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Abstract
An intriguing phenomenon that arises from the
high-dimensional learning dynamics of neural net-
works is the phenomenon of “double descent”.
The more commonly studied aspect of this phe-
nomenon corresponds to model-wise double de-
scent where the test error exhibits a second de-
scent with increasing model complexity, beyond
the classical U-shaped error curve. In this work,
we investigate the origins of the less studied
epoch-wise double descent in which the test error
undergoes two non-monotonous transitions, or de-
scents as the training time increases. We study a
linear teacher-student setup exhibiting epoch-wise
double descent similar to that in deep neural net-
works. In this setting, we derive closed-form ana-
lytical expressions describing the generalization
error in terms of low-dimensional scalar macro-
scopic variables. We find that double descent can
be attributed to distinct features being learned at
different scales: as fast-learning features overfit,
slower-learning features start to fit, resulting in
a second descent in test error. We validate our
findings through numerical simulations where our
theory accurately predicts empirical findings and
remains consistent with observations in deep neu-
ral networks.

1. Introduction
Classical wisdom in statistical learning theory predicts a
trade-off between the generalization ability of a machine
learning model and its complexity, with highly complex
models less likely to generalize well (Friedman et al.,
2001). If the number of parameters measures complex-
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ity, deep learning models sometimes go against this pre-
diction (Zhang et al., 2016): deep neural networks trained
by stochastic gradient descent exhibit a so-called double
descent behavior (Spigler et al., 2019; Belkin et al., 2019b)
with increasing model parameters. Specifically, with in-
creasing complexity, the generalization error first obeys the
classical U-shaped curve consistent with statistical learning
theory. However, a second regime emerges as the number
of parameters is further increased past a transition threshold
where generalization error drops again, hence the “double
descent” or more accurately model-wise double descent.

Nakkiran et al. (2019) showed that the phenomenon of dou-
ble descent is not limited to varying model size and is also
observed as a function of training time or epochs. In this
case as well, the so-called epoch-wise double descent is in
apparent contradiction with the classical understanding of
overfitting (Vapnik, 1998), where one expects that longer
training of a sufficiently large model beyond a certain thresh-
old should result in overfitting. This has important impli-
cations for practitioners and raises questions about one of
the most widely used regularization method in deep learn-
ing (Goodfellow et al., 2016): early stopping. Indeed, while
one might expect early stopping to prevent overfitting, it
might in fact prevent models from being trained at their
fullest potential.

While there has been significant interest, starting from
1990s, to understand the origins of the non-trivial gener-
alization behaviors of neural networks (Opper, 1995; Opper
& Kinzel, 1996; Ba et al., 2019; Mei & Montanari, 2019;
d’Ascoli et al., 2020; Gerace et al., 2020), the majority of
this previous work has been to understand the asymptotic or
end-of-training model performance. In recent years though,
there has been an interest in studying the non-asymptotic
(finite training) performance (e.g. Saxe et al., 2013; Advani
& Saxe, 2017; Kalimeris et al., 2019; Pezeshki et al., 2020;
Stephenson & Lee, 2021). Among the limited work study-
ing the particular epoch-wise double descent, Nakkiran et al.
(2019) introduces the notion of effective model complexity
and hypothesizes that it increases with training time and
hence unifies both model-wise and epoch-wise double de-
scent phenomena. Heckel & Yilmaz (2020) also study the
dynamics of evolution of single and two layer networks and
show that the superposition of two bias/variance trade-off
curves with different minima leads to a double descent.
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Figure 1.The generalization error as the training time proceeds.
(top): The case where only the fast-learning featureor slow-
learning feature are trained. (bottom): The case with both features.
Features that are learned on a faster time-scale are responsible
for the classical U-shaped generalization curve, while the second
descent can be attributed to the features that are learned at a slower
rate.

