
A Differential Entropy Estimator for Training Neural Networks

Georg Pichler * 1 Pierre Colombo * 2 Malik Boudiaf * 3 Günther Koliander 4 Pablo Piantanida 5

Abstract

Mutual Information (MI) has been widely used
as a loss regularizer for training neural networks.
This has been particularly effective when learn dis-
entangled or compressed representations of high
dimensional data. However, differential entropy
(DE), another fundamental measure of informa-
tion, has not found widespread use in neural net-
work training. Although DE offers a potentially
wider range of applications than MI, off-the-shelf
DE estimators are either non differentiable, com-
putationally intractable or fail to adapt to changes
in the underlying distribution. These drawbacks
prevent them from being used as regularizers in
neural networks training. To address shortcom-
ings in previously proposed estimators for DE,
here we introduce KNIFE, a fully parameterized,
differentiable kernel-based estimator of DE. The
flexibility of our approach also allows us to con-
struct KNIFE-based estimators for conditional (on
either discrete or continuous variables) DE, as
well as MI. We empirically validate our method
on high-dimensional synthetic data and further
apply it to guide the training of neural networks
for real-world tasks. Our experiments on a large
variety of tasks, including visual domain adapta-
tion, textual fair classification, and textual fine-
tuning demonstrate the effectiveness of KNIFE-
based estimation. Code can be found at https:
//github.com/g-pichler/knife.

*Equal contribution 1Institute of Telecommunications, TU
Wien, 1040 Vienna, Austria 2Laboratoire des Signaux et Systèmes
(L2S),Paris-Saclay CNRS CentraleSupélec, 91190 Gif-sur-Yvette,
France 3ÉTS Montreal, Quebec H3C 1K3, Canada 4Acoustics
Research Institute, Austrian Academy of Sciences, 1040, Vienna,
Austria 5International Laboratory on Learning Systems (ILLS),
Université McGill - ETS - MILA - CNRS - Université Paris-Saclay
- CentraleSupélec , Montreal, Quebec, Canada. Correspondence
to: Georg Pichler <georg.pichler@ieee.org>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
Learning tasks requires information (Principe et al., 2006) in
the form of training data. Thus, information measures (Shan-
non, 1948) (e.g. entropy, conditional entropy and mutual
information) have been a source of inspiration for the de-
sign of learning objectives in modern machine learning (ML)
models (Linsker, 1989; Torkkola, 2008). Over the years,
a plethora of estimators have been introduced to estimate
the value of the aforementioned measures of information
and they have been applied to many different problems,
including information and coding theory, limiting distribu-
tions, model selection, design of experiment and optimal
prior distribution, data disclosure, and relative importance
of predictors (Ebrahimi et al., 2010). In these applications,
traditional research focused on both developing new estima-
tors and obtaining provable guarantees on the asymptotic
behavior of these estimators (Liu et al., 2012; Verdú, 2019).

However, when used for training deep neural networks, ad-
ditional requirements need to be satisfied. In particular,
the estimator needs to be differentiable w.r.t. the data dis-
tribution (R1), computationally tractable (R2), and able
to rapidly adapt to changes in the underlying distribution
(R3). For instance, Mutual Information (MI), a funda-
mental measure of dependence between variables, only
became a popular (standalone or regularizing) learning ob-
jective for DNNs once estimators satisfying the above re-
quirements were proposed (Poole et al., 2019; Barber &
Agakov, 2003). Although MI is notoriously difficult to es-
timate in high dimensions (Kraskov et al., 2004; Pichler
et al., 2020; McAllester & Stratos, 2020), these estimators
have demonstrated promising empirical results in unsuper-
vised representation learning (Krause et al., 2010; Bridle
et al., 1992; Hjelm et al., 2019; Tschannen et al., 2020),
discrete/invariant representations (Hu et al., 2017; Ji et al.,
2019), generative modeling (Chen et al., 2016; Zhao et al.,
2017), textual disentangling (Cheng et al., 2020b; Colombo
et al., 2021), and applications of the Information Bottleneck
(IB) method (Mahabadi et al., 2021; Devlin et al., 2019;
Alemi et al., 2016) among others. Compared to MI, Dif-
ferential Entropy (DE) has received less attention from the
ML community while offering a potentially wider range of
applications than MI.

In this paper, we focus on the problem of differentiable, flex-

https://github.com/g-pichler/knife
https://github.com/g-pichler/knife
mailto:georg.pichler@ieee.org

A Differential Entropy Estimator for Training Neural Networks

ible and efficient DE estimation satisfying simultaneously
(R1),(R2),(R3) as this quantity naturally appears in many ap-
plications (e.g. reinforcement learning (Shyam et al., 2019;
Hazan et al., 2019; Ahmed et al., 2019; Kim et al., 2019), IB
(Alemi et al., 2016), mode collapse (Belghazi et al., 2018))
and can be used to estimate MI. Traditional estimators of
DE often violate at least one of the requirements (R1) –
(R3) listed above (e.g. k-nearest neighbor based estimators
violate (R1)). Consequently, the lack of appropriate DE
estimators for arbitrary data distributions forces deep learn-
ing researchers to either restrict themselves to special cases
where closed-form expressions for DE are available (Shyam
et al., 2019) or use MI as a proxy (Belghazi et al., 2018).
In this work, we introduce a Kernelized Neural dIFferential
Entropy (KNIFE) estimator, that satisfies the aforementioned
requirements and addresses limitations of existing DE esti-
mators (Schraudolph, 2004; McAllester & Stratos, 2020).
Stemming from recent theoretical insights (McAllester &
Stratos, 2020) that justify the use of DE estimators as build-
ing blocks to better estimate MI, we further apply KNIFE to
MI estimation. In the context of deep neural networks with
high dimensional data (e.g. image, text), KNIFE achieves
competitive empirical results in applications where DE or
MI is required.

1.1. Contributions

Our work advances the field of differentiable, flexible
and efficient DE estimation satisfying simultaneously
(R1),(R2),(R3).

1. We showcase limitation of the existing DE estimators pro-
posed in (Schraudolph, 2004; McAllester & Stratos, 2020)
with respect to desirable properties required for training
deep neural networks. To address these shortcomings, we
introduce KNIFE, a fully learnable kernel-based estimator of
DE. The flexibility of KNIFE allows us to construct KNIFE-
based estimators for conditional DE, conditioning on either
a discrete or continuous random variable.

2. We prove learnability under natural conditions on the
underlying probability distribution. By requiring a fixed
Lipschitz condition and bounded support we are not only
able to provide an asymptotic result, but also a confidence
bound in the case of a finite training set. This extends the
consistency result by (Ahmad & Lin, 1976).

3. We validate on synthetic datasets (including multi-modal,
non-Gaussian distributions), that KNIFE addresses the iden-
tified limitations and outperforms existing methods on both
DE and MI estimation. In particular, KNIFE more rapidly
adapts to changes in the underlying data distribution.

4. We conduct extensive experiments on natural datasets
(including text and images) to compare KNIFE-based MI
estimators to most recent MI estimators. First, we apply

KNIFE in the IB principle to fine-tune a pretrained language
model. Using KNIFE, we leverage a closed-form expression
of a part of the training objective and achieve the best scores
among competing MI estimators. Second, on fair textual
classification, the KNIFE-based MI estimator achieves near
perfect disentanglement (with respect to the private, discrete
label) at virtually no degradation of accuracy in the main
task. Lastly, in the challenging scenario of visual domain
adaptation, where both variables are continuous, KNIFE-
based MI estimation also achieves superior results. Code
for KNIFE and to reproduce results can be found at https:
//github.com/g-pichler/knife.

1.2. Existent Methods and Related Works

DE estimation. Existing methods for estimating DE
fit into one of three categories (Beirlant et al., 1997;
Hlaváčková-Schindler et al., 2007; Verdú, 2019): plug-in
estimates (Ahmad & Lin, 1976; Györfi & Van der Meulen,
1987), estimates based on sample-spacings (Tarasenko,
1968), and estimates based on nearest neighbor dis-
tances (Kozachenko & Leonenko, 1987; Tsybakov &
Van der Meulen, 1996; Berrett et al., 2019). Our proposed
estimator falls into the first category and we will thus focus
here on previous work using that methodology. Excellent
summaries of all the available methods can be found in the
works (Beirlant et al., 1997; Hlaváčková-Schindler et al.,
2007; Wang et al., 2009; Verdú, 2019). In (Ahmad & Lin,
1976), a first nonparametric estimator of DE was suggested
and theoretically analyzed. It builds on the idea of ker-
nel density estimation using Parzen-Rosenblatt windowing
(Rosenblatt, 1956; Parzen, 1962). More detailed analysis
followed (Joe, 1989; Hall & Morton, 1993) but the estimator
remained essentially unchanged. Unfortunately, this classi-
cal literature is mostly concerned with appropriate regularity
conditions that guarantee asymptotic properties of estima-
tors, such as (asymptotic) unbiasedness and consistency.
Machine learning applications, however, usually deal with a
fixed—often very limited—number of samples.

Differentiable DE estimation. A first estimator that em-
ployed a differential learning rule was introduced in (Viola
et al., 1996). Indeed, the estimator proposed therein is opti-
mized using stochastic optimization, it only used a single
kernel with a low number of parameters. An extension that
uses a heteroscedastic kernel density estimate, i.e., using
different kernels at different positions, has been proposed
in (Schraudolph, 2004). Still the number of parameters
was quite low and varying means in the kernels or vari-
able weights were not considered. Although the estimation
of DE remained a topic of major interest as illustrated by
recent works focusing on special classes of distributions
(Kolchinsky & Tracey, 2017; Chaubey & Vu, 2021) and non-
parametric estimators (Sricharan et al., 2013; Kandasamy
et al., 2015; Moon et al., 2021), the estimator introduced

https://github.com/g-pichler/knife
https://github.com/g-pichler/knife

A Differential Entropy Estimator for Training Neural Networks

in (Schraudolph, 2004) was not further refined and hardly
explored in recent works.

