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Abstract
This work identifies a common flaw of deep rein-
forcement learning (RL) algorithms: a tendency
to rely on early interactions and ignore useful evi-
dence encountered later. Because of training on
progressively growing datasets, deep RL agents
incur a risk of overfitting to earlier experiences,
negatively affecting the rest of the learning pro-
cess. Inspired by cognitive science, we refer to
this effect as the primacy bias. Through a series
of experiments, we dissect the algorithmic aspects
of deep RL that exacerbate this bias. We then pro-
pose a simple yet generally-applicable mechanism
that tackles the primacy bias by periodically reset-
ting a part of the agent. We apply this mechanism
to algorithms in both discrete (Atari 100k) and
continuous action (DeepMind Control Suite) do-
mains, consistently improving their performance.

“Your assumptions are your windows on the world. Scrub
them off every once in a while, or the light won’t come in.”

–Isaac Asimov

1. Introduction
Bob is learning a difficult passage on a guitar to rehearse it
with his band. After long nights of practice, he is able to
play it but with straining finger positions and unclean sound.
Alice, another fellow guitarist, shows him a less fatiguing
and nicer-sounding way to play the passage which Bob is
theoretically able to understand and execute well. Nonethe-
less, in subsequent rehearsal sessions, Bob’s unconscious
mind automatically resorts to the first bad-sounding solution,
discouraging him and his bandmates from trying more tech-
nically challenging pieces of music. Bob is experiencing an
instance of the primacy bias, a cognitive bias demonstrated
by studies of human learning (Marshall & Werder, 1972;
Shteingart et al., 2013).

*Equal contribution 1Mila, Université de Montréal. Correspon-
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The outcomes of first experiences can have long-lasting ef-
fects on subsequent learning and behavior. Thanks to Alice,
Bob has already collected new data sufficient for improving
his performance on that passage and guitar playing in gen-
eral; however, because of the priming provided by his long
training nights with a bad technique, he is unable to leverage
his new experience. The primacy bias generates a vicious
circle: since Bob cannot improve his guitar skills in the face
of new data, he will not be able to collect more interesting
data by playing more challenging guitar passages, crippling
his overall learning.

The central finding of this paper is that deep reinforcement
learning (RL) algorithms are susceptible to a similar bias.
We refer to the primacy bias in deep RL as a tendency to
overfit early interactions with the environment preventing
the agent from improving its behavior on subsequent experi-
ences. The consequences of this phenomenon compound:
an agent with poor performance will collect data of poor
quality and the poor data will amplify the difficulty of re-
covering from an overfitted solution.

Standard components of deep RL algorithms magnify the
effect of the primacy bias. For instance, experience re-
play (Mnih et al., 2015) allows efficient data reuse but ex-
poses the agent to its initial samples more than recent ones.
In the interest of sample efficiency, deep RL algorithms
often additionally use a high replay ratio (van Hasselt et al.,
2019; Fedus et al., 2020) updating the agent more times on
the same data. Such design choices can improve the agent’s
performance but come with a risk of exacerbating the effects
of early interactions.

How can a deep RL algorithm avoid the primacy bias? Com-
ing back to Bob, he could re-establish his learning pro-
gression by simply forgetting his bad practices and directly
learning from newer experience. Similarly, deep RL agents
affected by the primacy bias can forget parts of a solution
which was derived by overfitting to early experiences before
continuing the learning process.

As a remedy for the primacy bias, we propose a resetting
mechanism allowing the agent to forget a part of its knowl-
edge. Our strategy is simple and compatible with any deep
RL algorithm equipped with a replay buffer: we periodically
re-initialize the last layers of an agent’s neural networks,
while maintaining the experience within the buffer.
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Despite its simplicity, this resetting mechanism consistently
improves performance of agents on benchmarks including
the discrete-action ALE (Bellemare et al., 2013) and the
continuous-action DeepMind Control Suite (Tassa et al.,
2020). Our strategy imposes no additional computational
costs and requires only two implementation choices: which
parts of the neural networks to reset and how often to reset
them. We also show that resetting enables training regimes
with higher replay ratio and longer n-step targets (Sutton
& Barto, 2018), where an agent without resets would be
overfitting otherwise.

To summarize the contributions of this paper, we:

1. Provide demonstrations of the existence of the primacy
bias in deep RL, a tendency of an agent to harm its
future decision making by overfitting to early data and
ignoring subsequent interactions;

2. Expose plausible causes of this phenomenon and show
how algorithmic aspects in modern deep RL amplify
its consequences;

3. Propose a mechanism for alleviating the primacy bias
by periodically resetting a part of the agent;

4. Empirically demonstrate both qualitative and quanti-
tative improvements in performance when applying
resets to strong baseline algorithms.

2. Preliminaries
We adopt the standard formulation of reinforcement learn-
ing (Sutton & Barto, 2018) under the Markov decision pro-
cess (MDP) formalism where the agent observes a state s
from a space S, chooses an action a from a space A, and
receives a reward r according to a mapping r : S ×A → R.
The environment then transitions into a state s′ according to
a distribution p : S ×A → ∆(S) and the interaction con-
tinues. The initial state s0 is sampled from a distribution
ρ ∈ ∆(S). The goal of the agent is to learn a policy
π : S → ∆(A) that maximizes the expected discounted
sum of rewards Eπ [

∑∞
t=0 γ

tr(st, at)] with γ ∈ [0, 1).

RL methods typically learn an action-value func-
tion Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]
though temporal-difference (TD) learning (Sutton, 1988)
by minimizing the difference between Qπ(s, a) and
Ep(s′|s,a),π(a′|s′) [r(s, a) + γQπ(s

′, a′)]. Many RL algo-
rithms store past experiences in a replay buffer (Mnih et al.,
2015) that increases sample efficiency by leveraging a single
data point more than once. The number of resampling times
of given data is controlled by the replay ratio (van Hasselt
et al., 2019; D’Oro & Jaśkowski, 2020) which plays a crit-
ical role in the algorithm’s performance. Set too low, the
agent would underuse the data it has and become sample-

inefficient; set too high, the agent would overfit the existing
data.