In this work, we build on B̈os et al. (1993); B̈os (1998); Ad-
vani & Saxe (2017); Mei & Montanari (2019) which analyze
model-wisedouble descent through the lens of linear mod-
els,to probe the origins ofepoch-wisedouble descent. In
particular,

� We introduce a linear teacher-student model with fea-
tures of different strengths. Despite its simplicity, such
a model exhibits the epoch-wise double descent of
the generalization error under gradient-based training.
(Section 2.1)

� In the high-dimensional limit (of number of parameters
and sample size), we derive the dynamics of a pair
of low-dimensional macroscopic variables,R andQ,
describing the generalization behavior of the model.
(Eqs. 6, 7)

� Consistent with recent �ndings, we provide an expla-
nation for the existence of epoch-wise double descent,
suggesting that epoch-wise double descent can be at-
tributed to different features being learned at different
time-scales. (Figure 1 and Eqs. 12-14)

� We perform simulation experiments to validate our
analytical predictions. Furthermore, we conduct ex-
periments with a ResNet-18 model, to demonstrate
qualitative similarity between the generalization behav-
ior of our teacher-student setup and that of the former.
(Figures 5, 6)

2. Analytical Framework

In this work, we focus on studying the generalization be-
havior of neural networks under the quintessential gradient-
based training scenario, namely (stochastic) gradient de-
scent (SGD/GD). SGD — the de facto optimization algo-
rithm for neural networks — exhibits complex dynamics
arising from a large number of parameters (Kunin et al.,
2020). While an exact analysis of such dynamics is in-
tractable due to the large number ofmicroscopicparameters,
it is though possible to capture various aspects of this high-
dimensional dynamics in terms of certain low-dimensional
comprehensiblemacroscopicentities. This was �rst demon-
strated in a series of seminal papers by Gardner (Gardner,
1988; Gardner & Derrida, 1988; 1989), where thereplica
methodof statistical physics was adopted to derive expres-
sions describing the generalization behavior of linear mod-
els. In this paper, we employ Gardner's analysis to build
upon an established line of work studying linear and gener-
alized linear models (Seung et al., 1992; Kabashima et al.,
2009; Krzakala et al., 2012). While most of previous work
study the asymptotic (t ! 1 ) generalization behavior, we
adapt these methods to study transient learning dynamics of
generalization for �nite training time. In the following, we
introduce a particular linear teacher-student model and study
its generalization performance as a function of training time
and regularization strength.

Notation. Scalar variables are denoted in lower case (y),
while vectorial entities are represented in boldface (x ).
Lastly, matrices are shown capitalized (F).

2.1. A Teacher-Student Setup

Teacher. We study a supervised linear regression problem
in which the training labelsy, are generated by a noisy linear
model (Figure 2),

y := y� + �; y � := zT w; zi � N (0;
1

p
d

); (1)

wherez 2 Rd is the teacher's input andy� ; y 2 R are the
teacher's noiseless and noisy outputs, respectively.w 2 Rd

represents the (�xed) weights of the teacher and� 2 R
is the label noise. Here, bothwi and � are drawn i.i.d.
from Gaussian distributions with zero mean and variances
of 1 and� 2

� , respectively. Additionally, we choose to set
jjw jj = 1 , without loss of generality.

Student. A student model is correspondingly chosen
to be a similar shallow network with trainable weights
ŵ 2 Rd. The student model is trained onn training pairs
f (x � ; y� )gn

� =1 , with the labelsy� being generated by the
above teacher network and where student's inputsx � corre-
spond to teacher inputsz � multiplied a prede�ned and �xed



Multi-scale Feature Learning Dynamics: Insights for Double Descent

Figure 2.The teacher/student setup: The teacher is the data gener-
ating process that given the latent features inz , generates student's
input,x and its target,y. Student is trained on pairs off x i ; yi gn

i =1

wherex := FT z follow an anisotropic Gaussian distribution
such that the directions with larger/smaller variance are learned
faster/slower. The condition number ofF determines how much
faster some features are learned than the others. One can think of
z as the latent factors of variation on which the teacher operates,
while x can be thought as the pixels that the student learns from.

