
Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann 1 Pan Peng 2

Abstract

Social networks are often modeled using signed
graphs, where vertices correspond to users and
edges have a sign that indicates whether an in-
teraction between users was positive or nega-
tive. The arising signed graphs typically con-
tain a clear community structure in the sense that
the graph can be partitioned into a small num-
ber of polarized communities, each defining a
sparse cut and indivisible into smaller polarized
sub-communities. We provide a local clustering
oracle for signed graphs with such a clear com-
munity structure, that can answer membership
queries, i.e., “Given a vertex v, which community
does v belong to?”, in sublinear time by reading
only a small portion of the graph. Formally, when
the graph has bounded maximum degree and the
number of communities is at most O(log n), then
with Õ(

√
n poly(1/ε)) preprocessing time, our

oracle can answer each membership query in
Õ(
√
n poly(1/ε)) time, and it correctly classifies

a (1− ε)-fraction of vertices w.r.t. a set of hidden
planted ground-truth communities. Our oracle
is desirable in applications where the clustering
information is needed for only a small number
of vertices. Previously, such local clustering or-
acles were only known for unsigned graphs; our
generalization to signed graphs requires a number
of new ideas and gives a novel spectral analysis
of the behavior of random walks with signs. We
evaluate our algorithm for constructing such an
oracle and answering membership queries on both
synthetic and real-world datasets, validating its
performance in practice.

1KTH Royal Institute of Technology, Stockholm, Sweden
2School of Computer Science and Technology, University of Sci-
ence and Technology of China, Hefei, China. Correspondence to:
Pan Peng <ppeng@ustc.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Finding clusters (or communities) in graphs is a well-studied
and fundamental problem in computer science. While clas-
sically this problem has been studied in unsigned graphs,
several recent works have focused on signed graphs, where
each edge has a sign indicating whether the interaction be-
tween two nodes was friendly or hostile. This setting has
been motivated by polarization in social networks, where
the users form groups that have mostly friendly interactions
within each group but there may exist hostile interactions be-
tween opposing groups (see, e.g., (Bonchi et al., 2019; Xiao
et al., 2020; Ordozgoiti et al., 2020; Atay & Liu, 2020)).

More concretely, in a signed graph G = (V,E, σ), each
edge e = (u, v) ∈ E is associated with a sign σ(e) ∈
{+,−} indicating a positive (friendly) or negative (hostile)
relation between the two vertices u and v. To model po-
larization, Harary (1953) proposed the notion of balanced
graphs: a graph is balanced if it can be partitioned into two
subsets V1 and V2 such that the induced subgraphs G[V1]
and G[V2] only contain positive edges, while all edges with
one endpoint in V1 and the other endpoint in V2 have a neg-
ative sign. For example, in a social network like Twitter
the groups V1 and V2 could correspond to users of opposing
opinions (e.g., Democrats and Republicans) that have a con-
flict but that behave nicely within their respective groups.

To detect polarization in social networks, several recent
works have aimed at finding nearly-balanced communities
inside signed graphs, i.e., their goal was to find induced
subgraphs that after the removal of only few edges become
balanced and are sparsely connected to the outside (Bonchi
et al., 2019; Mercado et al., 2019; Xiao et al., 2020). Often
the resulting communities are minimal in the sense that they
are nearly-balanced and they cannot be further divided into
smaller nearly-balanced communities. We will also refer
to these communities as polarized. The main drawback of
many existing methods for finding polarized communities
is that they are inherently global, i.e., they need to process
the full graph and return a partitioning of all vertices. In
practice, however, the graphs are often so large that methods
which aim to cluster all vertices have prohibitively high
running times. Additionally, when mining social networks,
the full graph is often not available because social network
providers, such as Twitter, limit the amount of data that is

Sublinear-Time Clustering Oracle for Signed Graphs

available due to privacy constraints.

Fortunately, in many settings we only require the community
membership information for a small number of vertices, or
we just want to know if two given vertices belong to the
same cluster or not. This could be the case, for example,
when an analyst wishes to find out whether two users are
part of the same polarized discussion or not. Furthermore,
even in settings when the amount of data is limited (like in
the Twitter example above), it seems feasible to explore the
local neighborhood (e.g., by performing random walks) of
each user that shall be classified.

Our contributions. We provide a local clustering oracle
for signed graphs. The oracle preprocesses a small part of
the graph and after the preprocessing finished, for a queried
vertex v it can answer the following query:

• WHICHCLUSTER(v): Returns which cluster v belongs to.

Here, we assume that there is a set of (hidden) ground-
truth clusters and WHICHCLUSTER(v) returns the index
of the cluster v belongs to. Ideally, when two nodes u, v
belong to the same ground-truth cluster, then the queries
WHICHCLUSTER(u) and WHICHCLUSTER(v) will return
the same result, and if u, v belong to different clusters, the
results will be different.

Both the preprocessing time as well as the query time of
our clustering oracle are sublinear in the size of the in-
put graph. This is particularly useful when the clustering
information is only required for a small number of ver-
tices. More concretely, our oracle has preprocessing time1

Õ(
√
npoly(1/ε)), where n is the number of vertices in the

graph and ε > 0 is an error parameter. The query procedure
has query time Õ(

√
npoly(1/ε)). Such clustering oracles

have been previously studied for unsigned graphs (Peng,
2020) from a theoretical point of view but none were known
for signed graphs and it was unclear how well they perform
in practice.

In a nutshell, the query procedure WHICHCLUSTER(v) per-
forms Õ(

√
n poly(1/ε)) random walks of length O(log n)

starting at v and then aggregates the information from
these random walks into a sparse vector mv with
Õ(
√
npoly(1/ε)) non-zero entries. We define a pseudo-

metric ∆ on the space of these vectors and show that the
vectors of vertices from the same community have “small”
∆-distance, while the vectors of vertices from different com-
munities have “large” ∆-distance. We describe the details
in Sec. 3.1.

Example 1. One possible application of our oracle is the
clustering of an online social networks such as Twitter. The
user interactions on Twitter can be interpreted as a signed
graph with some hidden communities. Now it is possible

1Here, Õ(f(n)) denotes running times O(f(n) · polylg(n)).

to label (e.g., by hand) a small number of users for several
nearly-balanced communities. These users can be used
as seed nodes for the oracle and then the oracle can be
used to efficiently classify users based on which community
they belong to. This addresses the issue that the Twitter
graph is too large to cluster it completely. Additionally, as
researchers we do not have access to the full Twitter graph
but it seems feasible to perform a small number of short
random walks from each user that shall be classified.

We provide a theoretical analysis of the oracle for bounded-
degree graphs with a constant (or logarithmic) number of
“well-behaved” nearly-balanced communities. We show
that when we apply WHICHCLUSTER(v) to all vertices,
then the oracle classifies a (1 − ε)-fraction of the vertices
correctly. See Thm. 4 for the formal statement of our result.
To obtain this result, we relate the spectrum of the graph’s
normalized signed Laplacian to the random walks performed
by the query procedures. Therefore, we give a novel spectral
analysis of the behavior of random walks with signs, which
essentially keep track whether the random walk traversed
an even or an odd number of negative edges. Then we
relate the ∆-distance of signed random walk vectors to
the eigenvalues/eigenvectors of the signed Laplacian. See
Sec. 3.2 for a precise statement of our technical contribution
and App. D for an overview of our analysis.

Our theoretical contributions. Our theoretical results are
inspired by sublinear clustering oracles for unsigned graphs,
and some notions and lemmas look superficially similar to
the counterparts in unsigned graphs (e.g., (Czumaj et al.,
2015; Peng, 2020)). However, to generalize these oracles
to signed graphs we need several new ideas. We will now
briefly discuss these new ideas.

First, the clustering oracle in unsigned graphs is based on
the following intuitive idea: a random walk starting from
a randomly chosen vertex of some cluster U will first be
trapped in U , and the corresponding distribution converges
to the uniform distribution on U (for simplicity, we assume
the graph is regular); later, the random walk moves out
of U and then the distribution converges to the uniform
distribution on the whole graph. In signed graphs, this
intuition is no longer true. In particular, the distribution of
a signed random walk does not necessarily converge to a
stationary distribution (if it exists). Interestingly, we show
that (informally) in a polarized cluster U with a bipartition
V1 and V2 corresponding to the two opposing groups, a
signed random walk converges to either a scaled version
of the uniform distribution on V1, or a scaled version of
the uniform distribution on V2. To this end, we show that
(see Lem. 6) if we map vertices to the spectral embedding
defined by the first k eigenvectors of the signed normalized
Laplacian matrix of the graph, then the embedded points
are centered around two opposite centers. To contrast, in

Sublinear-Time Clustering Oracle for Signed Graphs

unsigned graphs, the spectral embedding of most vertices
in the same cluster are close to one single center. To show
the existence of two opposite centers, we develop a new
property relating the eigenvectors and the polarized clusters,
which may be useful for future work on clustering in signed
graphs.

Second, for unsigned oracles, it suffices to consider the `22-
distance between two random walk distributions starting
from any two vertices u, v to decide if u, v are similar or
not (i.e., if they belong to the same cluster or not). For
signed oracles, since each polarized cluster has two opposite
centers, we need to introduce a pseudometric distance ∆̃
between the corresponding vectors to compare the similarity
of two vertices. That is, for any two vertices u, v with
random walk vectors mu,mv , we define

∆̃u,v := min{‖mu −mv‖22, ‖mu + mv‖22}.

Intuitively, if u, v belong to the same polarized cluster with
a bipartition V1, V2, then either the distance ‖mu −mv‖22
is small (corresponding to the case that u, v belong to the
same part in the bipartition), or ‖mu+mv‖22 is small (corre-
sponding to the case that u, v belong to two different parts).
Furthermore, if u, v belong to two different clusters, then
neither of these two distances is small.

Third, to characterize the cluster structure of a signed
graph G, it is somehow natural to use the signed bipar-
titeness ratio (see Sec. 2), a signed analogue of conductance
in unsigned graphs. However, we find that one cannot use
the signed bipartiteness ratio of a graph to characterize the
inside structure of a potential polarized cluster (see App. B).
We resolve this by introducing a new notion called inner
signed bipartiteness ratio βinner(G) of G that is a minimiza-
tion function by considering all vertex subsets of at most
half the total volume of the graph (see Eqn. (1) and Def. 3).

Our practical contributions. We provide the first implemen-
tations of signed and unsigned oracles. While our signed
oracles with theoretical guarantees can only distinguish be-
tween different communities, we also provide a heuristic
extension which allows for queries of the type: “In which
opposing group of a community is vertex v?” In practice,
such a query could be used, e.g., to decide whether a user in
a social network is a Democrat or a Republican.

We evaluate our algorithms on synthetic and on real-world
datasets (Sec. 4) and show that our oracles are practical. Our
methods work well even when the graphs do not satisfy the
bounded degree assumption from our theoretical analysis.
Furthermore, our algorithms outperform existing methods
when the graphs contain large communities. We further pro-
vide novel real-world datasets which contain signed graphs
with a small number of large ground-truth communities; to
the best of our knowledge, these are the first public datasets
with this property and we make them freely available.

Related work. Finding communities in signed graphs has
received a lot of attention. One line of works models po-
larized communities as (nearly) balanced subgraphs in a
signed graph (Kunegis et al., 2010; Chiang et al., 2012;
Bonchi et al., 2019; Cucuringu et al., 2019; 2020; Mercado
et al., 2019; Xiao et al., 2020; Chu et al., 2016; Chiang et al.,
2014; 2012). Xiao et al. (2020) provide a local algorithm for
finding nearly balanced subgraphs. The algorithm of (Xiao
et al., 2020) requires a set of seed nodes and returns a sub-
graph with small signed bipartiteness ratio; we compare our
algorithm against this work in the experiments. Ordozgoiti
et al. (2020) find large (exactly) balanced subgraphs. In an-
other line of work, polarized communities were modeled us-
ing k-way balanced graphs (Chiang et al., 2012) and signed
stochastic block models (Mercado et al., 2016; 2019) or us-
ing correlation clustering (Bansal et al., 2004; Cesa-Bianchi
et al., 2012); these results are not directly comparable to our
work since we consider k disjoint (nearly) 2-way balanced
subgraphs while these works try to find a single partition-
ing of the graph that reveals k communities. Interestingly,
many of these works are based on spectral graph theory
(e.g., (Kunegis et al., 2010; Chiang et al., 2012; Xiao et al.,
2020; Ordozgoiti et al., 2020; Mercado et al., 2016; 2019)).

Jung et al. (2016; 2020) use signed random walks with
restarts to rank users in social networks but, unlike in our
work, they do not relate the signed random walks to the
spectrum of the signed graph.

Sublinear-time algorithms for clustering unsigned graphs
have been studied using the notion of conductance (rather
than the signed bipartiteness ratio). Czumaj et al. (2015)
gave a property testing algorithm which can decide whether
a graph is k-clusterable or is far from being k-clusterable
in sublinear time. Interestingly, the algorithm by Czumaj
et al. (2015) can be adapted to a sublinear-time clustering
oracle. Peng (2020) extended this to a robust clustering
oracle that reports the clustering information of graphs with
noisy partial information. Chiplunkar et al. (2018) and
Gluch et al. (2021) provided further improvements.

Intriguingly, the algorithm by Pons & Latapy (2006) is also
based on clustering the vectors of short random walks and is
very popular in practice (e.g., it is implemented in the igraph
software package (Csardi & Nepusz, 2006)). The similarity
measure used in Pons & Latapy (2006) is quite similar
to the one which was independently proposed by Czumaj
et al. (2015), though the latter is focusing on using a small
number of random walks to estimate the measure (rather
than computing it directly) and thus achieving a sublinear-
time algorithm. Therefore, one can view the results of
Czumaj et al. (2015) and of this paper as a further theoretical
justification for the practical success of the work of Pons &
Latapy (2006).

Sublinear-Time Clustering Oracle for Signed Graphs

2. Preliminaries
Let G = (V,E, σ) be an unweighted signed graph with
n vertices, m edges and edge signs σ(e) ∈ {+,−}. The
degree dG(u) of a vertex u is dG(u) = |{v : (u, v) ∈ E}|;
note that the degree does not take into account the signs of
the edges. For any set S ⊆ V , let volG(S) =

∑
u∈S dG(v).

The volume of G is vol(G) =
∑
u∈V dG(u).

For V1, V2 ⊆ V , we set E(V1, V2) = {(u, v) ∈ E : u ∈
V1, v ∈ V2}. Furthermore, we set E+(V1, V2) = {(u, v) ∈
E(V1, V2) : σ(uv) = +} and E−(V1, V2) = {(u, v) ∈
E(V1, V2) : σ(uv) = −}. When V1 = V2, we set E(V1) =
E(V1, V1). To maintain consistency with previous works,
we set |E(V1)| to twice the number of edges in G[V1] (but
we do not make this change for |E(V1, V1)|). We define
|E+(V1)| and |E−(V1)| analogously to |E(V1)|.

Signed bipartiteness ratio. Following the work of Xiao
et al. (2020), we use the signed bipartiteness ratio to capture
polarization between two opposing groups in a graph. A
pair (V1, V2) is a sub-bipartition of V if ∅ 6= V1 ∪ V2 ⊆
V and V1 ∩ V2 = ∅. For a sub-bipartition (V1, V2) of V
we set volG(V1, V2) =

∑
u∈V1∪V2

dG(u). Now the signed
bipartiteness ratio of (V1, V2) is given by

βG(V1, V2) :=
eG(V1, V2)

volG(V1, V2)
,

where

eG(V1, V2) =2
∣∣E+

G(V1, V2)
∣∣+
∣∣E−G(V1)

∣∣+
∣∣E−G(V2)

∣∣
+
∣∣EG(V1 ∪ V2, V1 ∪ V2)

∣∣ .
Observe that when βG(V1, V2) is small then the induced
subgraph G[V1 ∪ V2] is close to balanced (i.e., G[V1] and
G[V2] contain only few negative edges and there are mostly
negative edges between V1 and V2), and the vertices in
V1 ∪ V2 are sparsely connected to the rest of the graph (i.e.,
there are few edges from V1 ∪ V2 to V \ (V1 ∪ V2)).