The core idea behind temporal-difference methods is
bootstrapping, learning from agent’s own value estimates
without the need to wait until the end of the interaction.
TD learning can be generalized by using n-step targets
Eπ [r(st, at) + γr(st+1, at+1) + · · ·+ γnQπ(st+n, at+n)].
Here, n controls a trade-off between the (statistical) bias of
Qπ estimates and the variance of the sum of future rewards.

In the rest of the paper, we consider deep RL algorithms
where Qπ and π (when needed) are modelled by neural
network function approximators.

3. The Primacy Bias
The main goal of this paper is to understand how the learn-
ing process of deep reinforcement learning agents can be
disproportionately impacted by initial phases of training due
to an effect called the primacy bias.

The Primacy Bias in Deep RL: a tendency to overfit early
experiences that damages the rest of the learning process.

This definition is wide-ranging: the primacy bias has mul-
tiple roots and leads to multiple negative effects for the
training of an RL agent, but they are all connected to im-
proper learning from early data.

The rest of this section presents two experiments, with the
goal of demonstrating the existence and the dynamics of
the phenomenon in isolation. First, we show that excessive
training of an agent on the very first interactions can fatally
damage the rest of the learning process. The second experi-
ment demonstrates that data collected by an agent impacted
by the primacy bias is adequate for learning, although the
agent cannot leverage it due to its accumulated overfitting.

3.1. Heavy Priming Causes Unrecoverable Overfitting

The degree of reliance of an agent on early data is a crucial
factor in determining how much any primacy effect is going
to affect the learning process. At the same time, in the
interest of sample efficiency, it is vital to leverage initial
experiences at their full potential to expedite the training.
This trade-off is particularly evident for algorithms with a
replay buffer, which can be used to update the agent several
times before interacting further with the environment.

To uncover in an explicit way the effect of the primacy
bias in RL, we probe excessive reliance to early data to its
extreme: could overfitting on a single batch of early data
be enough to entirely disrupt an agent’s learning process?

To investigate this question, we train Soft Actor-
Critic (Haarnoja et al., 2018) on the quadruped-run
environment from DeepMind Control suite (DMC) (Tassa
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Figure 1. Undiscounted returns on quadruped-run for SAC
with and without heavy priming on the first 100 transitions. An
agent extremely affected by the primacy bias is unable to learn
even after collecting hundreds of thousands of new transitions.
Mean and std are estimated over 10 runs.

et al., 2020). We use default hyperparameters, which imply
a single update for both policy and value function per step
in the environment. Then, we train an identical version of
the algorithm in an experimental condition that we refer
to as heavy priming: after collecting 100 data points, we
update the agent 105 times using the resulting replay buffer,
before resuming standard training. Figure 1 shows that even
after collecting and training on almost one million new tran-
sitions, the agent with heavy priming is unable to recover
from the initial overfitting.

This experiment conveys a simple message: overfitting to
early experiences might inexorably damage the rest of the
learning process. Even if no practical implementation would
use such a large number of training steps on such a limited
dataset, we will see in Section 5 that even a relatively small
number of updates per step can cause similar issues. The
finding suggests that the primacy bias has compounding ef-
fects: an overfitted agent gathers worse data that itself leads
to less efficient learning that further damages the ability to
learn and so on.

3.2. Experiences of Primed Agents are Sufficient

Once the agent is heavily impacted by the primacy bias, it
might struggle to reach satisfying performance. But is the
data collected by an overfitted agent unusable for learning?
To answer this question, we train a SAC agent with 9 updates
per step in the MDP: due to the primacy bias, this agent
performs poorly. Then, we initialize the same agent from
scratch but use the data collected by the previous SAC agent
as its initial replay buffer. Figure 2 demonstrates that returns
collected by this agent improve rapidly approaching the
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Figure 2. Undiscounted returns on quadruped-run for SAC
trained with 9 updates per step. SAC failing is a standard
agent; SAC with failing agent buffer is an agent ini-
tialized with the replay buffer of the first agent, which allows it to
learn quickly. Mean and std are estimated over 10 runs.

optimal task performance.

This experiment articulates that the primacy bias is not a
failure to collect proper data per se, but rather a failure
to learn from it. The data stored in the replay buffer is in
principle enough to have better performance but the over-
fitted agent lacks the ability to distill it into a better policy.
In contrast, the randomly initialized neural networks are
not affected by the primacy bias and thus capable of fully
leveraging the collected experience.

4. Have You Tried Resetting It?
The previous section provided controlled experiments
demonstrating the primacy bias phenomenon and outlined
its consequences. We now present a simple technique that
mitigates the effect of this bias on an agent’s training. The
solution, which we call resetting in the rest of the paper, is
summarized as follows:

Given an agent’s neural network, periodically re-
initialize the parameters of its last few layers while
preserving the replay buffer.

The next section analyzes both quantitatively and qualita-
tively the performance improvements provided by resetting
as a mean to address the overfitting to early data.

5. Experiments
The goals of our experiments are mostly twofold. First, we
demonstrate across different algorithms and domains the
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Method IQM Median Mean

SPR + resets 0.478 (0.46, 0.51) 0.512 (0.42, 0.57) 0.911 (0.84, 1.00)
SPR 0.380 (0.36, 0.39) 0.433 (0.38, 0.48) 0.578 (0.56, 0.60)
DrQ(ϵ) 0.280 (0.27, 0.29) 0.304 (0.28, 0.33) 0.465 (0.46, 0.48)
DER 0.183 (0.18, 0.19) 0.191 (0.18, 0.21) 0.351 (0.34, 0.36)
CURL 0.113 (0.11, 0.12) 0.102 (0.09, 0.12) 0.261 (0.25, 0.27)

Figure 3 & Table 1. Point estimates and 95% bootstrap confidence intervals for the performance of SPR with resets and prior methods on
Atari 100k. Results for SPR and SPR + resets are over 20 seeds per game; others are taken from Agarwal et al. (2021) and use 100 seeds.
The additional baselines contextualize the numerical impact of resets. Per-environment results are available in Appendix C.

performance gains of using resets as a remedy for the pri-
macy bias; then, we analyze the learning dynamics induced
by resetting, including its effects on TD learning and inter-
action with critical design choices of RL algorithms such as
the replay ratio and n-step TD targets. Finally, we provide
an ablation study of the proposed resetting strategy.