modulation matrix F 2 Rd� d that regulates input features'
strengths:

ŷ := x T ŵ ; s:t: x := FT z: (2)

One can perceivez to be the latent factors of variation
on which the teacher operates, whilex corresponds to the
pixels that the student learns from. (See Figure 2)

Learning paradigm. To train our student network, we
use stochastic gradient descent (SGD) on the regularized
mean-squared loss, evaluated on then training examples as,

L T :=
1

2n

nX

� =1

(y� � ŷ� )2 +
�
2

jj ŵ jj2
2; (3)

where� 2 [0; 1 ) is the regularization coef�cient. Optimiz-
ing Eq. 3 with stochastic gradient descent (SGD) yields the
typical update rule,

ŵ t  ŵ t � 1 � � r ŵ L T + �; (4)

in whicht denotes the training step and� is the learning rate.
Following the setup of Kuhn & Bos (1993),� � N (0; 2

� )
approximates the stochasticity noise of the optimization
algorithm, with� corresponding to an inversetemperature
parameter. The shape of the noise is assumed to be Gaussian
by virtue of the central limit theorem. See Bottou et al.

(1991); Mandt et al. (2017); Wu et al. (2020) for more
details on modeling the stochasticity of SGD with Gaussian
noise.

Macroscopic variables. The quantity of interest in this
work is the average generalization error of the student de-
termined by averaging the student's error over all possible
input-target pairs of anoiselessteacher, as

L G :=
1
2

Ez
�
(y� � ŷ)2�

: (5)

As shown in B̈os et al. (1993), ifn; d ! 1 with a constant
ratio n

d < 1 , Eq. 5 can be written as a function of two
macroscopic scalar variablesR; Q 2 R,

L G =
1
2

(1 + Q � 2R); (6)

where,

R :=
1
d

w T Fŵ ; Q :=
1
d

ŵ T FT Fŵ ; (7)

(See App. B.1 for Proof.)

Remark: Both R andQ have clear interpretations;R is
the dot-product between the teacher's weightsw and the
student'smodulatedweightsFŵ , hence can be interpreted
as thealignment between the teacher and the student.
Similarly, Q can be interpreted as thestudent's modulated
norm. The negative sign ofR in Eq. 6 suggests that the
largerR is, the smaller the generalization error gets. At the
same time,Q appears with a positive sign suggesting the
students with smaller (modulated) norm generalize better.

Note that bothR andQ are functions ofŵ , which itself
is a function of training iterationt and the regularization
coef�cient � . Therefore, from hereon, we denote the above
quantities asL G (t; � ), R(t; � ), andQ(t; � ).

2.2. Main Results

In this Section, we present our main analytical results, with
Section 2.3 containing a sketch of our derivations. For
brevity, here, we only present the results for� 2

� = � = 0 .
See App. B for the general case and the detailed proofs.

General matrix F. Let Z := [ z � ]n� =1 2 Rn � d andX :=
[x � ]n� =1 2 Rn � d denote the input matrices for the teacher
and student such thatX := ZF. For a general modulation
matrix F, the input covariance matrix has the following
singular value decomposition (SVD),

XT X = FT ZT ZF = V� VT ; (8)

with � containing the singular values of the student's input
covariance matrix. Solving the dynamics of exact gradi-
ent descent as in Eq. 4, we arrive at the following exact
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analytical expressions forR(t) andQ(t),

R(t) =
1
d

Tr (D) ; where; D := I � [I � � �] t ; (9)

Q(t) =
1
d

Tr
�
AT A

�
; where; A := FVDVT F� 1; (10)

in which Tr (:) is the trace operator. (See App. B.2 for
Proof.)

By plugging Eqs. 9 and 10 into Eq. 6, one obtains an exact
expression forL G (t). Unfortunately, Eqs. 9 and 10 are not
straightforward to treat generally, and require the numerical
evaluation of the singular values in� . Nevertheless, with
some simple but informative assumptions on the modulation
matrix F's structure, one can derive approximate solutions,
as we now demonstrate.