For a set of vertices ∅ 6= U ⊆ V , we define the
signed bipartiteness ratio of U in G as βG(U) :=
min(V1,V2) : V1∪V2=U βG(V1, V2), where the minimum is
taken over all partitions (V1, V2) of U . For a graph G, we
define the (classic) signed bipartiteness ratio of G as

β(G) := min
∅6=U⊆V

βG(U)

= min
(V1,V2):sub-bipartition of V

βG(V1, V2).

Observe that a set of vertices U is balanced if and only
if U can be partitioned into subsets V1 and V2 such that
βG[U](V1, V2) = 0 if and only if β(G[U]) = 0. Thus, one
can interpret the signed bipartiteness ratio as a measure for
how close a certain subgraph is to being balanced. The sets
V1 and V2 that partition U are sometimes called biclusters.

Spectral signed graph theory. Next, we introduce defi-
nitions for the spectral analysis of signed graphs. We use
bold letters to denote vectors and matrices. Let D be the
n× n diagonal degree matrix of G, i.e., Duu = dG(u) for
all u ∈ V . Let Aσ be the n × n signed adjacency matrix,
i.e., Aσ

uv = σ(uv) if (u, v) ∈ E, and Aσ
uv = 0, otherwise.

Let I be the n× n identity matrix.

We call Lσ := D−Aσ the signed (unnormalized) Lapla-
cian matrix, and Lσ := I − D−1/2AσD−1/2 the signed
normalized Laplacian matrix. It is well-known that all eigen-
values of Lσ are in the interval [0, 2] and we list them in
non-decreasing order as 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2.

For k ∈ [n], the k-way signed bipartiteness ratio of G is

βk(G) := min
U1,...,Uk

max
i=1,...,k

βG(Ui)

= min
{(V2i−1,V2i)}ki=1

max
i=1,...,k

βG(V2i−1, V2i).

Here, the minima are taken over all possible choices of
k non-empty, disjoint sets Ui ⊂ V and disjoint sub-
bipartitions (V2i−1, V2i), respectively. Intuitively, βk(G)
is small iff G contains k disjoint communities that are close
to balanced iff G contains k polarized communities.

Atay & Liu (2020) provided a Cheeger-type inequality that
relates the k-way signed bipartiteness ratio to the eigenval-
ues λk of the signed normalized Laplacian Lσ .

Theorem 2 (Higher-order Signed Cheeger Inequality (Atay
& Liu, 2020)). There exists a constant C1 such that for all
signed graphs G and k ∈ [n], λk2 ≤ βk(G) ≤ C1k

3
√
λk.

Finally, W = I+D−1Aσ

2 is the walk matrix that corresponds
to lazy random walks in a signed graph G. Additionally,
for t ∈ N and v ∈ V , we set ptv = 1vW

t, where 1v is the
n-dimensional indicator vector that has a 1 in the v’th entry
and is 0 in all other entries.

3. Main Result and Algorithm
In this section, we formally present our main result and
give the details of our clustering oracle. To state our the-
orem, we first need to introduce two new definitions. For
a signed graph G = (V,E, σ), we define the inner signed
bipartiteness ratio of G as

βinner(G) := min
∅6=U⊆V : vol(U)≤ 1

2 vol(G)
βG(U). (1)

Note that we only consider subsets U of volume at most
1
2 vol(G); this is in contrast with the definition of β(G), in
which the minimum is taken over all possible subsets U .
The definition (1) resembles the inner conductance that has
been used to study the clusterability of unsigned graphs (e.g.,
(Gharan & Trevisan, 2014; Czumaj et al., 2015)), though

Sublinear-Time Clustering Oracle for Signed Graphs

in contrast with β(G), it is not directly associated with the
signed Cheeger inequality.

Next, we define the notion of clusterability under which we
will obtain our theoretical results.

Definition 3. Let k ∈ N, βin, βout ∈ R>0 and let G =
(V,E, σ) be an unweighted signed graph. We say that G is
(k, βin, βout)-clusterable if there exists a partition of V into k
disjoint subsets (U1, . . . , Uk) such that βG(Ui) ≤ βout and
βinner(G[Ui]) ≥ βin for all i ∈ [k]. Each subset Ui is called
a (βin, βout)-cluster and the corresponding partitioning is
called a (k, βin, βout)-clustering. Furthermore, if each sub-
set Ui satisfies that |Ui| ≥ Ω(nk), then we call the partition
(U1, . . . , Uk) a balanced (k, βin, βout)-clustering.

Let us briefly explain this definition; it is handy to think
of βout as very small and βout � βin. The first condition
that βG(Ui) ≤ βout for all i = 1, . . . , k ensures that the
graph contains k communities which are nearly-balanced
and that can be viewed as polarized communities. The
second condition (βinner(G[Ui]) ≥ βin for all i = 1, . . . , k)
ensures that each of the nearly-balanced communities is
minimal in the sense that it cannot be further decomposed
into more balanced communities.

We remark that at first glance it might be surprising that
in Definition 3, we use βinner(G[Ui]) instead of β(G[Ui])
to measure the indivisibility of G[Ui] into smaller nearly-
balanced communities. However, in App. B we show that
if βG(Ui) is small, then β(G[Ui]) is also small. This indi-
cates that β(G[U]) is not an appropriate measure for this
characterization.

Now we state our main result. We consider signed graphs
G of degree at most d, where d is a constant throughout
the paper. We assume that we have query access to the
adjacency list of G, i.e., for any vertex v and an index
i ≤ d, we can query the i-th neighbor of v in constant
time if it exists (if no such neighbor exists we get a special
symbol ‘⊥’). Let P4Q denote the symmetric difference.
In the following, we let d > 10, k ≥ 1, ε ∈ (0, 1) and
βin ∈ (0, 1). Let n be an integer such that n ≥ 1800k2 log(k)

γε ,
where γ ∈ (0, 1] is a constant.

Theorem 4. Let G = (V,E, σ) be a signed graph with
|V | = n vertices and maximum degree at most d. Suppose
that G has a balanced (k, βin, βout)-clustering U1, · · · , Uk,
βout <

εβ2
in

C′ log(k)k7d3 logn , whereC ′ is some sufficiently large
constant, and |Ui| ≥ γ nk for all i = 1, . . . , k. There exists
an algorithm that has query access to the adjacency list ofG
and constructs a clustering oracle inO(

√
n ·poly(kd·lognεβin

))
preprocessing time. Furthermore, with probability at least
0.9, the following hold:

1. Using the oracle, the algorithm can answer any WHICH-
CLUSTER query in O(

√
n · poly(kd·lognεβin

)) time.

2. Let Pi := {u ∈ V : WHICHCLUSTER(u) = i}, i ∈ [k],
be the clusters defined by WHICHCLUSTER. Then there
exists a permutation π : [k] → [k] such that for all
i ∈ [k],

∣∣Pπ(i)4Ui∣∣ ≤ O(ε/ log k)|Ui|.

The theorem asserts that if the input graph G has bounded
degree and satisfies the assumptions from Def. 3 with
βout � βin, then our clustering oracle has preprocessing
and query time Õ(

√
n poly(1/ε)). Furthermore, the second

item implies that if we pick ε small enough, we can make
the number of misclassified vertices arbitrarily small. In
particular, for any δ > 0 we can pick ε such that the oracle
classifies at least a (1− δ)-fraction of the vertices correctly.

3.1. The Algorithm

Now we present the implementation of our clustering oracle.
The main building block of our oracle are lazy signed ran-
dom walks which we will discuss first. Based on a sequence
of random walks starting at a vertex u, we will define a
sparse vector mu. We will then use the vectors mu and mv

to estimate distances δuv between vertices u and v with the
intuition that u and v are in the same cluster iff δuv is small.
We will also discuss the preprocessing of the oracle and the
query procedures.

Lazy signed random walks. We introduce lazy signed
random walks. Intuitively, a lazy signed random walk is a
lazy random walk on the unsigned version of the graph that
keeps track of the sign of the walk. Here, the sign of the
walk is the multiplication of the signs of all traversed edges.

More formally, a lazy signed random walk of length t from
a vertex u proceeds as follows. Initially, at step T = 0, we
start at vertex u0 := u with sign s0 := +. Suppose that at
step 0 ≤ T < t we are at vertex uT with sign sT ∈ {+,−}.
Then at the step T + 1, with probability 1

2 we stay at uT
and keep the sign unchanged (i.e., uT+1 = vt, sT+1 = sT),
and with the remaining 1

2 probability, we choose a random
neighbor v of uT with probability 1

dG(uT)
, and move to v

and update uT+1 = v, sT+1 = σ(eT+1)sT , where eT+1 =
{uT , v}. Thus, if a walk traverses the edges e1, . . . , et then
the final sign of the walk is

∏t
i=1 σ(ei). Later, we will set

the number of steps to t = Θ(log n).

Vectors from sequences of random walks. Next, given a
start vertex u, we describe how to obtain a sparse vector
mu ∈ Rn based on a sequence of lazy signed random
walks. In Sec. D, we will argue that mu essentially serves
as a (sparse) approximation of the vector ptuD

−1/2, where
ptu = 1uW

t, W is the walk matrix and D is the degree
matrix as defined in Sec. 2.

Suppose that we perform R lazy signed random walks of
length t from vertex u and let v1, . . . , vR be the vertices
at which these random walks finish with respective signs

Sublinear-Time Clustering Oracle for Signed Graphs

s1, . . . , sR. Now we define two vectors m+
u ,m

−
u ∈ Rn≥0

as follows. We set m+
u (v) to the fraction of random

walks that ended in vertex v with sign +, i.e., m+
u (v) =

|{i : vi=v, si=+}|
R for all v ∈ V . Similarly, we set m−u (v) =

|{i : vi=v, si=−}|
R . Finally, we set mu = (m+

u −m−u)D−1/2.

Note that mu can have positive and negative entries. Fur-
thermore, theR random walks can end in at mostR different
vertices, and thus mu has at most R non-zero entries. Later,
we will set R = Õ(

√
n poly(1/ε)).

We now introduce our key subroutine ESTDOT-
PROD(u,v,t,α) and the pseudocode of the routine is
presented in Alg. 1. Consider two vertices u and v, the ran-
dom walk length t and a technical parameter α that we will
set in the proof of Thm. 4. Then ESTDOTPROD(u,v,t,α)
computes the two vectors mu and mv and calculates their
dot product. This is repeated h = O(log n) times and then
the median of these dot products is returned. We will later
(Lem. 12) show that the output of ESTDOTPROD(u,v,t,α)
gives an approximation of 〈ptuD−1/2,ptvD−1/2〉 with
small error.

Preprocessing. We present the preprocessing phase of the
oracle in Alg. 2. Here, we make use of the fact (see Sec. D
for details) that when two vertices u and v are from the same
cluster, then

∆uv := min{‖ptuD−1/2 − ptvD
−1/2‖22,

‖ptuD−1/2 + ptvD
−1/2‖22}

should be small, whereas if u and v are from different clus-
ters then ∆uv should be large. However, since our algorithm
has no access to the vectors ptu and ptv , we will need to use
ESTDOTPROD to obtain an estimate δuv as approximation
of ∆uv .

The preprocessing starts by sampling a set S of O(k log k)
vertices. Essentially this ensures that from each of the k clus-
ters, S contains at least one vertex. Now for all pairs of
vertices u, v ∈ S, we compute δuv as approximation of
∆uv by rewriting the norms inside the definition ∆uv as
dot products and then estimating each of these dot products
using ESTDOTPROD. More concretely, we observe that

∆uv = min{Yuu + Yvv − 2Yuv, Yuu + Yvv + 2Yuv}, (2)

where Yab = 〈ptaD−1/2,ptbD−1/2〉 for a, b ∈ V . Next, we
let Xab = ESTDOTPROD(a, b) and we define

δuv = min{Xuu +Xvv − 2Xuv, Xuu +Xvv + 2Xuv}. (3)

We cluster the vertices in S as follows. We create an aux-
iliary graph H with vertex set S and without edges. Then
we add edges for each pair of vertices u and v such that δuv
is “small”, i.e., if δuv < 1

2dn . In our proof of Thm. 4, we

will show that if the conditions of the theorem hold, then
H consists of k cliques corresponding to the k clusters in
the (k, βin, βout)-clustering. Thus, the preprocessing will
correctly identify at least one vertex from each cluster.

Query procedure. For a query WHICHCLUSTER(v), we
proceed similarly to how we clustered the vertices in S in
the preprocessing. More concretely, given v as input to the
query, we compute δuv for all u ∈ S. If δuv ≤ 1

2dn for
some u ∈ S then we return that v belongs to the cluster of u.
For the full details, see Alg. 3.

3.2. Main Technical Contribution

To prove Thm. 4, our global proof strategy is as follows.
First, we show that two vertices u and v are from the same
cluster if and only if ∆uv is small (see Lem.s 9 and 10).
Second, we show that Xuv does not introduce too much
error for estimating 〈ptvD−1/2,ptuD−1/2〉 (see Lem. 12).
This then implies that with a large probability δuv is close
to ∆uv and, thus, δuv is small iff u and v are from the same
cluster. We give more intuition and details of our proof
strategy in App. D.

This strategy is similar to the one by Czumaj et al. (2015)
for unsigned graphs. However, even though our global proof
strategy is similar, we still have to contribute a significant
amount of new ideas to extend the clustering oracle from the
unsigned to the signed setting. We will now discuss some
of these challenges in more detail.

One particular challenge was showing that ∆uv is small if
u and v are from the same cluster (see Lem. 9). To prove
this, we need two technical lemmas that constitute our main
technical contribution. One of them (Lem. 6) provides a
connection between bicluster membership and the entries
of the eigenvectors of the signed normalized Laplacian. We
believe this result is of independent interest and will find
further applications in the analysis of signed graphs.

Let v1, · · · ,vn be the orthonormal row eigenvectors of Lσ
s.t. λivi = viLσ. Thus viv>j = 1 if i = j and viv

>
j = 0

otherwise. Let v′i = viD
−1/2. For a subset U ⊆ V , let

µU = volGU be the total volume of the induced graph
G[U], i.e., the sum of degrees of all vertices in G[U].

The first lemma says there is a gap between λk and λk+1 if
a graph is (k, βin, βout)-clusterable, which allows us to use
the first k eigenvectors v1, . . . ,vk to bound ∆uv . The proof
makes use of our new definition of inner signed bipartiteness
ratio of a graph. We defer the proof details to App. E.1.

Lemma 5. IfG is signed and (k, βin, βout)-clusterable, then
λi ≤ 2βout for all i ≤ k and λi ≥ β2

in
C2

1 (k+1)6
for all i ≥ k+1,

where C1 is the constant from Thm. 2.

For our second lemma consider a cluster U with

Sublinear-Time Clustering Oracle for Signed Graphs

βinner(G[U]) ≥ βin and βG(U) ≤ βout. Then there ex-
ists a partition of U into biclusters V1 and V2 such that
βG(V1, V2) = βG(U) ≤ βout, i.e., V1 and V2 correspond
to the two polarized groups inside cluster U . Intuitively,
our lemma asserts that for most vertices u ∈ U , the sign
of the entry v′i(u) (i = 1, . . . , k) reveals whether u ∈ V1
or u ∈ V2. In other words, we show that each vector v′i
(i = 1, . . . , k), approximately reveals a biclustering of U
into two polarized communities.

Slightly more precisely, we will show that if i ≤ k then for
each “typical” vertex pair u, v ∈ U , it holds that v′i(u) ≈
v′i(v) if u, v ∈ V1 or u, v ∈ V2, and v′i(u) ≈ −v′i(v) oth-
erwise. To do so, we establish a novel connection between
the structure of each balanced cluster and the geometric
embedding from these k eigenvectors: we relate the signed
indicator vector 1V1,V2

to the first eigenvector w1 of (the
normalized signed Laplacian of) the subgraph G[U], and
we use the variational characterization of the second eigen-
vector of G[U] to analyze the v′i restricted on U . Here,
1V1,V2

∈ RU is the vector with 1V1,V2
(u) = 1 if u ∈ V1

and 1V1,V2
(u) = −1 if u ∈ V2. We present the proof of the

lemma in App. E.2.