5.1. Setup

We focus on two domains: discrete control, represented by
the 26-task Atari 100k benchmark (Kaiser et al., 2019), and
continuous control, represented by the DeepMind Control
Suite (Tassa et al., 2020). We apply resets to three baseline
algorithms: SPR (Schwarzer et al., 2020) for Atari, and
SAC (Haarnoja et al., 2018) and DrQ (Kostrikov et al.,
2021) for continuous control from dense states and raw
pixels respectively. Appendix A provides all environment
names and the number of training steps in each domain.

Since both the architectures and the number of training iter-
ations vary across methods, the reset strategy needs slight
customization. For SPR, we reset only the final linear layer
of the 5-layer Q-network over the course of training spaced
2 × 104 steps apart; for SAC, we reset agent’s networks
entirely every 2 × 105 steps since the networks have only
3 layers; for DrQ, we reset the last 3 out of 7 layers of the
policy and value networks 10 times over the course of train-
ing1. SAC and DrQ re-initialize target networks and both
Q-networks (due to the use of double Q-learning (Van Has-
selt et al., 2016)); SPR does not have these extra networks.
We also reset the corresponding optimizer statistics (Kingma
& Ba, 2015). Appendix B, however, shows the relative ro-
bustness to these design choices.

The replay buffer is preserved between resets; SPR and SAC
store in the buffer all prior interactions, while DrQ includes
only the most recent 100k transitions due to memory limita-
tions of storing image observations. SAC and DrQ sample

1In fact, the reset periodicity in a few environments is higher
due to action repeats (default is 2), a practice following (Hafner
et al., 2019) used in the codebase we build upon, but using the
action repeat of 2 for all environments delivers the same results.

Method IQM Median Mean

SAC + resets 656 (549, 753) 617 (538, 681) 607 (547, 667)
SAC 501 (389, 609) 475 (407, 563) 484 (420, 548)

DrQ + resets 762 (704, 815) 680 (625, 731) 677 (632, 720)
DrQ 569 (475, 662) 521 (470, 600) 535 (481, 589)

Table 2. Point estimates and 95% bootstrap confidence intervals
for the performance of SAC and DrQ with and without resets on
DMC tasks. Results are computed over 10 seeds per task. Per-
environment learning curves are available in Appendix C.

transitions uniformly from the buffer, while SPR uses priori-
tized experience replay (Schaul et al., 2016). The difference
between buffer configurations suggests that effects of resets
hold for varying buffer sizes and sampling schemes.

After resetting, we do not perform any form of pre-training
for the newly initialized parameters (Igl et al., 2021) and
return directly to standard training, including keeping in-
tact the cycle between environment interactions and agent
updates. To provide rigorous evaluation of all algorithms,
we follow the guidelines of Agarwal et al. (2021) with the
focus on the interquartile mean (IQM) of the performance
across tasks.

5.2. Resets Consistently Improve Performance

Tables 1 and 2 report the aggregated results for the three
algorithms. In both tables, we report the best results over
different values of replay ratio and n for methods with and
without resets. The empirical evidence suggests that resets
mitigate the primacy bias and provide significant benefits
across a wide range of tasks (discrete or continuous action
spaces), input types (raw images or dense features), replay
buffer configurations (matching or shorter than total number
of steps, prioritized replay or random sampling), and depth
of the employed neural networks (deep convolutional net-
works or 3-layer fully-connected networks). Remarkably,
the magnitude of improvement provided by resets for SPR
is comparable to advancements of prior algorithms, while
not requiring additional computation costs.
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Figure 4. Four examples showing diverse effects of resets for SAC
(32 updates per step, resetting every 2× 105 steps) on DMC tasks.
After each reset, performance recovers quickly due to keeping the
replay buffer. In cheetah-run, the baseline agent consistently
succeeds at the task and resets provide no major benefit. In all
other tasks, resets increase performance and often reduce variance.
Mean and std are estimated over 10 runs.

5.3. Learning Dynamics of Agents with Resets

At first glance, resetting may appear as a drastic (if not
wasteful) measure as the agent must learn the parameters of
the randomly initialized layers from scratch each time. We
show in this section how, against all odds, this strategy still
leads to improved performance and fast learning in a wide
range of situations.

Figure 4 gives four representative examples of the learning
trajectories induced by resets. By default, SAC uses policy
and value function architectures which typically contain
three layers; in this context, we found that resetting the
whole network is an effective strategy. For environments
in which the primacy bias does not appear to be an issue,
such as cheetah-run, resetting causes some spikes of
reduced performance in the learning curves, but the agent is
able to return to the previous state in just a few thousands
of steps. Instead, when dealing with environments where
the algorithm is susceptible to the primacy bias, such as
hopper-hop and humanoid-run, resetting not only
brings performance back to the previous level but also allows
the agent to surpass it.

But why is an RL agent able to recover so fast after each
reset? A decisive factor for the effectiveness of resetting
resides in preserving the replay buffer across iterations. In-
deed, periodically emptying the replay buffer is highly detri-
mental for performance, as we show in Appendix B. We
conjecture that a model-based perspective can offer an ex-

planation: since the replay buffer can be seen as a non-
parametric model of the world (Vanseijen & Sutton, 2015;
van Hasselt et al., 2019), after a reset, the agent forgets the
behaviors learned in the past while preserving its model in
the buffer as the core of its knowledge. On the neural net-
work training side, Zhang et al. (2019) observe that learning
mostly amounts to recovering the right representations – that
is, with the preserved buffer and representations, learning
an actuator might be relatively straightforward.

Resets affect learning in a generally positive way, by trig-
gering a virtuous circle. After resetting, the agent is free
from the negative priming provided by its past training iter-
ations: it can better leverage the data collected so far, thus
improving its performance and unlocking the possibility to
generate higher quality data for its future updates.

If the primacy bias is a special form of overfitting, resets can
be seen as a tailor-made form of regularization. Table 5 in
Appendix B shows that the particular nature of resets allows
the agent to overcome the primacy bias even when other
forms of regularization such as L2 and dropout would not.