Bipartite matrix F. We now study a case whereF obeys
the following Assumption.

Assumption 2.1. The modulation matrix,F, under a SVD,
F := U� VT has two sets of singular values such that the
�rst p singular values are equal to� 1 and the remaining
d � p singular values are equal to� 2. We let the condition
number of F to be denoted by� := � 1

� 2
� 1.

By employing the replica method of statistical
physics (Gardner, 1988; Gardner & Derrida, 1988)
and approximation of gradient descent dynamics with ridge
regression, we derive closed-form expressions forR(t) and
Q(t). To present the results, we �rst de�ne the following
auxiliary variables,

� 1 :=
n
p

; � 2 :=
n

d � p
; (11)

~� 1 :=
d
p

1
�� 2

1 t
| {z }

time scaled by� 2
1

; ~� 2 :=
d

d � p
1

�� 2
2 t

| {z }
time scaled by� 2

2

; (12)

and also let, fori 2 f 1; 2g,

ai = 1 +
2~� i

(1 � � i � ~� i ) +
q

(1 � � i � ~� i )2 + 4 ~� i

:

(13)

The scalar expression forR(t) is then given by,

R(t) = R1 + R2; where;

R1 :=
n

a1d
; and; R2 :=

n
a2d

:
(14)

Similarly, for Q(t), we have,Q(t) = Q1 + Q2, where

Q1 :=
b1b2c2 + b1c1

1 � b1b2
; and; Q2 :=

b1b2c1 + b2c2

1 � b1b2
:

(15)

with (i 2 f 1; 2g),

bi =
� i

a2
i � � i

; ci = 1 � 2Ri �
n
d

2 � ai

ai
; (16)

Plugging Eqs. 14 and 15 into Eq. 6, one obtains an (approx-
imate) expression forL G (t) as a function of the training
time. (See App. B.3 for Proof.)

Remark: Eq. 12 indicates that the singular values ofF,
are directly multiplied byt. That implies that the learning
speed of each feature is scaled by the magnitude of its
corresponding singular value.

2.3. Sketch of derivations

In this Section, we sketch the key steps in the derivation of
our main results. For the sake of simplicity, here again we
only treat the case where� � = � = 0 . (See App. B for the
general case and detailed Proofs.)

General matrix F: Exact dynamics. Recall the gradient
descent update rule in Eq. 4. For the linear model de�ned in
Eqs. 1-2, learning is governed by the following discrete-time
dynamics,

ŵ t = ŵ t � 1 � � r ŵ t � 1 L T ; (17)

= ŵ t � 1 � �
�
� XT (y � Xŵ t � 1)

�
: (18)

With the assumption that̂w t =0 = 0, the dynamics admit
the following exact closed-form solution,

ŵ t =
�

I �
�
I � � XT X

� t
�

(XT X) � 1XT y := ~w(t):

(19)

With a SVD onXT X, Eqs. 9-10 can then be obtained by sub-
stitutingŵ t in Eq. 7. As a remark, note that one can recover
the results of Advani & Saxe (2017) by settingF = I . In that
case, the eigenvalues ofXT X follow a Marchenko–Pastur
distribution (Marchenko & Pastur, 1967).

Bipartite matrix F: Approximate dynamics. To em-
ploy the replica method, we �rst invoke the results in Eq. 9
of Solla (1995) and Kuhn & Bos (1993) which state that the
equilibrium distribution of weightŝw trained via SGD on a
lossL (ŵ ), follow the Gibbs-Boltzmann distribution, such
that,

P(ŵ ) =
1

Z �
e� � L ( ŵ ) ; (20)

in which Z � =
R

dŵ exp(� � L (ŵ )) is the partition func-
tion and� is called theinverse temperatureand is inversely
proportional to the stochasticity of SGD (see Eq. 4). Such
distribution is a standard choice in statistical mechanics (see
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page 53 of Engel & Van den Broeck (2001)). Intuitively, for
small� , the distribution ofP(ŵ ) is almost uniform, while
as� ! 1 , P(ŵ ) becomes more concentrated around the
minimum of the lossL (ŵ ).

