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Abstract

Neural Language Models (NLMs) have made
tremendous advances during the last years, achiev-
ing impressive performance on various linguis-
tic tasks. Capitalizing on this, studies in neuro-
science have started to use NLMs to study neural
activity in the human brain during language pro-
cessing. However, many questions remain unan-
swered regarding which factors determine the abil-
ity of a neural language model to capture brain
activity (aka its "brain score’). Here, we make first
steps in this direction and examine the impact of
test loss, training corpus and model architecture
(comparing GloVe, LSTM, GPT-2 and BERT), on
the prediction of functional Magnetic Resonance
Imaging timecourses of participants listening to
an audiobook. We find that (1) untrained versions
of each model already explain significant amount
of signal in the brain by capturing similarity in
brain responses across identical words, with the
untrained LSTM outperforming the transformer-
based models, being less impacted by the effect
of context; (2) that training NLP models improves
brain scores in the same brain regions irrespective
of the model’s architecture; (3) that Perplexity
(test loss) is not a good predictor of brain score;
(4) that training data have a strong influence on the
outcome and, notably, that off-the-shelf models
may lack statistical power to detect brain activa-
tions. Overall, we outline the impact of model-
training choices, and suggest good practices for
future studies aiming at explaining the human lan-
guage system using neural language models.
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1. Introduction

In the last few years, Transformer-based language models
have revolutionized the field of natural language processing
in virtually all areas. Although these models were developed
for applications in language technology, their impressive
success has raised interest in whether these models could
also shed light on language processing in the human brain.
Promising results in this direction suggest that brain acti-
vations and transformer-based models converge to similar
linguistic representations (Caucheteux et al., 2021b) show-
ing that brain activity can be significantly predicted from
linear combinations of model activations, as was shown
for fMRI (Toneva et al., 2020; Caucheteux et al., 2021b;a),
MEG (Caucheteux & King, 2021), and intracranial data
(Goldstein et al., 2021).

However, several differences between Transformer-based
models and the human brain raise questions about how far
we can advance our understanding of brain function us-
ing these models. First, the architecture of Transformers
is based on multi-head self-attention modules, which does
not clearly map on neural computations in biological net-
works (e.g., Dayan & Abbott, 2005). Does this architecture
contribute to or hinder the ability of the model to predict
brain activity compared to other, possibly more brain-like,
architectures (e.g., recurrent neural networks)? Second, the
data used to train Transformer-based models is often dif-
ferent from that available for children, both in type and
size. Training a Transformer-based model requires massive
corpora, on the order of billions of words, whereas chil-
dren require orders of magnitudes less words to achieve
comparable or better linguistic performance. How does the
training corpus (type and size) affect the model’s ability to
fit brain activity? Finally, the learning and evaluation objec-
tive commonly used with these models, such as masked or
next-word prediction, is at most a rough approximation of
the computational problem the human brain solves during
language acquisition and processing. Can one consider that
a well-trained model (according to perplexity loss) is a good
model for brain activity in language tasks?

We investigate these questions by contrasting several types
of language models in their ability to fit functional Magnetic
Resonance Imaging (fMRI) timecourses of participants lis-
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tening to the ‘The Little Prince’ audiobook. Importantly, we
conduct the model comparison while controlling for various
aspects of the architecture of the models and the type and
size of the corpus on which they are trained. To address
the first question about the architecture of the models, we
study the ability of untrained models to fit brain activity.
We obtain significant differences across architectures, with
that of recurrent neural networks achieving highest scores.
Next, we study brain-score gains brought by training across
models, and find a network of brain regions, in which brain
activity is consistently better fitted by various types of mod-
els. Moreover, running a comprehensive comparison of
neural language models, we find that the effect of training
is stronger in the case of Transformer-based models. We
next question the relationship between perplexity and brain
score, and study it across models and across training epochs
during convergence. In contrast to previous studies, we find
that perplexity is not a reliable predictor of model’s brain
score. Finally, we show the impact of training data on the
model ability to fit brain data, notably, that off-the-shelf
models, such as ones trained only on Wikipedia, may lack
statistical power to fit brain activation.

