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Abstract
We consider two federated learning algorithms
for training partially personalized models, where
the shared and personal parameters are updated ei-
ther simultaneously or alternately on the devices.
Both algorithms have been proposed in the litera-
ture, but their convergence properties are not fully
understood, especially for the alternating variant.
We provide convergence analyses of both algo-
rithms in the general nonconvex setting with par-
tial participation and delineate the regime where
one dominates the other. Our experiments on real-
world image, text, and speech datasets demon-
strate that (a) partial personalization can obtain
most of the benefits of full model personalization
with a small fraction of personal parameters, and,
(b) the alternating update algorithm outperforms
the simultaneous update algorithm by a small but
consistent margin.

1. Introduction
Federated Learning (McMahan et al., 2017) has emerged as
a powerful paradigm for distributed and privacy-preserving
machine learning (see Kairouz et al., 2021, and references
therein). We consider a typical setting of Federated Learn-
ing (FL) with n devices (also called clients), where each
device i has a training dataset of Ni samples zi,1, · · · , zi,Ni

.
Let w ∈ Rd represent the parameters of a machine learning
model and fi(w, zi,j) be the loss of the model on the train-
ing example zi,j . Then the loss function associated with
device i is Fi(w) = (1/Ni)

∑Ni

j=1 fi(w, zi,j). A common
objective of FL is to find model parameters that minimize
the weighted average loss across all devices

minimize
w

n∑
i=1

αiFi(w), (1)
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where the weights αi > 0 satisfy
∑n

i=1 αi = 1. A common
practice is to choose αi = Ni/N where N =

∑n
i=1 Ni,

which corresponds to minimizing the average loss across all
samples: (1/N)

∑n
i=1

∑Ni

j=1 fi(w, zi,j).

The main motivation for minimizing the average loss over
all devices is to leverage their collective statistical power for
better generalization, because the amount of data on each
device can be very limited. This is especially important for
training modern deep learning models with large number
of parameters. However, this argument assumes that the
datasets from different devices are sampled from the same,
or at least very similar, distributions. Given the diverse char-
acteristics of the users and increasing trend of personalized
on-device services, such an i.i.d. assumption may not hold
in practice. Thus, the one-model-fits-all formulation in (1)
can be ineffective and undesirable.

Several approaches have been proposed for personalized FL,
including ones based on multi-task learning (Smith et al.,
2017), meta learning (Fallah et al., 2020), and proximal
methods (Dinh et al., 2020; Li et al., 2021). A simple
formulation that captures their main idea is

minimize
w0,{wi}n

i=1

n∑
i=1

αi

(
Fi(wi) +

λi

2
∥wi − w0∥2

)
, (2)

where wi for i = 1, . . . , n are personalized model parame-
ters at the devices, w0 is a reference model, and the λi’s are
regularization weights that control the extent of personaliza-
tion. A major disadvantage of the formulation (2), which
we call full model personalization, is that it requires twice
the memory footprint of the full model, wi and w0 at each
device, which severely limits the size of trainable models.

On the other hand, full model personalization may be un-
necessary for modern deep learning models, which are com-
posed of many simple functional units, typically organized
into layers or a more general interconnected architecture.
Personalizing the “right” components, selected with domain
knowledge, may lead to substantial benefits with only a
small increase in memory footprint. In addition, partial
model personalization can be less susceptible to “catas-
trophic forgetting” (McCloskey & Cohen, 1989), where
a large model finetuned on a small local dataset forgets the
original (non-personalized) task, leading to degraded test
performance.
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Figure 1. Three simple examples of partitioning deep learning models.

We consider a general setting of FL with partial model
personalization. Specifically, we partition the model param-
eters into two groups: the shared parameters u ∈ Rd0 and
the personal parameters vi ∈ Rdi for i = 1, . . . , n. The full
model on device i is denoted as wi = (u, vi), and the local
loss function is Fi(u, vi) = (1/Ni)

∑Ni

j=1 fi
(
(u, vi), zi,j

)
.

