let us define the conformity measure for Dn+1(z) as

∀i ∈ [n], Ei(z) = S(yi, µz(xi)) , (2)
En+1(z) = S(z, µz(xn+1)) , (3)

where S is a real-valued function e.g., in a linear regression
problem, one can take s(a, b) = |a− b|. The main idea for
constructing a conformal confidence set is to consider the
typicalness/conformity of a candidate point z measured as

π(z) := 1− 1

n+ 1
Rank(En+1(z)) . (4)

The conformal set gathers all the real values z such that
π(z) ≥ α, if and only if, the score En+1(z) is ranked no
higher than d(n+ 1)(1− α)e, among {Ei(z)}i∈[n+1] i.e.,

Γ(α)(xn+1) := {z ∈ R : π(z) ≥ α} . (5)

A direct application of Lemma 2.1 to Ui = Ei(yn+1) reads
P(π(yn+1) ≤ α) ≤ α i.e., the random variable π(yn+1)
takes small values with small probability and it reads the
coverage guarantee

P(yn+1 ∈ Γ(α)(xn+1)) ≥ 1− α .

Figure 1 illustrates the candidates selected for inclusion in
the confidence set as the most likely variables.
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Figure 1. Illustration of a conformal prediction set with a confi-
dence level level 0.9 i.e., α = 0.1. The ends of the CP set are
indicated by the red cross.

2.1. Computational Limitations and Previous Works

For regression problems where yn+1 lies in a subset of
R, obtaining the conformal set Γ(α)(xn+1) in Equation (5)
is computationally challenging. It requires re-fitting the
prediction model β(z) for infinitely many candidates z in
order to compute the map of conformity measure such as
z 7→ Ei(z) = |yi − x>i β(z)|. Except for a few examples,
the computation of a conformal prediction set is infeasible in
general. We describe below some successful computational
strategies while pointing out their potential shortcomings.

In Ridge regression, for any x in Rp, z 7→ x>β(z) is a
linear function of z, implying that Ei(z) is piecewise linear.
Exploiting this fact, an exact conformal set Γ(α)(xn+1) for
Ridge regression was efficiently constructed in (Nouretdi-
nov et al., 2001). Similarly, using the piecewise linearity
w.r.t. sparsity level of the Lasso path provided by the Lars
algorithm (Efron et al., 2004), (Hebiri, 2010) builds a se-
quence of conformal sets for the Lasso associated to the tran-
sition points of the Lars with the observed data Dn. Nev-
ertheless, such procedure breaks the proof technique for the
coverage guarantee as the exchangeability of the sequence
(Ei(yn+1))i∈[n+1] is not necessarily maintained. However,
a slight adaptation can fix the previous problem. Indeed
using the piecewise linearity in z of the Lasso solution, (Lei,
2019) proposed a piecewise linear homotopy under mild
assumptions, when a single input sample point is perturbed.
This finally allows to compute the whole solution path
z 7→ β(z) and successfully provides a conformal set for the
Lasso and Elastic Net. These processes are however limited
to quadratic loss function. Later, (Ndiaye & Takeuchi, 2019)
proposed an adaptation using approximate solution path
(Ndiaye et al., 2019) instead of exact solution. This results

in a careful discretization of the set of candidates restricted
into a preselected compact [zmin, zmax]. Assuming that the
optimization problem in Equation (1) is convex and that the
loss function is smooth, this leads to a computational com-
plexity of O(1/

√
ε) where ε > 0 is a prescribed optimiza-

tion error. All these previous methods are at best restricted
to convex optimization formulations. A different road con-
sists in merely assuming that the conformal set Γ(α)(xn+1)
in Equation (5) itself is a bounded interval. As such, its end-
points can be estimated by approximating the roots of the
function z 7→ π(z)−α. Under slight additional assumptions,
a direct bisection search can then compute a conformal set
with a complexity of O(log2(1/εr)) (Ndiaye & Takeuchi,
2021) where εr > 0 is the tolerance error w.r.t. to exact root.

Cross-conformal Predictors was initially introduced in its
one split version in (Papadopoulos et al., 2002).The idea
is to separate the data into two independent parts, fit the
model on one part and rank the scores on the other part
where Lemma 2.1 remains applicable and thus preserves
the coverage guarantee. Although this approach avoids
the computational bottleneck by requiring only one data
adjustment, the statistical efficiency of the model may
be reduced due to a much smaller sample size available
during the training and calibration phases. In general, the
proportion of the training set to the calibration set is a
hyperparameter that requires appropriate tuning: a small
calibration set leads to highly variable conformational
scores and a small training set leads to poor model fit. Such
trade-off is very recurrent in machine learning and often
appears in the debate between bias reduction and variance
reduction. It is often decided by the cross-validation method
with several folds (Arlot & Celisse, 2010). Cross-conformal
predictors (Vovk, 2015) follow the same ideas and exploit
the full dataset for calibration and significant proportions
for training the model. The dataset is partitioned into K
folds and one performs a split conformal set by sequentially
defining the kth fold as calibration set and the remaining
as training set for k ∈ {1, . . . ,K}. The leave-one-out aka
Jackknife CP set, requires K = n model fit which is pro-
hibitive even when n is moderately large. On the other hand,
the K-fold version will require K model fit but will come
at the cost of fitting on a lower sample size and will leads
to an additional excess coverage of O(