Differentiable MI estimation. In contrast, there has been
a recent surge on new methods for the estimation of the
closely related MI between two random variables. The
most prominent examples include unnormalized energy-
based variational lower bounds (Poole et al., 2019), the
lower bounds developed in (Nguyen et al., 2010) using varia-
tional characterization of f-divergence, the MINE-estimator
developed in (Belghazi et al., 2018) from the Donsker-
Varadhan representation of MI which can be also inter-
preted as an improvement of the plug-in estimator of (Suzuki
et al., 2008), the noise-contrastive based bound developed
in (van den Oord et al., 2018) and finally a contrastive up-
per bound (Cheng et al., 2020a). (McAllester & Stratos,
2020) point out shortcomings in other estimation strategies
and introduce their own Differences of Entropies (DOE)
method.

2. KNIFE

In this section we identify limitations of existing entropy
estimators introduced in (Schraudolph, 2004; McAllester
& Stratos, 2020). Subsequently, we present KNIFE, which
addresses these shortcomings.

2.1. Limitations of Existing Differential Entropy
Estimators

Consider a continuous random vector X ∼ p in Rd. Our
goal is to estimate the DE h(X) := −

∫
p(x) log p(x) dx.

Given the intractability of this integral, we will rely on
a Monte-Carlo estimate of h(X), using N i.i.d. samples
Dx = {xn}Nn=1 to obtain

ĥORACLE(Dx) := − 1

N

N∑
n=1

log p(xn). (1)

Unfortunately, assuming access to the true density p is often
unrealistic, and we will thus construct an estimate p̂ that can
then be plugged into (1) instead of p. If p̂ is smooth, the
resulting plug-in estimator of DE is differentiable (R1).

Assuming access to an additional—ideally independent—
set of M i.i.d. samples E = {x′m}Mm=1, we build upon
the Parzen-Rosenblatt estimator (Rosenblatt, 1956; Parzen,
1962)

p̂(x;w, E) = 1

wdM

M∑
m=1

κ

(
x− x′m
w

)
, (2)

where w > 0 denotes the bandwidth and κ is a kernel
density. The resulting entropy estimator when replacing
p in (1) by (2) was analyzed in (Ahmad & Lin, 1976). In

(Schraudolph, 2004), this approach was extended using the
kernel estimator

p̂SCHRAU.(x;A, E) :=
1

M

M∑
m=1

κAm
(x− x′m), (3)

where A := (A1, . . . , AM) are (distinct, diagonal) covari-
ance matrices and κA(x) = N (x; 0, A) is a centered Gaus-
sian density with covariance matrix A.

The DOE method of (McAllester & Stratos, 2020) is a
MI estimator that separately estimates a DE and a con-
ditional DE. For DE, a simple Gaussian density estimate
p̂DOE(x;θ) = κA(x− µ) is used, where θ = (A,µ) are the
training parameters, the diagonal covariance matrix A and
the mean µ.

While both SCHRAU. and DOE yield differentiable plug-in
estimators for DE, they each have a major disadvantage.
The strategy of (Schraudolph, 2004) fixes the kernel mean
values at E , which implies that the method cannot adapt to
a shifting input distribution (R3). On the other hand, DOE
allows for rapid adaptation, but its simple structure makes it
inadequate for the DE estimation of multi-modal densities.
We illustrate these limitations in Section 3.1.

2.2. KNIFE Estimator

In KNIFE, the kernel density estimate is given by

p̂KNIFE(x;θ) :=

M∑
m=1

umκAm(x− bm), (4)

where θ := (A,b,u) and the additional parameters 0 ≤
u = (u1, u2, . . . , uM) with 1 ·u = 1 and b = (b1, . . . , bM)
are introduced. The covariance matrices Am ∈ Rd×d,
m = 1, . . . ,M are symmetric and positive definite, but
not necessarily diagonal. Note that the Gaussian densi-
ties κAm(x− bm) = N (x; bm, Am) are smooth functions.
Thus, p̂KNIFE(x;θ) is a smooth function of θ, and so is our
proposed plug-in estimator

ĥKNIFE(Dx;θ) := − 1

N

N∑
n=1

log p̂KNIFE(xn;θ). (5)

KNIFE combines the ideas of (Schraudolph, 2004;
McAllester & Stratos, 2020). It is differentiable and able
to adapt to shifting input distributions, while capable of
matching multi-modal distributions. Thus, as we will see
in synthetic experiments, incorporating um and shifts bm in
the optimization enables the use of KNIFE in non-stationary
settings, where the distribution of X evolves over time.

A Differential Entropy Estimator for Training Neural Networks

Learning step: Stemming from the observation that, by
the Law of Large Numbers (LLN),

ĥKNIFE(Dx,θ)
LLN
≈ −E

[
log p̂KNIFE(X;θ)

]
= h(X) + DKL(p∥p̂KNIFE(· ;θ))
≥ h(X),

(6)

we propose to learn the parameters θ by minimizing ĥKNIFE,
where E may be used to initialize b. Although not strictly
equivalent due to the Monte-Carlo approximation, minimiz-
ing ĥKNIFE can be understood as minimizing the Kullback-
Leibler (KL) divergence in (6), effectively minimizing the
gap between ĥKNIFE and h(X). In fact, ĥKNIFE can also be
interpreted as the standard maximum likelihood objective,
widely used in modern machine learning. It is worth to
mention that the KNIFE estimator is fully differentiable with
respect to θ and the optimization can be tackled by any
gradient-based method (e.g., Adam (Kingma & Ba, 2015)
or AdamW (Loshchilov & Hutter, 2019)).

2.3. Convergence Analysis

Note that the classical Parzen-Rosenblatt estimator
ĥ(Dx;w), where (2) is plugged into (1), is a special case
of KNIFE. Thus, the convergence analysis provided in (Ah-
mad & Lin, 1976, Thm. 1) also applies and yields sufficient
conditions for ĥKNIFE(Dx,θ) → h(X). In Appendix D,
we extend this result and, assuming that the underlying
distribution p is compactly supported on X = [0, 1]d and
L-Lipschitz continuous, the following theorem is proved.

Theorem 1. For any δ > 0, there exists a function
ε(N,M,w) such that, with probability at least 1 −
δ,
∣∣ĥ(Dx;w) − h(X)

∣∣ ≤ ε(N,M,w). Additionally,
ε(N,M,w) → 0 as M,N → ∞ and w → 0 if

Nw → 0 and
N2 logN

w2dM
→ 0, (7)

where M and N denote the number of samples in E and Dx,
respectively.

The precise assumptions for Theorem 1 and an explicit for-
mula for ε(N,M,w) are given in Theorem 2 in Appendix D.
For instance, Theorem 1 provides a bound on the speed of
convergence for the consistency analysis in (Ahmad & Lin,
1976, Thm. 1). Note, however, that this convergence re-
sult applies to the Parzen-Rosenblatt estimator and not to
KNIFE.

2.4. Estimating Conditional Differential Entropy and
Mutual Information

Similar to (McAllester & Stratos, 2020), the proposed DE es-
timator can be used to estimate other information measures.
In particular, we can use KNIFE to construct estimators of

conditional DE and MI. When estimating the conditional
DE and MI for a pair of random variables (X,Y) ∼ p,
we not only use Dx = {xn}Nn=1, but also the according
i.i.d. samples Dy = {yn}Nn=1, where (xn, yn) are drawn
according to p.

Conditional Differential Entropy. We estimate condi-
tional DE h(X|Y) by considering θ to be a parameterized
function Θ(y) of y. Then all relations previously estab-
lished naturally generalize and

p̂KNIFE(x|y;Θ) := p̂KNIFE(x;Θ(y)), (8)

ĥKNIFE(Dx|Dy;Θ) :=
1

N

N∑
n=1

log
1

p̂KNIFE(xn|yn;Θ)
. (9)

Naturally, minimization of (9) is now performed over the
parameters of Θ. If Y is a continuous random variable,
we use an artificial neural network Θ(y), taking y as its
input. On the other hand, if Y ∈ Y is a discrete random
variable, we have one parameter θ for each y ∈ Y , i.e.,
Θ = {θy}y∈Y and p̂KNIFE(x|y;Θ) = p̂KNIFE(x;Θ(y)) =
p̂KNIFE(x;θy).

Mutual Information. To estimate the MI between ran-
dom variables X and Y (either discrete or continuous), re-
call that MI can be written as I(X;Y) = h(X)− h(X|Y).
Therefore, we use the marginal and conditional DE estima-
tors (5) and (9) to build a KNIFE-based MI estimator

ÎKNIFE(Dx,Dy;θ,Θ) := ĥKNIFE(Dx;θ)

− ĥKNIFE(Dx|Dy;Θ). (10)

3. Experiments using Synthetic Data
3.1. Differential Entropy Estimation

In this section we apply KNIFE for DE estimation, compar-
ing it to (3), the method introduced in (Schraudolph, 2004),
subsequently labeled “SCHRAU.”. It is worth to mention
that we did not perform the Expectation Maximization al-
gorithm, as suggested in (Schraudolph, 2004), but instead
opted to use the same optimization technique as for KNIFE
to facilitate a fair comparison.

3.1.1. GAUSSIAN DISTRIBUTION

As a sanity check, we test KNIFE on multivariate nor-
mal data in moderately high dimensions, comparing it to
SCHRAU. and DOE, which we trained with the exact same
parameters. We estimate the entropy h(X) = d

2 log 2πe of
X ∼ N (0, Id) for d = 10 and d = 64. The mean error and
its empirical standard deviation are reported in Table 1 over
20 runs. KNIFE yielded the lowest bias and variance in both
cases, despite DOE being perfectly adapted to matching a

A Differential Entropy Estimator for Training Neural Networks

|h− ĥ| d = 10 d = 64

DOE 0.8388± 1.0045 3.3170± 1.8281
SCHRAU. 0.7301± 0.0428 9.8919± 0.1604

KNIFE 0.0461± 0.0139 2.8045± 0.0796

Table 1: Results on normal data with dimension d.

multivariate Gaussian distribution. Additional experimental
details can be found in Appendix A.1.

