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Abstract

The fundamental challenge of drawing causal in-
ference is that counterfactual outcomes are not
fully observed for any unit. Furthermore, in ob-
servational studies, treatment assignment is likely
to be confounded. Many statistical methods have
emerged for causal inference under unconfound-
edness conditions given pre-treatment covariates,
including: propensity score-based methods, prog-
nostic score-based methods, and doubly robust
methods. Unfortunately for applied researchers,
there is no ‘one-size-fits-all’ causal method that
can perform optimally universally.In practice,
causal methods are primarily evaluated quanti-
tatively on handcrafted simulated data. Such data-
generative procedures can be of limited value be-
cause they are typically stylized models of re-
ality. They are simplified for tractability and
lack the complexities of real-world data. For ap-
plied researchers, it is critical to understand how
well a method performs for data at hand. Our
work introduces a deep generative model-based
framework, Credence, to validate causal inference
methods. The framework’s novelty stems from
its ability to generate synthetic data anchored at
the empirical distribution for the observed sam-
ple, and therefore virtually indistinguishable from
the latter. The approach allows the user to spec-
ify ground truth for the form and magnitude of
causal effects and confounding bias as functions
of covariates. Thus simulated data sets are used
to evaluate the potential performance of various
causal estimation methods when applied to data
similar to the observed sample. We demonstrate
Credence’s ability to accurately assess the relative
performance of causal estimation techniques in
an extensive simulation study and two real-world
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data applications from Lalonde and Project STAR
studies.

1. Introduction
Causal inference problems typically focus on estimating the
effect of a point treatment (Z) on an outcome of interest (Y )
(Angrist and Pischke, 2008) - one example would be deter-
mining if a drug will aid in a patient’s recovery. In a binary
treatment setting, the average causal effect (τ ) of an inter-
vention is defined as the contrast between the population
average potential outcome if all units were given the active
treatment (E[Y (1)]) versus the average potential outcome if
all units were given the control treatment (E[Y (0)]). In this
paper, the contrast of interest is defined on the additive scale,
that is τ = E [Y (1)− Y (0)], which hereafter is referred to
as the average treatment effect or ATE.

We will proceed under the standard consistency assump-
tion typically made in the causal inference literature, that
for each unit with observed treatment value, say Z = z,
its observed outcome matches the potential outcome Y (z)
while the counterfactual outcome Y (1− z) remains unob-
served or missing. Hence, knowing the true causal effect of
intervention for each individual is impossible, however, it
is possible under certain conditions to learn the population
average causal effect τ . A standard approach to identify
the ATE relies on an assumption that one can account for
the possibility of confounding, on the basis of measure co-
variates, therefore ruling out the presence of unmeasured
confounding. Confounding factors are typically common
causes of the treatment and outcome variables, for instance,
patients that were able to avail themselves of a treatment
drug might be affluent and have better access to healthcare
facilities compared to patients in the control group. Thus,
the correlation between the treatment and the outcome might
be primarily because of better access to healthcare. In order
to evaluate the ATE, variables such as “access to healthcare”
in this case, that simultaneously affect the treatment (Z)
and the outcome (Y ) are confounders (W ) that must be
accounted for. In addition to consistency and unconfound-
edness, nonparametric identification of the ATE typically
also requires a positivity assumption that for any covariate
value observed in the population, there is at least one unit
who would receive the active treatment and at least one unit
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that would receive the control treatment.

Causal effect estimation. Under these identifying condi-
tions, the causal inference literature has over the years pro-
duced several alternative approaches to explicitly account
for observed covariates with the goal to adjust for confound-
ing. This rich analytical arsenal includes three types of
methods distinct in the manner in which covariate adjust-
ment is achieved: (i) methods that directly model the depen-
dence of the outcome variable on covariates, such as nearest
neighbor matching or outcome regression adjustment; (ii)
methods that model dependence of the treatment variable
on covariates (also known as treatment propensity score),
such as propensity score matching or inverse-probability-
of-treatment-weighting; and (iii) so-called doubly robust
methods that combine both approaches for improved ro-
bustness (Rosenbaum and Rubin, 1984; Imbens and Ru-
bin, 2015; Hernán and Robins, 2010; Van der Laan et al.,
2003; Van der Laan and Rose, 2018). Conditions under
which methods (i)-(iii) can provide valid inferences about
ATE are well understood, and typically require that bias
incurred by the approach in estimating nuisance parameters
is sufficiently small. Such bias will be small if nuisance
functions of covariates, e.g the conditional mean for the
outcome in the control group as a function of covariates or
the propensity score, are smooth enough to be estimated
at sufficiently fast rates. However, performance of these
methods might vary significantly for any given finite size
data-sample. For instance, for the well-known Lalonde’s
National Support Work Demonstration (NSW) temporary
employment program and income dataset (LaLonde, 1986)
where the treatment is randomly assigned, the average treat-
ment effect (ATE) estimates using different methods are
vastly different (see Table 1). Each causal inference esti-
mation method has both strengths and limitations, and the
optimal choice of estimation can depend on the problem at
hand, in the sense that the best method in one application
may be sub-optimal for the next application depending on
the underlying data generation mechanism. For instance,
parametric methods such as those based on linear regression
work well even with limited data if the assumed model(s)
are in congruence with the underlying true mechanism of
dependency (Angrist and Pischke, 2008). However, under
model misspecification, the performance of these methods
significantly deteriorates. Matching-based approaches do
not have to explicitly assume an outcome model, however,
it has been shown that the result can be highly sensitive to
the choice of distance metrics, whether the features being
matched are scaled appropriately or other hyper-parameters
(Stuart, 2010; Diamond and Sekhon, 2013; Parikh et al.,
2018; Wang et al., 2021). Non-parametric methods such
as double machine learning with gradient boosting trees
and targeted maximum likelihood estimation (TMLE) with
superlearner can require relatively large datasets and fine-

Table 1. Lalonde’s NSW Sample ATE Estimated using few com-
monly used causal effect estimation methods.