Lemma 6. Let α ∈ (0, 1). Suppose G = (V,E, σ) is
signed and (k, βin, βout)-clusterable. Let U be a cluster of
G with βinner(G[U]) ≥ βin and βG(U) ≤ βout. Then there
exists a partition V1, V2 ofU , a subset Ũ ofU , and constants
ci, 1 ≤ i ≤ k, such that |ci| ≤ 3d, |Ũ | ≥ (1 − α)|U |, and
for each i ≤ k,

• if u ∈ V1∩ Ũ , then
∣∣∣v′i(u)− ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
α·µU

• if u ∈ V2∩ Ũ , then
∣∣∣v′i(u) + ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
α·µU

where C1 is the constant from Thm. 2.

4. Experiments
We experimentally evaluated our algorithms on a MacBook
Pro with 16 GB RAM and a 2 GHz Quad-Core Intel Core i5.
Our algorithms were implemented in C++11.We always per-
formed 8 WHICHCLUSTER-queries in parallel. See App. F
for more implementation details. Our source code is avail-
able on github.2

Quality measure. In our evaluation, we consider a set of
ground-truth clusters U1, . . . , Uk and the output of an algo-
rithm Ũ1, . . . , Ũs. We assume w.l.o.g. that s ≥ k. The accu-
racy of the clustering is minπ

1
m

∑k
i=1

∣∣∣Ui ∩ Ũπ(i)∣∣∣, where
π : [k] → [s] is an injective function and m =

∑
i |Ui| is

the number of elements in the ground-truth clusters. Thus,
the accuracy measures how many elements were classified
correctly; since π is injective, each Ui must be mapped

2https://github.com/StefanResearch/
signed-oracle

to a different Ũj . When a cluster Ũj contains an element
v 6∈

⋃
i Ui, we remove v from Ũj (this can happen when we

do not have ground-truth information for all vertices).

Algorithms. First, we consider our signed oracles RW-
SEEDED and RW-UNSEEDED, resp., obtain ground-truth
seed nodes or randomly picked vertices in the preprocess-
ing (see App. F). Second, we implemented two unsigned
oracles which operate on the underlying unsigned graph
(see App. F); we denote them RW-U-SEEDED and RW-U-
UNSEEDED, depending on their initialization.

As baselines we use FOCG by Chu et al. (2016) and PO-
LARSEEDS by Xiao et al. (2020). FOCG is a global algo-
rithm that requires access to the full graph and enumerates
nearly-balanced communities. POLARSEEDS is a local algo-
rithm that requires some seed nodes as input and explores
the graph locally to find a subgraph with small signed bipar-
titeness ratio. We used the implementations provided by the
authors and ran them with the default parameters.

Since our focus was on practically efficient oracle data struc-
tures, we did not compare against the oracle by Gluch et al.
(2021), as it is of highly theoretical nature, and involves sev-
eral subroutines that hinder the implementation in practice.3

We consider two types of experiments: (1) Clustering a
graph G into polarized communities U1, . . . , Uk (as per
Def. 3) and (2) biclustering G into opposing polarized
groups (V1, V2), (V3, V4), . . . , (V2k−1, V2k). For the biclus-
tering setting, we consider a heuristic of our oracle which
does not take absolute values when computing mx (see
App. F for details). In both cases, we use the corresponding
versions of the algorithms; to avoid blowing up the nota-
tions, we use the same algorithm names for the clustering
and biclustering versions.

Evaluation on synthetic data. Due to lack of space, we
present our experiments on synthetic data in App. G. Our
experiments show that our oracles outperform the baselines
when the clusters are large. The unsigned oracle works well
for clustering but only the signed oracle can recover the
biclusters (V2i−1, V2i). Also, the seeded oracles outperform
the unseeded oracles and our oracle scale linearly in the
number the number of steps and the walk lengths.

We also note that FOCG and POLARSEEDS do not perform
very well on the synthetic datasets. We believe the main
reason is that these algorithms were built to find “small”
clusters which do not necessarily partition the graph; in
contrast, our method is strongest in the presence of large
clusters that partition the graph. This large-vs-small cluster
intuition is also corroborated by our experiments on syn-

3For instance, Alg. 10 in the arxiv version of Gluch et al. (2021)
samples a set of Ω(k4) vertices and then enumerates all possible
partitions of this set. This would be infeasible in practice.

https://github.com/StefanResearch/signed-oracle
https://github.com/StefanResearch/signed-oracle

Sublinear-Time Clustering Oracle for Signed Graphs

thetic data in Figure 3(b) in the appendix: as the number k
of clusters increases, the clusters get smaller and the perfor-
mance of POLARSEEDS improves. If we increased k further,
the performance of POLARSEEDS would improve further
and eventually outperform our methods.

Evaluation on real-world data. Since we are not aware of
public signed graph datasets with a small number of large
ground-truth communities, we created our own real-world
data. We make them available on github.2

We obtained our graphs from English-language Wikipedia
by considering Wikipedia pages about politicians and the
articles linked on their pages. We selected five countries
(UK, Germany, Austria, Spain and US) and for each we
selected a number of politicians (UK: 2307, Germany: 1444,
Austria: 190, Spain: 546, US: 5053); this gives the ground-
truth clusters Ui. The politicians from the clusters Ui belong
to one of two opposing parties, which splits each Ui into
opposing groups V2i−1 and V2i. In our graphs, the vertices
correspond to Wikipedia pages of politicians and articles
that are linked on the politicians’ pages. An edge (u, v)
indicates that page u has a link to page v. The sign for an
edge (u, v) is − if u and v are politicians from the same
country and they are in opposing parties (e.g., Democrats
and Republicans in the US); otherwise, we set the sign to +.

We created three dataset. WikiL contains all politicans and
all articles linked on their pages; we included all edges that
contain at least one politician. On WikiL, the signed bipar-
titeness ratios of the three large communities (UK, Germany,
US) is ≈ 0.66 and for the smaller communities (Austria,
Spain) it is ≈ 0.9. We also consider two smaller versions of
WikiL: WikiS is the largest connected component of G[P],
where G is the graph given by WikiL and P is the set of
politician nodes in WikiL; WikiM is the largest connected
component of G[P ∪ V ′], where V ′ is a randomly sampled
set containing 10% of the non-politician nodes from WikiL.
Note that for WikiL and WikiM we only have a ground-truth
clustering for a subset of the vertices (namely, for the politi-
cian nodes). We present statistics of the datasets in Table 1.
In our experiments, we use the undirected versions of these
datasets, i.e., each directed edge is made undirected.

Experiments on WikiS. Fig. 1 shows our results on WikiS.
Unless stated otherwise, our oracles used 1000 random
walks of length 20. For clustering (biclustering) experi-
ments, the seeded oracles obtained 10 (5) seeds for each
Ui (Vi); the unseeded oracles sampled 5k vertices, where
k = 5 for clustering and k = 10 for biclustering. For the
clustering experiments (Figs. 1(a) and 1(b)), the seeded ora-
cles achieve almost perfect accuracy; the unseeded methods
are worse and benefit from longer random walks (Fig. 1(a)).
For the biclustering experiments (Figs. 1(c) and 1(d)), RW-
SEEDED is by far the best method and achieves excellent
accuracies. RW-U-SEEDED consistently achieves accuracies

above 50% but below 60%; this suggests that RW-U-SEEDED
successfully finds the clusters Ui (as shown by the cluster-
ing results) but, as it ignores the edge signs, it places the
vertices into the biclusters V2i−1 and V2i only slightly better
than random. For biclustering, the unseeded methods do
not perform well. FOCG and POLARSEEDS achieve low
accuracies, since they return too small clusters.

Experiments on WikiM and WikiL. Fig. 2 presents our re-
sults on the larger datasets. We did not run the unseeded
oracles, since in WikiM and WikiL not all vertices are con-
tained in ground-truth communities. We used random walks
of length 24 for WikiM and of length 20 for WikiL; we ini-
tialized the seeds as for WikiS. Fig. 2(a) shows that even on
WikiL, the seeded oracles find the clusters Ui with almost
perfect accuracy. Furthermore, the algorithms scale linearly
in the number of random walks and on average queries
takes less than 1.4 seconds (Fig. 2(b)). However, compared
to WikiS, we obtain lower accuracies for the biclustering
experiments: while on WikiM, RW-SEEDED still achieves
accuracies over 83% with enough random walks (Fig. 2(c)),
for WikiL even with 10 000 random walks, RW-SEEDED only
achieves an accuracy of 50% (Fig. 2(d)). We blame this on
the fact that in WikiL the ground-truth clusters are relatively
small (they contain only 3.7% of the vertices). Additionally,
in WikiL the fraction of negative edges is only 8%, and thus
only few random walks will encounter a negative edge and
RW-SEEDED cannot benefit from the edge-sign information.
As before, FOCG and POLARSEEDS have low accuracies.

Conclusion. Our oracles are successful for finding polarized
communities Ui, even when the graphs do not have bounded
degrees (as in our theoretical analysis). RW-SEEDED is
successful in finding the biclusters (V2i−1, V2i), as long as
they are large enough and there are enough negative edges.

5. Conclusion
We presented a local clustering oracle for signed graphs.
Given a vertex u, the oracle can return the cluster member-
ship of u in sublinear time. Such a data structure is desirable
when the input graphs are large and the cluster membership
is only required for a small number of vertices. We proved
that if the graph satisfies a clusterability assumption, then
the oracle returns correct cluster memberships for a (1− ε)-
fraction of the vertices w.r.t. a hidden set of ground-truth
clusters. We also evaluated the oracle practically, showing
that it achieves good results for large clusters.

In the future it will be interesting to provide a theoretical
analysis for our biclustering heuristic; here, ideas from Tre-
visan (2012) might be helpful. From a practical point of
view it would be interesting to obtain improvements for our
biclustering heuristic, which allow to find small biclusters
(V2i−1, V2i) when there are few negative edges. Two direc-

Sublinear-Time Clustering Oracle for Signed Graphs

Table 1: Statistics for real-world datasets. Here, |E−| denotes the number of negative edges, deg and degmax denote the
average degree and maximum degree, and |V |labeled denotes the number of vertices with ground-truth labels.

Dataset |V | |E| |E−| / |E| deg degmax |V |labeled

WikiS 9 211 395 038 0.39 140.3 1 503 9 211
WikiM 34 404 904 768 0.28 52.6 3 407 9 453
WikiL 258 259 3 187 096 0.08 24.7 6 017 9 540

rw-seeded rw-unseeded rw-u-seeded rw-u-unseeded FOCG polarSeeds

12 16 20 24

#Steps

0.0

0.5

1.0

A
c
c
u

ra
c
y

(a) Vary #steps: clustering

500
1000

1500
2000

#Random Walks

0.0

0.5

1.0
A

cc
u

ra
cy

(b) Vary #walks: clustering

12 16 20 24

#Steps

0.0

0.5

1.0

A
c
c
u

ra
c
y

(c) Vary #steps: biclustering

50
0

10
00

15
00

20
00

#Random Walks

0.0

0.5

1.0

A
c
c
u

r
a
c
y

(d) Vary #walks: biclustering

Figure 1: Accuracies of the algorithms on WikiS. We consider clustering (Figs. (a) and (b)) and biclustering (Figs. (c)
and (d)) experiments, with varying number of steps (Figs. (a) and (c)) and varying number of random walks (Figs. (b)
and (d)). Since FOCG and POLARSEEDS do not use the number of steps and random walks as input, we only ran them once.

rw-seeded rw-u-seeded FOCG polarSeeds

1000
2500

5000

#Random Walks

0.0

0.5

1.0

A
cc

u
ra

cy

(a) WikiL: clustering

1000
2500

5000

#Random Walks

0.5

1.0

T
im

e
p

er
V

er
te

x
(i

n
se

c)

(b) WikiL: avg. query time

10
00

25
00

50
00

10
00

0

#Random Walks

0.0

0.5

A
c
c
u

ra
c
y

(c) WikiM: biclustering

25
00

50
00

10
00

0

#Random Walks

0.00

0.25

0.50

A
c
c
u

r
a
c
y

(d) WikiL: biclustering

Figure 2: Results on WikiM and WikiL for varying numbers of random walks. We present accuracies for clustering on WikiL
(Fig. (a)), and for biclustering in WikiM (Fig. (c)) and in WikiL (Fig. (d)). The running time per vertex for clustering in
WikiL is given in Fig. (b). Since FOCG and POLARSEEDS do not use random walks as input, we only ran them once.

tions for this might be as follows: (1) For a node u, first
identify the cluster Ui of u using the unsigned oracle and
then use auxiliary information to decide whether u belongs
to V2i−1 or to V2i. (2) When the underlying graph contains
few negative edges, bias the random walks of RW-SEEDED
such that it takes disproportionately many negative edges.

Acknowledgements
This research is supported by the the ERC Advanced Grant
REBOUND (834862), the EC H2020 RIA project SoBig-
Data++ (871042), and the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation. P.P. is supported by “the
Fundamental Research Funds for the Central Universities”.

Sublinear-Time Clustering Oracle for Signed Graphs

References
Atay, F. M. and Liu, S. Cheeger constants, structural bal-

ance, and spectral clustering analysis for signed graphs.
Discrete Mathematics, 343(1):111616, 2020.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Mach. Learn., 56(1-3):89–113, 2004.

Bonchi, F., Galimberti, E., Gionis, A., Ordozgoiti, B., and
Ruffo, G. Discovering polarized communities in signed
networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
pp. 961–970, 2019.

Cesa-Bianchi, N., Gentile, C., Vitale, F., and Zappella, G.
A correlation clustering approach to link classification
in signed networks. In Mannor, S., Srebro, N., and
Williamson, R. C. (eds.), COLT, volume 23, pp. 34.1–
34.20, 2012.

Chiang, K., Whang, J. J., and Dhillon, I. S. Scalable cluster-
ing of signed networks using balance normalized cut. In
CIKM, pp. 615–624. ACM, 2012.

Chiang, K., Hsieh, C., Natarajan, N., Dhillon, I. S., and
Tewari, A. Prediction and clustering in signed networks:
a local to global perspective. J. Mach. Learn. Res., 15(1):
1177–1213, 2014.

Chiplunkar, A., Kapralov, M., Khanna, S., Mousavifar, A.,
and Peres, Y. Testing graph clusterability: Algorithms
and lower bounds. CoRR, abs/1808.04807, 2018. URL
http://arxiv.org/abs/1808.04807. Confer-
ence version appeared in FOCS 2018.

Chu, L., Wang, Z., Pei, J., Wang, J., Zhao, Z., and Chen, E.
Finding gangs in war from signed networks. In KDD, pp.
1505–1514, 2016.

Chung, F. R. Spectral Graph Theory. Number 92. American
Mathematical Soc., 1997.

Csardi, G. and Nepusz, T. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006. URL https://igraph.org.

Cucuringu, M., Davies, P., Glielmo, A., and Tyagi, H.
SPONGE: A generalized eigenproblem for clustering
signed networks. In AISTATS, volume 89, pp. 1088–1098.
PMLR, 2019.

Cucuringu, M., Singh, A. V., Sulem, D., and Tyagi, H. Reg-
ularized spectral methods for clustering signed networks.
CoRR, abs/2011.01737, 2020.

Czumaj, A., Peng, P., and Sohler, C. Testing cluster structure
of graphs. CoRR, abs/1504.03294, 2015. URL http://
arxiv.org/abs/1504.03294. Conference version
appeared in STOC 2015.

Gharan, S. O. and Trevisan, L. Partitioning into expanders.
In Proceedings of the twenty-fifth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 1256–1266. SIAM,
2014.

Gluch, G., Kapralov, M., Lattanzi, S., Mousavifar, A., and
Sohler, C. Spectral clustering oracles in sublinear time.
CoRR, abs/2101.05549, 2021. Conference version ap-
peared in SODA 2021.

Harary, F. On the notion of balance of a signed graph.
Michigan Mathematical Journal, 2(2):143–146, 1953.

Jung, J., Jin, W., Sael, L., and Kang, U. Personalized ranking
in signed networks using signed random walk with restart.
In ICDM, pp. 973–978, 2016.