√
2/n) and requires

a subtle aggregation of the different pi-values obtained; see
(Carlsson et al., 2014; Linusson et al., 2017). (Barber et al.,
2021) shown that the confidence level attained is 1 − 2α
instead of 1 − α and can only approximately reaches the
target coverage 1− α under additional stability assumption.

Although these recent advances have drastically improved
the tractability of the calculations, in practice multiple
re-adjustments of the data are required. This remains very
expensive especially for complex models. Imagine having
to re-train a neural network from scratch ten or twenty times
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to get a reasonable estimate. In this paper, we actually show
that a single model fit is enough to tightly approximate the
conformal set when the underlying model fitting is stable.

3. Approximation via Algorithmic Stability
The Section 2 guarantees that π(yn+1) ≥ α with high
probability. Therefore, since yn+1 is unknown, the con-
formal set just selects all z that satisfies the same inequality
i.e., Γ(α)(xn+1) = {z : π(z) ≥ α}. This leads to fitting a
new model for any z. Here, we take a different strategy. The
main remark is that only one element of the dataset changes
at a time, then with mild stability assumptions, one can
expect that the model prediction will not change drastically.
Instead of inverting π(·), we will bound it with quantities
independent of the model fit µz for any z.
Definition 3.1 (Algorithmic Stability). A prediction func-
tion µ· is stable if for any observed features xi, i ∈ [n+ 1],
we have

|S(q, µz(xi))−S(q, µz0(xi))| ≤ τi ∀z, z0, q ∈ R . (6)

In the literature, it is common to make assumptions about
the stability of a predictive model to obtain upper bounds on
its generalization error and thus ensure that it does not over-
fit the training data e.g., (O. Bousquet & Elisseeff, 2002).
Although the conformal prediction framework applies even
when the underlying model is not stable, we show that
this additional assumption allows for efficient evaluation
of confidence sets. We also add that in cases where the
generalization capabilities of the model are poor, the size
of the confidence intervals can become very large; even
unbounded, and not at all informative.
Proposition 3.2. Assume that the model fit µ· is stable as
in Definition 3.1. Then, we have:

∀z, ẑ, πlo(z, ẑ) ≤ π(z) ≤ πup(z, ẑ) ,

with

πlo(z, ẑ) := 1− 1

n+ 1

n+1∑

i=1

1Li(z,ẑ)≤Un+1(z,ẑ) ,

πup(z, ẑ) := 1− 1

n+ 1

n+1∑

i=1

1Ui(z,ẑ)≤Ln+1(z,ẑ) ,

where, we define, for any index i in [n],

Li(z, ẑ) = Ei(ẑ)− τi ,
Ui(z, ẑ) = Ei(ẑ) + τi ,

Ln+1(z, ẑ) = S(z, µẑ(xn+1))− τn+1 ,

Un+1(z, ẑ) = S(z, µẑ(xn+1)) + τn+1 .

Proof. By stability, for any q, we have:

|S(q, µz(xi))− S(q, µẑ(xi))| ≤ τi .

Applying the previous inequality to q = yi for any index
i in [n + 1], we have Li(z, ẑ) ≤ Ei(z) ≤ Ui(z, ẑ) and it
holds:

Ui(z, ẑ) ≤ Ln+1(z, ẑ) =⇒ Ei(z) ≤ En+1(z)

=⇒ Li(z, ẑ) ≤ Un+1(z, ẑ) .

Taking the indicator of the corresponding sets, we obtain
the result.

A direct consequence of Proposition 3.2 is that the exact
conformal set can be wrapped as follows.
Corollary 3.3 (Stable Conformal Sets). Under the assump-
tion of Proposition 3.2, the conformal prediction set is lower
and upper approximated as

Γ
(α)
lo (xn+1) ⊂ Γ(α)(xn+1) ⊂ Γ(α)

up (xn+1) ,

where

Γ
(α)
lo (xn+1) = {z : πlo(z, ẑ) ≥ α} ,

Γ(α)
up (xn+1) = {z : πup(z, ẑ) ≥ α} .