Estimators ATE Estimate Std. Dev.

Difference of Means 886.30 277.37
Double Machine Learning 370.94 394.68
Causal BART 818.79 184.46
Propensity Score Matching 1079.13 158.59

tuning of hyper parameters to ensure optimal performance
(Athey and Imbens, 2019; Cui and Tchetgen, 2019; Van der
Laan et al., 2007; Zheng and van der Laan, 2011). Thus,
there is clearly no ‘one-size-fits-all’ estimation method for
all scenarios. Validation of causal estimation methods for
a given application is an important and challenging area of
great consequence for causal inference practitioners, which
to-date remains under-developed despite having received
some attention.

Existing approaches to validating causal methods. Ex-
isting approaches in the literature to validate or evaluate
the performance of causal methods on a specific dataset of
interest can be divided into three main categories: (1) face-
validity test, (2) placebo or negative control tests, and (3)
synthetic data tests. Face-validity tests assess the estimated
treatment effect against an expert’s intuition. For instance,
if the expected effect of a malaria medication according to a
pharmacologist was a reduction in risk of death, but a causal
method’s estimate was contrary to the belief, then this fails
the face-validity test. This test clearly is neither sufficient
nor necessary - violation does not necessarily indicate that
the causal estimation method is biased while agreement with
expert’s intuition does not imply that the causal estimation
method is accurate. Placebo tests are the most widely used
validation approach for causal models and they come in two
varieties: “in-time” and “in-sample” placebo tests (Abadie
et al., 2010; Ferman and Pinto, 2017; Athey and Imbens,
2017). An in-time-placebo test either restricts the analysis
to a time-period whereby the causal effect is known to be
null, or reassigns the treatment to a time period before the
actual observed treatment and estimates the treatment effect
to generate the distribution of treatment effects under null.
In-sample-placebo tests, on the contrary, reassign the treat-
ment to a control unit unaffected by the treatment, and use
the causal inference method to estimate the effect. These
tests are valid only under strong assumptions such as: (a) for
in-time placebo tests, selection into treatment is assumed to
be independent of pre-treatment outcomes which can lead to
reverse causal-dependency bias, (b) in-sample placebo tests
assumes that the placebo treatment assignment preserves
key features of the true treatment assignment mechanism.
Closely related to (a) and (b), negative control exposure or
outcome variables are also routinely used for causal valida-
tion (Lipsitch et al., 2010; Shi et al., 2020) Such methods
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require that negative control exposure and negative con-
trol outcome variables are available such that they satisfy
key exclusion restrictions and U-comparability conditions
(Lipsitch et al., 2010).

Lastly, for synthetic data tests, the design typically includes
a known data-generating mechanism. This allows access
to treatment effects ground truth used to evaluate the ac-
curacy of causal methods on simulated data. However,
synthetic data generating processes are commonly hand-
crafted, oversimplified, and thus unlikely to reflect the same
level of complexity as real-world data. In addition, these
overly-stylized data generating processes tend to a priori
favor certain methods over others (Athey et al., 2021; Ad-
vani et al., 2019; Knaus et al., 2021; Gentzel et al., 2019;
2021). Hence, good performance of a given method on
handcrafted synthetic data does not necessarily translate to
equally good performance on real-world data. In this paper,
we present an approach to generate synthetic data sets that
satisfy two salient properties sought out in simulation stud-
ies: (i) user-specified causal treatment effects, heterogeneity,
and endogeneity; (ii) simulated samples that are stochasti-
cally indistinguishable from the observed data sample of
interest.

Contribution. Specifically, we introduce a general frame-
work (Credence) to validate and evaluate the performance
of various existing causal inference methods using synthetic
data anchored at the empirical distribution of a given data
set of interest (see Section 2.1). The approach relies on a
deep generative model trained on a rich universe of data
sets that share certain key features with the data set of pri-
mary interest, and is the basis to operationalize the proposed
framework (see Section 2.2). Credence successfully fulfils
requirements (i) and (ii), central to obtaining an objective
evaluation of causal methods to a data set in view.

A recent work by Athey et al. (2021) similarly proposed to
use of deep generative models to simulate synthetic data
to validate causal methods. However, in contrast to our
approach, Athey et al. (2021) assumed that the observed
data satisfied conditional ignorability, a restriction which
they also imposed in generated samples. Furthermore, their
proposed framework does not appear to accommodate user-
specified treatment effects and confounding bias. As result,
their approach only fulfils requirement (ii) but not (i), a
important gap we address in this work.