In order to use a DE estimation primitive in a machine learn-
ing system, it must be able to adapt to a changing input
distribution during training (R3). As already pointed out in
Section 2.1, this is a severe limitation of SCHRAU., as re-
drawing the kernel support E can be either impractical or at
the very least requires a complete re-training of the entropy
estimator. Whereas in (4), the kernel support b is trainable
and it can thus adapt to a change of the input distribution.
In order to showcase this ability, we utilize the approach of
(Cheng et al., 2020a) and successively decrease the entropy,
observing how the estimator adapts. We perform this experi-
ment with data of dimension d = 64 and repeatedly multiply
the covariance matrix of the training vectors with a factor
of a = 1

2 . The resulting entropy estimation is depicted in
Figure 1. It is apparent that SCHRAU. suffers from a varying
bias. The bias increases with decreasing variance, as the
kernel support is fixed and cannot adapt as the variance of
Dx shrinks. DOE is perfectly adapted to a single Gaussian
distribution and performs similar to KNIFE.

3.1.2. TRIANGLE MIXTURE

KNIFE is able to cope with distributions that have multiple
modes. While (3) is also capable of matching multi-modal
distributions, DOE is unable to do so, as it approximates
any distribution with a multivariate Gaussian. We illustrate
this by matching a mixture of randomly drawn triangle
distributions. The resulting estimated PDFs as well as the
ground truth when estimating the entropy of a 1-dimensional
mixture of triangles with 10 components can be observed in
Figure 2 (left). With increasing dimension the difficulty of
this estimation rises quickly as in d dimensions, the resulting
PDF of independent c-component triangle mixtures has cd

modes. To showcase the performance of KNIFE in this
challenging task, we ran 10 training runs for DE estimation
of 2-component triangle mixtures in 8 dimensions. An
example training run is depicted in Figure 2 (right).

3.2. Mutual Information Estimation

Multivariate Gauss. We repeat the experiments
in (Cheng et al., 2020a), stepping up the MI I(Xd;Y d)
between d i.i.d. copies of joint normal random variables
(X,Y) by increasing their correlation coefficient, i.e.,

(X,Y) are multivariate Gaussian with correlation coeffi-
cient ρi in the i-th epoch. A training run is depicted in
the top of Figure 3. As in (Cheng et al., 2020a), we also
repeat the experiment, applying a cubic transformation
to Y . The estimation of MI between d i.i.d. copies of X
and Y 3 can be observed in the middle row of Figure 3.
The MI is unaffected by this bijective transformation. In
Appendix A.3, the bias and variance are depicted separately.

Sum of Uniformly Distributed Variables In order to test
the ability of KNIFE to adapt to distributions substantially
different from the Gaussian kernel shape, we apply it in MI
estimation of I(Xd;Y d) with uniformly distributed data. To
this end, let X and E be centered, uniformly distributed
random variables with E[X2] = E[E2] = 1 and define
Y = ρiX +

√
1− ρ2iE in the i-th epoch. One training run

with d = 20 is shown in Figure 3 (bottom). Details about
the source distribution as well as details of the experiments
can be found in Appendix A.3.

4. Experiments on Natural Data
In this section, we benchmark our proposed KNIFE-based
MI estimator on three practical applications, spanning tex-
tual and visual data. We reproduce and compare our method
to the most recent MI estimators including MINE (Belghazi
et al., 2018), NWJ (Nguyen et al., 2010), InfoNCE (van den
Oord et al., 2018), CLUB (Cheng et al., 2020a), and
DOE (McAllester & Stratos, 2020). We do not explicitly
include the SMILE estimator (Song & Ermon, 2020) in our
comparison as it has the same gradient as NWJ.1

Common notation: In all following applications, we will
use Φψ : X → Z to denote an encoder, where X is the raw
input space (i.e., texts or images), and Z denotes a lower
dimensional continuous feature space. Additionally, we will
use Cψ : Z → Y to denote a shallow classifier from the
latent space Z to a discrete or continuous target space Y
for classification or regression, respectively. We will use ψ
to denote the parameters of both models, Φψ and Cψ. CE
denotes the cross entropy loss.

4.1. Information Bottleneck for Language Model
Finetuning

IB has recently been applied to fine-tune large-scale pre-
trained models (Mahabadi et al., 2021) such as BERT (De-
vlin et al., 2019) and aims at suppressing irrelevant features
in order to reduce overfitting.

1Although not detailed in the original paper, SMILE’s clipping
is only used for estimation. For backpropagation, the gradients of
the standard NWJ bound are used. This is evident in the authors’
original implementation at https://github.com/ermongroup/smile-
mi-estimator/.../estimators.py#L123.

https://github.com/ermongroup/smile-mi-estimator/blob/afa72e03f4c80a0997eb8f6b95d7f96bdf916ea7/estimators.py#L123
https://github.com/ermongroup/smile-mi-estimator/blob/afa72e03f4c80a0997eb8f6b95d7f96bdf916ea7/estimators.py#L123

A Differential Entropy Estimator for Training Neural Networks

0 1250 2500 3750 5000
Iterations

0
20
40
60
80

100
120
140

D
iff

er
en

tia
l E

nt
ro

py KNIFE
Schrau.
DoE
True

Figure 1: Estimating DE of Gaus-
sian data with decreasing variance, i.e.,
Xi ∼ N (0, a−iId) for d = 64 and
i = 0, . . . , 4.

0 4 10
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

PD
F

KNIFE
Schrau.
DoE
True

0 10000 20000 30000 40000
Iterations

0

5

10

15

20

D
iff

er
en

tia
l E

nt
ro

py KNIFE
Schrau.
DoE
True

Figure 2: Left: PDF when estimating DE of a triangle mixture in 1 dimension.
Right: Training run when estimating DE of a 2-component triangle mixture in 8
dimensions.

0 5 k 10 k 15 k 20 k
Steps

0

5

10

15

M
I

CLUB
I
True

0 5 k 10 k 15 k 20 k
Steps

DOE

0 5 k 10 k 15 k 20 k
Steps

InfoNCE

0 5 k 10 k 15 k 20 k
Steps

MINE

0 5 k 10 k 15 k 20 k
Steps

NWJ

0 5 k 10 k 15 k 20 k
Steps

KNIFE

0 5 k 10 k 15 k 20 k
Steps

0

5

10

15

M
I

CLUB
I
True

0 5 k 10 k 15 k 20 k
Steps

DOE

0 5 k 10 k 15 k 20 k
Steps

InfoNCE

0 5 k 10 k 15 k 20 k
Steps

MINE

0 5 k 10 k 15 k 20 k
Steps

NWJ

0 5 k 10 k 15 k 20 k
Steps

KNIFE

0 5 k 10 k 15 k 20 k
Steps

0

5

10

15

M
I

CLUB
I
True

0 5 k 10 k 15 k 20 k
Steps

DOE

0 5 k 10 k 15 k 20 k
Steps

InfoNCE

0 5 k 10 k 15 k 20 k
Steps

MINE

0 5 k 10 k 15 k 20 k
Steps

NWJ

0 5 k 10 k 15 k 20 k
Steps

KNIFE

Figure 3: Top: Estimation of I(Xd;Y d), where (X,Y) are multivariate Gaussian with correlation coefficient ρi in the
i-th epoch and d = 20. Middle: Estimation of I(Xd; (Y 3)d). Bottom: Estimation of I(Xd;Y d) for uniform (X,E) and
Y = ρiX +

√
1− ρ2iE in the i-th epoch. The best run out of 10 (by distance from the true MI at the end of training) is

depicted. The dark curve shows an exponentially weighted moving average.

A Differential Entropy Estimator for Training Neural Networks

Problem statement. Given a textual input X ∈ X and
a target label Y ∈ Y , the goal is to learn the encoder Φψ
and classifier Cψ, such that Φψ(X) retains little informa-
tion about X , while still producing discriminative features,
allowing the prediction of Y . Thus, the loss of interest is:

L = λ · I(Φψ(X);X)︸ ︷︷ ︸
compression term

− I(Φψ(X);Y)︸ ︷︷ ︸
downstream term

, (11)

where λ controls the trade-off between the downstream and
the compression terms.

Setup. Following (Mahabadi et al., 2021) (relying on
VUB), we work with the VIBERT model, which uses a
Gaussian distribution as prior. Φψ is implemented as a
stochastic encoder Φψ(X) = Z ∼ N (µψ(X),Σψ(X)).
Details on the architecture of µψ and Σψ can be found
in Appendix C. The classifier Cψ is composed of dense
layers. To minimize L, the second part of the objective
(11) is bounded using the variational bound from (Barber &
Agakov, 2003). Since we use a Gaussian prior, h(Z|X) can
be expressed in closed form.2 Thus, when using KNIFE,
I(X;Z) = h(Z) − h(Z|X) can be estimated by using
ĥKNIFE to estimate h(Z). We compare this KNIFE-based
MI estimator with aforementioned MI estimators and the
variational upper bound (VUB). For completeness, we also
compare against a BERT model trained by direct minimiza-
tion of a CE loss.

We closely follow the protocol of (Mahabadi et al., 2021)
and work on the GLUE benchmark (Wang et al., 2019)
originally composed of 5 datasets. However, following
(Mahabadi et al., 2021), we choose to finetune neither on
WNLI (Morgenstern & Ortiz, 2015) nor on CoLA (Warstadt
et al., 2019) due to reported flaws in these datasets. The
evaluation is carried out on the standard validation splits as
the test splits are not available. Following standard practice
(Liu et al., 2019; Yang et al., 2019), we report the accuracy
and the F1 for MRPC, the accuracy for RTE and the Pearson
and Spearman correlation coefficient for STS-B.

Results. Table 2 reports our results on the GLUE bench-
mark. We observe that KNIFE obtains the best results on all
three datasets and the lowest variance on MRPC and STS-B.
The use of a Gaussian prior in the stochastic encoder Φψ
could explain the observed improvement of KNIFE-based
estimation over MI-estimators such as CLUB, InfoNCE,
MINE, DOE, or NWJ.

4.2. Fair Textual Classification

In fair classification, we would like the model to take its
decision without utilizing private information such as gen-

2h(Z|X) = 1
2
ln |Σψ(X)|+ d

2
ln(2πe), where d is the dimen-

sion of X and | · | denotes the determinant.