It is important to highlight that Eq. 20 describes theequi-
librium distribution of the student network's weights, i.e.,
at the end of training (t ! 1 ). However, we are interested
in studying the trajectory of student's weightsduring the
course of training, i.e., for �nitet. To this end, we em-
ploy the connection between (continuous-time) SGD and
L 2 regularization, as �rst quanti�ed in Ali et al. (2019;
2020). Speci�cally, it states that the MSE loss of a linear
regression model under stochastic gradient �ow at timet
is bounded from above by the end-of-training loss in the
presence of ridge regression with anL 2 regularization coef-
�cient � = 1=�t . We note that while there is no guarantee
that this bound is tight in general, we do observe that it
matches the behavior of a wide range of numerical experi-
ments extremely well (see Section 3).

Accordingly, we study the equilibrium distribution of the
modi�ed loss ~L (ŵ ; t), such that,

P(ŵ ) =
1

Z �;t
e� � ~L (ŵ ;t ) ; and, (21)

~L (ŵ ; t) :=
1

2n

nX

� =1

(y� � ŷ� )2 +
1
2

�
� +

1
�t

�
jj ŵ jj2

2:

(22)

See App. B.4 for proof.

To determine thetypical generalization performance of stu-
dents distributed according toP(ŵ ), one proceeds by com-
puting the free-energy of the system as,

f := �
1

�d
Ew; z

�
ln Z �;t

�
: (23)

Free-energy is a self-averaging property where itstypi-
cal/most probablevalue coincides with itsaverageover
proper probability distributions (Engel & Van den Broeck,
2001). Therefore, to determine the typical values ofR and
Q, we extremize the free-energy w.r.t. those variables.

Due to the logarithm inside the expectation, analytical com-
putation of Eq. 23 is intractable. However, the replica
method (Ḿezard et al., 1987) allows us to tackle this through
the following identity,

Ew; z [ln Z �;t ] = lim
r ! 0

Ew; z [Z r
�;t ] � 1

r
: (24)

Computation of the free-energy via replica method and its
subsequent extremization w.r.tR andQ, we arrive at Eqs. 14
and 15. See App. B.3 for more details.

Figure 3.Top: Analytical results of Eqs. 9, 10 compared to gra-
dient descent dynamics. The x-axis denotes the training timet.
Bottom: Analytical results of scalar Eqs. 14, 15 compared to ridge
regression dynamics. The x-axis denotes the inverse ridge (L2)
coef�cient 1=� . Analytical results closely match with empirical
simulations. Consistent with Ali et al. (2019), ridge regression
appears to reasonably approximate gradient descent dynamics.
Analysis: With � = 1 , all the features are learned at the same rate
(no double descent).� = 50 corresponds to the case where a sub-
set of features are learned50 times faster than the rest and hence
epoch-wise double descent is observed. Finally,� = 100000 im-
plies that a subset of of features are extremely slow to learn that
practically do not get learned (typical over�tting).

To summarize, using the replica method, we are able to
cast the high-dimensional dynamics of SGD into simple
scalar equations governingR andQ and, consequently, the
generalization errorL G . While our analysis is limited to the
speci�c teacher and student setup, this simple model already
exhibits dynamics qualitatively similar to those observed in
more complex networks, as we now illustrate.