We demonstrate Credence’s utility with two synthetic data
scenarios (read Section 3.1), and on two real data exam-
ples – the Lalonde and Project STAR studies (read Sec-
tion 3.2). For synthetic data experiments, we compare the
oracle performance ranking of various causal inference es-
timation methods in a Monte Carlo setting where the true
data-generating process (DGP) is completely known and

compare it with the performance evaluation produced by
Credence without a priori knowledge of the DGP. We find
that Credence can successfully re-produce the oracle perfor-
mance ranking of the various estimation methods based on
the single observed sample. Furthermore, in each real-world
data set for which both experimental and observational data
are available, we compare the performance ranking for the
same set of causal inference methods in the observational
sample with that in the experimental sample. Finally, we
discuss important implications of Credence and highlight
both strengths and limitations of the proposed framework in
Section 4.

2. Methodology
In this section, first we introduce the general framework
(Section 2.1) to learn a data generating process from the
observed data set of interest, with user-defined levels of
treatment effects and confounding. Next, we introduce
Credence, which operationalizes the proposed framework
using an ensemble of variational autoencoders (Section 2.2).

2.1. Framework

Intuitively, our first objective is to learn a data generating
mechanism, Gθ, such that the joint distribution of the vari-
ables in a generated sample D′ = (X ′, Y ′, Z ′) ∼ Gθ is
nearly indistinguishable from the empirical distribution of
the observed data D = (X,Y, Z). Crucially, in addition
to the above feature, we incorporate user-specified causal
treatment effects, heterogeneity and both observed and hid-
den confounding bias as constraints that must be satisfied to
the extent possible by the learned law Gθ and therefore can
stand as a causal ground truth anchor for generated samples.

In this vein, let GΘ denote a model consisting of possi-
ble data generating laws for D. Let G† ∈ GΘ denote
the true generating model from which the observed data
D = (X,Y, Z) was sampled. For {εX,i, εZ,i, εY,i}Ni=1

iid∼
N (0,1) and {Ui}

iid∼ N (0, 1), throughout, we assume D
follows the nonparametric structural equations model: (1)
Xi ∼ φX(εX,i), (2) Zi ∼ φZ(Xi, Ui, εZ,i), (3) Yi(1) ∼
φY (1)(Xi, Ui, εY,i), (4) Yi(0) ∼ φY (0)(Xi, Ui, εY,i), and
(5) Yi = ZiYi(1) + (1 − Zi)Yi(0) where, G† =

[φX , φZ , φY (1), φY (0)]. Further, let G†Θ ⊆ GΘ be the sub-
set of equally likely data generators for observed data D,
and G∗Θ ⊆ GΘ be the subset of feasible data generators that
satisfy user-defined treatment effects and confounding bias
functions. Informally, if G†Θ ∩G∗Θ 6= {∅} then we wish to
find an arbitrary law G∗θ ∈ G†Θ ∩G∗Θ, otherwise, we wish
to find a G∗θ ∈ G∗Θ which is “closest” to a Gθ ∈ G†Θ (see
Figure 1 for a graphical illustration). To formalize this idea,
consider an optimization setup that takes in as input the ob-
served data D; together with user-defined treatment effect
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Figure 1. Schematic drawing of the optimization setup. Here GΘ

is the space of all possible data generators, G† is the true data
generative process for the observed data D, G†Θ is the subspace of
all equally likely data generators for observed data D, and G∗Θ is
the subspace of potential data generators that can be learned using
the assumed configuration. We want to find a G∗θ ∈ G∗Θ that is
closest to a Gθ ∈ G†Θ.

function (f ) and unmeasured confounding-bias function (g),
both of which are defined as followed on the mean additive
scale:

f(x) = E[Y (1)− Y (0)|X = x]

g(x, z) = E[Y (z)|X = x, Z = z]

−E[Y (z)|X = x, Z = 1− z]

The setup also accommodates specification of the degree
to which the user wishes the data generating mechanism be
faithful to specified functions f and g, regulated by the pair
of penalties, referred throughout as rigidness parameters α
for f and β for g, respectively. We design the optimization
objective to finding the parameter θ of the generative model
Gθ that minimizes a certain distributional distance metric
between the empirical distribution of D and the simulated
data under specified treatment effect and confounding bias
constraints.

Specifically, one may consider the Wasserstein distance as
choice of distributional distance metric; in which case, the
treatment effect constraint shrinks the conditional average
treatment effect towards f(X) and the corresponding con-
founding bias constraint shrinks the amount and nature of
confouding bias towards g(X,Z) in the fitted DGP. In case
there is a trade-off between minimizing each of the three ob-
jectives, the rigidness coefficient is used to encode specific
user’s preferences for one over the other. More broadly, let
d denote the distance metric of choice between empirical
and estimated laws; then we wish to learn a data generating

Figure 2. Schematic diagram showing conditional VAE (conVAE)
used to learn a conditional distribution P (A|B) for any two ran-
dom variables A and B.

mechanism Gθ that satisfies:

minθ E [d((X,Y, Z), (X ′, Y ′, Z ′))]

+ α ‖E[Y ′(1)− Y ′(0)|X ′ = x′]− f(x′)‖ (1)

+ β

∥∥∥∥∥∥
E[Y ′(z′)|X ′ = x′, Z ′ = z′]
−E[Y ′(z′)|X ′ = x′, Z ′ = 1− z′]
−g(x′, z′)

∥∥∥∥∥∥
where D′ = (X ′, Y ′, Z ′) ∼ Gθ.