MRPC STS-B RTE

F1 Accuracy Pearson Spearman Accuracy

BERT 83.4 ±0.9 88.2 ±0.7 89.2 ±0.4 88.8 ±0.4 69.4 ±0.4

CLUB 85.0 ±0.4 89.0 ±0.7 89.7 ±0.2 89.4 ±0.1 70.7 ±0.1

InfoNCE 84.9 ±0.8 88.9 ±0.6 89.4 ±0.4 89.7 ±0.6 70.6 ±0.1

MINE 80.0 ±2.5 85.0 ±0.9 88.0 ±0.7 88.0 ±0.6 69.0 ±0.9

NWJ 84.6 ±0.8 88.1 ±0.7 89.8 ±0.1 89.6 ±0.2 69.6 ±0.7

VIBERT 85.1 ±0.5 89.1 ±0.3 90.0 ±0.2 89.5 ±0.3 70.9 ±0.1

DOE 84.1 ±0.2 88.3 ±0.2 89.6 ±0.2 89.5 ±0.2 69.6 ±0.2

KNIFE 85.3 ±0.1 90.1 ±0.1 90.3 ±0.0 90.1 ±0.0 72.3 ±0.2

Table 2: Fine-tuning on GLUE. Following (Lee et al., 2020;
Dodge et al., 2020), mean and variance are computed for 10
seeds. VIBERT is similar to VUB (Alemi et al., 2016).

der, age, or race. For this task, MI can be minimized to
disentangle the output of the encoder Z and a private label
S ∈ S (e.g., gender, age, or race).

Problem Statement. Given an input text X , a discrete
target label Y and a private label S, the loss is given by

L = CE(Y ; Φψ(X))︸ ︷︷ ︸
downstream task

+λ · I(Φψ(X);S)︸ ︷︷ ︸
disentangled

, (12)

where λ controls the trade-off between minimizing MI and
CE loss. In this framework, a classifier is said to be fair or
to achieve perfect privacy if no statistical information about
S can be extracted from Φψ(X) by an adversarial classi-
fier. Overall, a good model should achieve high accuracy
on the main task (i.e., prediction of Y) while removing in-
formation about the protected attribute S. This information
is measured by training an offline classifier to recover the
protected attribute S from Φψ(X).

Setup. We compute the second term of (12) with com-
peting MI estimators, as well as the model from (Elazar &
Goldberg, 2018), which will be referred to as “Adv”, as it
utilizes an adversary to recover the private label from the
latent representation Z. For KNIFE-based MI estimation,
we use two DE estimators (as S is a binary label), following
the approach outlined in Section 2.4. All derivations are
detailed in Appendix C.
We follow the experimental setting from (Elazar & Gold-
berg, 2018; Barrett et al., 2019) and use two datasets from
the DIAL corpus (Blodgett et al., 2016) (over 50 million
tweets) where the protected attribute S is the race and the
main labels are sentiment or mention labels. The mention
label indicates whether a tweet is conversational or not. We
follow the official split using 160 000 tweets for training
and two additional sets composed of 10 000 tweets each for
development and testing. In all cases, the labels S and Y
are binary and balanced, thus a random guess corresponds
to 50% accuracy.

A Differential Entropy Estimator for Training Neural Networks

Results. Results on fair classification are displayed in Fig-
ure 4. The upper dashed lines represent the (private and
main) task accuracies when training a model with only the
CE loss (case λ = 0 in (12)). This shows that the learned
encoding Φψ(X) contains information about the protected
attribute when training is only performed for the main task.
On both the sentiment and mention task, we observe that
a KNIFE-based estimator can achieve perfect privacy (Fig-
ures 4b and 4d) with nearly no accuracy loss in the main
task (Figures 4a and 4c). The other MI estimators exhibit
different behavior. For sentiment labels, most MI estimators
fail to reach perfect privacy (CLUB, NWJ, DOE, and Adv)
while others (InfoNCE) achieve perfect privacy while de-
grading the main task accuracy (10% loss on main accuracy).
For mention labels, CLUB can also reach perfect privacy
with almost no degradation in the main task. Overall, it is
worth noting that KNIFE-based MI estimation enables better
control of the disentanglement than the reported baselines.

4.3. Unsupervised Domain Adaptation

In unsupervised domain adaptation, the goal is to transfer
knowledge from the source domain (S) with a potentially
large number of labeled examples to a target domain (T),
where only unlabeled examples are available.

Problem Statement. The learner is given access to la-
beled images from a source domain (xs, y) ∼ (XS , Y) ∈
XS × Y and unlabeled images from a target domain xt ∼
XT ∈ XT . The goal is to learn a classification model
{Φψ, Cψ} that generalizes well to the target domain. Train-
ing models on the supervised source data only results in
domain-specific latent representations Φψ(X) leading to
poor generalization (when X is chosen randomly from
{XS , XT }). In order to make the latent representations
as domain-agnostic as possible, we follow the information-
theoretic method proposed by (Gholami et al., 2020), and
used in (Cheng et al., 2020a). The idea is to learn an ad-
ditional binary model {Φdν , Cdν}, whose goal it is to guess
the domain D ∈ {0, 1} of X . The latent representation
learned by Φdν will therefore contain all the domain-specific
information that we would like the main encoder Φψ to
discard. In other words, we would like Φψ(X) and Φdν(X)
to be completely disentangled, which naturally corresponds
to the minimization of I(Φψ(X); Φdν(X)). Concretely, the
domain classifier is trained to minimize the CE between
domain labels D and its own predictions, whereas the main
classifier is trained to properly classify support samples
while minimizing the MI between Φψ(X) and Φdν(X). Us-
ing fdν := Cdν ◦ Φdν and fψ := Cψ ◦ Φψ , the objectives are

min
ν

CE(D; fdν (X)) and (13)

min
ψ

CE(Y ; fψ(XS)) + λ · I(Φψ(X); Φdν(X)). (14)

Setup. The different MI estimators are compared
based on their ability to guide training by estimating
I(Φψ(X); Φdν(X)) in (13). We follow the setup of (Cheng
et al., 2020a) as closely as possible, and consider a total
of 6 source/target scenarios formed with MNIST (LeCun
& Cortes, 2010), MNIST-M (Ganin et al., 2016), SVHN
(Netzer et al., 2011), CIFAR-10 (Krizhevsky et al., 2009),
and STL-10 (Coates et al., 2011) datasets. We reproduce all
methods and allocate the same budget for hyper-parameter
tuning to every method. The exhaustive list of hyper-
parameters can be found in Appendix C.

Results. Results are presented in Table 3. The KNIFE-
based estimator is able to outperform MI estimators in this
challenging scenario where both Φψ(X) and Φdν(X) are
continuous.

5. Concluding Remarks
We introduced KNIFE, a fully learnable, differentiable
kernel-based estimator of differential entropy, designed for
deep learning applications. We constructed a mutual infor-
mation estimator based on KNIFE and showcased several
applications. KNIFE is a general purpose estimator and does
not require any special properties of the learning problem.
It can thus be incorporated as part of any training objective,
where differential entropy or mutual information estimation
is desired. In the case of mutual information, one random
variable may even be discrete.

Despite the fundamental challenges in the problem of differ-
ential entropy estimation, beyond limitations arising from
the use of a finite number of samples, KNIFE has demon-
strated promising empirical results in various representation
learning tasks.

Future work will focus on improving the confidence bounds
given in Theorem 1. In particular, tailoring them towards
KNIFE using tools from (Birge & Massart, 1995; Singh
& Poczos, 2014). Another potential extension is direct
estimation of the gradient of entropy, when p̂KNIFE(x;θ) has
been learned (Mohamed et al., 2020; Song et al., 2020).
This could be applied after the learning phase of KNIFE and
is left for future work.

Another promising direction for future research is the pos-
sible combination of different estimation methods and the
resulting bias-variance tradeoff.

Acknowledgments
This work was granted access to the HPC resources of
IDRIS under the allocation 2021-101838 made by GENCI.
G. K. gratefully acknowledges support from the Austrian
Science Fund (FWF): Y 1199.

A Differential Entropy Estimator for Training Neural Networks

10
2

10
1

10
0

10
1

10
2

0.50

0.55

0.60

0.65

0.70

M
ai

n
Ta

sk
 A

cc
ur

ac
y

> 0.71

Random Guess

Adv
CLUB
InfoNCE
NWJ
DoE
KNIFE

(a) Y (sentiment)

10
2

10
1

10
0

10
1

10
2

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

P
riv

at
e

Ta
sk

 A
cc

ur
ac

y > 0.64

Perfect Privacy

(b) S (sentiment)

10
3

10
2

10
1

10
0

10
1

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ai

n
Ta

sk
 A

cc
ur

ac
y

> 0.84

Random Guess

(c) Y (mention)

10
3

10
2

10
1

10
0

10
1

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

P
riv

at
e

Ta
sk

 A
cc

ur
ac

y

> 0.66

Perfect Privacy

(d) S (mention)

Figure 4: Results on the fair classification task for both main (Figures 4a and 4c) and private task (Figures 4b and 4d) for
both mention and sentiment labels. Results of MINE are not reported because of instabilities that prevent the network from
converging. Figures 4b and 4d are obtained by training an offline classifier to recover the protected attribute S from Φψ(X).

M → MM S → C U → M M → U C → S SV → M Mean

Source only 51.9 ±0.8 58.3 ±0.2 91.1 ±0.7 93.5 ±0.6 72.3 ±0.5 54.7 ±2.8 70.3 ±0.9

CLUB 79.1 ±2.2 59.9 ±1.9 96.0 ±0.2 96.8 ±0.5 71.6 ±1.3 83.8 ±3.4 81.2 ±1.7

DOE 82.2 ±2.6 58.9 ±0.8 97.2 ±0.3 94.2 ±0.9 68.8 ±1.4 86.4 ±5.4 81.3 ±1.9

INFONCE 77.3 ±0.5 61.0 ±0.1 97.4 ±0.2 97.0 ±0.3 70.6 ±0.8 89.2 ±4.1 82.1 ±1.0

MINE 76.7 ±0.4 61.2 ±0.3 97.7 ±0.1 97.3 ±0.1 70.8 ±1.0 91.8 ±0.8 82.6 ±0.4

NWJ 77.1 ±0.6 61.2 ±0.3 97.6 ±0.1 97.3 ±0.5 72.1 ±0.7 91.4 ±0.8 82.8 ±0.5

KNIFE 78.7 ±0.7 61.8 ±0.5 97.7 ±0.3 97.4 ±0.4 71.2 ±1.8 93.2 ±0.2 83.4 ±0.6

Table 3: Domain adaptation results: M (MNIST), MM (MNIST M), U (USPS), SV (SVHN), C (CIFAR10) and S (STL10).
Results are averaged over 3 seeds.