Jung, J., Jin, W., and Kang, U. Random walk-based ranking
in signed social networks: model and algorithms. Knowl.
Inf. Syst., 62(2):571–610, 2020.

Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J.,
De Luca, E. W., and Albayrak, S. Spectral analysis of
signed graphs for clustering, prediction and visualization.
In SDM, pp. 559–570, 2010.

Mercado, P., Tudisco, F., and Hein, M. Clustering signed
networks with the geometric mean of laplacians. In NIPS,
pp. 4421–4429, 2016.

Mercado, P., Tudisco, F., and Hein, M. Spectral clustering
of signed graphs via matrix power means. In ICML, pp.
4526–4536, 2019.

Ordozgoiti, B., Matakos, A., and Gionis, A. Finding large
balanced subgraphs in signed networks. In WWW, pp.
1378–1388, 2020.

Peng, P. Robust Clustering Oracle and Local Reconstructor
of Cluster Structure of Graphs. In SODA, pp. 2953–2972,
2020.

Pons, P. and Latapy, M. Computing communities in large
networks using random walks. J. Graph Algorithms Appl.,
10(2):191–218, 2006.

Trevisan, L. Max cut and the smallest eigenvalue. SIAM
Journal on Computing, 41(6):1769–1786, 2012.

Xiao, H., Ordozgoiti, B., and Gionis, A. Searching for
polarization in signed graphs: a local spectral approach.
In WWW, pp. 362–372, 2020.

http://arxiv.org/abs/1808.04807
https://igraph.org
http://arxiv.org/abs/1504.03294
http://arxiv.org/abs/1504.03294

Sublinear-Time Clustering Oracle for Signed Graphs

A. Overview of the Appendix
The appendix is organized as follows:

• Appendix B: We provide further motivation for our choice of the inner signed bipartiteness ratio.
• Appendix C: We present the pseudocode for our algorithms.
• Appendix D: We give an overview of our proof strategy.
• Appendix E: We present the full proofs for all claims in the main text.
• Appendix F: We give details on the implementations of our algorithms, including parameter tuning.
• Appendix G: We evaluate our algorithm on synthetically generated data.

B. Further Motivation of the Inner Signed Bipartiteness Ratio
We provide further motivation for the inner signed bipartiteness ratio. Recall that we set

βinner(G) := min
∅6=U⊆V : vol(U)≤ 1

2 vol(G)
βG(U).

First, let us justify our intuition that if βinner(G) is large, then βinner(G) cannot be decomposed into two nearly-balanced
communities. To make this more formal, recall the definition of β2(G) = minU1,U2

maxi=1,2 βG(Ui), where the minimum
is taken over all partitions U1, U2 of V with U1, U2 6= ∅. Now note that if we could split G into two nearly-balanced
communities, then we would have that β2(G) is small. Thus, we show that if βinner(G) is large then β2(G) is at least as
large. This justifies our informal intuition above.

Lemma 7. It holds that β2(G) ≥ βinner(G). In particular, if βin ∈ R≥0 and βinner(G) ≥ βin then β2(G) ≥ βin.

Proof. We prove the first claim by contradiction, i.e., suppose that βinner(G) = βin and β2(G) < βin = βinner(G). Then
there exists a partition U1, U2 of V such that βG(U1) < βin and βG(U2) < βin. Next, since U1 and U2 form a partition of
V , we must have that vol(U1) ≤ 1

2 vol(G) or vol(U2) ≤ 1
2 vol(G). This implies that there exists a set U ∈ {U1, U2} such

that vol(U) ≤ 1
2 vol(G) and βG(U) < βin. Thus, βinner(G) < βin. But this contradicts our assumption that βinner(G) = βin.

The second claim of the lemma immediately follows from applying the first claim.

Why do we not assume that β(G[Ui]) is large? Next, we discuss why we cannot replace the inner signed bipartiteness ratio
βinner(G) with the (classic) signed bipartiteness ratio β(G[Ui]) in Def. 3. To see this, consider Def. 3 with βinner(G[Ui]) ≥ βin
replaced by β(G[Ui]) ≥ βin for all i = 1, . . . , k. Again, we consider the the setting with βin > βout. Intuitively, this would
mean that subgraph G[Ui] is “far from balanced” on its inside (since β(G[Ui]) is large) while outside it is close to balanced
(since βG(Ui) is small).

Unfortunately, we show that if βin > βout then no graph can satisfy this new definition. Before we give a more general
proof, consider the following example. Consider a graph G which consists of two positive cliques among vertices V1 and V2
and in between V1 and V2 there is biclique consisting only of negative edges. Then β(G) = 0 and β(V1, V2) = 0 but also
β(G[V1]) = 0 and β(G[V2]) = 0 (since graphs with only positive edges are balanced).

Now we give a more general result showing that for any U ⊆ V , we have that β(G[U]) ≤ βG(U). Therefore, the previously
proposed definition that avoids the inner signed bipartiteness ratio cannot work: it implies that βin ≤ β(G[Ui]) ≤ βG(Ui) ≤
βout but this contradicts our assumption that βin > βout.

Lemma 8. For any two disjoint subsets V1, V2 ⊆ V , it holds that β(G[V1 ∪ V2]) ≤ βG(V1, V2). Furthermore, for any
U ⊆ V , it holds that β(G[U]) ≤ βG(U).

Proof. We have that

β(G[V1 ∪ V2])

≤ βG[V1∪V2](V1, V2)

=
2
∣∣E+

G(V1, V2)
∣∣+
∣∣E−G(V1)

∣∣+
∣∣E−G(V2)

∣∣
volG[V1∪V2](V1, V2)

Sublinear-Time Clustering Oracle for Signed Graphs

≤
2
∣∣E+

G(V1, V2)
∣∣+
∣∣E−G(V1)

∣∣+
∣∣E−G(V2)

∣∣+
∣∣EG(V1 ∪ V2, V1 ∪ V2)

∣∣
volG[V1∪V2](V1, V2) +

∣∣EG(V1 ∪ V2, V1 ∪ V2)
∣∣

= βG(V1, V2),

where we have used that for a, b, c > 0 and a ≤ b, it holds that ab ≤
a+c
b+c .

Now for any subset U , let V1, V2 be a partition of U such that βG(U) = βG(V1, V2). Then by the above calculation, we
have that

β(G[U]) ≤ βG[U](V1, V2) ≤ βG(V1, V2) = βG(U).

Is the underlying unsigned graph clusterable? Next, we argue that our condition from Def. 3 is not implied by previous
definitions that were based on the conductance of unsigned graphs (e.g., in (Czumaj et al., 2015)). In other words, it is
possible that our methods finds the planted clusters in the signed graph while this would not be possible by only looking at
the underlying unsigned graph.

First, recall that for an unsigned graph Gun = (V,E) and a set of vertices S ⊆ V , the conductance of S is given
by φGun(S) = |E(S,V \S)|

vol(S) . Furthermore, we let φ(Gun) denote the conductance of Gun which is given by φ(Gun) =

min{φGun(S) : vol(S) ≤ vol(Gun)/2}.

Now consider the unsigned graph Gun that is obtained by removing all the signs on the edges from G. We argue that a
(k, βin, βout)-clustering of G does not imply a (k, βin, βout)-clustering of Gun, i.e., Gun contains a k-partition C1, . . . , Ck
such that the inner conductance of Ci, denoted φ(Gun[Ci]), is at least βin and the outer conductance of Ci, denoted φG(Ci),
is at most βout for each i. Therefore, one could not apply the previous clustering oracle for conductance-based clustering of
Gun and recover the underlying clusters in our problem. We give a brief explanation next.

Suppose that U1, . . . , Uk is a (k, βin, βout)-clustering of G. Then, indeed, it is true that each Ui has small outer conductance
in Gun, since we have that φGun(Ui) ≤ βG(Ui) ≤ βout. However, the inner conductance of Ui in Gun can be arbitrarily small:
Even though the inner signed bipartiteness ratio of Ui is large, it can happen that there is a very small subset Si ⊆ Ui (say,
of size O(log n)) such that there are almost no edges leaving Si but all edges in Si have sign − and Si is far from being
balanced. Thus, there exists a subset Si in Ui whose (outer) conductance is almost 0 in Gun but the inner signed bipartiteness
ratio of Si and Ui is large.

Note that the previous example with the set Si also shows that it is possible that G contains a sparse cut and, therefore, ptu
does not converge to the uniform distribution of V .

C. Pseudocode for Our Algorithms

Algorithm 1 Estimating the dot product 〈ptuD−1/2,ptvD−1/2〉
1: procedure ESTDOTPROD(u, v, t, α)
2: R← 40000d2k1.5

√
n

α1.5

3: for all i = 1, · · · , h = O(log n) do
4: for x ∈ {u, v} do
5: Perform R lazy signed random walks of length t starting at vertex x with sign +.
6: for each w ∈ V do
7: m+

x (w)← the fraction of walks that end at w with sign +.
8: m−x (w)← the fraction of walks that end at w with sign −.
9: mx ← (m+

x −m−x)D−1/2.
10: χi ← 〈mu,mv〉.
11: Let Xuv be the median value of χ1, · · · , χh.
12: return Xuv

Sublinear-Time Clustering Oracle for Signed Graphs

Algorithm 2 Preprocessing: Constructing a clustering oracle

1: procedure BUILDORACLE(G, k, d, βin, ε, γ)
2: s← 20k log(k)

γ , α← ε
90s , t← C′′k6d3 logn

ε·β2
in

for constant C ′′

3: Sample a set S of s vertices independently and uniformly at random from V .
4: for v ∈ S do . test if ||ptvD−1/2||22 = O(k

2 log(k)
γε·n)

5: Xvv ←ESTDOTPROD(v, v, t, α)
6: if Xvv ≥ 4000k2 log(k)

γε·n then
7: abort and return Fail
8: let H be an empty graph with vertex set S
9: for each pair u, v ∈ S do . test if ∆uv ≤ 1

4nd
10: Xvv ←ESTDOTPROD(v, v, t, α)
11: Xuu ←ESTDOTPROD(u, u, t, α)
12: Xuv ←ESTDOTPROD(u, v, t, α)
13: δuv ← min{Xvv +Xuu − 2Xuv, Xvv +Xuu + 2Xuv}
14: if δuv ≤ 1

2dn then
15: add edge (u, v) to H
16: if H is the union of k connected components (CCs) then
17: label the components by “1, 2, . . . , k’
18: label each vertex u ∈ VH with the same index as its component, denoted `(u)
19: return H and its vertex labeling `
20: else
21: return Fail

Algorithm 3 Answering the community membership of a vertex v

1: procedure WHICHCLUSTER(G, v,H, `)
2: for u ∈ VH do
3: Xvv ←ESTDOTPROD(v, v, t, α)
4: Xuu ←ESTDOTPROD(u, u, t, α)
5: Xuv ←ESTDOTPROD(u, v, t, α)
6: δuv ← min{Xvv +Xuu − 2Xuv, Xvv +Xuu + 2Xuv}
7: if δuv ≤ 1

2dn then
8: abort and return the label `(u)

9: return a random number from {1, 2, . . . , k}

D. Analysis Overview
In this section, we give an overview of the analysis and provide the main technical lemmas of our analysis. All missing
proofs can be found in App. E.

Intuition. We begin by providing some intuition for our algorithm and our analysis.

We start by establishing some properties of lazy signed random walks. First, suppose that we perform the lazy random
walks without the signs on the underlying unsigned graph Gun with the corresponding transition probability matrix
Wun := I+D−1Aun

2 , where Aun is the adjacency matrix of Gun. Then the probability that a random walk started at vertex u
ends in vertex v is Pr (vt = v) = qtu(v), where qtu = 1u(Wun)t. Second, when we add the sign, then we are interested in
the quantity

ptu(v) = Pr (vt = v, st = +)−Pr (vt = v, st = −) ,

i.e., ptu(v) is the probability of reaching v with a positive sign minus the probability of reaching v with a negative sign.
Observe that ptu(v) can be described by the walk matrix W = I+D−1Aσ

2 , i.e., ptu(v) = [1uW
t](v) for all v. Note that

while qtu (for unsigned random walks) gives a distribution, this is not the case for ptu. In fact, ptu can potentially even

Sublinear-Time Clustering Oracle for Signed Graphs

contain negative entries and ptu does not necessarily converge to the uniform distribution of V as it can happen that V
contains a sparse cut (we discuss this in App. B). In the following, we call such a vector ptu the discrepancy vector of a lazy
signed random walk of length t starting from u.

Next, consider a signed graph G and a (k, βin, βout)-clustering U1, . . . , Uk of G as per Def. 3. Let U ∈ {U1, . . . , Uk} be one
of the clusters. Since by assumption we have that βG(U) ≤ βout, there exists a partition of U into subsets V1 and V2 with
βG(V1, V2) ≤ βout. Then, intuitively, for a typical vertex u ∈ U , a short random walk starting from u of has the following
properties:

(i) Since the walk is short (this is crucial), the walk will be “trapped” in U , as there are only few edges leaving U . Thus,
for the discrepancy vector it should hold that

∑
v∈U |ptu(v)| �

∑
v∈V \U |ptu(v)|.

(ii) If u ∈ V1 then most walks ending at vertices v ∈ V1 should have a positive sign and most walks ending at vertices
V ∈ V2 should have negative sign. Thus, for the discrepancy vector ptu it should hold that ptu(v) > 0 if v ∈ V1 and
ptu(v) < 0 if v ∈ V2. Similarly, if u ∈ V2 then the same holds with flipped signs.

(iii) Let u ∈ U . If two vertices x, y are from the same sub-communities (i.e., x, y ∈ V1 or x, y ∈ V2), then ptu(x) ≈ ptu(y),
i.e., the discrepancy on x is close to the discrepancy on y.

Now let us discuss how we can use the discrepancy vectors ptu and ptv to decide whether u and v are in the same cluster or
not. Our goal is to find a distance function ∆uv = ∆uv(p

t
u,p

t
v) such that ∆uv is small iff u and v are from the same cluster

U .

First, consider vertices u ∈ Ui and v ∈ Uj , i 6= j, from different clusters. Then Property (i) suggests that ptu and ptv have
most of their mass in different entries and thus ‖ptu − ptv‖22 should be large.

Second, consider vertices u, v ∈ U from the same cluster. Let U = V1 ∪ V2 as above. If u, v ∈ V1 or u, v ∈ V2 then the
properties above suggest ptu ≈ ptv and thus ‖ptu − ptv‖22 ≈ 0 is small. However, if u ∈ V1 and v ∈ V2, then ptu ≈ −ptv by
Property (ii) and (iii) and thus ‖ptu − ptv‖22 ≈ ‖2ptu‖22 will still be large. However, this issue can be mitigated if we use
rtu = |ptu| and rtv = |ptv| instead of ptu and ptv . Here, the absolute values are applied component-wise, i.e., rtu(v) = |ptu(v)|
for all v.

Therefore, in our analysis we would like to use ‖rtu−rtv‖22 as a distance measure. However, due to some technical difficulties
in the analysis of this quantity, we cannot use the vectors rtu and instead we consider min{‖ptu − ptv‖22, ‖ptu + ptv‖22}
which behaves similar to taking the absolute values and also fixes the issue with Property (ii). After adding some degree
corrections, we arrive at our final distance measure ∆uv = min{‖ptuD−1/2 − ptvD

−1/2‖22, ‖ptuD−1/2 + ptvD
−1/2‖22}.

Note that ∆ is a pseudometric distance, i.e., one may have that ∆uv = 0 for distinct vectors ptu and ptv .

D.1. Main Technical Lemmas

We give a technical overview of our analysis. Note that while our high-level proof strategy is relatively similar to the one
used in (Czumaj et al., 2015) for unsigned graphs, the concrete proofs are often quite different. It required a substantial
amount of work and new ideas to obtain our results for signed graphs.

Random walks from the same cluster. First, we show that if U is a polarized community with large inner signed
bipartiteness ratio and small (outer) bipartiteness ratio, then for most of the vertices u, v ∈ U their distance ∆uv is small.