Taken together, we conclude that while the starting point of
Transformer-based models is less advantageous compared
to that of recurrent neural networks, due to differences in
their architectures, training leads to them outperforming all
other models in predicting brain data.

2. Related Literature

Current knowledge about the cerebral basis of language
mostly comes from brain imaging studies that have used
tightly controlled stimuli, typically isolated words or sen-
tences out of context (see Price, 2012; Hickok & Small,
2015, for reviews). As conclusions from such studies may
be bounded to the peculiarity of the task and setup used in
the experiment (Varoquaux & Poldrack, 2019), researchers
have become more and more interested in data using “Eco-
logical Paradigms”, in which participants are engaged in
more natural tasks, such as conversation or story listening
(e.g. Regev et al.,, 2013; Lerner et al., 2011; Wehbe et al.,
2014).

Ecological paradigms commonly require methodologies of
machine learning based on predictive modeling, to account
for the high number of degrees of freedom in the complex
system that is the brain. It has been shown that represen-
tations extracted from computational models can explain
part of the signal acquired in brain neuroimaging. This was
shown in early studies by using non-contextualized seman-
tic representations (Mitchell et al., 2008; Huth et al., 2016),
moving in later studies to recurrent neural networks to ex-
tract context-based word representations (Jain & Huth, 2018;
Jain et al., 2021), and more recently to Transformer-based

language models (e.g., Toneva et al., 2020; Caucheteux et al.,
2021b;a; Goldstein et al., 2021) - see Hale et al. (2022) for
areview.

Interestingly, the architecture of neural language models
has been shown to substantially contribute to the ability of
the model to fit brain data. Untrained neural language mod-
els fitted human brain activity surprisingly well (Schrimpf
etal., 2021). Training was shown to improve brain scores by
around 50% on average, across different architectures. This
was suggested as evidence that the human cortex might al-
ready provide a sufficiently rich structure for relatively rapid
language acquisition. However, conclusions in Schrimpf
et al. (2021) were based on relatively small datasets, from
no more than 9 participants. Also, different models in the
comparison had different number of units, layers, and were
trained on different datasets with varying vocabulary sizes.
In our work, we suggest a more controlled study of the ef-
fect of architecture and training on brain score, comparing
different types of models, while controlling for the afore-
mentioned factors, using a larger brain-imaging dataset,
from 51 participants.

The performance of neural language models on a next-
word prediction task, but not on other linguistic tasks, was
shown to correlate with their ability to fit human brain data
(Schrimpf et al., 2021). This was suggested as evidence
that predictive processing shapes language-comprehension
mechanisms in the brain. Here, we question this conclusion
and study the relation between next-word prediction and
brain score in various types of models, training corpora and
training steps.

3. Analysis Setting: Fitting Brain Data with
Modern NLP Models

Investigating the ability of neural language model to cap-
ture brain activity, we (1) first defined the three families of
model architectures that we explored: non-contextualized
word embeddings (GloVe; Pennington et al. 2014), a recur-
rent neural network (LSTMs; Hochreiter & Schmidhuber
1997) and two Transformer-based models (GPT-2; Radford
et al. 2019 and BERT; Devlin et al. 2019); (2) we then
trained and tested each model as described in the following
paragraphs; before (3) presenting the story The Little Prince
(Eckert-Boulet, 2011) to both human participants and artifi-
cial neural language models. Their activation in response
to each word and punctuation sign of The Little Prince was
extracted and (4) used to fit participants fMRI brain acti-
vations thanks to regularized linear encoding models. (5)
Finally, at the end of the analysis pipeline, we had for each
model: a test loss evaluated on our test set and a volumic R
maps containing, for each brain voxel, the cross-validated
correlation between the encoding model prediction and the
observed fMRI response.
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3.1. Datasets

Brain-imaging data. The brain data consisted of func-
tional Magnetic Resonance Imaging (fMRI) scans from 51
participants who listened to the entire audiobook of The
Little Prince'. For each participant, there were 9 runs of
fMRI acquisition lasting about 10 minutes. Whole brain
volumes were acquired every 2 seconds. A global brain
mask was computed to only keep voxels containing useful
signal across all runs for at least 50% of all participants
(26,164 voxels). Finally, linear detrending and standard-
ization (mean removal and scaling to unit variance) were
applied to each voxel’s time-series. The analysis pipeline
relies on Nilearn (v.0.8.1) for data access and visualization.
Encoding and subsequent statistical analyses were run with
custom Python code using sklearn.