A Differential Entropy Estimator for Training Neural Networks

References
Ahmad, I. and Lin, P.-E. A nonparametric estimation of

the entropy for absolutely continuous distributions. IEEE
Trans. Inf. Theory, 22(3):372–375, May 1976.

Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans,
D. Understanding the impact of entropy on policy op-
timization. In Proc. Mach. Learn. Res. (ICML 2019),
volume 97, pp. 151–160, Long Beach, CA, USA, June
2019.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy,
K. Deep variational information bottleneck. arXiv,
abs/1612.00410, 2016.

Barber, D. and Agakov, F. The IM algorithm: A variational
approach to information maximization. In Proceedings of
the 16th International Conference on Neural Information
Processing Systems, NIPS’03, pp. 201–208, Cambridge,
MA, USA, 2003. MIT Press.

Barrett, M., Kementchedjhieva, Y., Elazar, Y., Elliott, D.,
and Søgaard, A. Adversarial removal of demographic at-
tributes revisited. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 6331–6336,
2019.

Beirlant, J., Dudewicz, E. J., Györfi, L., and Van der Meulen,
E. C. Nonparametric entropy estimation: An overview.
International Journal of Mathematical and Statistical
Sciences, 6(1):17–39, 1997.

Belghazi, I., Rajeswar, S., Baratin, A., Hjelm, R. D., and
Courville, A. C. MINE: mutual information neural esti-
mation. arXiv, abs/1801.04062, 2018.

Berrett, T. B., Samworth, R. J., and Yuan, M. Efficient
multivariate entropy estimation via k-nearest neighbour
distances. The Annals of Statistics, 47(1):288–318, 2019.

Birge, L. and Massart, P. Estimation of Integral Functionals
of a Density. The Annals of Statistics, 23(1):11 – 29,
1995. doi: 10.1214/aos/1176324452. URL https://
doi.org/10.1214/aos/1176324452.

Blodgett, S. L., Green, L., and O’Connor, B. Demographic
dialectal variation in social media: A case study of
african-american english. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pp. 1119–1130, 2016.

Bridle, J., Heading, A., and MacKay, D. Unsupervised
classifiers, mutual information and 'phantom targets. In
Moody, J., Hanson, S., and Lippmann, R. P. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 4. Morgan-Kaufmann, 1992.

Chaubey, Y. P. and Vu, N. L. On the estimation of entropy
for non-negative data. Journal of Statistical Theory and
Practice, 15(2), 2021.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adver-
sarial nets. Advances in neural information processing
systems, 29, 2016.

Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., and Carin, L.
CLUB: A contrastive log-ratio upper bound of mutual
information. In International conference on machine
learning, pp. 1779–1788. PMLR, 2020a.

Cheng, P., Min, M. R., Shen, D., Malon, C., Zhang, Y.,
Li, Y., and Carin, L. Improving disentangled text repre-
sentation learning with information-theoretic guidance.
In Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 7530–7541,
2020b.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on arti-
ficial intelligence and statistics. JMLR Workshop and
Conference Proceedings, 2011.

Colombo, P., Piantanida, P., and Clavel, C. A novel esti-
mator of mutual information for learning to disentangle
textual representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 6539–
6550, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of NAACL-HLT, pp.
4171–4186, 2019.

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi,
H., and Smith, N. Fine-tuning pretrained language mod-
els: Weight initializations, data orders, and early stopping.
arXiv, abs/2002.06305, 2020.

Ebrahimi, N., Soofi, E. S., and Soyer, R. Information mea-
sures in perspective. International Statistical Review, 78
(3):383–412, 2010.

Elazar, Y. and Goldberg, Y. Adversarial removal of de-
mographic attributes from text data. In Proceedings of
the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 11–21, 2018.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1), 2016.

https://doi.org/10.1214/aos/1176324452
https://doi.org/10.1214/aos/1176324452

A Differential Entropy Estimator for Training Neural Networks

Gholami, B., Sahu, P., Rudovic, O., Bousmalis, K., and
Pavlovic, V. Unsupervised multi-target domain adapta-
tion: An information theoretic approach. IEEE Transac-
tions on Image Processing, 29, 2020.

Györfi, L. and Van der Meulen, E. C. Density-free conver-
gence properties of various estimators of entropy. Compu-
tational Statistics & Data Analysis, 5(4):425–436, 1987.

Hall, P. and Morton, S. On the estimation of entropy. Annals
of the Institute of Statistical Mathematics, 1993.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 2681–2691. PMLR, 09–15 Jun 2019.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. In International Conference on Learn-
ing Representations, 2019.

Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M.,
and Bhattacharya, J. Causality detection based on
information-theoretic approaches in time series analysis.
Physics Reports, 441(1), 2007.

Hu, W., Miyato, T., Tokui, S., Matsumoto, E., and Sugiyama,
M. Learning discrete representations via information max-
imizing self-augmented training. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1558–1567. PMLR,
06–11 Aug 2017.

Ji, X., Henriques, J. F., and Vedaldi, A. Invariant informa-
tion clustering for unsupervised image classification and
segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), October
2019.

Joe, H. Estimation of entropy and other functionals of a
multivariate density. Annals of the Institute of Statistical
Mathematics, 41(4):683–697, 1989.

Kandasamy, K., Krishnamurthy, A., Poczos, B., Wasser-
man, L., and robins, j. m. Nonparametric von mises
estimators for entropies, divergences and mutual
informations. In Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.
neurips.cc/paper/2015/file/
06138bc5af6023646ede0e1f7c1eac75-Paper.
pdf.

Kim, H., Kim, J., Jeong, Y., Levine, S., and Song, H. O.
EMI: exploration with mutual information. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 3360–3369. PMLR, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR 2015, 2015.

Kolchinsky, A. and Tracey, B. D. Estimating mixture en-
tropy with pairwise distances. Entropy, 19(7), 2017.

Kozachenko, L. and Leonenko, N. N. Sample estimate
of the entropy of a random vector. Problemy Peredachi
Informatsii, 23(2):9–16, 1987.

Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating
mutual information. Phys. Rev. E, 69, Jun 2004.

Krause, A., Perona, P., and Gomes, R. Discriminative
clustering by regularized information maximization. In
Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
and Culotta, A. (eds.), Advances in Neural Information
Processing Systems, volume 23. Curran Associates, Inc.,
2010.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y. and Cortes, C. MNIST handwritten digit database.
2010.

Lee, C., Cho, K., and Kang, W. Mixout: Effective regular-
ization to finetune large-scale pretrained language models.
In International Conference on Learning Representations
(ICLR), 2020.

Linsker, R. How to generate ordered maps by maximizing
the mutual information between input and output signals.
In Neural Comput., 1989.

Liu, H., Wasserman, L., and Lafferty, J. Exponential concen-
tration for mutual information estimation with application
to forests. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q. (eds.), Advances in Neural Information
Processing Systems, volume 25. Curran Associates, Inc.,
2012.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv, abs/1907.11692, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

https://proceedings.neurips.cc/paper/2015/file/06138bc5af6023646ede0e1f7c1eac75-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/06138bc5af6023646ede0e1f7c1eac75-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/06138bc5af6023646ede0e1f7c1eac75-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/06138bc5af6023646ede0e1f7c1eac75-Paper.pdf

A Differential Entropy Estimator for Training Neural Networks

Mahabadi, R. K., Belinkov, Y., and Henderson, J. Varia-
tional information bottleneck for effective low-resource
fine-tuning. ICLR, 2021.

McAllester, D. and Stratos, K. Formal limitations on the
measurement of mutual information. In Chiappa, S. and
Calandra, R. (eds.), Proceedings of the Twenty Third
International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learn-
ing Research, pp. 875–884. PMLR, 26–28 Aug 2020.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte carlo gradient estimation in machine learning. J.
Mach. Learn. Res., 21(132):1–62, 2020.

Moon, K. R., Sricharan, K., and Hero, A. O. Ensemble
estimation of generalized mutual information with appli-
cations to genomics. IEEE Transactions on Information
Theory, 67(9):5963–5996, 2021. doi: 10.1109/TIT.2021.
3100108.

Morgenstern, L. and Ortiz, C. The winograd schema chal-
lenge: Evaluating progress in commonsense reasoning.
In Twenty-Seventh IAAI Conference, 2015.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011,
2011.

Nguyen, X., Wainwright, M. J., and Jordan, M. I. Estimating
divergence functionals and the likelihood ratio by convex
risk minimization. IEEE Transactions on Information
Theory, 2010.

Paninski, L. Estimation of entropy and mutual information.
Neural computation, 15(6), 2003.

Parzen, E. On estimation of a probability density function
and mode. The annals of mathematical statistics, 33(3):
1065–1076, 1962.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019.

Pichler, G., Piantanida, P., and Koliander, G. On the estima-
tion of information measures of continuous distributions.
arXiv, abs/2002.02851, 2020.

Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and
Tucker, G. On variational bounds of mutual information.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 5171–5180. PMLR, 09–15 Jun 2019.

Principe, J. C., Xu, D., Fisher, J., and Haykin, S. Informa-
tion theoretic learning. Citeseer, 2006.

Ravfogel, S., Elazar, Y., Gonen, H., Twiton, M., and Gold-
berg, Y. Null it out: Guarding protected attributes by
iterative nullspace projection. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pp. 7237–7256, 2020.

Rosenblatt, M. Remarks on some nonparametric estimates
of a density function. Ann. Math. Statist., 27(3):832–837,
1956.

Schraudolph, N. N. Gradient-based manipulation of non-
parametric entropy estimates. IEEE Transactions on Neu-
ral Networks, 15(4), 2004.

Shannon, C. E. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, July
1948.

Shyam, P., Jaśkowski, W., and Gomez, F. Model-based
active exploration. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 5779–5788. PMLR,
09–15 Jun 2019.