Since our proposal arises from a combination of the con-
formal prediction sets with a correction from the stabil-
ity bounds, we call the resulting (upper) confidence set
Γ

(α)
up (xn+1) stabCP for stable conformal set. By construc-

tion, it contains the exact confidence set Γ(α)(xn+1) and
therefore enjoys at least the same statistical benefits dis-
played in the following result.
Proposition 3.4 (Coverage guarantee). Assume that the
model fit µ· is stable as in Definition 3.1. Then the stabCP
set is an upper envelope of the exact conformal prediction
set in Equation (5) and is thus valid i.e.,

P(yn+1 ∈ Γ(α)
up (xn+1)) ≥ 1− α .

As promised in the abstract, our proposed method suffers no
loss of statistical coverage, requires only one model adjust-
ment to the data at an arbitrary candidate point ẑ, and fully
uses all the data (no splitting). Thus we can benefit both
from statistical efficiency with a smaller confidence interval
as in the case of the exact calculation; but also we com-
pletely break the computational difficulty as in the case of
splitting methods. To our knowledge, there is no equivalent
method that can benefit from such a double performance.

3.1. Practical Computation of stabCP sets

By construction, the computation of stable conformal sets
is equivalent to collecting all z such that πup(z, ẑ) ≥ α.
Let’s begin by noting that Un+1(z, ẑ) > Ln+1(z, ẑ) when
τn+1 > 0 which we will assume for simplicity. We have

πup(z, ẑ) ≥ α⇔
n∑

i=1

1Ui(z,ẑ)≤Ln+1(z,ẑ) ≤ (1−α)(n+1) .
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Figure 2. Illustration of the evolution of the conformity function as a function of sample size. The underlying model fit is
β(z) ∈ argminβ∈Rp ‖y(z)−Xβ‖1 /(n + 1) + λ ‖β‖2 where y(z) = (y1, · · · , yn, z) and we use sklearn synthetic dataset
make regression(n, p = 100, noise = 1). We fixed ẑ = 0 and λ = 0.5. The set Z is a linear grid in the interval [y(1), y(n)]. We also
illustrate the batch approximation for different values of ẑ.

This means that a candidate z is selected, if at most
(1−α)(n+ 1) elements of {Ui(z, ẑ)}i∈[n] are smaller than
Ln+1(z, ẑ). Which is equivalent to1

Ln+1(z, ẑ) ≤ U(d(1−α)(n+1)e)(z, ẑ) =: Q1−α(ẑ) .

Hence, we can conclude that

Γ(α)
up (xn+1) = {z : S(z, µẑ(xn+1)) ≤ Q1−α(ẑ) + τn+1}.

For the absolute value score, it reduces to the interval

Γ(α)
up (xn+1) = [µẑ(xn+1)± (Q1−α(ẑ) + τn+1)] .

For the sake of clarity, we summarize the computations for
this simplest case in Algorithm 1 and discuss the general-
ization in the appendix. In general terms, stabCP sets are
convex sets when the score function z 7→ S(z, µẑ(xn+1))
has convex level sets. This presumes that our strategy will
also facilitate the calculations in cases where the target yn+1

is multi-dimensional.
1For i ∈ [n], Ui(z, ẑ) and Li(z, ẑ) are independent of z.

Algorithm 1 Stable Conformal Prediction Set
Input: data {(x1, y1), . . . , (xn, yn)} and xn+1

Coverage level α ∈ (0, 1), any estimate ẑ ∈ R
Stability bounds τ1, . . . , τn+1 of the learning algorithm
Output: prediction interval at xn+1

Fit a model µẑ on the training data Dn+1(ẑ)
Compute the quantile Q1−α(ẑ) = U(d(1−α)(n+1)e)(z, ẑ)
where the Uis are defined in Proposition 3.2
Return: [µẑ(xn+1)± (Q1−α(ẑ) + τn+1)]

3.2. Batch Approximation

The stable conformal sets require a single model fit µẑ
for an arbitrary candidate ẑ. The approximation gaps are
computable as

max{π(z)− πlo(z, ẑ), πup(z, ẑ)− π(z)} ≤ Gap(z, ẑ) ,

where
Gap(z, ẑ) := πup(z, ẑ)− πlo(z, ẑ) .

Since the above upper and lower bounds hold for any ẑ,
tighter approximations are obtained with a batch of candi-
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dates Z = ẑ1, · · · , ẑd as

πup(z,Z) = inf
ẑ∈Z

πup(z, ẑ) and πlo(z,Z) = sup
ẑ∈Z

πlo(z, ẑ) .