Lemma 9. Let α, γ ∈ (0, 1). Let G = (V,E, σ) be a signed, d-bounded degree, (k, βin, βout)-clusterable graph. Let U be
a subset of V such that |U | ≥ γn, βinner(G[U]) ≥ βin and βG(U) ≤ βout. Then for all t ≥ 4C2

1 (k+1)6 logn

β2
in

, βout < α1β
2
in

where α1 = αγ
800000C2

1kd
3 , there exists a subset Ũ ⊆ U with

∣∣∣Ũ ∣∣∣ ≥ (1−α) |U | and for all u, v ∈ Ũ , it holds that ∆uv ≤ 1
4nd .

Proving Lem. 9 was one of the main obstacles for obtaining our results. We will give an overview of its proof and our main
technical contribution in Sec. 3.2.

Random walks from two different clusters. We further show that if we have two disjoint communities U1 and U2, then
for most vertices u ∈ U1 and v ∈ U2 their distance ∆uv must be large. Note that while Lem. 9 assumes a lower bound
on the walk length t, Lem. 10 assumes an upper bound on t. Thus, it is crucial that the random walks have the correct
length Θ(log n).

Lemma 10. Let U1 and U2 be two disjoint subsets with βG(U1), βG(U2) ≤ βout. Let 0 < α < 1. For any 0 ≤ t ≤ α
8βout

,

there exist subsets Û1 ⊆ U1, Û2 ⊆ U2 such that |Û1| ≥ (1− α)|U1|, |Û2| ≥ (1− α)|U2|, and for any u ∈ Û1 and v ∈ Û2,

Sublinear-Time Clustering Oracle for Signed Graphs

it holds that ∆uv ≥ 1
nd .

`22-norm of the vector ptvD
−1/2. Based on the previous two lemmas, our goal will be to test whether ∆uv ≤ 1

4nd or
∆uv ≥ 1

nd . To this end, we wish to use ESTDOTPROD to approximate ∆uv via Eqn.s (2) and (3). To prove this, we first
give a useful bound on the `22-norm of the vectors ptvD

−1/2.

Lemma 11. Let α ∈ (0, 1). Suppose G = (V,E, σ) is a signed and (k, βin, βout)-clusterable graph. Then there exists a set
V ′ ⊆ V of size |V ′| ≥ (1− α) |V | such that for all u ∈ V ′ and all t ≥ C2

1 (k+1)6 logn

β2
in

, we have that ‖ptvD−1/2‖22 ≤ 2k
αn .

Estimating the dot product. Now we prove that ESTDOTPROD(u,v,t,α) estimates 〈ptuD−1/2,ptvD−1/2〉 with small error.

Lemma 12. Let α ∈ (0, 1) be a number such that 2k
α ≤ n. Suppose G = (V,E, σ) is a signed and (k, βin, βout)-clusterable

graph. Let t ≥ C2
1 (k+1)6 logn

β2
in

. Let V ′ ⊆ V be the set of vertices satisfying the property given by Lem. 11. Then

ESTDOTPROD(u, v, t, α) outputs Xuv such that with probability 1− 1/n3, it holds that∣∣∣Xuv − 〈ptvD−1/2,ptuD−1/2〉
∣∣∣ ≤ 1

20nd

for all u, v ∈ V ′. Furthermore, ESTDOTPROD(u, v, t, α) runs in time O(d
2k1.5t logn
α1.5 ·

√
n).

To prove Thm. 4, we first show that an overwhelming fraction of the vertices are “well-behaved” in the senses of Lem.s 9–11.
Then, if we only consider these “well-behaved” vertices, we can apply Lem. 12 and this will classify all of these vertices
correctly with high probability.

E. Deferred Proofs
E.1. Proof of Lemma 5

Now we prove Lem. 5, which is restated in the following for the sake of readability.

Lemma 5. If G is signed and (k, βin, βout)-clusterable, then λi ≤ 2βout for all i ≤ k and λi ≥ β2
in

C2
1 (k+1)6

for all i ≥ k + 1,
where C1 is the constant from Thm. 2.

Proof of Lemma 5. Since G is (k, βin, βout)-clusterable, there exists a partition of V into clusters (C1, . . . , Ck) such that
βinner(G[Ci]) ≥ βin and βG(Ci) ≤ βout for all i ∈ [k]. Therefore, βk(G) ≤ maxi βG(Ci) ≤ βout. Now Thm. 2 implies that
λk ≤ 2βk(G) ≤ 2βout. Thus, λ1 ≤ · · · ≤ λk ≤ 2βout.

The next part shows that λk+1 ≥ β2
in

C2
1 (k+1)6

. Consider any k + 1 disjoint subsets V1, . . . , Vk+1.

Now observe that there must exist a subset Vi0 ∈ {V1, . . . , Vk+1} with following property: for all i ∈ [k], vol(Vi0 ∩ Ci) ≤
1
2 vol(Ci). To see that this is the case, suppose that the statement is false, i.e., no such subset exists. Then by pigeonhole
principle there must exist indices j1, j2 with j1 6= j2 and index j3 such that Vj1 ∩ Cj3 and Vj2 ∩ Cj3 have volume more
than 1

2 vol(Cj3). This is a contradiction since the sets Vj1 and Vj2 are mutually disjoint.

For the rest of the proof, consider the subset Vi0 with the above property. Consider an arbitrary partition L,R of Vi0 , such
that L ∪R = Vi0 and L ∩R = ∅. Let Li = Ci ∩ L and Ri = Ci ∩R. Observe that Vi0 =

⋃
i(Li ∪Ri) since V =

⋃
i Ci.

Since βinner(G[Ci]) ≥ βin and vol(Li ∪Ri) ≤ 1
2 vol(Ci) for all i ≤ k, we get that βG[Ci](Li ∪Ri) ≥ βin for all i ∈ [k]. In

particular, this implies that βG[Ci](Li, Ri) =
eG[Ci]

(Li,Ri)

vol(Li∪Ri) ≥ βin for all i ∈ [k]. Thus,

βG(L,R) =
eG(L,R)

vol(L ∪R)

=
2
∣∣E+

G(L,R)
∣∣+
∣∣E−G(L)

∣∣+
∣∣E−G(R)

∣∣+ |EG(L ∪R, V \ (L ∪R))|
vol(L ∪R)

≥ 1

vol(L ∪R)

∑
i∈[k]

[
2
∣∣E+

G(Li, Ri)
∣∣+
∣∣E−G(Li)

∣∣+
∣∣E−G(Ri)

∣∣+ |EG(Li ∪Ri, Ci \ (Li ∪Ri))|
]

Sublinear-Time Clustering Oracle for Signed Graphs

=

∑
i∈[k] eG[Ci](Li, Ri)∑
i∈[k] vol(Li ∪Ri)

≥
∑
i∈[k] βin vol(Li ∪Ri)∑
i∈[k] vol(Li ∪Ri)

≥ βin.

Since L,R is an arbitrary partition of Vi0 , it holds that βG(Vi0) ≥ βin. Thus, βk+1(G) ≥ βin. Now Thm. 2 implies that
λk+1 ≥ β2

in
C2

1 (k+1)6
.

E.2. Proof of Lemma 6

Now we prove Lem. 6, which is restated in the following for the sake of readability.
Lemma 6. Let α ∈ (0, 1). Suppose G = (V,E, σ) is signed and (k, βin, βout)-clusterable. Let U be a cluster of G
with βinner(G[U]) ≥ βin and βG(U) ≤ βout. Then there exists a partition V1, V2 of U , a subset Ũ of U , and constants
ci, 1 ≤ i ≤ k, such that |ci| ≤ 3d, |Ũ | ≥ (1− α)|U |, and for each i ≤ k,

• if u ∈ V1 ∩ Ũ , then
∣∣∣v′i(u)− ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
α·µU

• if u ∈ V2 ∩ Ũ , then
∣∣∣v′i(u) + ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
α·µU

where C1 is the constant from Thm. 2.

Proof. The proof is based on the following intuition. Recall the definitions of vectors v′i,1V1,V2
,w1 from the above

discussion. Since both v′i and a scalar multiplications of 1V1,V2
have small total ‘discrepancy’ over the set of all edges (i.e.,

Ineq. (4) and (7)), and the ratio between the total ‘discrepancy’ over all the edges and the total ‘discrepancy’ over all vertices
(w.r.t. some centers defined by w1) is large (i.e., Ineq. (8)), one can guarantee both that v′i and a scaled multiplication of
1V1,V2 are close to (another scalar multiplication of) w1. We now give the details.

Since G is (k, βin, βout)-clusterable, we can apply Lem. 5 to obtain λk+1 ≥ β2
in

C2
1 (k+1)6

and λi ≤ 2βout for all i ∈ [k].

Since for any i ≤ k, viLσ = λivi, we have viD
−1/2(D−Aσ)D−1/2 = λivi, and thus

λi = viD
−1/2(D−Aσ)D−1/2v>i

= v′i(D−Aσ)v′i
>

=
∑

(u,v)∈E

(v′i(u)− σ(uv)v′i(v))
2
.

Thus, for any i ≤ k, ∑
(u,v)∈E

(v′i(u)− σ(uv)v′i(v))
2 ≤ 2βout. (4)

Now consider the subgraph H = G[U] induced by the subset U . Denote the set of vertices of H as VH = U and the set of
edges of H as EH . By assumption on U , βinner(H) ≥ βin and βG(V [H]) ≤ βout.

Let λ1(H), λ2(H) be the first and second eigenvalues of the normalized Laplacian matrix LσH of H . Next, let DH be the
degree matrix of H and let Aσ

H denote the signed adjacency matrix of H .

Now we consider a partition (V1, V2) of U such that βG(U) = βG(V1, V2) ≤ βout. Then it holds that β(H) ≤ βH(V1, V2) ≤
βG(V1, V2) ≤ βout. Therefore, by Thm. 2,

λ1(H) ≤ 2βout.

Let 1V1,V2
∈ RVH such that 1V1,V2

(u) = 1 if u ∈ V1 and −1 otherwise. Set b :=
1V1,V2√
µU

. Then it holds that∑
(u,v)∈E

(b(u)− σ(uv)b(v))2 =
1V1,V2√
µU

(DH −Aσ
H)

1V1,V2
>

√
µU

Sublinear-Time Clustering Oracle for Signed Graphs

=
1

µU

∑
(u,v)∈E(H)

(1V1,V2
(u)− σ(u, v)1V1,V2

(v))2

=
2|E+(V1, V2)|+ |E−(V1)|+ |E−(V2)|

µU
(5)

= βH(V1, V2) (6)
≤ βout. (7)

Let w1 ∈ RVH be an eigenvector corresponding to λ1(H) such that w1w
>
1 = 1, then it holds that w1LσH = λ1(H)w1.

Now since βinner(H) = βinner(G[U]) ≥ βin, we know (see App. B) that β2(H) = β2(G[U]) ≥ βinner(G[U]) ≥ βin. Thus,
by Thm. 2,

λ2(H) ≥ β2(H)2

64C2
1

≥ β2
in

64C2
1

.

Now by the variational characterization of the eigenvalues (see, e.g., Eqn. (1.7) in (Chung, 1997)), we have

λ2(H) = min
f∈RVH

max
c∈R

∑
(u,v)∈EH (f(u)− σ(uv)f(v))2∑
u(f(u)− c ·w1(u))2dH(u)

. (8)

Now for any i ≤ k, if we let f = v′i|H , i.e., the function v′i that is restricted on H , in Inequality (8), and let

c1,i := arg min
c∈R:c 6=0

∑
u

(f(u)− c ·w1(u))2dH(u),

then we have that ∑
(u,v)∈EH (v′i(u)− σ(uv)v′i(v))2∑
u(v′i(u)− c1,i ·w1(u))2dH(u)

≥ λ2(H) ≥ β2
in

64C2
1

. (9)

If we let f = b in Inequality (8), and let

c2 := arg min
c∈R:c6=0

∑
u

(b(u)− c ·w1(u))2dH(u).

Thus, ∑
(u,v)∈EH (b(u)− σ(uv)b(v))2∑
u(b(u)− c2 ·w1(u))2dH(u)

≥ λ2(H) ≥ β2
in

64C2
1

. (10)

Therefore, by Inequalities (4), (7), (9) and (10), it holds that

∑
u

(v′i(u)− c1,i ·w1(u))2dH(u) ≤ 128C2
1βout

β2
in

, and

∑
u

(b(u)− c2 ·w1(u))2dH(u) <
128C2

1βout

β2
in

.

(11)

Equivalently,

‖v′iD1/2 − c1,iw1D
1/2‖22 ≤

128C2
1βout

β2
in

<
1

4
, and

‖c2w1D
1/2 − bD1/2‖22 ≤

128C2
1βout

β2
in

<
1

4
,

Sublinear-Time Clustering Oracle for Signed Graphs

where we make use the fact that 512C2
1βout < β2

in.

Recall that v′i = viD
−1/2 and b =

1V1,V2√
µU

. Therefore,

‖v′iD1/2‖22 =
∑
u∈VH

v′i
2
(u)dH(u)

=
∑
u∈VH

vi
2(u)dH(u)−1 · dH(u)

≤
∑
u∈V

v2
i (u)

= 1

and
‖bD1/2‖22 =

∑
u∈VH

b2(u)dH(u) = 1.

By the above inequalities, we have

|c1,i| · ‖w1D
1/2‖2 ≤

1

2
+ ‖v′iD1/2‖2 =

3

2
,

and
1

2
= ‖bD1/2‖2 −

1

2
≤ |c2| · ‖w1D

1/2‖2 ≤
1

2
+ ‖bD1/2‖2 =

3

2
.

By the fact that d ≥ du ≥ 1 for any vertex u ∈ H and that ‖w1D
1/2‖22 =

∑
uw

2
1(u)du, we have

d =
∑
u

dw2
1(u) ≥ ‖w1D

1/2‖22 ≥
∑
u

w2
1(u) = 1.

Furthermore, we have that

|c1,i| ≤
3

2
,

and
1

2d
≤ |c2| ≤

3

2
.

Let B1 = {u : |v′i(u)− c1,i ·w1(u)|2 ≥ 256C2
1βout

αβ2
inµU

}, and B2 = {u : |b(u)− c2 ·w1(u)|2 ≥ 256C2
1βout

αβ2
inµU

}. By Inequal-

ity (11), the fact that dH(u) ≥ 1 for any u ∈ VH and an averaging argument, we have |B1| ≤ α|U |
2 , and |B2| ≤ α|U |

2 .
Therefore, by letting Ũ = U \ (B1 ∪B2), we have |Ũ | ≥ (1− α)|U |, and it holds that

|v′i(u)− c1,i ·w1(u)|2 ≤ 256C2
1βout

αβ2
inµU

,

and

|b(u)− c2 ·w1(u)|2 ≤ 256C2
1βout

αβ2
inµU

.

for any u ∈ Ũ . Thus,

|v′i(u)− c1,i ·w1(u)| ≤ 16C1

βin
·

√
βout

α · µU
,

and ∣∣∣∣c1,ic2 b(u)− c1,i ·w1(u)

∣∣∣∣ ≤ |c1,i||c2| 16C1

βin
·

√
βout

αµU

Sublinear-Time Clustering Oracle for Signed Graphs

≤ 3/2

1/(2d)

16C1

βin
·

√
βout

αµU

≤ 48dC1

βin
·

√
βout

αµU
.

Now for each i ≤ k we let ci :=
c1,i
c2

. Then |ci| ≤ 3/2
1/(2d) = 3d, and for any vertex u ∈ Ũ , it holds that

|v′i(u)− ci · b(u)| ≤ |v′i(u)− c1,i ·w1(u)|+
∣∣∣∣c1,ic2 b(u)− c1,i ·w1(u)

∣∣∣∣
≤ 64dC1

βin
·

√
βout

αµU
.

Finally, by the definition of b =
1V1,V2√
µU

, we know that for each i ≤ k,

• if u ∈ V1 ∩ Ũ , then
∣∣∣v′i(u)− ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
αµU

,

• if u ∈ V2 ∩ Ũ , then
∣∣∣v′i(u) + ci · 1√

µU

∣∣∣ ≤ 64dC1

βin
·
√

βout
αµU

.