Singh, S. and Poczos, B. Exponential concentration of
a density functional estimator. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger,
K. Q. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/
af5afd7f7c807171981d443ad4f4f648-Paper.
pdf.

Song, J. and Ermon, S. Understanding the limitations of vari-
ational mutual information estimators. In International
Conference on Learning Representations, 2020.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Uncertainty in Artificial Intelligence, pp.
574–584. PMLR, 2020.

Sricharan, K., Wei, D., and Hero, A. O. Ensemble estimators
for multivariate entropy estimation. IEEE Transactions
on Information Theory, 59(7):4374–4388, 2013. doi:
10.1109/TIT.2013.2251456.

https://proceedings.neurips.cc/paper/2014/file/af5afd7f7c807171981d443ad4f4f648-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/af5afd7f7c807171981d443ad4f4f648-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/af5afd7f7c807171981d443ad4f4f648-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/af5afd7f7c807171981d443ad4f4f648-Paper.pdf

A Differential Entropy Estimator for Training Neural Networks

Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. Ap-
proximating mutual information by maximum likelihood
density ratio estimation. In New challenges for feature
selection in data mining and knowledge discovery, pp.
5–20. PMLR, 2008.

Tarasenko, F. On the evaluation of an unknown probability
density function, the direct estimation of the entropy from
independent observations of a continuous random vari-
able, and the distribution-free entropy test of goodness-of-
fit. Proceedings of the IEEE, 56(11):2052–2053, 1968.

Torkkola, K. Information-theoretic methods. In Feature
Extraction, pp. 167–185. Springer, 2008.

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S.,
and Lucic, M. On mutual information maximization for
representation learning. In International Conference on
Learning Representations, 2020.

Tsybakov, A. B. and Van der Meulen, E. C. Root-n consis-
tent estimators of entropy for densities with unbounded
support. Scandinavian Journal of Statistics, pp. 75–83,
1996.

van den Oord, A., Li, Y., and Vinyals, O. Representa-
tion learning with contrastive predictive coding. arXiv,
abs/1807.03748, 2018.

Verdú, S. Empirical estimation of information measures: A
literature guide. Entropy, 21(8), 2019.

Viola, P., Schraudolph, N. N., and Sejnowski, T. J. Empirical
entropy manipulation for real-world problems. Advances
in neural information processing systems, 1996.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. In 7th
International Conference on Learning Representations,
ICLR 2019, 2019.

Wang, Q., Kulkarni, S. R., and Verdú, S. Universal estima-
tion of information measures for analog sources. Foun-
dations and Trends in Communications and Information
Theory, 5(3):265–353, 2009.

Warstadt, A., Singh, A., and Bowman, S. R. Neural network
acceptability judgments. Transactions of the Association
for Computational Linguistics, 7:625–641, 2019.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv, abs/1910.03771, 2019.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. Xlnet: Generalized autoregressive

pretraining for language understanding. Advances in
neural information processing systems, 32, 2019.

Zhao, S., Song, J., and Ermon, S. InfoVAE: Infor-
mation maximizing variational autoencoders. arXiv,
abs/1706.02262, 2017.

A Differential Entropy Estimator for Training Neural Networks

APPENDIX

A. Experimental Details of Experiments with Synthetic Data
Implementation of KNIFE in PyTorch (Paszke et al., 2019) is rather straightforward. The constraint on the weights u can
be satisfied by applying a softmax transformation. The covariance matrices were parameterized by the lower-triangular
factor in the Cholesky decomposition of the precision matrices, guaranteeing the definiteness constraint to be satisfied.

A.1. Differential Entropy Estimation of Gaussian Data

In Section 3.1.1, the estimation of the entropy h(X) = d
2 log 2πe forX ∼ N (0, Id) was performed with the hyperparameters

given in Table 4. The mean error and its empirical standard deviation are reported in Table 1 over 20 runs, where an
independently drawn evaluation set with the same size as the training set is used. At d = 10 we have the entropy
h = d

2 log 2πe = 14.19, while for the higher dimension, d = 64 we find h = 90.81.

In the experiment depicted in Figure 1, entropy is decreased after every epoch by letting Xi ∼ N (0, aiId), where
i = 0, . . . , 4 is the epoch index. That is, Xi =

√
aiGd, where G is a standard normal random variable, resulting in an

decrease of the DE by ∆ = −d
2 log a ≈ 22.18 for a = 1

2 with every epoch. We start at h(X0) =
d
2 log 2πe ≈ 90.81 and

successively decrease until h(X4) = h(X0) + 4∆ ≈ 2.1. Additional parameters can be found in Table 5.

Computational Resources. Training was performed on an NVidia V100 GPU. Taken together, training for the first
experiments of entropy estimation in dimensions d = 10, 64, as well as the experiment depicted in Figure 1 used GPU time
of less than 5 minutes.

A.2. Differential Entropy Estimation of Triangle Mixtures

In Section 3.1.2, we perform an estimation of the entropy of c-component triangle mixture distributions. The PDF of such a
c-component triangle-mixture, is given by

p(x) =

c∑
i=1

wiΛsi

(
x− i− 1

2

)
, (15)

where Λs(x) := 1
s max{0, 2− 4s|x|} is a centered triangle PDF with width s > 0. The scales s = (s1, . . . , sc) and weights

w = (w1, . . . , wc) satisfy 0 < si, wi < 1 and
∑c
i=1 wi = 1. Before the experiment, we choose w uniformly at random

from the c-probability simplex and the scales are chosen uniformly at random in [0.1, 1.0]. An example for c = 10 is the
true PDF depicted in Figure 2 (left). For d > 1, we perform the estimation on d i.i.d. copies. Note that the triangle mixture
with c components in d-dimensional space has cd modes, i.e., the support can be partitioned into cd disjoint components.

Table 4: Experimental details of first experiment in Sec-
tion 3.1.1.

Parameter Value

Source Distribution X X ∼ N (0, Id)
Dimension d 10 and 64

Optimizer Adam
Learning Rate 0.01
Batch Size N 128

Kernel Size M 128
Iterations per epoch 200

Epochs 1
Runs 20

Table 5: Experimental details of the experiment depicted
in Figure 1.

Parameter Value

Source Distribution X X ∼ N (0, aiId)
for i = 0, . . . , 4

Dimension d 64
Factor a 1

2
Optimizer Adam

Learning Rate 0.01
Batch Size N 128

Kernel Size M 128
Iterations per epoch 1000

Epochs 5
Runs 1

A Differential Entropy Estimator for Training Neural Networks

Table 6: Experimental details of the experiment resulting
in the PDF in Figure 2 (left).

Parameter Value

Source Distribution X c-component
triangle mixtures

Components c 10
Dimension d 1

Optimizer Adam
Learning Rate 0.1
Batch Size N 128

Kernel Size M 128
Iterations per epoch 100

Epochs 10
Runs 1

Table 7: Experimental details of the experiment resulting
in the training depicted in Figure 2 (right).

Parameter Value

Source Distribution X c-component
triangle mixtures

Components c 2
Dimension d 8

Optimizer Adam
Learning Rate 0.001
Batch Size N 128

Kernel Size M 128
Iterations per epoch 1000

Epochs 20
Runs 10

The parameters of the experiment yielding Figure 2 (left) are given in Table 6, while the details of the experiment depicted
in Figure 2 (right) can be found in Table 7. In the latter experiment, over ten runs, entropy was estimated to an accuracy
of 1.6563± 0.8528 by KNIFE, accurate to 2.4445± 0.5439 using (3) and with an accuracy of 7.1070± 2.7984 by DOE.
This is the mean absolute error and its empirical standard deviation over all 10 runs, where the evaluation set was drawn
independently from the training set and has the same size as the training set.

Computational Resources. Training was performed on an NVidia V100 GPU. Training in d = 1 dimension, that resulted
in Figure 2 (left) can be performed in seconds, while all training required for producing Figure 2 (right) used approximately
1.5 hours of GPU time.

A.3. Mutual Information Estimation

In Section 3.2, we estimate I(Xd;Y d) and I(Xd; (Y 3)d) where (X,Y) are multivariate correlated Gaussian distributions
with correlation coefficient ρi in the i-th epoch. Subsequently, we estimate I(Xd;Y d) where X,E ∼ U [−

√
3,
√
3] are

independent and Y is given by Y = ρiX +
√
1− ρ2iE. In both cases, ρi is chosen such that I(Xd;Y d) = 2i in the i-th

epoch.

All neural networks are randomly initialized. The bias, variance, and MSE during training as a function of the MI, can be
observed in Figure 5.

The estimation is performed in 10 runs, randomly choosing the training meta-parameters as proposed by (McAllester &
Stratos, 2020). In Figure 3, in light blue, we show the best run for each method by distance from the true MI at the end
of training. An exponentially weighted average is shown in dark blue. The bias, variance, and MSE during training, as a
function of the MI, can be observed in Figure 7. Details about the source distribution as well as details of the experiments
can be found in Table 8. During experimentation it turned out to be beneficial to train the parameters Θ and θ in (10)
separately and substantially increase the learning rate for the training of θ. Thus, we increase the learning rate for the
training of θ by a factor of 103.

Figure 6 depicts the same experiments, repeated for TUBA (Poole et al., 2019) which is a tractable version of the Barber-
Agakov bound. It is worth noting that NWJ is a special case of TUBA.

Model Architecture for Θ. We utilize the feed-forward architecture, also used in (McAllester & Stratos, 2020). It is a
simple architecture with two linear layers, one hidden layer using tanh activation, immediately followed by an output layer.
The number of neurons in the hidden layer is a meta-parameter selected randomly from {64, 128, 256} for each training run.
Three models with this architecture are used for the three parameters (A,b,u), as described by (4), where only the output
dimension is changed to fit the parameter dimension.

A Differential Entropy Estimator for Training Neural Networks

2 4 6 8 10
0

2

4

6

8

Bi
as

Gaussian

2 4 6 8 10

10 2

10 1

100

Va
ria

nc
e

2 4 6 8 10
MI Values

0

10

20

30

40

50

60

70

M
SE

CLUB
DOE
InfoNCE
MINE
NWJ
KNIFE

2 4 6 8 10

2

4

6

8

Bi
as

Cubic

2 4 6 8 10

10 2

10 1

100

101
Va

ria
nc

e

2 4 6 8 10
MI Values

0

20

40

60

80

100

M
SE

CLUB
DOE
InfoNCE
MINE
NWJ
KNIFE

Figure 5: Left: Estimation of I(X;Y); Right: Estimation of I(X;Y 3) (cubic transformation).