Another possibility is to build an interpolation of z 7→ µz(·)
based on query points ẑ1, · · · , ẑd ∈ (zmin, zmax) ⊂ R. For
example, one can consider as predictive model the following
piecewise linear interpolation

µ̃z =





ẑ1−z
ẑ1−zmin

µzmin
+ zmin−z

ẑ1−zmin
µẑ1 if z ≤ zmin ,

z−ẑt+1

ẑt−ẑt+1
µẑt + z−ẑt

ẑt+1−ẑtµẑt+1
if z ∈ [ẑt, ẑt+1] ,

z−ẑd
zmax−ẑdµzmax + zmax−z

zmax−ẑdµẑd if z ≥ zmax ,

An important point is that, by using the stability bound, the
coverage guarantee of the interpolated conformal set is pre-
served without the need of the expensive symmetrization
proposed in (Ndiaye & Takeuchi, 2021). Such techniques
are more relevant when the sample size is small or when pre-
cise estimates of the stability bounds are not available. The
corresponding conformity function is defined in a similar
way as the previous versions, where we simply plugin the in-
terpolated model. We refer to the appendix for more details.
Remark 3.5 (Categorical Variables). In this article, we have
essentially limited ourselves to regression problems which,
in general, pose intractable computational difficulties. How-
ever, the methods remain applicable for classification prob-
lems where the set of candidates can only take a finite num-
ber of values in C := c1, . . . , cm. In this case, an additional
precaution of encoding the categories in real numbers is nec-
essary. Considering the leave-one-out score function, our
proposal is therefore an alternative to the approximations
via influence function used in (Alaa & Schaar, 2020; Abad
et al., 2022) when an exact computation (Cherubin et al.,
2021) would be unusable or too costly.

3.3. Stability Bounds

In this section, we recall some stability bounds. The proof
techniques rely on regularity assumptions on the function to
be minimized and are relatively standard in optimization
(Shalev-Shwartz & Ben-David, 2014, Chapter 13). Stability
is a widely used assumption to provide generalization
bounds for machine learning algorithms (O. Bousquet &
Elisseeff, 2002; Hardt et al., 2016). We specify that here the
notion of stability that we require is related to the variation
of the score and not of the loss function in the optimization
objective. However, the ideas for establishing the stability
bounds are essentially the same and we recall the core
strategies here for the sake of completeness.

Let us start with the unregularized model where Ω = 0 i.e.,

β(z) ∈ arg min
β∈Rp

L(y(z),Φ(X,β)) = Fz(Φ(X,β)) . (7)

Definition 3.6. A function f is λ-strongly convex if for any
w0, w and ς ∈ (0, 1)

f(ςw0 + (1− ς)w) ≤ ςf(w0) + (1− ς)f(w)

− λ

2
ς(1− ς) ‖w0 − w‖2 .

Proposition 3.7. Assume that for any z, Fz is λ-strongly
convex and ρ-Lipschitz. It holds

‖µz(X)− µz0(X)‖ ≤ 2ρ

λ
.

Proof. By optimality of β(z), we have

Fz(Φ(X,β(z))) ≤ Fz(Φ(X,β)) ∀β . (8)

We simply apply the optimality condition and strong convex-
ity of the function Fz to the vectors w0 = Φ(X,β(z0)) =
µz0(X) and w = Φ(X,β(z)) = µz(X), it holds

0
(8)
≤ Fz(ςw0 + (1− ς)w)− Fz(w)

ς
(3.6)
≤ Fz(w0)− Fz(w)− λ

2
(1− ς) ‖w0 − w‖2 .

Since Fz is ρ-Lipschitz, we have

λ

2
‖w0 − w‖2 ≤ Fz(w0)− Fz(w) ≤ ρ ‖w − w0‖ .

Therefore, λ2 ‖w0 − w‖ ≤ ρ, hence the result.

The Proposition 3.7 does not assume that the optimization
problem in Equation (7) is convex in the model parameter
β. We can now easily deduce a stability bound according to
the Definition 3.1.
Corollary 3.8. If the score function S(q, ·) is γ-Lipschitz
for any q, then

τi =
2γρ

λ
, ∀i ∈ [n+ 1] .

When the loss function is not strongly convex, it is known
that adding a strongly convex regularization can stabilize
the algorithm (Shalev-Shwartz & Ben-David, 2014, Chapter
13). The proof technique is similar to the previous one with
the difference that now the bound is on the arg min of the
optimization problem and not the predictions of the model.
This requires stronger assumptions.
Proposition 3.9. Assume the optimization problem Equa-
tion (1) is convex, Ω is λ-strongly convex. If the loss L is
convex-ρ-Lipschitz, then

‖β(z)− β(z0)‖ ≤ 2ρ

λ
.

When the loss function L is convex-ν-smooth with ν < λ
and L(y(z), µz(X)) ≤ C for any z, then

‖β(z)− β(z0)‖ ≤ 2
√

2νC

λ− ν .
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These optimization error bounds also imply the following
stability bounds.

Corollary 3.10. Assume that the score function S(q, ·) is γ-
Lipschitz for any q, and that the prediction model µ·(x) :=
Φ(x, β(·)) satisfies for any x ∈ Rp, z, z0 ∈ R,

|µz(x)− µz0(x)| ≤ LΦ|x>β(z)− x>β(z0)| .

If the loss is ρ-Lipschitz, then

τi =
2γρLΦ ‖xi‖

λ
, ∀i ∈ [n+ 1] .