The acoustic onsets and offsets of the 15,435 spoken words
were marked to align the audio recording with the text of The
Little Prince. In addition to the words, the token streams fed
to the neural language models included punctuation signs
(commas, dots, ...).

Text Corpora. We designed several datasets on which we
trained and evaluated our models. In total, we created 6
training datasets from Wikipedia (425M) and Project Guten-
berg 2, using up to 2 thirds of the entire Project Gutenberg
in the xlarge version and splitting the remaining 1/3 left
into equal size validation (1.1G) and test sets (1.1G). The
datasets created from the Gutenberg Project’s data are nested
(small(240M) medium(737M) large(2:2G)
xlarge(4:4G) full(4:8G; xlarge + Wikipedia)).

3.2. Pipeline

Models. Given common training, validation and test
datasets, we trained several instances of GloVe, LSTM,
GPT-2 and BERT.

* GloVe was trained using the open-source code made
available by Pennington and al. 3,

¢ GPT-2 and LSTM were trained on a Language Model-
ing task,

» while BERT was trained on a Masked-Language Mod-
eling task with a 15% masking-rate.

Each model had a vocabulary of 50,001 tokens. GloVe and
LSTM were trained for 23 epochs, while GPT-2 and BERT
were trained during 5 epochs. Convergence assessment

! Available from https://openneuro.org/
datasets/ds003643/versions/1.0.2

2Project Gutenberg. (n.d.). Retrieved February 21, 2016, from
www.gutenberg.org.

3https://nlp.stanford.edu/projects/glove/.
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Figure 1. Overview of the pipeline: (A) Human participants were
presented with an auditory version of The Little Prince story
while their brain activity was recorded with fMRI. Neural mod-
els were presented with a text transcription and the entire state
of the network was recorded for each word and punctuation sign.
Pre-processing steps were applied to both brain and model activa-
tions before aligning the two signals using a nested cross-validated
Ridge-regression model. Finally, brain maps of correlation coef-
ficients between models’ predictions and fMRI time-series were
computed. (B) In the case of models with several layers, model
activations were extracted from each layer and were concatenated
into a single activation matrix.

and comparisons with off-the-shelf models are provided in
Supplementary Material. For computational cost reasons,
we limited our analysis to 1, 2 and 4-layers models. In the
following, we denoted MODEL.X a MODEL with X-layers.

Activation generation. (See Fig.3.2) We presented the tran-
scription of the audio book used to acquired fMRI brain data
(The Little Prince, TLP; 15.435 words) to both trained and
untrained versions of the selected artificial neural language
models.

For each model, we extracted the model hidden-states while
it processed its input, and defined from it what we call
the activation matrix (one for each run). More precisely,
if we note d the dimensionality of a neural model, which
corresponds to the total number of units in the model, and
W the total number of words in the text. We obtained an
activation matrix A 2 RW 9 after the presentation of the
entire text to the model. This means that each word of
TLP is represented by a d-dimensional vector. Then, model
activations were transformed into time-series matched to
the fMRI acquisition times, using the following procedure:


https://openneuro.org/datasets/ds003643/versions/1.0.2
https://openneuro.org/datasets/ds003643/versions/1.0.2
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1. Normalization: To match the scale of activations evaluated on our test set derived from the Gutenberg Project,
across layers (for multi-layers models), the activationsand a volume-based R map displaying for each brain voxel
of each layer were normalized by dividing them by the the correlation between the encoding model prediction and
average L2-norm over words. the observed time series. Volume maps are rendered on