A Differential Entropy Estimator for Training Neural Networks

0 10 k 20 k

Steps
0

5

10

15
M

I
TUBA

I
True

0 10 k 20 k

Steps

KNIFE

0 10 k 20 k

Steps
0

5

10

15

M
I

TUBA
I
True

0 10 k 20 k

Steps

KNIFE

Figure 6: Estimation of I(Xd;Y d) (left) and I(Xd; (Y 3)d) (right) as in Figure 3.

Table 8: Experimental details of the training depicted in Figure 3 (bottom).

Parameter Value

Dimension d 20
Optimizer Adam

Learning Rates 0.01, 0.003, 0.001, 0.0003
Batch Size N 128

Kernel Size M 128
Iterations per epoch 25 000

Epochs 1
Runs 10

Computational Resources. Training was performed, using about 6 hours of GPU time on an NVidia V100 GPU to carry
out the experiment depicted in Figure 3 (bottom).

B. Additional Experiments on Synthetic Data
B.1. Entropy Estimation of Triangle Mixtures

In addition to the experiments performed in Section 3.1.2, we repeated the estimation of DE of a c-component triangle
mixture in d = 20 dimensions with c = 2 components. In this more challenging setting, we found that over ten runs, DE
was estimated to an accuracy of 10.6270± 8.2179 by KNIFE and accurate to 13.1660± 8.2651 using (3). The mean error
and standard deviation is computed using and independently drawn evaluation set that has the same size as the training set.
The best training run is depicted in Figure 8 and the details can be found in Table 9.

Table 9: Experimental details of the experiment resulting in the training depicted in Figure 8.

Parameter Value

Source Distribution X c-component triangle mixtures
Components c 2
Dimension d 20

Optimizer Adam (Kingma & Ba, 2015)
Learning Rate 0.001
Batch Size N 128

Kernel Size M 128
Iterations per epoch 1000

Epochs 20
Runs 10

A Differential Entropy Estimator for Training Neural Networks

2 4 6 8 10

2

4

6

8

Bi
as

2 4 6 8 10

10 3

10 2

10 1

100

101

Va
ria

nc
e

2 4 6 8 10
MI Values

0

20

40

60

80

M
SE

CLUB
DOE
InfoNCE
MINE
NWJ
KNIFE

Figure 7: Bias, variance, and MSE for MI estimation on uniformly distributed data.

A Differential Entropy Estimator for Training Neural Networks

0 5000 10000 15000 20000
Iterations

5

0

5

10

15

20

D
iff

er
en

tia
l E

nt
ro

py KNIFE
Schrau.
True

Figure 8: Entropy estimation of a 2-component triangle mixture in d = 20 dimensions.

C. Experimental Details of Experiments on Natural Data
C.1. On the parameter update

In Section 4, we rely on two different types of models: pretrained (e.g., fine tuning with VIBERT) and randomly initialized
(e.g., in fair classification and domain adaptation). When working with randomly initialized networks the parameters are
updated. However, it is worth noting that in the literature the pretrained model parameters (i.e. ψ) are not always updated
(see (Ravfogel et al., 2020)). In our experiments: (i) We always update the parameters (even for pretrained models), and (ii)
we did not change the way the parameters were updated in concurrent works (to ensure fair comparison). Specifically,

• for language model finetuning (Appendix C.2), we followed (Mahabadi et al., 2021) and did a joint update;

• for the fair classification task (Appendix C.3), we followed common practice and used the algorithm described in
Algorithm 1 which rely on an alternated update;

• for the domain adaptation task (Appendix C.4), we followed common practice and used a joint method.

Algorithm 1 Disentanglement using a MI-based regularizer

1: INPUT Labeled training set D = (xn, sn, yn)n=1,...,N ; independent set of samples E ; parameters of KNIFE θ; parameters
of network ψ.

2: INITIALIZE parameters θ, ψ
3: OPTIMIZATION
4: while (θ, ψ) not converged do
5: for k ∈ {1, · · · ,K} do {Learning Step for KNIFE}
6: Sample a batch B from E
7: Update θ using (10).
8: end for
9: Sample a batch B′ from D

10: Update θ with B′ (12).
11: end while
12: OUTPUT Encoder and classifier weights ψ

A Differential Entropy Estimator for Training Neural Networks

Table 10: Architecture of the model used in the IB
finetuning experiment. We use ReLU as an activation
function.

Layer type Input shape Output shape

Fully connected 768 2304+K
4

Fully connected 2304+K
4

768+K
2

Table 11: Experimental details on Information Bottle-
neck.

Parameter Value

Learning Rate See Appendix C.2
Optimizer AdamW

Warmup Steps 0.0
Dropout 0.0

Batch Size 32

Table 12: Datasets from the GLUE as used in our experiments.

#Labels Train Val. Test

RTE 2 2.5k 0.08k 3k
STS-B 1 (regression) 5.8k 1.5k 1.4k
MRPC 2 3.7k 0.4k 1.7k

C.2. Information Bottleneck for Language Model Finetuning

For this experiment we follow the experimental setting introduced in (Mahabadi et al., 2021) and work with the GLUE data3.

Model Architecture. We report in Table 10, the multilayer perceptron (MLP) used to compute the compressed sentence
representations produced by BERT. Variance and Mean MLP networks are composed of fully connected layers.

Model Training. For model training, all models are trained for 6 epochs and we use early stopping (best model is selected
on validation set error). For IB, λ is selected in {10−4, 10−5, 10−6} and K is selected in {144, 192, 288, 384}. We follow
(Alemi et al., 2016) where the posterior is averaged over 5 samples and a linear annealing schedule is used for λ. Additional
hyper-parameters are reported in Table 11.

Dataset Statistics. Table 12 reports the statistics of the dataset used in our finetuning experiment.

Computational Resources. For all these experiments we rely on NVidia-P100 with 16GB of RAM. To complete the full
grid-search on 10 seeds and on the three datasets, approximately 1.5k hours are required.

C.3. Fair Textual Classification

In this section, we gather the experimental details for the textual fair classification task.

C.3.1. DETAILS OF THE KNIFE-BASED ESTIMATOR

In this experiment, we estimate the MI between a continuous random variable, namely Z = Φψ(X), and a discrete variable,
denoted by S ∈ S = {1, 2, . . . , |S|}. We follow the strategy outlined in Section 2.4 for estimating the conditional DE
h(Z|S). However, we will reuse the estimate of the conditional PDF p̂(z|s;Θ) to compute an estimate of the DE as

h(Z) ≈ − 1

N

N∑
n=1

log

(∑
s∈S

p̂KNIFE(zn|s;Θ)p̂(s)

)
, (16)

where p̂(s) = 1
N |{n : sn = s}| is used to indicate the empirical distribution of S in the training set Ds.4 In our experiments,

with |S| = 2, we found that estimating the DE h(Z) based on the KNIFE estimator learnt for h(Z|S) increases the stability
of training. We adopted the same strategy for DOE.

3see https://gluebenchmark.com/faq
4As we work with balanced batches, we will have p̂(s) = 1

|S| .

https://gluebenchmark.com/faq

A Differential Entropy Estimator for Training Neural Networks

C.3.2. EXPERIMENTAL DETAILS

Model Architecture. For the encoder, we use a bidirectional GRU with two layers with hidden and input dimension set to
128. We use LeakyReLU as the activation function. The classification head is composed of fully connected layers of input
dimension 256. We use a learning rate of 0.0001 for AdamW. The dropout rate is set to 0.2. The number of warmup steps is
set to 1000.

Computational Resources. For all these experiments, we rely on NVIDIA-P100 with 16GB of RAM. Each model is
trained for 30k steps. The model with the lowest MI is selected. The training of a single network takes around 3 hours.

C.4. Unsupervised Domain Adaptation

We follow the experimental setup given in (Cheng et al., 2020a) as closely as possible, i.e., we pick hyperparameters given
in the paper, or if not provided, those set in the code:5

Model Training. We use Adam optimizer for all modules with a learning rate of 0.001. Batch size is set to 128. We set the
weighting parameter λ = 0.1. The original code of (Cheng et al., 2020a) uses 15 000 training iterations, but we found most
methods had not properly converged at this stage, and hence use 25 000 iterations instead. Similar to other experiments, we
set the kernel size M = 128.

Model Architecture. Table 13 summarizes the architectures used for the different modules. For the MI network of
each method, the best configuration, based on the validation set of the first task MNIST → MNIST-M, is chosen among 4
configurations: with or without LayerNorm and with ReLU or tanh activation.

Computational Resources. For these experiments, we used a cluster of NVIDIA-V100 with 16GB of RAM. Each training
(i.e., 25k iterations) on a single task requires on average 2 hours. Given that we have 6 tasks, and repeat the training for 3
different seeds, on average 36 hours computation time is required for each method.

D. Bounding the Error
In the following, fix L > 0 and let PL be the set of L-Lipschitz PDFs supported6 on X := [0, 1]d, i.e.,

∫
X p(x) dx = 1, and

∀x, y ∈ Rd : |p(x)− p(y)| ≤ L∥x− y∥ (17)

for p ∈ PL, where7 ∥x∥ :=
∑
k |xk|.

Assume p ∈ PL and let κ be a PDF supported on X . In order to show that estimation of h(X) is achievable, we use a
standard Parzen-Rosenblatt estimator p̂(x;w) := 1

Mwd

∑M
m=1 κ

(x−X′
m

w

)
, as in (2). The entropy estimate is then defined by

the empirical average

ĥ(Dx;w) := − 1

N

N∑
n=1

log p̂(Xn;w). (18)

Further, define the following quantities, which are assumed to be finite:

pmax := max{p(x) : x ∈ X}, (19)

C1 :=

∫
p(x) log2 p(x)dx, (20)

C2 := L

∫
∥u∥κ(u)du, (21)

Kmax := max{κ(x) : x ∈ X}. (22)

5https://github.com/Linear95/CLUB/tree/master/MI_DA.
6Any known compact support suffices. An affine transformation then yields X = [0, 1]d, while possibly resulting in a different

Lipschitz constant.
7The ℓ1 norm is chosen to facilitate subsequent computations. By the equivalence of norms on Rd, any norm suffices.

https://github.com/Linear95/CLUB/tree/master/MI_DA

A Differential Entropy Estimator for Training Neural Networks

Note that it is easily seen that pmax ≤ L
2 and C1 ≤ max

{
pmax log

2 pmax, 4e
−2
}

by our assumptions. The requirement
C2,Kmax <∞ represents a mild condition on the kernel function κ.