If the loss is ν-smooth with ν < λ and bounded by C, then

τi =
2γLΦ ‖xi‖

√
2νC

λ− ν , ∀i ∈ [n+ 1] .

Another way to understand such regularized bounds, is to
leverage duality. A smoothness assumption in the primal
space will translate into a strongly concave assumption in
the dual space (Hiriart-Urruty & Lemaréchal, 1993, Theo-
rem 4.2.2, p. 83). The dual formulation (Rockafellar, 1997,
Chapter 31) of Equation (1) reads:

θ(z) ∈ arg max
θ∈Rn+1

−L∗(y(z),−θ)− Ω∗(X>θ) , (9)

where, given a proper, closed and convex function
f : Rn → R ∪ {+∞}, we denoted its Fenchel-
Legendre transform as f∗ : Rn → R ∪ {+∞} de-
fined by f∗(x∗) = supx∈dom f 〈x∗, x〉 − f(x) with
dom f = {x ∈ Rn : f(x) < +∞}.

Let Pz and Dz denote the primal and dual objective func-
tions. We have the following classical error bounds for
the dual optimization problem. If the loss function L is
ν-smooth, then L∗ is 1/ν-strongly convex and we have for
∀(β, θ) ∈ domPz × domDz

1

2ν
‖θ(z)− θ‖2 ≤ Dz(θ(z))−Dz(θ)

= Pz(β(z))−Dz(θ)

≤ Duality Gapz(β, θ) ,

where the equality follows from strong duality and we recall
from weak duality that the duality gap upper bounds the
optimization error as follow:

Duality Gapz(β, θ) := Pz(β)−Dz(θ)

≥ Pz(β)− Pz(β(z)) .

This readily leads to several possible bounds. If the dual
function Dz(·) is ρ∗-Lipschitz for any z, then

‖θ(z)− θ‖ ≤
√

2νρ∗ .

If the duality gap can be assumed to be bounded by C for
any z ∈ [zmin, zmax], then

‖θ(z)− θ‖ ≤
√

2νC .

We obtain stability bounds when one uses the dual solu-
tion (which is a function of the residual) as a conformity
score S(y(z), µz(X)) = |θ(z)| where the absolute value is
taken coordinate wise. For example, these dual based score
functions were used in (Ndiaye & Takeuchi, 2019).
Remark 3.11 (Bound on the loss). The assumption of a
bounded loss function that we make, is not rigorously fea-
sible and some adaptations are necessary. For simplicity,
let us consider that Φ(x, 0) = 0 and Ω(0) = 0. Using the
optimality of β(z), we obtain for any candidate z

L(y(z), µz(X)) ≤ L(y(z), µz(X)) + Ω(β(z))

≤ L(y(z), 0) .

Unfortunately, for common examples such as least squares,
the right hand side is unbounded. Nevertheless, since the
data are assumed to be exchangeable, we have

P(yn+1 ∈ [y(1), y(n)]) ≥ 1− 2

n+ 1
.

Hence it is reasonable to restrict the range of candidates as
z ∈ [y(1), y(n)], which implies

L(y(z), µz(X)) ≤ sup
z∈[y(1),y(n)]

L(y(z), 0) =: C .

4. Numerical Experiments
We conduct all the experiments with a coverage level of 0.9
i.e., α = 0.1. For comparisons, we run the evaluations on
100 repetitions of examples and display the average of the
following performance statistics for different methods: the
empirical coverage i.e., the percentage of times the predic-
tion set contains the held-out target yn+1, the length of the
confidence intervals, and the execution time. We compare
the method we propose stabCP with the conformal pre-
diction set computed with an oracle method defined below,
with a splitting strategy splitCP (Papadopoulos et al.,
2002; Lei et al., 2018), and finally with an estimation of the
α-level set of the conformity function rootCP (Ndiaye &
Takeuchi, 2021) by root-finding solvers. Note that, when the
conformal set is a bounded interval, stabCP approximates
rootCP as in Figure 2. In all experiments conducted, we
observed that the exact conformal prediction set is indeed
an interval. Although this is often the case, we recall that
it might not be in general. Just for the comparisons, we
therefore estimated the stabCP sets with a root-finding
solver as well, as if a closed form solution was not available.
A python package with our implementation is available at
https://github.com/EugeneNdiaye/stable_
conformal_prediction where additional numerical
experiments (e.g., using large pre-trained neural net) and
benchmarks will be provided.