On a practical side, resets are an easy-to-use strategy for
addressing the primacy bias. Their use requires making only
two choices: the periodicity of the resets and the number of
layers of the neural networks to be reinitialized. Moreover,
the infrequent re-initialization of a neural network comes
with no additional computational cost.

5.4. Elements Behind the Success of Resets

The large improvement in performance provided by resets
across algorithms and environments naturally raises a ques-
tion about the conditions under which they are maximally
useful. To find an answer, we focus the discussion on the
interaction of resets with crucial algorithmic aspects and
hyperparameters impacting the risk of overfitting.

Replay ratio The initial experiments in Section 3 suggest
that the degree of reliance on early data is a critical determi-
nant of the strength of the primacy bias. As a consequence,
we observe that the impact of resets depends heavily on the
replay ratio, the number of gradient updates per each envi-
ronment step. Figure 5 shows that the higher the replay ratio
is, the larger the effects from resets: they improve SPR’s per-
formance by over 40% at four updates/step and allow SAC
to achieve its highest performance at the high replay ratio
of 32, where adding resets increases performance by over
100%. Even when pushing SAC to the extreme replay ratios
of 128 and 256, where learning is barely possible in most
environments, resets allow the agent to obtain reasonable
performance (see Table 6 in Appendix C). Resets thus allow
less careful tuning of this parameter and improve sample
efficiency by performing more updates per each data point
without being severely affected by the primacy bias.
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Figure 5. Performance of SAC (left) and SPR (right) and with and without resets for different replay ratios and a fixed default n. The
right-hand plots visualize the percent improvement gained by adding resets. Agents with higher replay ratio are more prone to the primacy
bias and hence benefit more from mitigating it.

n-step targets The parameter n in TD learning controls
a bias-variance trade-off, with larger values of n decreas-
ing the bias in value estimates but increasing the variance
(and vice versa). We hypothesize that an agent learning from
higher variance targets would be more prone to overfitting to
the initial data and the effects of resets would increase with
increasing n. Figure 6 confirms the intuition and demon-
strates up to 40% improvement for SPR for n = 20 and
opposed to no improvement for n = 3. Likewise, SAC
attains 50–60% improvement for increased values of n com-
pared to 40% for the default n = 1.

The results with varying replay ratios and n-step targets
suggest that resets reshape the hyperparameter landscape
creating a new optimum with higher performance.

TD failure modes Temporal-difference learning, when
employed jointly with function approximation and off-
policy training, is known to be potentially unstable (Sut-
ton & Barto, 2018). In sparse-reward environments,
the critic network might converge to a degenerate solu-
tion because of bootstrapping mostly on it’s own out-
puts (Kumar et al., 2020); having the non-zero reward
data might not sufficient to escape a collapse. For exam-
ple, Figure 7 (left) demonstrates the behavior of DrQ in
cartpole-swingup sparse, where a collapsed agent
makes no learning progress. However, after a manual ex-
amination of a replay buffer, we found that the agent was
reaching goal states in roughly 2% of trajectories. This ob-

servation provides evidence for an explanation that mitigat-
ing the primacy bias addresses more the issues of optimiza-
tion than exploration. Likewise, if divergence in temporal
difference learning occurs, it is essentially unrecoverable
by standard optimization, with predicted values failing to
decay to normal magnitudes after hundreds of thousands of
steps. Figure 7 shows that adding resets solves this problem
by giving the agent a second chance to find a stable solu-
tion. Even though there exist works studying in detail the
pathological behaviors of TD learning (Bengio et al., 2020)
and this is not the main scope of our work, resets naturally
address the outlined failures.

What and how to reset Our particular choice of the reset-
ting strategy calls for a number of ablations. This para-
graph provides only the conclusions while Appendix B
presents supporting figures. The number of layers to re-
set is a domain-dependent choice. For the SAC algorithm
learning from dense state features, it is possible to reset the
agent entirely. Resetting in SPR attains the best performance
for the last layer only (out of 5 total layers), while for DrQ
resetting the last layer is slightly worse than resetting last 3
out of 7 layers. We conjecture that the difference lies in the
degree of representation learning required for each domain:
a significant chunk of knowledge in Atari is contained in the
agent’s representations; it might be notably easier to learn
features in DeepMind Control, especially when dealing with
dense states. In DrQ, when resetting both actor and critic,
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Figure 6. Performance of SAC (left) and SPR (right) with and without resets for different n-step target lengths and a fixed replay ratio
(9 for SAC, default 2 for SPR). The right-hand plots visualize the percent improvement gained by adding resets. As the target variance
increases with n, the agent becomes more susceptible to the primacy bias and benefits more from mitigating it.
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Figure 7. Examples of TD failure modes and how resets ad-
dress them. Left: A run with TD collapse in a sparse-reward
task cartpole-swingup sparse. Even in the presence of
non-zero rewards in the buffer, the agent without resets cannot
learn a non-trivial critic. Right: A run with TD divergence in
walker-stand. Even with double Q-learning, the critic might
severely overestimate the action values. On both plots, DrQ with-
out resets achieves near-zero returns, while DrQ + resets learns
a near-optimal policy. The examples are not cherry-picked, such
patterns of behavior occur frequently.

resetting critic proved to be slightly more important than
the actor; likely because the DrQ encoder learns from critic
loss only, a practice proposed in (Yarats et al., 2021).

Another seemingly important choice is whether to reset the
state of the optimizer. We find that resetting the optimizer
has almost no impact on training because the moment esti-
mates are updated quickly. Regarding the resets frequency,
the optimal choice should depend on how fast an algorithm
can recover and how much it is affected by the primacy bias;
we found that sometimes even a single reset improves the
performance of baseline agents. We briefly experimented
with resetting a random subnetwork and observed that the
performance was either comparable or worse than with reset-
ting the last layers. Lastly, when sampling new weights after
a reset, it is natural to use a new random seed; we observed
that even with the same seed resets alleviate the primacy
bias supporting the conclusions of Bjorck et al. (2022) that
pathologies in deep RL algorithms are not due to problems
with the initialization. Overall, while we see certain differ-
ences when varying the discussed design choices, resetting
showed itself to be robust the choice of hyperparameters.