Our goal is to solve the optimization problem

minimize
u, {vi}n

i=1

n∑
i=1

αiFi(u, vi). (3)

Notice that the dimensions of vi can be different across the
devices, allowing the personalized components to have dif-
ferent number of parameters or even different architecture.

We investigate two FL algorithms for solving problem (3):
FedSim, a simultaneous update algorithm and FedAlt, an
alternating update algorithm. Both algorithms follow the
standard FL protocol. During each round, the server ran-
domly selects a subset of the devices for update and broad-
casts the current global version of the shared parameters to
devices in the subset. Each selected device then performs
one or more steps of (stochastic) gradient descent to update
both the shared parameters and the personal parameters,
and sends only the updated shared parameters to the server
for aggregation. The updated personal parameters are kept
locally at the device to serve as the initialization when the
device is selected for another update. In FedSim, the shared
and personal parameters are updated simultaneously during
each local iteration. In FedAlt, the devices first update the
personal parameters with the received shared parameters
fixed and then update the shared parameters with the new
personal parameters fixed. We provide convergence analysis
and empirical evaluation of both methods.

Contributions. Our main contributions are as follows.

• We provide convergence guarantees for the FedAlt and
FedSim methods in the general (smooth) nonconvex set-
ting with partial participation. While both methods have
appeared in the literature previously, they are either used

without convergence analysis or with results on limited
settings (assuming convexity or full participation). Our
analysis focuses on the general nonconvex setting with
partial participation, providing theoretical support for
training modern deep learning models in practice. The
analysis of FedAlt with partial participation is especially
challenging. We decouple dependent random variables
in FedAlt by introducing the technique of virtual full
participation to overcome the difficulties.

• We conduct extensive experiments on realistic image, text,
and speech tasks, exploring different model personaliza-
tion strategies for each task, and comparing with strong
baselines. Our results demonstrate that partial model per-
sonalization can obtain most of the benefit of full model
personalization with only a small fraction of personalized
parameters, and that FedAlt outperforms FedSim by a
small but consistent margin.

• Our experiments also reveal that personalization (full or
partial) may lead to worse performance for some devices,
despite improving the average. Typical forms of regular-
ization such as weight decay and dropout do not mitigate
this issue. This phenomenon has been overlooked in pre-
vious work and calls for future research to improve both
performance and fairness.

It is our hope that the generality of our theory together with
strong empirical study can provide valuable guidelines for
training partially personalized models in practice.

Related work. The ideas behind partial model personal-
ization in federated learning can be traced back to seminal
works on multi-task learning (Caruana, 1997; Baxter, 2000;
Collobert & Weston, 2008). These works advocate for learn-
ing a shared representation across various tasks. These
ideas were applied to the setting of federated learning by
considering each client as a separate task by Arivazhagan
et al. (2019) and Collins et al. (2021); see Figure 1a. Liang
et al. (2019) instead propose to personalize the input layers
to learn a personalized representation (Figure 1b).
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Figure 2. More structured partial model personalization. (a) The adapter has a skip connection, thus it collapses to the identity mapping if
vi = 0; in addition, it has a bottleneck in the middle (Houlsby et al., 2019). (b) The generalized additive model can be further augmented
with a shared input layer for representation learning.

Both optimization algorithms — FedSim and FedAlt— have
appeared in the literature previously, but the scope of their
convergence analyses is limited. Specifically, Liang et al.
(2019), Arivazhagan et al. (2019) and Hanzely et al. (2021)
use FedSim, while Collins et al. (2021) and Singhal et al.
(2021) proposed variants of FedAlt. Notably, Hanzely et al.
(2021) establish convergence of FedSim with participation
of all devices in each round in the convex and non-convex
cases, while Collins et al. (2021) prove the linear con-
vergence of FedAlt for a two-layer linear network where
Fi(·, vi) and Fi(u, ·) are both convex for fixed vi and u
respectively. We analyze both FedAlt and FedSim in the
general nonconvex case with partial device participation
where only a sample of devices participate in each round,
hence addressing a more practical setting.