We can now show the following.

Theorem 2. With probability greater than 1− δ we have

|h(X)− ĥ(Dx;w)| ≤ − log

1− 3NKmax

wdδ

√
log 6N

δ

2M
− 3NC2w

δ

+

√
3C1

Nδ
, (23)

if the expression in the logarithm is positive.

In particular, the estimation error approaches zero as N → ∞ if w = w(N) → 0, M =M(N) → ∞ are chosen such that

Nw → 0, (24)

N2 logN

w2dM
→ 0. (25)

We prove Theorem 2 in several Lemmas.

Lemma 3. Fix δ > 0 and x0 ∈ X . Then, with probability greater than 1− δ,

|p(x0)− p̂(x0)| ≤
Kmax

wd

√
log 2

δ

2M
+ C2w. (26)

Proof. First, we can show that

|E[p̂(x0)]− p(x0)| (27)

=

∣∣∣∣∣ 1

Mwd

M∑
m=1

∫
κ

(
x0 − x

w

)
p(x)dx− p(x0)

∣∣∣∣∣ (28)

=

∣∣∣∣ 1wd
∫
κ

(
x0 − x

w

)
p(x)dx− p(x0)

∣∣∣∣ (29)

=

∣∣∣∣∫ κ (u) p(x0 − wu)du− p(x0)

∣∣∣∣ (30)

=

∣∣∣∣∫ κ (u) [p(x0 − wu)− p(x0)]du

∣∣∣∣ (31)

≤
∫
κ (u) |p(x0 − wu)− p(x0)|du (32)

≤
∫
κ (u)Lw∥u∥du (33)

= wC2. (34)

Next, note that

|E[p̂(x0)]− p̂(x0)| ≤
Kmax

wd

√
log 2

δ

2M
(35)

holds with probability greater than 1− δ as the requirements of McDiarmid’s inequality (Paninski, 2003, Sec. 3) are satisfied
with cj = Kmax

Mwd and thus P{|E[p̂(x0)]− p̂(x0)| ≥ ε} ≤ δ with

ε =
Kmax

wd

√
log 2

δ

2M
. (36)

Combining (34) and (35) gives (26).

A Differential Entropy Estimator for Training Neural Networks

Lemma 4. For any continuous random variable X supported on X and a ≥ 0, we have

P{p(X) ≤ a} ≤ a. (37)

Proof. We apply Markov’s inequality to the random variable Y = 1
p(X) and observe that

P{p(X) ≤ a} = P{Y ≥ a−1} ≤ vol(X)a = a. (38)

Lemma 5. If x > 0, y ≥ a > 0, 0 < a < 1, and |x− y| ≤ δ < a, then

| log x− log y| ≤ log
a

a− δ
= − log

(
1− δ

a

)
. (39)

Proof. Case x ≥ y. We can write y = a+ b and x = y + c = a+ b+ c for b ≥ 0 and 0 ≤ c ≤ δ < a.∣∣∣∣log xy
∣∣∣∣ = log

(
1 +

c

a+ b

)
(40)

≤ log
(
1 +

c

a

)
≤ log

(
1 +

δ

a

)
. (41)

Furthermore,

log

(
a

a− δ

)
− log

(
1 +

δ

a

)
= log

1

(a+ δ)(a− δ)
(42)

= log
1

a2 − δ2
(43)

≥ log
1

a2
= −2 log a > 0. (44)

Case x < y. Here, we can write y = a+ b and x = y − c = a+ b− c for b ≥ 0 and 0 ≤ c ≤ δ < a.∣∣∣∣log xy
∣∣∣∣ = log

y

x
(45)

= log

(
a+ b

a+ b− c

)
(46)

≤ log

(
a

a− c

)
(47)

≤ log

(
a

a− δ

)
= − log

(
1− δ

a

)
. (48)

Proof of Theorem 2. We apply Lemma 3 N times and use the union bound to show that with probability greater than 1− δ
3

we have for every n ∈ [N]

|p(Xn)− p̂(Xn)| ≤
Kmax

wd

√
log 6N

δ

2M
+ C2w. (49)

Similarly, by Lemma 4, we have with probability greater than 1− δ
3 that

p(Xn) ≥
δ

3N
(50)

A Differential Entropy Estimator for Training Neural Networks

for all n ∈ [N].

Again by the union bound, we have that with probability greater than 1− 2δ
3 both (49) and (50) hold for all n ∈ [N], and

thus, by Lemma 5, we obtain ∣∣∣∣∣ĥ(Dx;w) +
1

N

N∑
n=1

log p(Xn)

∣∣∣∣∣ (51)

=

∣∣∣∣∣ 1N
N∑
n=1

log
p(Xn)

p̂(Xn)

∣∣∣∣∣ (52)

≤ − log

1−
Kmax

wd

√
log 6N

δ

2M + C2w
δ

3N

 (53)

= − log

1− 3NKmax

wdδ

√
log 6N

δ

2M
− 3NC2w

δ

 , (54)

provided the argument in the logarithm is positive. Finally, we have the upper bound on the variance

E

(h(X) +
1

N

N∑
n=1

log p(Xn)

)2
 (55)

=
1

N2

N∑
n=1

E[(h(X) + log p(X))2] (56)

=
1

N
(E[log2 p(X)]− h(X)2) (57)

≤ 1

N
C1 (58)

and apply Chebychev’s inequality, showing that with probability greater than 1− δ
3 ,∣∣∣∣∣h(X) +

1

N

N∑
n=1

log p(Xn)

∣∣∣∣∣ ≤
√

3C1

Nδ
. (59)

The union bound and the triangle inequality applied to (54) and (59) yields the desired result.

E. Libraries Used
For our experiments, we built upon code from the following sources.

• VIBERT (Mahabadi et al., 2021) at github.com/rabeehk/vibert.

• TRANSFORMERS (Wolf et al., 2019) at github.com/huggingface/transformers.

• DOE (McAllester & Stratos, 2020) at github.com/karlstratos/doe.

• SMILE (Song & Ermon, 2020) at github.com/ermongroup/smile-mi-estimator.

• InfoNCE, MINE, NWJ, CLUB (Cheng et al., 2020a) at github.com/Linear95/CLUB.

https://github.com/rabeehk/vibert
https://github.com/huggingface/transformers
https://github.com/karlstratos/doe
https://github.com/ermongroup/smile-mi-estimator
https://github.com/Linear95/CLUB

A Differential Entropy Estimator for Training Neural Networks

Table 13: Architectures used for the Unsupervised Domain Adaptation experiments. For the MI network of each method,
we chose the best performing configuration between with or without LayerNorm layer and best activation between ReLU
and tanh, using the validation set of MNIST-M.

Encoder (both Φ and Φd)

Layer type Input shape Output shape Details

Convolution sequence (3, H, W) (64, H, W) Cf. below
Noisy downsampling (64, H, W) (64, H // 2, W // 2) Cf. below
Convolution sequence (64, H // 2, W // 2) (64, H // 2, W // 2) Cf. below
Noisy downsampling (64, H // 2, W // 2) (64, H // 4, W // 4) Cf. below
Convolution sequence (64, H // 4, W // 4) (64, H // 4, W // 4) Cf. below
Global Average Pool (64, H // 4, W // 4) (64,) -

Main classifier C
Layer type Input shape Output shape

Fully connected (64,) (10,)

Domain classifier Cd

Layer type Input shape Output shape

Fully connected (64,) (2,)

Convolution sequence
Layer type Input shape Output shape Parameters

2D convolution (3, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (3, H, W) (64, H, W) -

Activation (3, H, W) (64, H, W) LeakyReLU 0.1
2D convolution (64, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (64, H, W) (64, H, W) -

Activation (64, H, W) (64, H, W) LeakyReLU 0.1
2D convolution (64, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (64, H, W) (64, H, W) -

Activation (64, H, W) (64, H, W) LeakyReLU 0.1

Noisy downsampling
Layer type Input shape Output shape Parameters

MaxPool (64, H, W) (64, H // 2, H // 2) 2x2, Stride=2
Dropout (64, H // 2, W // 2) (64, H // 2, H // 2) p=0.5

Noise (64, H // 2, W // 2) (64, H // 2, H // 2) Gaussian with σ = 1

MI network
Layer type Input shape Output shape Details

LayerNorm (Cin,) (Cin,) Optional
Fully connected (Cin,) (64,) Activation = [ReLU, tanh]

LayerNorm (Cin,) (64,) Optional
Fully connected (64,) (Cout,) Optional

	Introduction
	Contributions
	Existent Methods and Related Works

	Knife
	Limitations of Existing Differential Entropy Estimators
	Knife Estimator
	Convergence Analysis
	Estimating Conditional Differential Entropy and Mutual Information

	Experiments using Synthetic Data
	Differential Entropy Estimation
	Gaussian Distribution
	Triangle Mixture

	Mutual Information Estimation

	Experiments on Natural Data
	Information Bottleneck for Language Model Finetuning
	Fair Textual Classification
	Unsupervised Domain Adaptation

	Concluding Remarks
	Experimental Details of Experiments with Synthetic Data
	Differential Entropy Estimation of Gaussian Data
	Differential Entropy Estimation of Triangle Mixtures
	Mutual Information Estimation

	Additional Experiments on Synthetic Data
	Entropy Estimation of Triangle Mixtures

	Experimental Details of Experiments on Natural Data
	On the parameter update
	Information Bottleneck for Language Model Finetuning
	Fair Textual Classification
	Details of the Knife-based Estimator
	Experimental Details

	Unsupervised Domain Adaptation

	Bounding the Error
	Libraries Used