. . . cortical surfaces by projection.
2. Convolution: each column of the resulting activa- Y pro)

tion matrix, mapped onto words' offsets times, was ]

convolved with SPM's canonical Haemodynamic Re-4- Methods and Experimental Setup

sponse Function(HRF; Friston 2007) sampled at 0.254_1. Assessing model tess to brain data

The outcome was resampled at 2s to match the repeti-

tion time of fMRI acquisition and then mean-centered Whole-brain, voxel-based, group analyses were performed,

using one-sample t-tests applied to the individuRlgs;

Fitting brain data. The latter stage resulted for each model maps spatially smoothed with an isotropic Gaussian ker-
and each run into a design-matrix of sizaecans d. Given  nel with 6mm FWHM. In each voxel, the test assessed
a neural language model, we gave the associated nine desigvhether the distribution Rt values across participants
matrices to a nested cross-validated L2-regularized univarwas signi cantly larger than zero. To control for multiple
ate linear encoding model to t the fMRI brain data (of size comparisons, all the maps displayed in this document were
# scans # voxels). corrected using a Bonferroni correction of 0.1 (Bonferroni,

. . . . 1936), that is, values reported on the maps (e.g. R scores)
Theencoding modeik a function that maps a vector of stim- fare shown only for voxels that survived this threshold.

ulus features onto brain responses activity (Naselaris et al.,
2011). We denote by; the vector of features at timtesuch ~ We derived in a model-agnostic manner from a Shared-
as predicted time-courses derived from a language moddResponse Model (SRM, Chen et al. 2015) the most “respon-
and byy; the corresponding brain responses measured &ive” voxels, that is, the voxels whose R values were the
voxelv. We learnt a linear voxel-level encoding model using 25% highest ones. This set of 6541 voxels, which we will
Ridge regression, whose general solution is given by: refer to as “SRM25” is displayed on a brain surface at the

50 bottom of Fig.2. It is used to compute the distributions of

A\Fleidge: argmin = (yY  Tx)?+ k K3 brain scores.
t=1

: 4.2. Comparison of untrained models and baselines
To evaluate model performance and the optimal regular-

ization parameter , we used a nested cross-validation In our rst analysis, we assessed whether the model class
procedure: we split each participant's dataset into trainingand number of layers bias its ability to t fMRI brain data.
validation and test sets, such that the training set included We instantiated several untrained versions of each model
out of the 9 experiment runs, and the validation and test setslass, varying the number of layers, and generated activation
contained one of the two remaining sessions. We evaluateghatrices from these models before tting them to brain data.
model performance using the Pearson correlation coef cienFor each model, the activation matrices were built using
R, which is a measure of the linear correlation between modall the hidden-states of all layers, including the embedding
els' predicted time-courses and the actual time-courses. layer. We also de ned a Baseline model whose activation
is de ned as: matrices are obtained by associating a xed embedding
P v V(WY gV vector of size 768 (size of each model's layer) to each word
& 9 YY) . . . .
P of the text. It is equivalent to an untrained GloVe model
G 9 Oy (and will be referred to as such). For each, we obtained
1 X 1 X 3D brain.maps disp!aying the averalges: values in each
wherey' = = ¢ , y'= T yy voxel. Finally we displayed boxplots of tHes; values
t=1 t=1 distributions in the previously SRM-de ned voxel selection.
For each subject and each voxel, we rst determined
by comparingRyaig for 10 different values of , linearly ~ 4.3. Comparison of trained and untrained neural
spaced in log-scale betwe&f and10°. We then calculated language models
Riwst for . Finally, we repeated this procedure 9 times
using cross-validation. This resulted ifrRQs; values that
we then averaged to produce a sinflgss map for the
participant.

R(Y;Pvitest =

'We then investigated how training models impacts their abil-
ity to t fMRI brain data. We rst generated activation
matrices from the trained language models before tting
them to brain data and nally displaying the group-level
Results of the analysis pipeline.Finally, at the end of difference between each model's map and its untrained ver-
the analysis pipeline we had for each model: a test loss