While we primarily consider problem (3) in the context
of partial model personalization, it can serve as a general
formulation that covers many other problems. Hanzely et al.
(2021) demonstrate that various full model personalization
formulations based on regularization (Dinh et al., 2020; Li
et al., 2021), including (2), as well as interpolation (Deng
et al., 2020a; Mansour et al., 2020) are special cases of
this problem. The rates of convergence we prove in §3 are
competitive with or better than those in previous works for
full model personalization methods in the non-convex case.

2. Partially Personalized Models
Modern deep learning models all have a multi-layer archi-
tecture. While a complete understanding of why they work
so well is still out of reach, a general insight is that the
lower layers (close to the input) are responsible for feature
extraction and the upper layers (close to the output) focus on
complex pattern recognition. Depending on the application

domain and scenarios, we may personalize either the input
layer(s) or the output layer(s) of the model; see Figure 1.

In Figure 1c, the input layers are split horizontally into
two parts, one shared and the other personal. They process
different chunks of the input vector and their outputs are
concatenated before feeding to the upper layers of the model.
As demonstrated by Bui et al. (2019), this partitioning can
help protect user-specific private features (input 2 in Fig-
ure 1c) as the corresponding feature embedding (through vi)
are personalized and kept local at the device. Similar ar-
chitectures have also been proposed in context-dependent
language models (e.g., Mikolov & Zweig, 2012).

A more structured partitioning is illustrated in Figure 2a,
where a typical transformer layer (Vaswani et al., 2017)
is augmented with two adapters. This architecture is pro-
posed by Houlsby et al. (2019) for finetuning large language
models. Similar residual adapter modules are proposed
by Rebuffi et al. (2017) for image classification models in
the context of multi-task learning. In the context of FL, we
treat the adapter parameters as personal and the rest of the
model parameters as shared.

Figure 2b shows a generalized additive model, where the
outputs of two separate models, one shared and the other
personalized, are fused to generate a prediction. Suppose the
shared model is h(u, ·) and the personal model is hi(vi, ·).
For regression tasks with samples zi,j = (xi,j , yi,j), where
xi,j is the input and yi,j is the output, we let Fi(u, vi) =

(1/Ni)
∑Ni

j=1 fi
(
(u, vi), zi,j

)
with

fi
(
(u, vi), zi,j

)
= ∥yi,j − h(u, xi,j)− hi(vi, xi,j)∥2 .

In this special case, the personal model fits the residual
of the shared model and vice-versa (Evgeniou & Pontil,
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Algorithm 1 FedAlt / FedSim

1: Input: Initial states u(0), {v(0)i }ni=1, number of commu-
nication rounds T , number of devices per round m

2: for t = 0, 1, · · · , T − 1 do
3: Server samples m devices S(t) ⊂ {1, . . . , n}
4: Server broadcasts u(t) to each device in S(t)

5: for each device i ∈ S(t) in parallel do
6: u

(t+1)
i , v

(t+1)
i = LocalAlt / LocalSim

(
u(t), v

(t)
i

)
7: Device sends u(t+1)

i back to server
8: Server updates u(t+1) = (1/m)

∑
i∈S(t) u

(t+1)
i

2004; Agarwal et al., 2020). For classification tasks, h(u, ·)
and hi(vi, ·) produce probability distributions over multi-
ple classes. We can use the cross-entropy loss between
yi,j and a convex combination of the two model outputs:
θh(u, xi,j)+(1−θ)hi(vi, xi,j), where θ ∈ (0, 1) is a learn-
able parameter.

Finally, we can cast full model personalization in (2) as a
special case of (3) by letting u← w0, vi ← wi and

Fi(u, vi)← Fi(vi) + (λi/2)∥vi − u∥2.

Many other formulations of full model personalization can
be reduced to (3) as well; see Hanzely et al. (2021).