5.5. Summary

In short, the experimental results suggest that resets improve
expected returns across a diverse set of environments and
algorithms. They act as a form of regularization thus pre-
venting overfitting to early data, unlock new hyperparameter
configurations with possibly higher performance and sample
efficiency, and address the optimization challenges arising
in deep RL. While with a more thorough hyperparameter
search and additional modifications it is possible to even
further improve the performance upon the baselines, it is ex-
citing to see that the proposed simple resetting scheme gives
benefits comparable to previous algorithmic advancements.

6. Related Work
The primacy bias in deep RL is intimately related to memo-
rization, optimization in RL, and cognitive science. Various
aspects of our work existed in the literature.

Overfitting in RL Generalization and overfitting have
many faces in deep reinforcement learning. Generaliza-
tion of values to similar states is a setting where the most
classical form of overfitting can arise when using function
approximation (Sutton & Barto, 2018). Kumar et al. (2020)
and Lyle et al. (2022) show that an approximator for value
function gradually loses its expressivity due to bootstrapping
in TD learning; we conjecture that this amplifies the effect
of first data points. Dabney et al. (2021) propose to treat
holistically the sequence of value prediction tasks, arguing
that if an agent focuses too much on a single prediction prob-
lem might overspecialize learned representations. Laroche
& Des Combes (2022) show that policy gradient updates can
be slow in unlearning previous behaviors. Song et al. (2019)
study observational overfitting by examining saliency maps
in visual domains and argue that agents might pick up spuri-
ous correlations for decision making. The prioneering work
(Farahmand et al., 2008) and a more recent one (Liu et al.,
2021) argue in favor of using regularization in RL. Finally,
overfitting can happen in settings with learning from offline
datasets (Fujimoto et al., 2019) and with multiple tasks (Teh
et al., 2017). Surveys by Kirk et al. (2021) and Zhang et al.
(2018) give a taxonomy of generalization aspects in RL.

Techniques similar to our resets also existed before. Ander-
son et al. (1993) propose to reset individual neurons of a
Q-network based on a variance criterion and observes faster
convergence. Forms of non-uniform sampling including re-
weighting recent samples (Wang et al., 2020) and prioritized
experience replay (PER) (Schaul et al., 2016) can be seen
as a way to mitigate the primacy bias. We observe that SPR,
built on top of Rainbow (Hessel et al., 2018) and already us-
ing PER, still benefits from resets. Igl et al. (2021) provide
demonstrations in the supervised case that learning from a
pretrained network can be worse than learning from scratch
for non-stationary datasets and propose a method ITER that
fully resets the agent’s network in an on-policy buffer-free
setting with distillation from the previous generation as a
knowledge transfer mechanism. The difference contrasts
the approach with our resetting scheme that uses a replay
buffer as a basis for knowledge transfer after a reset.

Our work sheds light on another special form of overfitting
in deep RL and proposes a simple solution for mitigating it.

Forgetting mechanisms In contrast to the well-known
phenomenon of catastrophic forgetting (French, 1999), sev-
eral works have noted the opposite effect of catastrophic
memorization (Robins, 1993; Sharkey & Sharkey, 1995)
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similar to the primacy bias. Achille et al. (2018) observe
the existence of critical phases in learning that have a deter-
mining effect on the resulting network. Erhan et al. (2010)
notice higher sensitivity of the trained network with respect
to first datapoints. While the effect of the early examples
in supervised problems might be present, the consequences
of overfitting to initial experiences in deep RL would be
much more drastic because the agent itself collects the data
to learn from. Dohare et al. (2021) adjust stochastic gradient
descent for the continual learning setting; we highlight that
in continual learning the agent does not have influence over
the stream of data, while the primacy bias in deep RL arises
because data collection is in the training loop.

The idea of resetting subnetworks recently received more
attention in supervised learning. Taha et al. (2021) studies
this process from an evolutionary perspective and shows
increased performance in computer vision tasks. Zhou et al.
(2022) show that some degree of forgetting might improve
generalization and draw a connection to the emergence of
compositional representations (Ren et al., 2019). Zhang
et al. (2019) demonstrate that resetting different layers affect
differently the performance of a network. Alabdulmohsin
et al. (2021) demonstrate that resets increase margins of
training examples and induce convergence to flatter minima.

These works complement the evidence about the existence
of the primacy bias in deep RL and add to our analysis of
the regularization effect of resets.

Cognitive science The primacy bias (also known as the
primacy effect) is a well-studied cognitive bias in human
learning (Marshall & Werder, 1972). Given a sequence of
facts, humans often form generalizations based on the first
ones and pay less attention to the later ones. Asch (1961)
shows that this tendency can foster a creation of harmful
prejudices by examining the difference in responses after
presenting the same data but in different order. Shteingart
et al. (2013) argue that outcomes of first experiences affect
future decision making and have a substantial and lasting ef-
fect on subsequent behavior. Yalnizyan-Carson & Richards
(2021) use RL as a framework to test a hypothesis that some
degree of forgetting in natural brains is beneficial for deci-
sion making. Resets can be linked to cultural transmission
between generations (Kirby, 2001), where an agent before
a reset transmits its knowledge to an agent after the reset
through a buffer. Lastly, studies of a critical period (Johnson
& Newport, 1989) show that if a child fails to develop a
skill during a particular stage of its development, it might
much more difficult to acquire the skill later, drawing the
connection to proper learning from early experiences.

Even though humans and RL systems learn under different
conditions, our paper provides evidence that artificial agents
exhibit the primacy bias noted in humans.

7. Future Work and Limitations
This paper focuses on empirical investigation of the primacy
bias phenomenon. An exciting avenue for future work is
developing theoretical understanding of risks associated to
overfitting to first experiences. Likewise, deriving guaran-
tees for learning with resets similarly to the results of Li
et al. (2021) in games and Besson & Kaufmann (2018) for
bandits would make the technique more theoretically sound.