Next, we discuss our procedure to operationalize this opti-
mization using deep generative models.

2.2. Credence

Credence uses this framework to generate data for com-
paring and validating causal inference methods. Credence
learns the joint distribution P (X,Z, Y ) as an ensemble of
three conditional distributions: P (Y |X,Z), P (X|Z) and
P (Z) using a variational autoencoder neural networks. A
brief background on variational autoencoders (VAE) is dis-
cussed in Appendix A. Our work uses the VAE framework
to learn the above mentioned conditional distributions by
allowing the decoder to not only be a function of sampled
latent vectors but also of variables we are conditioning on
(see Figure 2). In machine learning literature, VAEs have
been shown to work extremely well for modeling numerical
as well as vision and text data (Kingma and Welling, 2019;
Kusner et al., 2017). However, to the best of our knowledge,
deep generative models such as VAEs haven’t been used
in the specific way described for validating and evaluating
causal inference methods.

In this work, we have assumed Z to be a binary indicator.
Thus, learning a generative model for P (Z) boils down to
estimating pz = P (Z = 1), the parameter of a Bernoulli
distribution. Thus, the sample proportion p̂z =

∑
i Zi

N is
an unbiased and consistent estimate of pz . We use the
conditional VAEs to then learn probability distributions
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P (X|Z) and P (Y |X,Z) separately.

Consider the VAE setup HX|Z
(φX|Z ,θX|Z) = (F

X|Z
φX|Z

, G
X|Z
θX|Z

)

to learn P (X|Z). Here, FX|ZφX|Z
is the encoder that maps

the observed data to a lower dimensional latent space, and
G
X|Z
θX|Z

is the decoder that maps back points to the original di-
mensions. Thus, the VAE encoder maps Xi to latent space
as [µXi ,Σ

X
i ] = F

X|Z
φX|Z

(Xi), then sample a point RXi in
latent space in the vicinity of µXi by drawing it from the dis-
tributionRXi ∼ N (µXi ,Σ

X
i ) andRXi is mapped back to the

space of X using the decoder, X ′i = G
X|Z
θX|Z

(RXi , Zi). We
use the ELBO loss function for the setup which is extremely
common in the VAE literature. It is given as follows,

LX|Z(φX|Z , θX|Z ; {(Xi, Zi)}Ni=1)

=

N∑
i=1

‖Xi −X ′i‖2 +DKL(N (µXi ,Σ
X
i )||N (0, 1)).

Similarly, consider the VAE setup H
Y |X,Z
(ψY |X,Z ,θY |X,Z) =

(F
Y |X,Z
ψY |X,Z

, G
Y |X,Z
θY |X,Z

) for learning P ((Y (1), Y (0))|X,Z).
As noted before, for each unit in the original dataset we
only observe one of Y (0) or Y (1). Thus, we update the loss
function to inform the learning of P ((Y (1), Y (0))|X,Z)
using the user-provided treatment effect function f and
confounding bias function g. That is, the constraints im-
posed by choices of f and g together with their corre-
sponding penalties implicitly induce correlation between
Y (1) and Y (0). Let [µYi ,Σ

Y
i ] = F

Y |X,Z
ψY |X,Z

(Yi), RYi ∼
N (µYi ,Σ

Y
i ), (Y ′i (1), Y ′i (0)) = G

Y |X,Z
θY |X,Z

(RYi , Xi, Ti) and

(Y ′′i (1), Y ′′i (0)) = G
Y |X,Z
θY |X,Z

(RYi , Xi, 1 − Ti). Then, the

loss functions training HY |X,Z
(ψY |X,Z ,θY |X,Z) is given by

LY |X,Z(ψY |X,Z , θY |X,Z ; {(Yi, Xi, Zi)}Ni=1)

=
1

N

N∑
i=1

‖Yi − (ZiY
′
i (1) + (1− Zi)Y ′i (0))‖2

+DKL(N (µYi ,Σ
Y
i )||N (0, 1))

+α‖Y ′i (1)− Y ′i (0)− f(Xi)‖
+β‖Y ′i (1− Zi)− Y ′′i (1− Zi)− g(Xi, Zi)‖

where α and β are the user-defined hyper-parameters. The
expression LY |X,Z(φY |X,Z , θY |X,Z ; {(Yi, Xi, Zi)}Ni=1)
can be intuitively decoded – the first and second term
ensure distributional similarity of observed and generated
data, while the second term also forces the distribution
in the latent space to be standard normal. The third term
shrinks the individualized treatment effects to the one
defined by f , and the fourth term shrinks the magnitude
and nature of confounding bias towards g. Note that the
conditions enforced by the third and fourth terms of the loss

function are tighter than the one described in equation 1,
thus narrowing the space of feasible generative models.
This choice is to primarily ensures efficient computation
and training. Also, note that if α = 0 then the treatment
effects are free to assume any value, while if β = 0 then the
unmeasured confounding can be arbitrary.

This approach approximates the population-level optimiza-
tion setup described in Section 2.1 and Equation 1. Further,
this setup allows each of the two VAEs to be trained indepen-
dently. Hence, the procedure can be performed in parallel
which reduces the overall time of analysis.