3. Algorithms and Convergence Analysis
In this section, we present and analyze the FedAlt and Fed-
Sim algorithms for solving problem (3). To simplify pre-
sentation, we denote V = (v1, . . . , vn) ∈ Rd1+...+dn and
focus on the case of αi = 1/n, i.e.,

minimizeu, V F (u, V ) := 1
n

∑n
i=1 Fi(u, vi). (4)

This is equivalent to (3) if we scale Fi by nαi, thus does not
lose generality. Moreover, we consider the more general set-
ting with local functions Fi(u, vi) = Ez∼Di [fi((u, vi), z)],
where Di is the local data distribution.

The FedAlt and FedSim algorithms share a common outer-
loop description given in Algorithm 1. They differ only in
the local update procedures LocalAlt and LocalSim, which
are given in Algorithms 2 and 3 respectively. We use ∇̃u

and ∇̃v to represent stochastic gradients with respect to w
and vi respectively. In LocalAlt (Algorithm 2), the per-
sonal parameters are updated first with the received shared
parameters fixed, then the shared parameters are updated
with the new personal parameters fixed. In LocalSim (Algo-
rithm 3), the personal variables vi and local version of the
shared parameters ui are updated simultaneously, with their
partial gradients evaluated at the same point. They are anal-
ogous respectively to the Gauss-Seidel and Jacobi update in
numerical linear algebra (e.g., Demmel, 1997, §6.5).

The rest of the section is devoted to the convergence analysis.
We start with the assumptions in §3.1. In §3.2, we outline
the key technical difficulty of dependent random variables
in the analysis of FedAlt and describe how we overcome
it with virtual full participation. Finally, we compare the
convergence rates of FedAlt and FedSim in §3.3.

3.1. Assumptions

We make some assumptions for the convergence analysis.
Assumption 1 (Smoothness). For each i = 1, . . . , n, the
function Fi is continuously differentiable. There exist con-
stants Lu, Lv, Luv, Lvu such that for each i = 1, . . . , n:

• ∇uFi(u, vi) is Lu–Lipschitz with respect to u and Luv–
Lipschitz with respect to vi, and

• ∇vFi(u, vi) is Lv–Lipschitz with respect to vi and Lvu–
Lipschitz with respect to u.

We summarize the relative cross-sensitivity of ∇uFi with
respect to vi and∇vFi with respect to u with the scalar

χ := max{Luv, Lvu}
/√

LuLv. (5)

Assumption 2 (Bounded Variance). The stochastic gradi-
ents in Algorithm 3 and Algorithm 2 are unbiased and have
bounded variance. That is, for all u and vi,

E
[
∇̃uFi(u, vi)

]
= ∇uFi(u, vi),

E
[
∇̃vFi(u, vi)

]
= ∇vFi(u, vi) .

Furthermore, there exist constants σu and σv such that

E
[∥∥∇̃uFi(u, vi)−∇uFi(u, vi)

∥∥2] ≤ σ2
u ,

E
[∥∥∇̃vFi(u, vi)−∇vFi(u, vi)

∥∥2] ≤ σ2
v .

This is a standard bounded variance assumption on the per-
device stochastic gradients (Bottou et al., 2018). We have
another source of stochasticity in our setting due to par-
tial device participation. We can view ∇uFi(u, vi), when i
is randomly sampled from {1, . . . , n}, as a stochastic par-
tial gradient of F (u, V ). The next assumption imposes a
constant variance bound.
Assumption 3 (Partial Gradient Diversity). There exist a
constant δ ≥ 0 such that for all u and V ,

1
n

∑n
i=1

∥∥∇uFi(u, vi)−∇uF (u, V )
∥∥2 ≤ δ2 .