E.3. Proof of Lemma 9

Now we prove Lem. 9, which is restated in the following for the sake of readability.

Lemma 9. Let α, γ ∈ (0, 1). Let G = (V,E, σ) be a signed, d-bounded degree, (k, βin, βout)-clusterable graph. Let U be
a subset of V such that |U | ≥ γn, βinner(G[U]) ≥ βin and βG(U) ≤ βout. Then for all t ≥ 4C2

1 (k+1)6 logn

β2
in

, βout < α1β
2
in

where α1 = αγ
800000C2

1kd
3 , there exists a subset Ũ ⊆ U with

∣∣∣Ũ ∣∣∣ ≥ (1−α) |U | and for all u, v ∈ Ũ , it holds that ∆uv ≤ 1
4nd .

Proof. Since

ptu = 1uW
t = 1u

(
I + D−1Aσ

2

)t
= 1u

(
D−1/2(I + D−1/2AσD−1/2)D1/2

2

)t
= 1uD

−1/2
(
I + D−1/2AσD−1/2

2

)t
D1/2

= 1uD
−1/2

(
I− LG

2

)t
D1/2

= 1uD
−1/2

∑
i

(1− λi/2)tv>i viD
1/2.

Recall that v′i = viD
−1/2. We have that,

ptuD
−1/2 = 1uD

−1/2
∑
i

(1− λi/2)tv>i vi

=
∑
i

(1− λi/2)t
vi(u)√
dG(u)

vi

=
∑
i

(1− λi/2)tv′i(u)vi.

Therefore we get that

‖ptuD−1/2 − ptvD
−1/2‖22

Sublinear-Time Clustering Oracle for Signed Graphs

= ‖
n∑
i=1

(v′i(u)− v′i(v))(1− λi/2)tvi‖22

=

n∑
i=1

(v′i(u)− v′i(v))2(1− λi/2)2t

≤
k∑
i=1

(v′i(u)− v′i(v))2 +

n∑
i=k+1

(v′i(u)− v′i(v))2 (1− λi/2)
2t

≤
k∑
i=1

(v′i(u)− v′i(v))2 + (1− λk+1/2)
2t

n∑
i=k+1

2

(
vi(u)2

dG(u)
+

vi(v)2

dG(v)

)

≤
k∑
i=1

(v′i(u)− v′i(v))2 + 4

(
1− β2

in

2C2
1 (k + 1)6

)2t

≤
k∑
i=1

(v′i(u)− v′i(v))2 + 4 exp

(
− β2

int

C2
1 (k + 1)6

)
,

where in the fourth step we used that (v′i(u)− v′i(v))2 ≤ 2(v′i(u)2 + v′i(v)2) by the Cauchy–Schwarz inequality and the
definition of v′i. In the fifth step we used that

∑n
i=k+1 vi(u)2 ≤

∑n
i=1 vi(u)2 = 1 and that λk+1 ≥ β2

in
C2

1 (k+1)6
by Lem. 5,

as well as dG(u) ≥ 1, for any u ∈ V . Similarly,

‖ptuD−1/2 + ptvD
−1/2‖22 ≤

k∑
i=1

(v′i(u) + v′i(v))2 + 4 exp

(
− β2

int

C2
1 (k + 1)6

)
.

We apply Lem. 6 on the set U and let Ũ ⊆ U , V1, V2 be the partition of U with the property specified in Lem. 6. Now we
consider two vertices u, v ∈ Ũ . We now distinguish four cases:

• Case 1: If u, v ∈ V1, then for all i ∈ [k],

|v′i(u)− v′i(v)| ≤
∣∣∣∣v′i(u)− ci ·

1
√
µU

∣∣∣∣+

∣∣∣∣v′i(v)− ci ·
1
√
µU

∣∣∣∣
≤ 128dC1

βin
·

√
βout

αµU
.

Thus,

‖ptuD−1/2 − ptvD
−1/2‖22 ≤

k∑
i=1

(v′i(u)− v′i(v))2 + 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 20000kd2C2

1βout

β2
in · αµU

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 20000kd2C2

1βout

β2
in · α|U |

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 20000kd2C2

1βout

β2
in · αγn

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 1

4nd
,

where in the second to last inequality, we use the assumption that βout < α1β
2
in such that α1 = α1(k, α, γ, d) =

αγ
800000C2

1kd
3 and that t ≥ 4C2

1 (k+1)6 logn

β2
in

.
• Case 2: If u, v ∈ V2, then for all i ∈ [k],

|v′i(u)− v′i(v)| ≤
∣∣∣∣v′i(u) + ci ·

1
√
µU

∣∣∣∣+

∣∣∣∣v′i(v) + ci ·
1
√
µU

∣∣∣∣

Sublinear-Time Clustering Oracle for Signed Graphs

≤ 128dC1

βin
·

√
βout

αµU
.

Thus, similarly as above,

‖ptuD−1/2 − ptvD
−1/2‖22 ≤

20000kd2C2
1βout

β2
in · αµU

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 1

4nd
.

• Case 3: If u ∈ V1, v ∈ V2, then for all i ∈ [k],

|v′i(u) + v′i(v)| ≤
∣∣∣∣v′i(u)− ci ·

1
√
µU

∣∣∣∣+

∣∣∣∣v′i(v) + ci ·
1
√
µU

∣∣∣∣
≤ 128dC1

βin
·

√
βout

αµU
.

Thus, similarly as above,

‖ptuD−1/2 + ptvD
−1/2‖22 ≤

k∑
i=1

(v′i(u) + v′i(v))2 + 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 20000kd2C2

1βout

β2
in · αµU

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 1

4nd
.

• Case 4: If u ∈ V2, v ∈ V1 then for all i ∈ [k],

|v′i(u) + v′i(v)| ≤
∣∣∣∣v′i(u) + ci ·

1
√
µU

∣∣∣∣+

∣∣∣∣v′i(v)− ci ·
1
√
µU

∣∣∣∣
≤ 128dC1

βin
·

√
βout

αµU
.

Thus, similarly as above

‖ptuD−1/2 + ptvD
−1/2‖22 ≤

20000kd2C2
1βout

β2
in · αµU

+ 4 exp

(
− β2

int

C2
1 (k + 1)6

)
≤ 1

4nd
.

Therefore, for any two vertices u, v ∈ Ũ , we have that

∆uv = min{‖ptuD−1/2 − ptvD
−1/2‖22, ‖ptuD−1/2 + ptvD

−1/2‖22} ≤
1

4nd
.

E.4. Proof of Lemma 10

Now we prove Lem. 10, which is restated in the following for the sake of readability.

Lemma 10. Let U1 and U2 be two disjoint subsets with βG(U1), βG(U2) ≤ βout. Let 0 < α < 1. For any 0 ≤ t ≤ α
8βout

,

there exist subsets Û1 ⊆ U1, Û2 ⊆ U2 such that |Û1| ≥ (1− α)|U1|, |Û2| ≥ (1− α)|U2|, and for any u ∈ Û1 and v ∈ Û2,
it holds that ∆uv ≥ 1

nd .

Sublinear-Time Clustering Oracle for Signed Graphs

Proof. Let 0 < α < 1. Consider a subset C = (V1, V2) with βG(V1, V2) ≤ βout. We first show that for any t ≥ 0, there
exists a subset Ĉ ⊆ C such that vol(Ĉ) ≥ (1− α) vol(C) and for any v ∈ Ĉ,

∑
w∈C |1vWt(w)| ≥ 1− 2tβout

α . To do so,
we first introduce some notations. For any vertex subset C = (V1, V2) ⊆ V , we define vectors yV1,V2

and 1V1,V2
as

yV1,V2(u) =

du

vol(C) if u ∈ V1,
− du

vol(C) if u ∈ V2,
0 otherwise,

1V1,V2
(u) =

1 if u ∈ V1,
−1 if u ∈ V2,
0 otherwise.

We first show the following result.

Claim 13. For all t ≥ 0, yV1,V2
Wt1>V1,V2

≥ 1− tβout.

Proof. We prove for any t ≥ 0,
yV1,V2

Wt1>V1,V2
− yV1,V2

Wt+11>V1,V2
≤ βout.

Note that once the above inequality is proven, the claim follows from the fact that yV1,V2
W01>V1,V2

= yV1,V2
1>V1,V2

= 1.

Let x be the vector such that x> = Wt1>V1,V2
. Note that for any vertex w ∈ V , it holds that |x(w)| ≤ 1. Therefore,

yV1,V2
Wt1>V1,V2

− yV1,V2
Wt+11>V1,V2

= yV1,V2(I−W)W t1>V1,V2

= yV1,V2
D−1

D−Aσ

2
Wt1>V1,V2

=
1

2 vol(C)
1V1,V2

(D−Aσ)Wt1V1,V2

=
1

2 vol(C)

∑
(u,v)∈E

(1V1,V2
(u)− σ(u, v)1V1,V2

(v)) · (x(u)− σ(u, v)x(v))

≤ 1

2 vol(C)

∑
(u,v)∈E

|1V1,V2
(u)− σ(u, v)1V1,V2

(v)| · |x(u)− σ(u, v)x(v)|

≤ 1

2 vol(C)

∑
(u,v)∈E

2 · |1V1,V2
(u)− σ(u, v)1V1,V2

(v)|

=
1

vol(C)
· (2|E+

G(V1, V2)|+ 2|E−G(V1)|+ 2|E−G(V2)|+ |EG(C,C)|)

≤ 2βG(V1, V2) ≤ 2βout.

By the above claim, we have ∑
v∈C

dv
vol(C)

∑
w∈C

∣∣1vWt(w)
∣∣

≥
∑
v∈V1

dv
vol(C)

1vW
t1>V1,V2

−
∑
v∈V2

dv
vol(C)

1vW
t1>V1,V2

=yV1,V2
Wt1>V1,V2

≥ 1− 2tβout.

Thus, ∑
v∈C

dv
vol(C)

(1−
∑
w∈C
|1vWt(w)|) = 1−

∑
v∈C

dv
vol(C)

∑
w∈C

∣∣1vWt(w)
∣∣

Sublinear-Time Clustering Oracle for Signed Graphs

≤ 2tβout.

Let QC = {v :
∑
w∈C |1vWt(w)| ≤ 1− 2dtβout

α }. Then,

∑
v∈C

dv
vol(C)

(1−
∑
w∈C

∣∣1vWt(w)
∣∣) ≥ ∑

v∈QC

dv
vol(C)

(1−
∑
w∈C

∣∣1vWt(w)
∣∣)

≥ vol(QC)

vol(C)

2dtβout

α

≥ |QC |
d|C|

2dtβout

α
.

Thus, |QC | ≤ α|C|. Therefore, if we set Ĉ = C \QC , then |Ĉ| ≥ (1− α)|C|, and for any v ∈ Ĉ,∑
w∈C

∣∣1vWt(w)
∣∣ ≥ 1− 2dtβout

α
.

Now for any two disjoint sets C1 = (V1, V2) and C2 = (V ′1 , V
′
2), we define Ĉ1 and Ĉ2 for C1 and C2, respectively. Thus,

|Ĉ1| ≥ (1− α)|C1| and |Ĉ2| ≥ (1− α)|C2|. Furthermore, for any t ≥ 1 and 0 < α < 1, for any u ∈ Ĉ1 and v ∈ Ĉ2:∑
w∈C1

|1uWt(w)| ≥ 1− 2dtβout

α
,

and ∑
w∈C2

|1vWt(w)| ≥ 1− 2dtβout

α
.

Since C1 and C2 are disjoint, we have∑
w∈C1

|1vWt(w)| ≤ 1−
∑
w∈C2

|1vWt(w)| ≤ 2dtβout

α
,

and ∑
w∈C2

|1uWt(w)| ≤ 1−
∑
w∈C1

|1uWt(w)| ≤ 2dtβout

α
.

Let qtu be the vector such that qtu(w) = |1vWt(w)|. Therefore, for any t ≥ 0,

‖(qtu − qtv)D
−1/2‖22

=
∑
w∈V

(qtu(w)− qtv(w))2
1

dG(w)

=

(∑
w∈V

(qtu(w)− qtv(w))2
1

dG(w)

)
·

(∑
w∈V

dG(w)) · 1

vol(G)

)

≥
(
∑
w∈V |qtu(w)− qtv(w)|)2

vol(G)
(by Cauchy Schwarz inequality)

≥
(
∑
w∈V ||1uWt(w)| − |1vWt(w)||)2

vol(G)

≥ 1

vol(G)

[∑
w∈C1

(|1uWt(w)| − |1vWt(w)|) +
∑
w∈C2

(|1vWt(w)| − |1uWt(w)|)

]2

Sublinear-Time Clustering Oracle for Signed Graphs

=
1

vol(G)

[∑
w∈C1

|1uWt(w)| −
∑
w∈C1

|1vWt(w)|+
∑
w∈C2

|1vWt(w)| −
∑
w∈C2

|1uWt(w)|

]2

≥
(2 · (1− 2dtβout

α − 2dtβout
α))2

vol(G)

=
(2 · (1− 4dtβout

α))2

vol(G)
.

In particular, if t ≤ α
8dβout

, then ‖(qtu − qtv)D
−1/2‖22 ≥ 1

vol(G) ≥
1
nd .

The lemma then follows from the fact that

∆uv = min{‖ptuD−1/2 − ptvD
−1/2‖22, ‖ptuD−1/2 + ptvD

−1/2‖22}
≥ ‖qtuD−1/2 − qtvD

−1/2‖22.

E.5. Proof of Lemma 11

Now we prove Lem. 11, which is restated in the following for the sake of readability.

Lemma 11. Let α ∈ (0, 1). Suppose G = (V,E, σ) is a signed and (k, βin, βout)-clusterable graph. Then there exists a set
V ′ ⊆ V of size |V ′| ≥ (1− α) |V | such that for all u ∈ V ′ and all t ≥ C2

1 (k+1)6 logn

β2
in

, we have that ‖ptvD−1/2‖22 ≤ 2k
αn .

Proof. Recall that vi is the i-th eigenvector of LσG, and v′i = viD
−1/2. For all u ∈ V , we set δ(u) =

∑k
i=1 v

′
i(u)2. Since

we have that ‖vi‖22 = 1 and dG(u) ≥ 1,

∑
u∈V

δ(u) =
∑
u∈V

k∑
i=1

vi(u)2

dG(u)
=

k∑
i=1

∑
u∈V

vi(u)2

dG(u)
≤ k.

Thus, the average value of δ(u) over all u is k
n . This implies that there exists a subset of vertices V ′ ⊆ V of size

|V ′| ≥ (1− α) |V | such that δ(u) ≤ k
αn for all u ∈ V ′.

Furthermore, we have that 1u =
∑n
i=1 vi(u)vi and ptuD

−1/2 =
∑n
i=1 v

′
i(u)

(
1− λi

2

)t
vi. We now get that

‖ptuD−1/2‖22 = ‖
n∑
i=1

v′i(u)

(
1− λi

2

)t
vi‖22

=

n∑
i=1

v′i(u)2
(

1− λi
2

)2t

=

k∑
i=1

v′i(u)2
(

1− λi
2

)2t

+

n∑
i=k+1

v′i(u)2
(

1− λi
2

)2t

=

k∑
i=1

v′i(u)2 +

(
1− λk+1

2

)2t n∑
i=k+1

v′i(u)2

≤ δ(u) +

(
1− λk+1

2

)2t

≤ k

αn
+

(
1− β2

in

2C2
1 (k + 1)6

)2t

≤ k

αn
+ exp

(
− β2

int

C2
1 (k + 1)6

)

Sublinear-Time Clustering Oracle for Signed Graphs

≤ 2k

αn
,

where we used that λk+1 ≥ β2
in

C2
1 (k+1)6

by Lem. 5 and in the last step we used that t ≥ C2
1 (k+1)6 logn

β2
in

.