Credence-based Validation. Let G∗θ be an optimal
data generator that minimizes the objective described
in Equation 1. Then, we use the ensemble of de-
coders from the trained VAEs Ĝθ = {ĜθY |X,Z

, ĜθX|Z}
as an estimate of G∗θ . Further, Ĝθ is used to gener-
ate data (X ′, Z ′, Y ′(1), Y ′(0)) with known treatment ef-
fects such that ∀j, RX′

j ∼ N (0, 1), RY
′

j ∼ N (0, 1),

Z ′j ∼ Bernoulli
(∑

i Zi

|D|

)
, X ′j ∼ ĜθX|Z (RX

′

j , Z ′j) and

(Y ′j (1), Y ′j (0)) ∼ ĜθY |X,Z
(RY

′

j , X ′j , Z
′
j). The generated

data is then used to assess the performance of various causal
methods by comparing the estimated ATE to the true ATE,
E{Y ′j (1) − Y ′j (0)}. In the remainder of the paper, we
demonstrate Credence in two settings: (i) using synthetic
data where ground truth is known; (ii) two real data applica-
tions each of which having available both observational and
experimental samples. In settings (i) and (ii), Credence is
trained on a universe of data sets generated via the nonpara-
metric bootstrap from a single observed data sample. Cre-
dence is then used to conduct a Monte Carlo study anchored
at a single realization constituting the observed sample, in
order to compare the performance of the following set of
canonical causal inference methods taken from published
literature as representative of the landscape of available
methods: (1) meta-learners (Künzel et al., 2019), (2) non-
parametric double machine learning (DML) (Chernozhukov
et al., 2018) (3) propensity score matching estimator (Rosen-
baum, 2002), (4) causal forest (Wager and Athey, 2018),
(5) targeted maximum-likelihood estimator (TMLE) (Van
Der Laan and Rubin, 2006), (6) causal BART (Chipman
et al., 2010), and (7) doubly robust estimator (Bang and
Robins, 2005).

3. Experiments
In this section, we study Credence-generated recommenda-
tions and rankings of causal inference methods for various
datasets under different conditions. We divide this section
into two parts. The first part focuses on synthetically gener-
ated data with known true data generating process (DGP) .
Here, we compare the performance of various causal infer-
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ence methods on data sampled from the known true DGP.
We compare these performances with the methods’ perfor-
mance on data sampled from three trained Credence models
under different constraints. Ideally, we aim to evaluate the
extent to which Credence can replicate the oracle’s ranking
under various sets of assumptions about treatment effects
and confounding. The second part focuses on two real data
case studies–(1) Lalonde data sets (Dehejia and Wahba,
1999), and (2) Project STAR dataset (Achilles et al., 2008).
Both data sets have an experimental component (in which
treatment is randomized) and an observational component
(in which units self-select into treatment). We rank the per-
formance of causal methods on the observational part of
the data, using the difference of means estimate of ATE on
experimental part as an unbiased estimator of ground truth.
Further, we compare this ranking with the ranking produced
using Credence trained on the observational component of
each study.

3.1. Synthetic Data Experiment

We use two DGPs for our analysis. The first DGP gener-
ates normally distributed covariates with a quadratic treat-
ment effect and selection into treatment as a function of
pre-treatment covariates. The second one is the so-called
Friedman’s DGP that which admits highly non-linear out-
come and treatment selection functions of uniformly dis-
tributed covariates. Both the DGP’s are described in details
in Appendix B. We analyze and rank the performance of
different causal inference methods using samples (of size
N=2500 and 10-dimensional pretreatment covariate space)
drawn from (1) the true DGPs and (2) the DGPs learned by
training Credence on a single sample data set from true DGP
with only observed covariates. The goal is to understand if
the ranking produced by both approaches are comparable.

In this study, we train three Credence models for each of
the two datasets with different configurations of the treat-
ment effect function (f(X)) and selection bias function
(g(X,T )). (1) For the first one, we shrink g(X,T ) towards
zero and f(X) towards (1TXi)

2 for quadratic DGP and
Xi,3 cos(πXi,1Xi,2) for Friedman’s DGP (Figure 3(b)). (2)
For the second one, we constraint both f(X) and g(X,T )
to be equal to zero for all X and T . (3) Lastly, for the
third one, we shrink both f(X) towards zero but constraint
g(X,T ) = 0.15(2T − 1) to understand the sensitivity of
different methods to unobserved confounding. For each of
the cases, the potential outcomes will choose the values that
will minimize Credence’s training loss while respecting the
above mentioned constraints.

For Quadratic DGP, we observe that while most of the
methods have comparable accuracy, gradient boosting trees
(GBT) S learner’s estimates are the most biased on average
(Figure 3(a)). Further, linear S learner and Causal BART

and linear DML tend to perform the best. An analogous con-
clusion can be drawn from the performance assessed using
Credence’s framework (see Figure 3(b) and (c)) where GBT
S learner has the largest bias on average. In Figure 3(d), we
study the case with no treatment effect but high selection
bias that selects units with higher Y (1) into treated group
and units with higher Y (0) into control group. There, as
expected, we observe that almost all methods are biased.
However, the true treatment effect is in 95 percent confi-
dence interval for GBT S learner and GBT DML. Further,
comparing the performance of causal methods on highly
non-linear Friedman’s DGP, we observe that propensity
score matching is highly biased while Causal BART, GBT
DML and GBT S learners tend to be the least biased, as indi-
cated using the true DGP (Figure 3(a)). Similar performance
is observed when evaluated using Credence-learned-DGPs
(see Figure 3(b), (c) and (d)).