https://github.com/EugeneNdiaye/stable_conformal_prediction
https://github.com/EugeneNdiaye/stable_conformal_prediction
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Figure 3. Benchmarking conformal sets for the least absolute deviation regression models with a ridge regularization on real datasets. We
display the lengths of the confidence sets over 100 random permutation of the data. We denoted cov the average coverage and T the
average computational time normalized with the average time for computing oracleCP which requires a single full data model fit. The
full and exact CP set can always be approximated with a fine (costly) grid discretization of the output space and can then be used as a
default baseline. Here, it is represented by rootCP since in the examples displayed the full CP set turns out to be an interval and then
rootCP is equal to the full CP up to εr digit precision on the decimals; we used a default value of εr = 10−4.
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oracleCP. To define an oracle prediction set as refer-
ence, we follow in (Ndiaye & Takeuchi, 2019; 2021) and
assume that the unavailable target variable yn+1 is observed
by the algorithm. Hence, we define the oracle scores

∀i ∈ [n], Eor
i = S(yi, µyn+1

(xi)) ,

Eor
n+1(z) = S(z, µyn+1

(xn+1)) ,

and the oracle conformal set as

Γ
(α)
oracle(xn+1) := {z : πoracle(z) ≥ α} ,

πoracle(z) = 1− 1

n+ 1

n+1∑

i=1

1Eor
i ≤Eor

n+1(z) .

splitCP. A popular and classical estimation of confor-
mal prediction sets relies on splitting the dataset. The split
conformal prediction set introduced in (Papadopoulos et al.,
2002), separates the model fitting and the calibration steps.
Let us define

• the training set

Dtr = {(x1, y1), · · · , (xm, ym)} with m < n ,

• the calibration set

Dcal = {(xm+1, ym+1), · · · , (xn, yn)} .

Then the model is fitted on the training set Dtr to get µtr(·)
and define the score function on the calibration set Dcal:

∀i ∈ [m+ 1, n], Ecal
i = S(yi, µtr(xi)) ,

Ecal
n+1(z) = S(z, µtr(xn+1)) .

Thus, we obtain the split conformal set as

Γ
(α)
split(xn+1) = {z : πsplit(z) ≥ α} ,

πsplit(z) = 1− 1

n−m+ 1

n+1∑

i=m+1

1Ecal
i ≤Ecal

n+1(z) .

5. Discussion
The data splitting approach does not use all the data in the
training phase. It is often less statistically efficient, and its
interval length can vary greatly depending on the additional
randomness of the split. On the contrary, our approach
does not use any splitting, provides an approximation of the
exact conformal set that is pretty accurate depending on the
stability of the model as can be observed on Figure 3. All
this requires one and only one data fitting of the underlying
learning model. You will notice that splitCP and
stabCP have the same structure and are simple intervals
if the score functions are reasonably simple. The presence

of data splitting in the former is replaced by an additional
stability term in the latter. So if the predictive model is
very stable, stabCP benefits from all the data, and very
little regularization to get closer to the oracle version that
includes the unknown target yn+1. To date, we are not
aware of any other method that can obtain a full conformal
prediction set with such computational efficiency while
ensuring no loss on the coverage guarantee. We observe on
the benchmarks with real data Figure 3 that the stabCP is
often very similar to the rootCP which approximates with
a very fine precision the exact set (under the assumption
that the latter is a bounded interval). Our proposal has the
net advantage of being twenty to thirty times faster and can
often be computed in closed form.

However, as can be seen in Figure 2, our proposed method
loses precision when the sample size is small. This reflects
the difficulty of estimating a reliable confidence set in the
absence of algorithmic stability. At the same time, it is diffi-
cult to have an algorithm that generalizes well with so little
training data. Otherwise, when the size of the data is im-
portant, the influence of the stability bound is very little felt
because they are often of the order of magnitude O(1/n).

Finally, a notorious limitation is that one needs to know ex-
plicitly the stability bounds. This can be difficult to estimate
for some models. The bounds we presented in Section 3.3
cover a wide range of examples and can be completed
by bounds displayed in (Hardt et al., 2016; Bassily et al.,
2020; Lei et al., 2021; Klochkov & Zhivotovskiy, 2021) for
stochastic gradient descent. Even if the notion of stability
required here is slightly different, any error bound on the es-
timator can be naturally converted into a stability bound for
conformal prediction sets. So we don’t lose much generality
as long as we make the assumption that the score function
is sufficiently regular e.g., Lipschitz. This is precisely what
allowed us to obtain the bounds presented in this article. Yet,
if the parameter of the predictive model is defined iteratively
by a gradient descent process on a non-convex objective
function, obtaining stability bounds becomes quite delicate.
Moreover, the Lipschitz constant of neural network objec-
tives can be poorly estimated. In this case, our approach
could not be applied safely or could lead to uninformative
confidence intervals. The splitting strategy remains more
flexible. It would be interesting to study fine combinations
of data splitting and inclusion of stability bounds to reduce
the size of the confidence intervals and their variance while
being pivotal to explicit stability bounds.
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and minimization algorithms. II. Springer-Verlag, 1993.

Ho, S.-S. and Wechsler, H. Query by transduction. IEEE
transactions on pattern analysis and machine intelligence,
2008.

Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
1970.

Holland, M. J. Making learning more transparent using
conformalized performance prediction. arXiv preprint
arXiv:2007.04486, 2020.

Johnstone, C. and Cox, B. Conformal uncertainty sets
for robust optimization. Conformal and Probabilistic
Prediction and Applications, 2021.

Klochkov, Y. and Zhivotovskiy, N. Stability and deviation
optimal risk bounds with convergence rate o(1/n). Ad-
vances in Neural Information Processing Systems, 2021.

Laxhammar, R. and Falkman, G. Inductive conformal
anomaly detection for sequential detection of anomalous
sub-trajectories. Annals of Mathematics and Artificial
Intelligence, 2015.

Lei, J. Fast exact conformalization of lasso using piecewise
linear homotopy. Biometrika, 2019.



Stable Conformal Prediction Sets

Lei, J., GSell, M., Rinaldo, A., Tibshirani, R. J., and Wasser-
man, L. Distribution-free predictive inference for regres-
sion. Journal of the American Statistical Association,
2018.

Lei, Y., Yang, Z., Yang, T., and Ying, Y. Stability and gen-
eralization of stochastic gradient methods for minimax
problems. 2021.

Linusson, H., Norinder, U., Boström, H., Johansson, U., and
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6. Appendix
In these supplementary notes, we complete some proofs and bring algorithmic precisions of our approach as well as
additional numerical experiments.

6.1. StabCP Set with General Score Function

We explain a simple procedure to approximate the set prediction with an arbitrary pre-defined accuracy. We recall that

Γ(α)
up (xn+1) = {z : πup(z, ẑ) ≥ α}

= {z : S(z, µẑ(xn+1)) ≤ Q1−α(ẑ) + τn+1} ,

which is a convex set when the level-set of the score function is convex. By simplicity, we assume that the score function is
such that Γ

(α)
up (xn+1) is a bounded interval. Algorithm 2 summarizes the process.

Algorithm 2 Stable conformal prediction set for score function with convex level-set
Input: data {(x1, y1), . . . , (xn, yn)} and xn+1

Coverage level α ∈ (0, 1), any estimate ẑ ∈ R
Stability bounds τ1, . . . , τn+1 of the learning algorithm
Output: prediction interval at xn+1

Fit a model µẑ on the training data Dn+1(ẑ)
Compute the quantile Q1−α(ẑ) = U(d(1−α)(n+1)e)(z, ẑ) where the Uis are defined in Proposition 3.2
Compute Γ

(α)
up (xn+1) = [`α(xn+1), uα(xn+1)] up to εr > 0 tolerance error as follow:

1. find zmin < z0 < zmax such that

πup(zmin, ẑ) < α < πup(z0, ẑ) and α > πup(zmax, ẑ) . (10)

2. Perform a bisection search in [zmin, z0]. It will output a point ˆ̀such that `α(xn+1) belongs to [ˆ̀± εr] after at most
log2( z0−zmin

εr
) iterations.

3. Perform a bisection search in [z0, zmax]. It will output a point û such that uα(xn+1) belongs to [û± εr] after at most
log2( zmax−z0

εr
) iterations.

Return: Γ
(α)
up (xn+1)

6.2. Stability of the Linear Interpolation

We discussed in Section 3.2 the potential gain in accuracy when approximating the conformity function using not a single
point but a batch of points. Here we justify the interpolation approach when the score function S is sufficiently regular.
Proposition 6.1. Let us assume that the score function S(q, ·) is γ-Lipschitz for any q, and consider the interpolated
prediction model defined as

µ̃z =





ẑ1−z
ẑ1−zmin

µzmin + zmin−z
ẑ1−zmin

µẑ1 if z ≤ zmin ,
z−ẑt+1

ẑt−ẑt+1
µẑt + z−ẑt

ẑt+1−ẑtµẑt+1 if z ∈ [ẑt, ẑt+1] ,
z−ẑd

zmax−ẑdµzmax
+ zmax−z

zmax−ẑdµẑd if z ≥ zmax ,

(11)

where µ· is stable according to Definition 3.1. It holds

|S(q, µ̃z(xi))− S(q, µ̃z0(xi))| ≤ 3γτi . (12)

Proof. Using the triangle inequality, we have

˜stab := |S(q, µ̃z(xi))− S(q, µ̃z0(xi))|
≤ |S(q, µ̃z(xi))− S(q, µz(xi))|+ |S(q, µz(xi))− S(q, µz0(xi))|+ |S(q, µz0(xi))− S(q, µ̃z0(xi))| .
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If µ· is stable, then the second term of the right hand side of the previous inequality is bounded by τi. Now, assuming that S
is γ-Lipschitz in its second argument, for any q, we have:

|S(q, µ̃z(xi))− S(q, µz(xi))| ≤ γE iz ,

where

E iz = |µz(xi)− µ̃z(xi)|
≤ |µz(xi)− αtµzt(xi)− (1− αt)µzt+1

(xi)|
≤ αt|µz(xi)− µzt(xi)|+ (1− αt)|µz(xi)− µzt+1

(xi)|
≤ αtτi + (1− αt)τi = τi ,

with αt ∈
{

z1−z
z1−zmin

, z−zt+1

zt−zt+1
, z−zd
zmax−zd

}
is the scaling of interpolation points. Thus, we obtain

˜stab ≤ γ(E iz + τi + E iz0) ≤ 3γτi .