E.6. Proof of Lemma 12

Now we prove Lem. 12, which is restated in the following for the sake of readability.
Lemma 12. Let α ∈ (0, 1) be a number such that 2k

α ≤ n. Suppose G = (V,E, σ) is a signed and (k, βin, βout)-clusterable

graph. Let t ≥ C2
1 (k+1)6 logn

β2
in

. Let V ′ ⊆ V be the set of vertices satisfying the property given by Lem. 11. Then

ESTDOTPROD(u, v, t, α) outputs Xuv such that with probability 1− 1/n3, it holds that∣∣∣Xuv − 〈ptvD−1/2,ptuD−1/2〉
∣∣∣ ≤ 1

20nd

for all u, v ∈ V ′. Furthermore, ESTDOTPROD(u, v, t, α) runs in time O(d
2k1.5t logn
α1.5 ·

√
n).

Proof. This proof is based on Chiplunkar et al. (2018, Lem. 19). However, since the vectors we are analyzing may contain
negative entries, we need to give a more refined analysis on the variance of the corresponding estimator.

Let u, v ∈ V ′. Recall that ptu = 1uW
t and ptv = 1vW

t. By Lem. 11 we have that ‖ptuD−1/2‖2, ‖ptvD−1/2‖2 ≤
√

2k
αn .

Let η ∈ (0, 1) be a parameter that will be specified later. Let R be an integer such that R2 ≥ 6
η2 ·

2k
αn and R ≥ 24

η2 ·
(
2k
αn

)1.5
.

For x ∈ {u, v}, we perform R lazy signed random walks from x of length t. Let Xr,s
x,w be a random variable that is 1√

dG(w)

if the r’th walk that starts at vertex x ends at vertex w with sign s ∈ {+,−}. Set Xr
x,w = Xr,+

x,w −Xr,−
x,w. Observe that

E
[
Xr
x,w

]
=

ptx(w)√
dG(w)

for all w ∈ V .

Let ms
x(w) be the fraction of walks that start at x and end at w with sign s, for x ∈ {u, v}. Let mx = m+

xD
−1/2 −

m−xD
−1/2.

Now for any pair of vertices u, v ∈ V ′, observe that

〈mu,mv〉 =
1

R2

∑
w∈V

(
R∑

ru=1

Xru
u,w

)(
R∑

rv=1

Xrv
v,w

)
.

This implies that

E [〈mu,mv〉] = E

[
1

R2

∑
w∈V

(
R∑

ru=1

Xru
u,w

)(
R∑

rv=1

Xrv
v,w

)]

=
1

R2

∑
w∈V

R
ptu(w)√
dG(w)

·R ptv(w)√
dG(w)

=
∑
w∈V

ptu(w)√
dG(w)

ptv(w)√
dG(w)

= 〈ptuD−1/2,ptvD−1/2〉.

Next, we wish to compute Var [〈mu,mv〉] = E
[
〈mu,mv〉2

]
−E [〈mu,mv〉]2. We start by computing E

[
〈mu,mv〉2

]
:

E
[
〈mu,mv〉2

]
= E

 1

R4

∑
w∈V

∑
w′∈V

R∑
ru=1

R∑
r′u=1

R∑
rv=1

R∑
r′v=1

Xru
u,wX

r′u
u,w′X

rv
v,wX

r′v
v,w′

=

1

R4

∑
w∈V

∑
w′∈V

R∑
ru=1

R∑
r′u=1

R∑
rv=1

R∑
r′v=1

E
[
Xru
u,wX

r′u
u,w′X

rv
v,wX

r′v
v,w′

]
.

We perform a case distinction in order to bound E
[
Xru
u,wX

r′u
u,w′X

rv
v,wX

r′v
v,w′

]
:

Sublinear-Time Clustering Oracle for Signed Graphs

• If w 6= w′, then

E
[
Xru
u,wX

r′u
u,w′X

rv
v,wX

r′v
v,w′

]
=

ptu(w)√
dG(w)

· ptv(w)√
dG(w)

· ptu(w
′)√

dG(w′)
· ptv(w

′)√
dG(w′)

if ru 6= r′u and rv 6= rv′ ,

0 otherwise.

• If w = w′, ru = r′u and rv = r′v then

E
[
Xru
u,wX

ru
u,wX

rv
v,wX

rv
v,w

]
≤ |p

t
u(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

· 1√
dG(w)

· 1√
dG(w)

.

• If w = w′, ru = r′u and rv 6= r′v then

E
[
Xru
u,wX

ru
u,wX

rv
v,wX

r′v
v,w

]
≤ |p

t
u(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

· 1√
dG(w)

· |p
t
v(w)|√
dG(w)

.

• If w = w′, ru 6= r′u and rv = r′v then

E
[
Xru
u,wX

r′u
u,wX

rv
v,wX

rv
v,w

]
≤ |p

t
u(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

· |p
t
u(w)|√
dG(w)

· 1√
dG(w)

.

• If w = w′, ru 6= r′u and rv 6= r′v then

E
[
Xru
u,wX

r′u
u,wX

rv
v,wX

r′v
v,w

]
≤ |p

t
u(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

· |p
t
u(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

.

Thus, we obtain that

E
[
〈mu,mv〉2

]
=

1

R4

∑
w∈V

∑
w′∈V

R∑
ru=1

R∑
r′u=1

R∑
rv=1

R∑
r′v=1

E
[
Xru
u,wX

r′u
u,w′X

rv
v,wX

r′v
v,w′

]
≤ R2(R− 1)2

R4

∑
w∈V

∑
w′ 6=w

ptu(w)√
dG(w)

· ptv(w)√
dG(w)

· ptu(w′)√
dG(w′)

· ptv(w
′)√

dG(w′)

+
1

R2

∑
w∈V

|ptu(w)| · |ptv(w)|
d2G(w)

+
1

R

∑
w∈V

|ptu(w)| · |ptv(w)|2

d2G(w)

+
1

R

∑
w∈V

|ptu(w)|2 · |ptv(w)|
d2G(w)

+
∑
w∈V

|ptu(w)|2 · |ptv(w)|2

d2G(w)

=
∑

w,w′∈V

ptu(w) · ptv(w) · ptu(w′) · ptv(w′)
dG(w)dG(w′)

−
(

2R− 1

R2

) ∑
w∈V

∑
w′ 6=w

ptu(w) · ptv(w) · ptu(w′) · ptv(w′)
dG(w)dG(w′)

+
1

R2

∑
w∈V

|ptu(w)| · |ptv(w)|
d2G(w)

+
1

R

∑
w∈V

|ptu(w)| · |ptv(w)|2

d2G(w)

+
1

R

∑
w∈V

|ptu(w)|2 · |ptv(w)|
d2G(w)

,

This implies that

Var [〈mu,mv〉] = E
[
〈mu,mv〉2

]
−E [〈mu,mv〉]2

Sublinear-Time Clustering Oracle for Signed Graphs

≤
∑

w,w′∈V

ptu(w) · ptv(w) · ptu(w′) · ptv(w′)
dG(w)dG(w′)

−
(

2R− 1

R2

) ∑
w∈V

∑
w′ 6=w

ptu(w) · ptv(w) · ptu(w′) · ptv(w′)
dG(w)dG(w′)

+
1

R2

∑
w∈V

|ptu(w)| · |ptv(w)|
d2G(w)

+
1

R

∑
w∈V

|ptu(w)| · |ptv(w)|2

d2G(w)

+
1

R

∑
w∈V

|ptu(w)|2 · |ptv(w)|
d2G(w)

−

(∑
w∈V

ptu(w)√
dG(w)

ptv(w)√
dG(w)

)2

≤ 1

R2

∑
w∈V

|ptu(w)|√
dG(w)

· |p
t
v(w)|√
dG(w)

+
1

R

∑
w∈V

|ptu(w)|√
dG(w)

·

(
|ptv(w)|√
dG(w)

)2

+
1

R

∑
w∈V

(
|ptu(w)|√
dG(w)

)2

· |p
t
v(w)|√
dG(w)

+
2

R

∑
w,w′∈V

|ptu(w)| · |ptv(w)| · |ptu(w′)| · |ptv(w′)|
dG(w)dG(w′)

≤ 1

R2
‖ptuD−1/2‖2 · ‖ptvD−1/2‖2 +

1

R
‖ptuD−1/2‖2 · ‖ptvD−1/2‖24

+
1

R
‖ptuD−1/2‖24 · ‖ptvD−1/2‖2 +

2

R

(∑
w∈V

|ptu(w)| · |ptv(w)|
dG(w)

)2

≤ 1

R2
‖ptuD−1/2‖2 · ‖ptvD−1/2‖2 +

1

R
‖ptuD−1/2‖2 · ‖ptvD−1/2‖22

+
1

R
‖ptuD−1/2‖22 · ‖ptvD−1/2‖2 +

2

R
‖ptuD−1/2‖22 · ‖ptvD−1/2‖22,

where in the last step we have used the Cauchy-Schwarz inequality and the monotonicity of the `p-norms4, which gives
‖x‖4 ≤ ‖x‖2, for any vector x.

Now recall that ‖ptuD−1/2‖2, ‖ptvD−1/2‖2 ≤
√

2k
αn . Recall that 2k

α ≤ n and thus 2k
αn ≤ 1. This implies that

Var [〈mu,mv〉] ≤
1

R2
· 2k

αn
+

2

R
·
(

2k

αn

)1.5

+
2

R
·
(

2k

αn

)2

≤ 1

R2
· 2k

αn
+

4

R
·
(

2k

αn

)1.5

.

Now Chebyshev’s Inequality implies that:

Pr
(∣∣∣〈mu,mv〉 − 〈ptuD−1/2,ptvD−1/2〉

∣∣∣ ≥ η)
= Pr (|〈mu,mv〉 −E [〈mu,mv〉]| ≥ η)

≤ Var [〈mu,mv〉]
η2

≤ 1

η2
·

(
1

R2
· 2k

αn
+

4

R
·
(

2k

αn

)1.5
)

≤ 1

3
.

4It is known that for p, q ∈ (0,∞) with p ≤ q, it holds that ‖x‖q ≤ ‖x‖p for all vectors x.

Sublinear-Time Clustering Oracle for Signed Graphs

In the last inequality we have used that R2 ≥ 6
η2 ·

2k
αn and R ≥ 24

η2 ·
(
2k
αn

)1.5
.

Now we let η = 1
20nd and R = 40000d2k1.5

√
n

α1.5 so that the above conditions on R are satisfied. Thus, with probability at least
1− 1

3 = 2
3 , the estimate 〈mu,mv〉 satisfies that∣∣∣〈mu,mv〉 − 〈ptuD−1/2,ptvD−1/2〉

∣∣∣ ≤ 1

20nd
.

Now note that the algorithm ESTDOTPROD(u, v, t, α) repeatedly invokes the above subroutine for h = O(log n) times and
outputs the median of the corresponding estimates 〈mu,mv〉, we are guaranteed that with probability at least 1− 1/n3, the
output Xuv satisfies that ∣∣∣Xuv − 〈ptuD−1/2,ptvD−1/2〉

∣∣∣ ≤ 1

20nd
.

To obtain the runtime result, observe that for each run of the subroutine, the algorithm only performs R random walks of
length t from both u and v, which can be done in O(Rt) time. Thus, each of the vectors mu and mv has at most R non-zero
entries and the dot product 〈mu,mv〉 can be computed in time O(R). Finally, since we run the subroutine for O(log n)

times, the total running time is thus O(Rt log n) = O(d
2k1.5t

√
n logn

α1.5).

This finishes the proof of the lemma.

E.7. Proof of Thm. 4

Now we prove Thm. 4, which is restated in the following for the sake of readability.

Theorem 4. Let G = (V,E, σ) be a signed graph with |V | = n vertices and maximum degree at most d. Suppose that G
has a balanced (k, βin, βout)-clustering U1, · · · , Uk, βout <

εβ2
in

C′ log(k)k7d3 logn , where C ′ is some sufficiently large constant,
and |Ui| ≥ γ nk for all i = 1, . . . , k. There exists an algorithm that has query access to the adjacency list of G and constructs
a clustering oracle in O(

√
n · poly(kd·lognεβin

)) preprocessing time. Furthermore, with probability at least 0.9, the following
hold:

1. Using the oracle, the algorithm can answer any WHICHCLUSTER query in O(
√
n · poly(kd·lognεβin

)) time.
2. Let Pi := {u ∈ V : WHICHCLUSTER(u) = i}, i ∈ [k], be the clusters defined by WHICHCLUSTER. Then there exists a

permutation π : [k]→ [k] such that for all i ∈ [k],
∣∣Pπ(i)4Ui∣∣ ≤ O(ε/ log k)|Ui|.

Proof. Given the above lemmas, we can prove our main theorem as follows. Recall that C ′′ > 0 is some large constant.
Note that we have selected the random walk length t = C′′k6d3 logn

β2
in

.

Let s = 20k
γ log(k), α = ε

90s . Recall that βout <
εβ2

in
C′ log(k)k7d3 logn . Note that t ≤ α

8βout
by changing appropriately large C ′′.

Note that 2k
α = 1800k2 log(k)

γε ≤ n.

Correctness. Let U1, . . . , Uk be a (k, βin, βout)-clustering of G such that each cluster has size at least γnk , for some universal
constant γ > 0. For any u ∈ V , let Uu be the cluster that contains u. We call a vertex u bad, if either:

• u ∈ V \ V ′, where V ′ is the set as defined in Lem. 11 with α = ε
90s ,

• u ∈ Uu \ Ũu, where Ũu is as defined in Lem. 9 with α = ε
90s , or

• u ∈ Uu \ Ûu, where Ûu is as defined in Lem. 10 with α = ε
90s .

Let B denote the set of all bad vertices. Note that

|B| ≤
(ε

90s
+

ε

90s
+

ε

90s

)
· n =

ε · n
30s

.

We call a vertex u good, if it is not bad.

Note that since each cluster U has size at least γnk , it holds that

|B| ≤ γε · n
600k log(k)

≤ O
(

ε

log(k)

)
|U |.

Sublinear-Time Clustering Oracle for Signed Graphs

Thus, with probability at least 1− ε
30s · s ≥ 1− 1

30 , all the vertices in S are good. In the following, we will assume that this
is the case.

Note further that since each cluster U satisfies that |U | ≥ γn
k for some γ = Ω(1), it holds that with probability at least

1 − (1 − γ
k)s ≥ 1 − 1

30k , there exists at least one vertex in S that is from cluster U . Thus, for all the k clusters U , with
probability at least 1− 1

30 , there exists at least one vertex in S that is from cluster U .

By Lem. 11, we know that for any v ∈ S, ‖ptvD−1/2‖22 ≤ 2k
n ·

90s
ε = 3600k2 log(k)

γε·n . Let u, v be two different vertices in S.
By Lem. 12, with probability at least 1− 1

n3 , we can estimate each term 〈ptxD−1/2,ptyD−1/2〉 within an additive error at

most 1
20nd , for any {x, y} ∈ {u, v}. This also implies that with probability at least 1− |S|

2

n3 ≥ 1− 1
n2 , for all vertex pairs

x, y ∈ S, we have an estimate Xxy such that∣∣∣Xxy − 〈ptxD−1/2,ptyD−1/2〉
∣∣∣ ≤ 1

20nd
.

In the following, we will assume the above inequality holds for any x, y ∈ S.

Since v is good for each v ∈ S, we know that Xvv ≤ 3600k2 log(k)
γε·n + 1

20nd ≤
4000k2 log(k)

γε·n . Thus, Line 7 of Alg. 2 will not
happen.

Note that

∆uv = min{‖ptuD−1/2 − ptvD
−1/2‖22, ‖ptuD−1/2 + ptvD

−1/2‖22},

where

‖ptuD−1/2 − ptvD
−1/2‖22 = 〈ptuD−1/2,ptuD−1/2〉 − 2〈ptuD−1/2,ptvD−1/2〉+ 〈ptvD−1/2,ptvD−1/2〉,

and

‖ptuD−1/2 + ptvD
−1/2‖22 = 〈ptuD−1/2,ptuD−1/2〉+ 2〈ptuD−1/2,ptvD−1/2〉+ 〈ptvD−1/2,ptvD−1/2〉.