Throughout this paper, we assume F is bounded below by
F ⋆ and denote ∆F0 = F

(
u(0), V (0)

)
− F ⋆. Further, we

use the shorthands V (t) = (v
(t)
1 , . . . , v

(t)
n ),

∆
(t)
u =

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 , and

∆(t)
v =

1

n

n∑
i=1

∥∥∇vFi

(
u(t), v

(t)
i

)∥∥2 .
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Algorithm 2 LocalAlt
(
u, vi

)
1: Input: Number of steps τv, τu, and step sizes γv, γu
2: Initialize vi,0 = vi
3: for k = 0, 1, · · · , τv−1 do
4: vi,k+1 = vi,k − γv∇̃vFi

(
u, vi,k

)
5: Update v+i = vi,τv and initialize ui,0 = u
6: for k = 0, 1, · · · , τu−1 do
7: ui,k+1 = ui,k − γu∇̃uFi

(
ui,k, v

+
i

)
8: Update u+

i = ui,τu

9: Return
(
u+
i , v

+
i

)
For smooth and nonconvex loss functions Fi, we obtain
convergence in expectation to a stationary point of F if the
expected values of these two sequences converge to zero.

3.2. Challenges of FedAlt and Virtual Full Participation

To convey the salient ideas, we assume full gradients on each
device (σ2

u = 0 = σ2
v) and a single local update per device

(τu = 1 = τv). The only stochasticity in the algorithm
comes from partial participation, i.e., sampling m devices
in each round.

Dependent Random Variables. Consider the iterates
(u(t), V (t)) generated by FedAlt (Algorithm 1 with local
updates from Algorithm 2). In order to analyze the effect of
the u-update, we invoke the smoothness of F (· , V (t+1)) as

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
≤ (6)〈

∇uF
(
u(t), V (t+1)

)
, u(t+1)−u(t)

〉
+

Lu

2

∥∥u(t+1)−u(t)
∥∥2 .

Standard convergence proofs of stochastic gradient methods
rely on the fact that when we take expectation w.r.t. the
sampling S(t) over the first order term (within the inner
product), we obtain simplifications because the gradient is
usually independent of S(t). This is true for FedSim and
the v-step of FedAlt. However, this is not the case for the
u-step of FedAlt since

Et

[〈
∇uF

(
u(t), V (t+1)

)
, u(t+1)−u(t)

〉]
̸=〈

Et[∇uF
(
u(t), V (t+1)

)
], Et[u

(t+1)−u(t)]
〉

in general, where Et = E[ · |u(t), V (t)] denotes the expecta-
tion w.r.t. S(t). Indeed, V (t+1) is already updated based on
S(t), so both V (t+1) and u(t+1) are dependent random vari-
ables, due to their mutual dependence on the sampling S(t);
see Figure 3 (left). Therefore, directly taking expectation
w.r.t. S(t) in (6) does not lead to a useful result.

Virtual Full Participation. We decouple the dependent
random variables with virtual full participation. Define
Ṽ (t+1) as the result of local v-updates as if every device

Algorithm 3 LocalSim
(
u, vi

)
1: Input: Number of steps τ , and step sizes γv, γu
2: Initialize vi,0 = vi
3: Initialize ui,0 = u
4: for k = 0, 1, · · · , τ − 1 do
5: vi,k+1 = vi,k − γv∇̃vFi

(
ui,k, vi,k

)
6: ui,k+1 = ui,k − γu∇̃uFi

(
ui,k, vi,k

)
7: Update v+i = vi,τ
8: Update u+

i = ui,τ

9: Return
(
u+
i , v

+
i

)

had participated. This iterate is virtual, meaning that it is a
tool of the analysis but is not required by the algorithm. We
introduce Ṽ (t+1) on the right hand side of (6) to get

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
≤ E(t)+〈

∇uF (u(t), Ṽ (t+1)), u(t+1)−u(t)
〉
+

Lu

2

∥∥u(t+1)−u(t)
∥∥2 ,

where E(t) is the error term from replacing V (t+1) with
Ṽ (t+1). Since Ṽ (t+1) is deterministic when conditioned
on (u(t), V (t)), we can now take an expectation w.r.t. the
sampling S(t) over u(t+1) only, cf. Figure 3 (right). This
allows us to simplify the first order term as

Et

[〈
∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1)−u(t)

〉]
=
〈
∇uF

(
u(t), Ṽ (t+1)

)
, Et[u

(t+1)−u(t)]
〉

= −γu
n

n∑
i=1

Et∥∇uF (u(t), ṽ(t+1))∥2 .