The main takeaway from this analysis is that Credence is
able to reproduce rankings obtained by an oracle with ac-
cess to the true DGP in cases where the constraints broadly
align with the structure of true DGP. This highlights that the
performances evaluated using Credence can provide reliable
inferences in such a setting.

3.2. Real Data Case Studies

The case studies described in this section aim at (1) show-
casing the applicability of Credence on real world data, and
(2) highlight the strength of Credence in evaluating causal
methods. To address the second objective, we selected data
sets that include both experimental and observational arms.
We use the difference of means between treatment and con-
trol arms estimated in experimental sample as ground truth
ATE and evaluate estimation of ATE in the observational
arm against the former. Next, we train Credence models
only using the observational sample for each of the data sets
and evaluate the methods on samples drawn from the trained
models. We compare these rankings to determine the extent
to which Credence performance evaluation of various causal
inference methods can be reliable.

3.2.1. DATA DESCRIPTION

Lalonde Temporary Employment Program. The Na-
tional Support Work Demonstration (NSW) temporary em-
ployment program is a randomized controlled trial aimed at
studying the effect of a temporary employment program in
the US on post intervention income level of the participants
(LaLonde, 1986). Because this data set is from an RCT,
treatment assignment is random and there is no unobserved
confounding. An observational counterpart of this data set is
the Population Survey of Income Dynamics (PSID) control
sample (described in (Dehejia and Wahba, 99 )). Treated
units from NSW combined with control units from PSID
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are frequently used as benchmarks to compare the perfor-
mance of causal inference methods on real data (REFS).
The outcome variable for both NSW and PSID samples is
an individual’s income in 1978. The observed pre-treatment
covariates include the age, education, race, degree and 1975
income of participants. The unbiased point estimate of av-
erage treatment effect for NSW sample using difference
of means estimator is $886.30. Hence, comparing the esti-
mated treatment effect on the combined data set with the
ATE from NSW sample benchmarks the performance of
causal inference methods.

Project STAR. Project STAR (Student-Teacher Achieve-
ment Ratio) is an experiment primarily designed to study the
effect of class-size in the earlier grades on short and long-
term student performance (Achilles et al., 2008; Mosteller,
2014). A total of 79 schools in the US were chosen across
the state of Tennessee in inner-city (17), urban (8), sub-
urban (16) and rural areas (38). The experiment has a single
cohort that was studied for four years. This included the
students entering kindergarten in 1985 and students that ini-
tiated their public schooling in first grade in 1986. For each
school of the 79 STAR schools, the students and teachers
were randomly assigned to one of three treatment arms: a
small class (13 to 17 students), a regular-sized class (22
to 25 students) and a regular-sized class with a full-time
teacher aide. For our analysis, we consider the students in
small class room as treated while all the other students as
control. The outcome was measured using a standardized
achievement tests in the spring of each year from 1986 to
1989. Apart from the STAR school data, the information
about the non-randomized comparison group was collected
concurrently. The comparison group includes information
on 1780 students across grades 1 to 3 from 21 schools. The
comparison schools were also selected from the same 13
districts as STAR schools. The unbiased point estimate of
average treatment effect on Project STAR’s experimental
sample is 7.24.

3.2.2. ANALYSIS

Analyzing performance with respect to the experimen-
tal ATE. First, we estimated the causal effects of the inter-
ventions for Lalonde data and Project STAR’s observational
data using the various candidate causal inference methods.
We compared these estimates with a “difference of means”
estimate of causal effect in experimental data sets for both
studies. As treatment is randomly assigned to units in each
of the experimental data sets, the difference of means is an
unbiased and consistent estimator. Thus, we treat it as a
gold-standard. We compare and rank the performance of
ATE estimators (see Figures 4(a)). For both data sets we
find that the bias of each of the estimators on average are
very similar. Furthermore, the variance of estimated bias
was obtained from 50 bootstrap samples. We observed that

the non-parametric DML had significantly larger standard
errors on Lalonde data compared to all the other methods,
conditional on the observed sample. For Project STAR data,
the propensity score method had slightly higher bias relative
to other methods.

Analyzing performance on Credence generated data.
Next, we trained Credence only using the observational com-
ponent of each study setting f(X) = g(X,T ) = 0,∀X,T .
We sampled 50 data sets using trained Credence models for
Lalonde and Project STAR observational data, respectively.
For each sampled data set, we evaluated bias and variance of
each candidate ATE estimator. For the Lalonde study, we ob-
served that S-learners, causal forest, linear DML and doubly
robust estimators gave the lowest average bias (Figure 4(b)).
For the STAR study, most of the estimators (except GBT
T learner, GBT X learner, causal forest and propensity score
matching) had negligible bias according to evaluation using
Credence generated data (Figure 4(b)).