Since our estimates Xvv, Xuv, Xuu approximate 〈ptuD−1/2,ptuD−1/2〉, 〈ptuD−1/2,ptvD−1/2〉 〈ptvD−1/2,ptvD−1/2〉
within an additive error 1

20nd , respectively, we can approximate ∆uv within an additive error at most 4 · 1
20nd = 1

5nd , i.e.,
the estimate δuv (at Line 13 of Alg. 2) satisfies that |δuv −∆uv| ≤ 1

5nd .

Now recall that each cluster U satisfies that |U | ≥ γ
kn for some γ = Ω(1) and that βout <

εβ2
in

C′ log(k)k7d3 logn . Note that the
precondition of Lem. 9 is satisfied. Now let SU = S ∩ U , and let u, v ∈ S. Then:

• If u, v belong to the same cluster, by Lem. 9, we know that ∆uv ≤ 1
4nd . Then it holds that δuv ≤ ∆uv + 1

5nd <
1

2nd .
Thus, an edge (u, v) will be added to H (at line 15 of Alg. 2).

• If u, v belong to two different clusters, by Lem. 10, we know ∆uv ≥ 1
nd . Then it holds that δuv ≥ ∆uv − 1

5nd >
1

2nd .
Thus, an edge (u, v) will not be added to H .

Therefore, with probability at least 1− 1
30 −

1
n2 − 1

30 ≥ 0.9, the similarity graph H has the following properties:

1. all vertices in V (H) (i.e., S) are good,
2. all vertices in S that belong to the same cluster U form a clique, denoted by HU ,
3. there is no edge between any two cliques HUi and HUj that correspond to two different clusters Ui, Uj ,
4. there are exactly k cliques in H , each corresponding to some cluster.

Now let us consider a membership query, i.e., the subroutine WHICHCLUSTER(G, v,H, `) for some vertex v ∈ V . We will
show that any good vertex v will be correctly classified. In the following, we will assume that v is good.

Since all the vertices in S are good, we know that for any vertex u ∈ Uv ∩ S, by Lem. 9, ∆uv ≤ 1
4nd , and by the same

argument as above, with probability at least 1− 1/n2, the estimate δuv (at Line 6 of Alg. 3) satisfies that δuv < 1
2nd . Thus,

the label for v outputted by WHICHCLUSTER will be the same as the `(u), the label of u.

On the other hand, for any other vertex u ∈ S \ Uv, by Lem. 10, ∆uv ≥ 1
nd , and by the same argument as above, with

probability at least 1− 1/n2, the estimate δuv (at Line 6 of Alg. 3) satisfies that δuv > 1
2nd . This further implies that the

label of v will be different from the label of u.

Sublinear-Time Clustering Oracle for Signed Graphs

Thus, all good vertices are correctly classified with probability at least 1− 2
30 −

n
n2 ≥ 0.9. Assuming this holds, then the set

of misclassified vertices is a subset of all bad vertices, which implies that there exists a permutation π : [k]→ [k] such that

|Pπ(i)4Ui| ≤ |B| ≤ O
(

ε

log(k)

)
· |Ui|.

Running time. We first note that by Lem. 12, the subroutine ESTDOTPROD(u, v, t, α) (i.e., Alg. 1) runs in time
O(d

2k1.5t logn
α1.5 ·

√
n) = O(

√
npoly(kd·lognεβin

)).

For the algorithm BUILDORACLE, it invokes the subroutine ESTDOTPROD for O(s2) times and uses the outputted estimates
to construct the similarity graph H , which in total takes O(s2 · d

2k1.5t logn
α1.5 ·

√
n) = O(

√
npoly(kd·lognεβin

)) time.

For the algorithm WHICHCLUSTER, it invokes the subroutine ESTDOTPROD for O(s) times and uses uses the outputted
estimates to answer, which in total takes O(s · d

2k1.5t logn
α1.5 ·

√
n) = O(

√
npoly(kd·lognεβin

)) time.

F. Implementation Details
We describe the practical implementations of our oracle data structures. We also discuss an unsigned oracle and a heuristic
algorithm for biclustering. Furthermore, we discuss how to practically determine the parameters for our algorithms.

Practical changes to our signed oracle. We start by giving some details on the implementation of our algorithm and the
changes that we have made compared to the theoretical version.

First, we do not set δuv as described in Eqn. (3). Instead, we follow the intuition from Sec. D and use the vectors rtu rather
than ptu in the definition of δuv. Recall that rtu = |ptu|, where the absolute values are taken component-wise. Therefore,
we change Line 9 in Alg. 1 to mx ←

∣∣(m+
x −m−x)D−1/2

∣∣. Preliminary experiments (not reported here) showed that
this provides slightly better results than when using the original choice of δuv. Furthermore, we only run the subroutine
ESTDOTPROD once (rather than h = O(log n) times).

Next, for a WHICHCLUSTER(v) query, the theoretical algorithm returns that v belongs to the cluster of vertex u ∈ S if
δuv ≤ 1

2dn . However, in practice the the upper bound 1
2dn is not a suitable choice. Thus, we assign v to the cluster of

u = arg minw∈S δwv .

Seeded and unseeded initialization. We consider two different initialization strategies: (1) when ground-truth seed nodes
are available and (2) when use a randomized initialization.

In Case (1), when a small set of ground-truth seed nodes is available for each ground-truth cluster, we skip the preprocessing
from Alg. 2 and take the vertex labels provided from the ground-truth seed nodes; we do not perform any other preprocessing.

In Case (2), we randomly sample a set S of vertices as in Alg. 2. However, we build the auxiliary graph H differently.
Recall that in Alg. 2, we inserted all edges (u, v) ∈ S × S into H with δuv ≤ 1

2dn . Preliminary experiments indicated that
this upper bound is not a good choice in practice. Instead, we insert edges into H until it has k connected components (note
that, initially, H has |S| connected components). More concretely, we compute the pairwise distances δuv for all u, v ∈ S.
Then we iterate over these distances in non-decreasing order and insert the corresponding edges into H until H has exactly
k connected components. To obtain more robust distance estimates for δuv, we compute 5 samples of δuv, u, v ∈ S, and
take the median; we only do this during the preprocessing phase for this algorithm (and not for queries as per Alg. 3).

Heuristic biclustering oracle. So far, we considered oracles for finding polarized communities U1, . . . , Uk (see Def. 3).
However, we did not consider partitioning each Ui into biclusters (V2i−1, V2i), that reveal the polarized groups in Ui. We
now present a heuristic biclustering oracle for this purpose.

The heuristic biclustering oracle works exactly as the clustering oracle, with the following two changes. First, we do not take
absolute values when computing mx, i.e., in Line 9 in Alg. 1 we set mx ← (m+

x −m−x)D−1/2. Second, when computing
δuv , we now set δuv ← Xuu +Xvv − 2Xuv . These changes correspond to our intuition from Sec. D that mu approximates
ptuD

−1/2 and that δuv ≈ ‖ptu −ptv‖22 is small iff u and v are from the same bicluster Vj . This intuition is also supported by
our analysis via Lem.s 10 and 6. However, this is only a heuristic because it appears challenging to prove that our estimate
δuv is large if u ∈ V1 and v ∈ V2; the main challenge is that we are only allowed a query time of Õ(

√
n).

Unsigned oracle. To evaluate our oracles, it will be interesting to compare against an unsigned oracle, i.e., an oracle which

Sublinear-Time Clustering Oracle for Signed Graphs

ignores the edge signs and only considers the underlying unsigned graph. To this end, we consider unsigned versions of our
clustering oracle and our heuristic biclustering oracle. Algorithmically, the only change is that we assume that all edges
have sign +. The resulting unsigned oracle is almost identical to the oracle in (Czumaj et al., 2015).

Parameter tuning. To run our algorithms, one has to determine two crucial parameters: the length and the number of
random walks. For both of them, our analysis requires the parameters α and βin, which are not available in practice and it
seems infeasible to estimate them. Therefore, we briefly describe how parameter tuning can be performed to obtain good
choices for the length and the number of random walks.

Given a graph G, suppose that for a small set of vertices Vlabeled we know their ground-truth communities. Now we build
the oracle for several different parameters for the length and number of random walks. For each parameter setting, we run
WHICHCLUSTER(v) for all v ∈ Vlabeled and check if v was classified correctly. At the end, we pick the parameter setting
with the most correct answers.

Observe that the above procedure does not require a full clustering of G and can be used even when Vlabeled is small. Further
observe that we could also split Vlabeled into a training set (used for the seed nodes), a validation set (used for determining
the best parameters) and a test set (for estimating the overall accuracy).

G. Experiments on Synthetic Data
We evaluate our algorithms on synthetic datasets. We generated random graphs by starting with an empty graph and
partitioning n vertices into equally-sized clusters U1, . . . , Uk with Ui = (V2i−1, V2i) for all i ∈ [k]. We inserted edges (u, v)
with the following probabilities: pintra if u, v ∈ Vi, pcross if u ∈ V2i−1 and v ∈ V2i, q if u ∈ Ui, v 6∈ Ui. For all inserted
edges, we set their sign to + (−) with probability psign if u, v ∈ Vi (u ∈ V2i−1, v ∈ V2i) and to sign − (+) with probability
1− psign otherwise. If u ∈ Ui, v 6∈ Ui then we set the sign to + with probability qsign and to − with probability 1− qsign.
When not stated otherwise, we set n = 2000, k = 6, pintra = 0.8, pcross = 0.4, q = 0.05, psign = 0.8 and qsign = 0.9. For
each experiment we have created 5 random graphs and we report average accuracies and their standard deviations.

Clustering experiments. We present our results for finding clustersU1, . . . , Uk in Fig. 3. We ran the oracles with t = 2 random
walk steps and R = 400 random walks, unless stated otherwise. The seeded oracles and POLARSEEDS obtained 6 seed
vertices from each Ui; the unseeded oracles randomly sampled 3k seeds.

In Fig. 3(a) we vary the number of vertices n while keeping k = 6 fixed. RW-SEEDED and RW-U-SEEDED deliver almost
perfect accuracy, i.e., they classify almost all vertices correctly; we note that in the plot, the lines of RW-SEEDED and RW-U-
SEEDED are essentially identical and thus the line for RW-SEEDED is hard to see. RW-UNSEEDED and RW-U-UNSEEDED
also deliver good results. Furthermore, POLARSEEDS works well when the clusters are small (for n = 500 there are 83
vertices in each cluster) but its performance decays as the clusters get larger. FOCG generally returns clusterings of low
quality because it returns many clusters of very small sizes.

In Fig. 3(b), we fix n and vary k = 4, 8, 12, 16. Again, we observe a similar behavior as before: our oracles outperform the
competitors, and the competitors improve for smaller clusters (k larger).

We also varied the parameters for the oracles. In Fig. 3(c), we set the number of random walk steps to 1, 2, 3, 4, 5. We see
that even with very short random walks, the algorithms deliver very good results. However, as the number of steps increases,
the solution quality slightly decreases (see, e.g., RW-SEEDED or RW-U-UNSEEDED). This confirms the theoretical analysis
of Lem.s 9 and 10.

In Fig. 3(d), we set the random walks lengths to 50, 100, 200, 4000. RW-SEEDED and RW-U-SEEDED return excellent
clusterings when at least 200 ≈ 4.5 ·

√
n random walks are performed.

In Figs. 3(e)–(h) we report the running times of the algorithms. Our oracles scale linearly in the number of steps (Fig. 3(g)),
and the number of random walks (Fig. 3(h)). Furthermore, since our number of seed nodes depends on the number of
communities k, the oracles scale linearly in k (Fig. 3(f)). In Fig. 3(e) we report the running time, normalized by the number
of vertices in the graph; for our oracle data structures this corresponds to the time they spend on each query. We observe
that the query times of the oracles increases only very moderately as the number of vertices n increases; we blame this
slight increase on the internal data structures (such as hash maps) that we use to store our graphs. This is in contrast to
POLARSEEDS, for which the running time per vertex is increasing (Fig. 3(e)). For FOCG we observe that it scales linearly
in the number of vertices (since in Fig. 3(e) the average time per vertex is nearly constant for n ≥ 1000) and its running

Sublinear-Time Clustering Oracle for Signed Graphs

rw-seeded rw-unseeded rw-u-seeded rw-u-unseeded FOCG polarSeeds

500
1000

2000
3000

4000

n

0.0

0.5

1.0

A
cc

u
ra

cy

(a) Vary n

4 8 12 16

k

0.0

0.5

1.0

A
c
c
u

ra
c
y

(b) Vary k

1 2 3 4 5
#Steps

0.5

1.0

A
c
c
u

ra
c
y

(c) Vary #steps

50100 200 400

#Random Walks

0.5

1.0

A
c
c
u

ra
c
y

(d) Vary #walks

500
1000

2000
3000

4000

n

0.01

0.02

T
im

e
p

er
V

er
te

x
(i

n
se

c)

(e) Vary n: avg. query time

4 8 12 16

k

20

40

T
im

e
(i

n
se

c
)

(f) Vary k: time

1 2 3 4 5
#Steps

10

20

30

T
im

e
(i

n
se

c
)

(g) Vary #steps: time

50100 200 400

#Random Walks

10

20

T
im

e
(i

n
se

c
)

(h) Vary #walks: time

Figure 3: Clustering results on synthetic data. We consider varying number of vertices n (Figs. (a) and (e)), varying number
of communities k (Figs. (b) and (f)), varying random walk length (Figs. (c) and (g)), and varying number of random walks
(Figs. (d) and (h)). Figs. (a)–(d) report the clustering accuracies, Fig. (e) reports the running time per vertex in seconds, and
Figs. (f)–(h) report total running times in seconds. Markers are mean values and error bars are one standard deviation over 5
datasets.

rw-seeded rw-unseeded rw-u-seeded rw-u-unseeded FOCG polarSeeds

50
0

10
00

20
00

30
00

40
00

n

0.0

0.5

1.0

A
c
c
u

r
a
c
y

(a) Vary n

4 6 8 10 12

k

0.0

0.5

1.0

A
c
c
u

ra
c
y

(b) Vary k

1 2 3 4 5
#Steps

0.5

1.0

A
c
c
u

ra
c
y

(c) Vary #steps

200 400 600 800

#Random Walks

0.5

1.0
A

c
c
u

ra
c
y

(d) Vary #walks

Figure 4: Biclustering results on synthetic data. We vary the number of vertices n (Fig. (a)), the number of communities k
(Fig. (b)), the random walk length (Fig. (c)) and the number of random walks (Fig. (d)). We report the achieved accuracies;
markers are mean values over 5 different datasets, and error bars are one standard deviation over the 5 datasets.

time slightly decreases as it finds better communities (Figs. 3(b) and 3(f))

Biclustering experiments. In Fig. 4 we present our results for finding biclusters (V1, V2), (V3, V4), . . . , (V2k−1, V2k). Thus,
we run the biclustering versions of the algorithms. The oracles used t = 2 random walk steps and R = 600 random walks,
unless stated otherwise. The seeded oracles and POLARSEEDS obtained 3 seed vertices from each Vi; the unseeded oracles
randomly sampled 6k seed vertices in the preprocessing.

Again, our oracles obtain better results than the baseline algorithms, which typically return too small clusters. Furthermore,
the signed oracles RW-SEEDED and RW-UNSEEDED outperform the unsigned oracles RW-U-SEEDED and RW-U-UNSEEDED,
resp. This shows that the edge signs are necessary to split the clusters Ui into biclusters V2i−1 and V2i. Compared to the
clustering setting from before, the biclustering algorithms are more sensitive to the number steps (Fig. 4(c)), and they also

Sublinear-Time Clustering Oracle for Signed Graphs

require more random walks (Fig. 4(d)).

Conclusion. Our experiments suggest that our oracles outperform the baselines when the clusters are large. Also, to recover
the biclusters (V2i−1, V2i), it is necessary to use the edge signs. Furthermore, the seeded methods outperform the unseeded
methods.

	Introduction
	Preliminaries
	Main Result and Algorithm
	The Algorithm
	Main Technical Contribution

	Experiments
	Conclusion
	Overview of the Appendix
	Further Motivation of the Inner Signed Bipartiteness Ratio
	Pseudocode for Our Algorithms
	Analysis Overview
	Main Technical Lemmas

	Deferred Proofs
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Thm. 4

	Implementation Details
	Experiments on Synthetic Data