The upper and lower approximation of the conformity function obtained with the interpolated model fit along with stability
bounds are defined as:

π̃lo(z) = 1− 1

n+ 1

n+1∑

i=1

1L̃i(z)≤Ũn+1(z) ,

π̃up(z) = 1− 1

n+ 1

n+1∑

i=1

1Ũi(z)≤L̃n+1(z) ,

where for any index i in [n+ 1], using the stability bound in Equation (12), we define

L̃i(z) = Ẽi(z)− 3γτi and Ũi(z) = Ẽi(z) + 3γτi ,

Ẽi(z) = S(yi, µ̃z(xi)) and Ẽn+1(z) = S(z, µ̃z(xi)) .

In general, approximating the entire model path with respect to output/label changes using finite grid points is not always safe
for calculating the conformal prediction set because it breaks the exchangeability assumptions of the data set. Incorporating
the stability bound will regularize the conformity function to restore the validity of the method. However, the procedure
proves to be quite robust to wrong estimation of the stability bounds. The experiments in (Ndiaye & Takeuchi, 2021) are
conducted with estimates τi = 0 and the prediction sets obtained are essentially the same as the exact one. More detailed
experiments will be proposed in our github implementation.

6.3. Additional Experiments

In this appendix, we add some numerical experiments to illustrate how stabCP can behave when using an estimator that is
not defined as an argmin but rather as an output of an iterative process. In this case, we use a Multi-Layer Perceptron
regressor trained with T = n iter number of gradient descent iterations. Recent analyses (Hardt et al., 2016) have shown
that any model trained with the stochastic gradient method in a reasonable amount of time achieves low generalization error.
The proof of these results consists in showing that the estimator verifies a stability condition when the input data are slightly
perturbed. The bounds on the iterates of stochastic gradient methods are often proportional to T

n . They also depend on the
Lipschitz regularity constants which unfortunately can be hard to estimate in practice. Here, we will be satisfied with the
order of magnitude and evaluate the behavior of the conformity function according to the number of iterations performed.
We run the experiments on two different datasets with a sample size of 442 and 20640.
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Figure 4. Illustration of different conformity functions with respect to a sequence of stability bounds. We observe that by merely staking an
order of magnitude O(1/n) as stability bound, gives a good estimate of the conformal prediction set even if the bound is not safe. These
experiments are conducted with a Multi-Layer Perceptron regressor on the Diabetes (442, 10) dataset, trained with T = n iter
iterations of Stochastic Gradient Descent.
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Figure 5. Illustration of different conformity functions with respect to a sequence of stability bounds. We observe that by merely staking
an order of magnitude O(1/n) as stability bound, gives a good estimate of the conformal prediction set even if the bound is not safe.
These experiments are conducted with a Multi-Layer Perceptron regressor on the Housingcalifornia (20640, 8) dataset, trained
with T = n iter iterations of Stochastic Gradient Descent.
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Figure 6. Benchmarking conformal sets for MLP regression models with a ridge regularization on real datasets. The parameter of the model
is obtained after T = n/10 iterations of stochastic gradient descent. For stabCP, we use a stability bound estimate τi = T ‖xi‖ /(n+1).
We display the lengths of the confidence sets over 100 random permutation of the data. We denoted cov the average coverage and T the
average computational time normalized with the average time for computing oracleCP which requires a single full data model fit.
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Figure 7. Benchmarking conformal sets for Gradient Boosting regression models with a ridge regularization on real datasets. For stabCP,
we use a stability bound estimate τi = ‖xi‖ /(n+ 1). We display the lengths of the confidence sets over 100 random permutation of
the data. We denoted cov the average coverage and T the average computational time normalized with the average time for computing
oracleCP which requires a single full data model fit.
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Figure 8. Benchmarking conformal sets for Gradient Boosting regression models with a ridge regularization on real datasets. For stabCP,
we use a rough stability bound estimate τi ≈ ‖xi‖ /10. We display the lengths of the confidence sets over 100 random permutation of
the data. We denoted cov the average coverage and T the average computational time normalized with the average time for computing
oracleCP which requires a single full data model fit. This example shows that for unstable models such as decision trees, a coarse
estimation of the stability bound can result in an overestimation of the confidence interval, which is a notable limitation of the proposed
method.