For Lalonde’s data, rankings based on comparing observa-
tional ATE with experimental ATE are largely similar to
rankings produced using Credence except with respect to
estimated variance of estimators . However, Figure 4(b)
shows that, for Project STAR data, the estimated treatment
effect based on observational data is significantly differ-
ent from experimental data which possibly indicates that
the experimental sample lacks external validity (von Hip-
pel and Wagner, 2018; Justman, 2018). Acknowledging
this caveat, most methods perform similarly as shown in
Figure 4(a)&(b). The congruence between both rankings
further highlights the validity of Credence as an evaluation
method anchored at a single observational sample.

4. Discussion and Conclusion
Implications. In this paper, we demonstrate how one can
use deep generative models (in this case variational autoen-
coders) to generate synthetic data sets that are virtually
stochastically indistinguishable from a real data set of inter-
est. Importantly, we establish that synthetic data generated
via Credence with user-specified treatment effects and hid-
den confounding bias functions can accurately recover an
oracle’s evaluation of various causal effect estimators with
knowledge of true data generating mechanism. Researchers
continuously develop new causal inference methods with the
aim of improving validity of causal effect estimates; how-
ever, the task of determining which methods may perform
well for data at hand remains complex and time consuming.
Therefore, Credence has the potential to become a useful
tool to assist the applied researcher in selecting an adequate
method for their observed data.

Selecting f and g. For evaluating causal methods, the best
one can hope is to understand the performance of these
methods on the synthetic data generated by assuming one or
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Figure 3. Comparing the performance of various causal inference methods on data generated using (a) ground truth quadratic and
Friedman’s DGPs; (b) Credence trained on a sample of quadratic DGP with f(X) = (βTXi)

2 − βTXi + αTXi and Credence trained
on a sample of Friedman’s DGP with f(X) = Xi,3 cos(πXi,1Xi,2) and g(X,T ) = 0 for both cases; (c) Credence trained on a sample
of quadratic DGP and Credence trained on a sample of Friedman’s DGP with f(X) = 0, g(X,T ) = 0; (d) Credence trained on a sample
of quadratic DGP and Credence trained on a sample of Friedman’s DGP with f(X) = 0, g(X,T ) = 0.3T − 0.15 for both cases.

Figure 4. Comparing the performance of various causal inference methods in estimating observation ATE with respect to difference in
means experimental ATE estimate for (a) Lalonde NSW+PSID data (b) Project STAR’s comparison group data, and with respect to true
ATE for data generated using (c) Credence trained on NSW+PSID data (d) Credence trained on Project STAR comparison group data.
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both of the treatment effect function, f(·) and/or selection
bias function, g(·). Here, the primary purpose of Credence
is not to infer the underlying causal effect but rather assess
these methods under certain assumptions about the DGP
and rank these methods. As we show in the synthetic data
experiments, the suggested approach is to evaluate the meth-
ods using Credence for a suite of different f(·)’s and g(·)’s.
We recommend two primary strategies for selecting f and
g. The first approach follows from using the observed data
to estimate the larger feasible omitted variable bias possible
if one of the observed covariates was omitted. This esti-
mate can help a research understand the potential scale of
selection bias (g) they can choose. Thus, by doing this one
can fixing g to the largest observed omitted variable bias
and α = 0 – this will let the model learn flexible treatment
effects based on the observed data. The second approach
is to choose a class of f and g, e.g. polynomials of degree
3 or less. One perform a min-max search i.e. to find the
most adversarial f and g from the class, and choose a causal
inference method performs best in that setting.

Limitations and Future Direction. Researchers face a
wide variety of causal measurement problems with different
data structures (e.g., small/large number of observations,
i.i.d. or time series, small/large number of features). Even
when problems share a common structure, underlying data
sets can be very unique: some may be sparse, some may
be long-tailed, some may have very little feature overlap
between treatment and control arms, etc. Although Cre-
dence leverages a deep generative model which can flexibly
adapt to most of these settings, it still requires careful hyper-
parameter tuning for each data set for optimal performance.
Hence, a future important direction would involve further de-
veloping algorithms to automatically tune hyper-parameters
in order to produce synthetic data of the best quality requir-
ing minimal discretion from the applied researcher.

Potential future use for Credence is to perform inference in
a manner analogous to the Bootstrap by directly leveraging
the learned DGP to obtain repeated samples from Credence.
For validity, this would require the researcher to make a
non-testable assumption that Credence has successfully un-
covered the true underlying DGP for the observed sample.
This assumption is more restrictive than required to use Cre-
dence to benchmark different causal models. In this latter
case, Credence only needs to learn a DGP that can generate
data sufficiently similar to the single observed sample, and
can reproduce to the extent possible, performance rankings
of candidate causal inference estimators similar to those of
an oracle with knowledge of the DGP.