Our version of resets is appealing because of its simplicity.
However, the reset periodicity is a hyperparameter that an
RL practitioner needs to choose. A version of the technique
based on the feedback from the RL system or even meta-
learning the resetting strategy can potentially improve the
performance even further.

Finally, we note that brief collapses in performance induced
by resetting may be undesirable from a regret minimization
perspective. Potential remedies include having a period of
offline post-training after each reset or sampling actions
from an interpolation between pre- and post-reset agents for
some period of time after each reset.

8. Conclusion
This paper identifies the primacy bias in deep RL, a damag-
ing tendency of artificial agents to overfit early experiences.
We demonstrate dangers associated with this form of overfit-
ting and propose a simple solution based on resetting a part
of the agent. The experimental evidence across domains
and algorithms suggests that resetting is an effective and
generally applicable technique in RL.

The general trend in RL research for many years was to first
establish a sound algorithm for the tabular case and then use
a neural network for representing parts of the agent. The
last step was not rarely seen as just a technical detail. The
primacy bias, however, is a phenomenon specific to RL with
function approximation. The findings of our paper point
at the importance of studying the profound interaction of
reinforcement and deep learning. Similarly to techniques
like Batch Normalization (Ioffe & Szegedy, 2015) that rev-
olutionized training of supervised models, future progress
might come not only from advancements in core RL but
rather by approaching the problem in conjunction. It is
striking that something as simple as periodic resetting im-
proves performance so drastically, suggesting that there is
still much to understand about the behavior of deep RL.

Overall, this work sheds light on the learning processes
of deep RL agents, unlocks training regimes that were un-
available without resets, and opens possibilities for further
studies improving both understanding and performance of
deep reinforcement learning algorithms.
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Task Steps

walker-run 1× 106

cheetah-run 1× 106

acrobot-swingup 1× 106

finger-turn hard 1× 106

fish-swim 1× 106

humanoid-stand 1× 106

humanoid-run 1× 106

quadruped-run 1× 106

swimmer-swimmer15 1× 106

hopper-hop 1× 106

Table 3. Tasks for SAC experiments and a number of training
steps. Many of DMC tasks are solved by SAC in a matter
of several thousand steps; we chose environments where SAC
requires a substantial amount of training according to the re-
ported results from https://github.com/denisyarats/
pytorch_sac#results.

A. Experimental Details
We use an open-source JAX implementation (Kostrikov,
2021) of the SAC and DrQ algorithms and an open-source
JAX implementation2 of SPR. This SPR implementation
exhibit a slightly higher aggregate performance than the
scores in Schwarzer et al. (2020) based on a PyTorch im-
plementation. All algorithms use default hyperparameters
unless specified otherwise (for example, in experiments with
replay ratio and n-step targets). SAC and DrQ experiments
use 10 random seeds for evaluating the performance, SPR
uses 20 random seeds.

Tables 3 and 4 report the sets of DeepMind Control Suite
tasks for testing SAC and DrQ algorithms respectively. Note
that SAC learns from dense states, while DrQ learns from
raw pixel observations. SPR trains on a standard set of 26
tasks from the Atari 100k benchmark used by Kaiser et al.
(2019); van Hasselt et al. (2019); Schwarzer et al. (2020).
The list of all Atari environments is available in Table 7.

B. Ablations
Section 5.4 outlines the interaction of different moving parts
of RL algorithms and our proposed reset strategy. This
appendix elaborates on our observations and provides sup-
porting figures to help understanding the effect of resets.
We now show, one by one, how resetting behaves under a
diverse set of controlled settings.

Replay buffer The reset mechanism we propose is a form
of forgetting based on retaining all of the collected knowl-
edge, stored in the replay buffer, and not retaining a part of
the learned behavior, stored in the parameters of an agent’s

2https://github.com/MaxASchwarzer/
dopamine/tree/atari100k_spr

Task Steps

walker-stand 5× 105

finger-spin 5× 105

cartpole-balance 5× 105

cartpole-swingup 5× 105

walker-walk 5× 105

cartpole-balance sparse 5× 105

pendulum-swingup 1× 106

hopper-stand 1× 106

quadruped-walk 2× 106

walker-run 2× 106

finger-turn easy 2× 106

cheetah-run 2× 106

acrobot-swingup 2× 106

finger-turn hard 2× 106

cartpole-swingup sparse 2× 106

quadruped-run 2× 106

reacher-easy 2× 106

reacher-hard 2× 106

hopper-hop 2× 106

Table 4. Tasks for DrQ experiments and a number of training steps.

function approximators. How critical is it to preserve the
knowledge in the replay buffer? We test its importance in
DrQ by periodically resetting the replay buffer in addition
to the last layers. Figure 8 shows that keeping the buffer
is essential; resetting it amounts to learning almost from
scratch. These results suggests that knowledge retention
is significantly more important than behavior retention for
preventing the negative effects of the primacy bias and si-
multaneously being able to recover from resets.

Initialization After each reset, the new parameters are
sampled from a canonical initialization distribution followed
by the algorithms. To understand whether the susceptibility
of an agent to the primacy bias is just a consequence of
an unlucky initialization of one of the layers of its neural
networks, we run DrQ with resets, but set the value of the
re-initialized parameters to the one they had at the begin-
ning of training (i.e., by initializing them with the same
seed). The results in Figure 8 show that the performance of
this variant of our reset strategy is almost identical to the
original version: the problem alleviated by resets is not one
of pathological initializations, in line with findings of other
works (Bjorck et al., 2021), but instead one resulting from
the peculiar interactions happening when learning from a
growing dataset of interactions.

Optimizer state As highlighted in the main text, reset-
ting the optimizer’s moment estimates together with the
corresponding neural network parameters have almost no
effect. We show results demonstrating this for DrQ (see
Figure 9). We believe this is mostly due to the momentum-
based optimizers: with Adam with default parameters, the

https://github.com/denisyarats/pytorch_sac#results
https://github.com/denisyarats/pytorch_sac#results
https://github.com/MaxASchwarzer/dopamine/tree/atari100k_spr
https://github.com/MaxASchwarzer/dopamine/tree/atari100k_spr
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Figure 8. Performance of the DrQ agent with standard resets, with
same-seed resets, and with both buffer and last layer resetting (10
resets during training) on four DMC tasks. Resetting the replay
buffer in addition to the last layers nullifies the learning progress,
while preserving the random seed for drawing re-initialized param-
eters delivers almost the same results as standard resets.

first moment (β1 = 0.9) will vanish in about 10 updates, the
second moment (β2 = 0.999) after 1000 updates. On the
scale of our tasks, it is indeed a quite rapid recovery time.