3. Experimental Results

In this Section, we conduct numerical simulations to val-
idate our analytical results and provide clear insights on
the macroscopic dynamics of generalization. We also con-
duct experiments on real-world neural networks showing
a close qualitative match between the generalization be-
havior of neural networks and our teacher-student setup.
To ensure reproducibility, we include the complete source
code in aGitHub repository as well as aColab
notebook .
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Figure 4. Left : Phase diagram of the generalization error as a function ofR(t) andQ(t) (Eqs. 14 and 15). The generalization error for all
pairs of(R; Q) 2 [0:0; 1:0] � [0:0; 1:2] is contour-plotted in the background, with the best generalization performance being attained on
the lower right part of the plot. The trajectories describe the evolution ofR(t) andQ(t) as training proceeds. Each trajectory correspond
to a different� , the condition number of the modulation matrixF in Eq. 2.� describes the ratio of the rates at which two sets of features
are learned.Right: The corresponding generalization curves.Analysis: The trajectory with� = 1 e5 starts at the origin and advances
towards pointA (a descent in generalization error). Then by over-training, it converges to pointB (an ascent). For the other trajectories
with smaller� , a �rst descent occurs up to the pointA, then an ascent happens, but they no longer converge to pointB . Instead, by further
training, these trajectories converge to pointC implying a second descent.

3.1. Analytical results compared with simulations

Through numerical simulations, we validate our analytical
results presented in Section 2.2. Figure 3 depicts the com-
parisons for a teacher-student setup withd = 100, p = 50,
andn = 150. Several similar experiments for different
con�gurations are available in our provided notebook. It is
observed that with� = 1 , the generalization error does not
follow a double descent curve. Recall that� = 1 implies
that all the features are learned at the same rate. However,
by increasing the value of� , double descent curves are ob-
served. Very large values of� imply that some features
are practically non-learnable and hence a typical over�tting
curve is observed.

3.2. The Phase diagram

To further investigate the transition between the two phases
of classical single descentanddouble descent, we explore
the phase diagram. Recall that with Eq. 6, one can fully
characterize the evolution of the generalization dynamics in
terms of two scalar variables instead of thed-dimensional pa-
rameter space.R andQ presented in Eq. 7 are macroscopic
variables whereR representsthe alignment between the
teacher and the studentandQ is thestudent's (modu-
lated) norm. Hence, a better generalization performance is
achieved with largerR and smallerQ.

The quantitiesR andQ are not free parameters and both
depend on the training dynamics through Eqs. 14 and 15.
Nevertheless, it is instructive to visualize the generalization
error for all pairs of(R; Q). In Figure 4, we visualize the
RQ-plane for(R; Q) 2 [0:0; 1:0] � Q 2 [0:0; 1:2]. At the

time of initialization, (R; Q) = (0 ; 0) as the models are
initialized at the origin. As training time proceeds, values
of R andQ follow the depicted trajectories. In Figure 4,
different trajectories correspond to different values of� , the
condition number of the modulation matrixF in Eq. 2. It
is important to note thatthe closer a trajectory is to the
lower-right, the better the generalization error gets.

The yellow curve corresponds to the case with large� =
1e5, meaning that a subset of features are extremely slower
than the others that practically do not get learned. In that
case, generalization error exhibits traditional over�tting due
to over-training. On the phase diagram, the yellow trajec-
tory starts at(0; 0) and moves towards PointA which has
the lowest generalization error of this curve. Then as the
training continues,Q increases and ast ! 1 the trajectory
lands at PointB which has the worse generalization error
(highly-over�tted). Other curves follow the case of� = 1e5
up to the vicinity of Point B, but then the trajectories slowly
incline towards another �xed point, PointC signalling a
second descent in the generalization error.

The phase diagram along with the corresponding general-
ization curves in Figure 4 illustrate that features that are
learned on a faster time-scale are responsible for the initial
conventional U-shaped generalization curve, while the sec-
ond descent can be attributed to the features that are learned
at a slower time-scale.

3.3. Qualitative comparison with ResNet on Cifar-10

We train a ResNet-18 (He et al., 2016) with layer widths
[64; 2 � 64; 4 � 64; 8 � 64]. We follow the training setup of
Nakkiran et al. (2019); label noise with a probability0:15