Finally, Credence’s evaluation is conditional on the assump-
tions encoded by the users in learning the DGP, and there-
fore its diagnostics are as good as these assumptions. For
instance, Credence assumes no interference, and no mea-

surement error; if this were not true, the expected perfor-
mance of candidate estimators of the ATE provided by Cre-
dence may be invalid. However, Credence is sufficiently
flexible that such evaluation can in principle be conducted
under identifying conditions that may be varied in a form of
sensitivity analysis.
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A. Background on Variational Autoencoders (VAE)
Autoencoders refer to a particular machine learning estimator that aims to learn a lower dimensional representation of the
data which provides a one-to-one mapping between the original data and the lower-dimensional representation (Goodfellow
et al., 2016). Variational autoencoders (VAE) extend this idea to learn a representation of a high-dimensional complex
data set as a standard normal distribution in a lower dimensional latent space. This allows sampling from standard normal
distributions in the latent space and projecting it to the original high-dimensional space while ensuring that the distributional
properties of the projection and the original data are virtually identical (Kingma and Welling, 2014). Typically, a VAE
constitutes two parts – an encoder and a decoder. The encoder takes in the data in the original high dimensional space (S) and
maps it to π, a lower dimensional latent space. A decoder performs the opposite operation to that of the encoder, mapping
a vector R in lower dimensional latent space to vector S′ in higher dimensional space of the original data. The learning
algorithm includes (1) encoding the data S as a vector in low-dimensional latent space π = [µ,Σ], (2) sampling random
vector R in the latent space from a multivariate normal distribution with mean µ and covariance matrix Σ derived from the
encoded vector, and (3) decoding the sample vector R from the latent space by projecting it into the space of original data.
The VAE loss function has two parts: (i) reconstruction loss (similarity of the input and the decoded output), and (ii) KL
divergence between the normal distribution N (µ,Σ) and standard normal distribution N (0, 1). The reconstruction loss
enforces similarity between the empirical distributions of the original and generated samples, while KL divergence ensures
that the distribution of latent vectors is as close to a standard normal distribution as possible. This ensures that sampling
from standard normal distribution and decoding will have distributional congruence with the original data.

B. Data Generative Procedure for Synthetic Data Experiments
Quadratic DGP: The pre-treatment covariates X are sampled from a multivariate normal distribution N (µ,Σ), and the
potential outcome function and treatment selection function are defined as follows:

Yi(0) = βTXi + ε0,i where ε0,i ∼ N (0, 1)

Yi(1) = Y 2
i (0) + αTXi + ε1,i where ε1,i ∼ N (0, 1)

πi = expit(γ × (1TXi))

Ti ∼ Bernoulli(πi)

Friedman’s DGP: This DGP (Friedman, 1991) was first proposed to assess the performance of prediction methods. We
augment Friedman’s simulation setup to evaluate causal inference methods. The pre-treatment covariates are sampled from
the standard uniform distribution. The potential outcome Yi(0) is defined by Friedman’s function (Friedman, 1991; Chipman
et al., 2010). The expected treatment effect we study is equal to the cosine of the product of the first two covariates scaled by
the third covariate.

Yi(0) = 10 sin(πXi,1Xi,2) + 20 (Xi,3 − 0.5)2

+10 Xi,4 + 5 Xi,5 + εi,0

Yi(1) = Yi(0) +Xi,3 cos(πXi,1Xi,2)

πi = expit(Xi,0 +Xi,1 − 0.5)

Ti ∼ Bernoulli(πi)

C. Credence’s Goodness of Fit
In this section, we discuss if the Credence data generated using the learned DGP for Lalonde data and Project STAR data is
comparable to the observed real data. We have argued in the paper that the comparing first and second moment is not a
sufficient metric of similarity. However, in this section, we compare the correlation matrix of the generated data with the real
data because it is easy to visualize and communicate. As we standardize the data removing the mean from each covariate
and scaling it by the variance of the same, the vector of means for covariates in the observed and generated data is anchored
at 0. In Figure 5(a) and (b), we show that the correlation matrices (a proxy measure for second moment of the distribution)
of the Credence generated data under constraints f(X) = 0 and g(X,T ) = 0 is visually extremely similar to the correlation
matrices of the observables in the real data. This provides a convincing evidence that Credence’s generated data has similar
distributional properties.
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(a)Correlation Matrix for real and Credence generated Lalonde data

(b)Correlation Matrix for real and Credence generated Project STAR data

Figure 5. Correlation matrices across covariates for comparing the second moments of distributions for the observed real data and Credence
generated data for (a) Lalonde and (b) Project STAR. We compare them to understand the distributional similarities between both the
DGPs

D. Implementation of Causal Methods
In this section, we discuss our implementation of causal inference methods studied in Section 3 such as double machine
learning (DML), doubly robust estimation, propensity score matching, causal BART, causal forest, metalearners and TMLE.
We used the existing libraries and packages

• We used the commonly used MatchIt’s implementation of propensity score matching (Ho et al., 2011). We chose the
method to match with replacement for estimating ATE.

• Our paper uses causal forest implementation from the ‘grf’ R package (Athey et al., 2019). We used the default setting
designed by the developer with 2000 number of trees and

√
p+ 20 variables tried per split.

• For causal BART, we use R implementation of BART by Vincent Dorie (Dorie et al., 2019). We only use the method
with default hyperparameters.

• Our implementation of GBT DML and linear DML used EconML’s implementation of these methods (EconML, 2019).
We used the scikit-learn’s machine learning API for the same (Pedregosa et al., 2011). For GBT DML, we used the
method with 100 trees, and the linear DML used ridge regression.

• Further, we used EconML’s implementation of metalearners such as S learner, T learner and X learner (EconML, 2019).
Similar to DML, we used scikit-learn’s ML API to for gradient boosting trees and ridge regression (Pedregosa et al.,
2011).

• We used Paul Zivich’s implementation of TMLE (Zivich, 2020).