Reset depth One of the two hyperparameters introduced
by our reset strategy on top of any backbone algorithm is
the number of layers of the agent’s neural networks to be
re-initialized. We investigated the impact of this choice for
both SPR and DrQ, while sticking for SAC to the default
choice of re-initializing all networks. Results for DrQ in Fig-
ure 10 demonstrate that resetting the last layer yields slightly
inferior performance to resetting the entire Q-learning head
(3 layers). For SPR, as shown in Figure 13, we found the
reverse to be true. Thus, how many layers to reset is a
hyperparameter that may need tuning, and the choice can
be informed by the difficulty of representation learning for
each domain. We recommend starting the exploration of
this hyperparameter from resetting the last 1-3 layers.

Which networks to reset In our experiments, we reset a
subset of the value function parameters in SPR and a subset
of the parameters of all the trained neural networks in DrQ
and SAC. The latter two algorithms use three groups of func-
tion approximators: an actor, a critic, and a target critic. We
investigate the impact of resetting each one of these mod-
ules in DrQ. Results in Figure 11 show that a simultaneous
reset of all the neural networks is generally the most robust
technique to improve performance over the backbone algo-
rithm, while resetting the critic had the most impact on the
performance. We have also tried a version of resets where
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Figure 9. Performance of the DrQ agent with standard resets, with
optimizer-only resets, and with parameter-only resets (10 resets
during training) on four DMC tasks. Resetting the optimizer statis-
tics does not alter training if the weights are preserved, while
keeping the optimizer for re-initialized parameters delivers almost
the same results as standard resets.

each weight is re-initialized with probability 0.5. Figure 10
shows that such a random subnetwork resetting was either
on par or worse than the standard scheme.

Number of resets Intuitively, the primacy bias affects
the agent in a progressively milder way after each reset.
It is natural to ask whether a limited number of resets, or
even a single one, is sufficient to overcome the effects of
overfitting to initial experiences. We test this hypothesis
using DrQ, showing in Figure 12 that, despite the first reset
contributing the most to mitigating the primacy bias, it is
not always sufficient to reach the same performance of the
standard continual resetting strategy. As a default choice,
we recommend using the reset periodicity resulting in 3-10
resets over the course of training.

Other regularizers Resets can be seen as a form of
regularization because they implicitly constrain the final
solutions to be not too far from the initial parameters.
However, they specifically tackle the primacy bias bet-
ter than other common forms of regularization. To test
this conjecture, we repeat the heavy priming experiment
on the quadruped-run task with standard L2 regular-
ization of both critic and actor weights of SAC. We find
that no value of regularization coefficient among the set
[10−5, 3 · 10−5, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 ·
10−2, 10−1, 3 · 10−1, 1.0] can overcome heavy priming, ob-
taining results almost identical to the ones reported on Fig-
ure 1. The heavy priming setting artificially creates the
conditions for the effect of the primacy bias to be partic-
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Figure 10. Performance of DrQ with resetting the 3-layer heads (i.e. standard resets), only the last layers, and random subnetworks. The
overall performance of the latter two versions is either comparable or worse.
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Figure 11. Performance of DrQ with resets of actor, critic, and target critic networks simultaneously (i.e. standard resets) and individually.
Resetting the critic yields the predominant effect in most environments, but resetting all networks proved to be the most robust option.
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Figure 12. Performance of DrQ when using a limited number of resets. The number of resets for reaching the best performance varies: in
some environments, a single reset suffices to overcome the primacy bias, in other environments, keeping resetting continually is required.
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Figure 13. Performance of SPR when resetting different groups of
parameters. The right plot visualizes the percentage of improve-
ment gained by resetting a certain group of parameters compared
to no resets at all. Resetting the last layer only delivers a slightly
higher IQM than resetting the 2-layer head, while resetting the
whole network severely damages the performance.

ularly highlighted. To test whether resets offer superior
performance also in the context of standard training of re-
inforcement learning algorithms, we compare the perfor-
mance of SAC and DrQ enriched with standard regular-
ization methods to that of SAC and DrQ augmented with
resets. In particular, we leverage L2 regularization of both
the actor and the critic, as well as dropout (Srivastava et al.,
2014). We report in Table 5 the best value over the grid
[10−4, 5 · 10−4, 10−3, 5 · 10−3] suggested by (Liu et al.,
2021) for L2 and the standard grid [0.5, 0.1] for dropout.
For SAC-based approaches, we also sweep over the replay
ratios [1, 9, 32] and report the best result for other regulariz-
ers. The table shows that not only standard regularization
methods are not better than resets in the context of these
RL algorithms, but that they do not provide any benefit, on
aggregate performance, compared to the baselines.

Method IQM Median Mean

SAC 501 (389, 609) 475 (407, 563) 484 (420, 548)
SAC + resets 656 (549, 753) 617 (538, 681) 607 (547, 667)
SAC + dropout 219 (160, 285) 254 (204, 307) 258 (216, 300)
SAC + L2 412 (299, 524) 415 (337, 495) 416 (351, 481)

DrQ 569 (475, 662) 521 (470, 600) 535 (481, 589)
DrQ + resets 762 (704, 815) 680 (625, 731) 677 (632, 720)
DrQ + dropout 492 (414, 567) 480 (420, 541) 479 (431, 527)
DrQ + L2 463 (362, 566) 473 (403, 541) 472 (415, 529)

Table 5. Comparison of the performance of SAC and DrQ when
augmented with standard regularization techniques and resets. We
leverage 10 runs and the same set of evaluation tasks reported in
Table 3 and Table 4.

C. Per-Environment and Additional Results
The remainder of the appendix presents results for each task
and supplementary plots for training with varying replay
ratios and n-step targets.

Figure 14 demonstrates learning curves for SPR. We note
that the low loss and high parameter norm for high n and
replay ratios might indicate the symptoms of overfitting.
Whilst resets implicitly control the weight norm, doing so
explicitly through L2 regularization proved to be less effec-

tive for mitigating heavy priming.

Table 6 presents the aggregate metrics for the combinations
of n and replay ratios in SAC. We additionally probe ex-
treme replay ratios of 128 and 256 and observe that, even in
these cases, learning with resets delivers meaningful perfor-
mance, while the no-reset agent achieves near-zero returns.

Lastly, per-environment training curves for SAC as well as
the results for varying replay ratios and n-step targets are
available in Figures 15 and 17 respectively. Per-environment
training curves for DrQ are available in Figure 18. Table 7
provides scores for SPR in all Atari 100k tasks.
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Figure 14. Training curves for SPR with resets on Atari 100k with different n-step targets (left) and varying replay ratios (right). Resets
increase TD errors and temporarily increase gradient norms for all values of n and RR, while implicitly regularizing parameter norms.
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Figure 15. Per-environment training curves for SAC for various replay ratio (RR) values and a fixed value of n = 1.
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Figure 16. Per-environment training curves for SAC for the extreme replay ratio (RR) values of 128 and 256 and a fixed value of n = 1.
While a standard learning algorithm struggles to make any progress, resets allow to achieve reasonable performance in this regime.
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Figure 17. Per-environment training curves for SAC for various n and a fixed value of replay ratio RR = 9.
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HHH
HHH

RR
n

1 3 5

resets no resets resets no resets resets no resets

1 401 (308,497), 500 (389,609) 431 (366,499), 452 (347,556) 434 (333,533), 399 (304,493)
9 628 (514,730), 459 (341,576) 656 (549,752), 413 (319,517) 597 (490,699), 392 (298,488)
32 651 (542,750), 301 (193,430) 642 (541,737), 342 (241,452) 588 (482,684), 291 (200,394)
128 584 (487,679), 149 (86,242) — —
256 520 (418,619), 39 (18,79) — —

(a) IQM

H
HHH

HH
RR

n
1 3 5

resets no resets resets no resets resets no resets

1 415 (342,478), 474 (406,562) 425 (382,481), 448 (375,527) 409 (346,492), 398 (328,475)
9 575 (500,656), 473 (395,557) 616 (537,680), 436 (365,519) 547 (476,632), 403 (333,480)
32 602 (527,677), 372 (297,469) 599 (532,674), 398 (317,476) 554 (475,626), 352 (279,433)
128 568 (496,640), 268 (192,349) — —
256 518 (444,595), 152 (92,221) — —

(b) Median

HH
HHHH

RR
n

1 3 5

resets no resets resets no resets resets no resets

1 410 (354,467), 484 (419,549) 433 (393,473), 451 (387,515) 419 (360,478), 407 (348,467)
9 577 (511,642), 476 (409,543) 607 (547,666), 443 (381,504) 553 (488,617), 407 (346,469)
32 600 (537,662), 384 (314,456) 601 (543,659), 397 (332,464) 549 (486,611), 358 (294,422)
128 566 (507,626), 275 (212,341) — —
256 520 (457,581), 165 (115,220) — —

(c) Mean

Table 6. Full results for SAC in terms of IQM, median, and mean performance across tasks.
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Figure 18. Per-environment training curves for DrQ with and without resets on DMC.
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Random Human DER DrQ(ϵ) SPR SPR+resets

Alien 227.8 7127.7 802.3 865.2 901.2 911.2
Amidar 5.8 1719.5 125.9 137.8 225.4 201.7
Assault 222.4 742.0 561.5 579.6 658.6 953.0
Asterix 210.0 8503.3 535.4 763.6 1095.0 1005.8
Bank Heist 14.2 753.1 185.5 232.9 484.7 547.0
Battle Zone 2360.0 37187.5 8977.0 10165.3 10873.5 8821.2
Boxing 0.1 12.1 -0.3 9.0 27.6 32.2
Breakout 1.7 30.5 9.2 19.8 16.9 23.4
Chopper Command 811.0 7387.8 925.9 844.6 1454.0 1680.6
Crazy Climber 10780.5 35829.4 34508.6 21539.0 23596.9 28936.2
Demon Attack 152.1 1971.0 627.6 1321.5 1291.7 2778.0
Freeway 0.0 29.6 20.9 20.3 9.7 18.0
Frostbite 65.2 4334.7 871.0 1014.2 1746.2 1834.3
Gopher 257.6 2412.5 467.0 621.6 642.4 930.4
Hero 1027.0 30826.4 6226.0 4167.9 7554.5 6735.6
Jamesbond 29.0 302.8 275.7 349.1 383.2 415.7
Kangaroo 52.0 3035.0 581.7 1088.4 1674.8 2190.6
Krull 1598.0 2665.5 3256.9 4402.1 3412.1 4772.4
Kung Fu Master 258.5 22736.3 6580.1 11467.4 16688.6 14682.1
Ms Pacman 307.3 6951.6 1187.4 1218.1 1334.1 1324.6
Pong -20.7 14.6 -9.7 -9.1 2.1 -9.0
Private Eye 24.9 69571.3 72.8 3.5 76.1 82.2
Qbert 163.9 13455.0 1773.5 1810.7 3816.2 3955.3
Road Runner 11.5 7845.0 11843.4 11211.4 13588.5 13088.2
Seaquest 68.4 42054.7 304.6 352.3 519.7 655.6
Up N Down 533.4 11693.2 3075.0 4324.5 8873.4 60185.0

Median HNS 0.000 1.000 0.189 0.313 0.453 0.512
Mean HNS 0.000 1.000 0.350 0.465 0.579 0.901

#Games > Human 0 0 2 3 4 7
#Games > 0 0 28 25 25 26 26

Table 7. Raw per-game scores and aggregate human-normalized scores (HNS) for SPR with resets and other methods on all 26 games in
the Atari 100k benchmark. We report performance for SPR and SPR + resets from our codebase, averaged over 20 random seeds per
game; other scores are taken from Agarwal et al. (2021) and use 100 random seeds.