Finally, we bound the error term Et[E
(t)] ≤ O(Luγ

2
u +

χ2Lvγ
2
v), which can be made small by choosing appropri-

ately small learning rates.

The technique of virtual full participation is distinct from
shadow iterates ū

(t)
k = (1/n)

∑n
i=1 u

(t)
i,k typically used in

decentralized (Yuan et al., 2016) and federated optimiza-
tion (Wang et al., 2021), and could be of independent inter-
est. We refer to Appendix A.2 for additional details.

3.3. Comparing FedAlt and FedSim

We first present our main result for FedAlt (Algorithm 1
with LocalAlt). The proof relies on the technique of virtual
full participation and is proved in Appendix A.3.

Theorem 1 (Convergence of FedAlt). Suppose Assump-
tions 1, 2 and 3 hold and the learning rates in FedAlt
are chosen as γu = η/(Luτu) and γv = η/(Lvτv).
For a choice of η depending on the problem parameters
Lu, Lv, χ

2, σ2
u, σ

2
v , δ

2,m, n, and the number of rounds T ,
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S(t)

V (t+1) u(t+1)

〈
∇uF

(
u(t), V (t+1)

)
, u(t+1) − u(t)

〉

S(t)

V (t+1) u(t+1)

〈
∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1) − u(t)

〉

Figure 3. Left: Graphical model depicting the problem of dependent random variables in the analysis of FedAlt. We cannot take an
expectation of the bottom-most inner product term w.r.t. the device sampling S(t) because both V (t+1) and u(t+1) depend on it. Right:
Virtual full participation overcomes this problem, since the virtual iterates Ṽ (t+1) are statistically independent of the sampling S(t). The
expectation can now pass through the inner product, as required by standard stochastic gradient analyses.

we have (ignoring absolute constants),

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤

(
∆F0 σ

2
alt,1

)1/2
√
T

+

(
∆F 2

0 σ2
alt,2

)1/3
T 2/3

+O

(
1

T

)
,

(7)

where we define effective variance terms

σ2
alt,1 =

δ2

Lu

(
1− m

n

)
+

σ2
u

Lu
+

σ2
v(m+ χ2(n−m))

Lvn
,

σ2
alt,2 =

σ2
u + δ2

Lu
(1− τ−1

u ) +
σ2
vm

Lvn
(1− τ−1

v ) +
χ2σ2

v

Lv
,

and O(·) hides problem constants independent of T .

The left-hand side of (7) is the average over time of a
weighted sum of E

[
∆

(t)
u

]
and E

[
∆

(t)
v

]
. Convergence is

measured in the rate at which this quantity decays to zero
and depends on effective noise variances σ2

alt,1, σ
2
alt,2; these

are weighed sums of the variances δ2, σ2
u, and σ2

v con-
tributed by the three sources of stochasticity. The right side
contains a standard T−1/2 term with effective noise variance
σ2
alt,1 and a lower order T−2/3 term with variance σ2

alt,2.

Next, we present our main result for FedSim (Algorithm 1
with LocalSim), proved in Appendix A.4.

Theorem 2 (Convergence of FedSim). Suppose Assump-
tions 1, 2 and 3 hold and the learning rates in FedSim are
chosen as γu = η/(Luτ) and γv = η/(Lvτ). Then, for a
η depending on the problem parameters and the number of
rounds T , the bound (7) holds where the effective variance

terms σ2
alt,1, σ

2
alt,2 are respectively replaced by

σ2
sim,1 = (1 + χ2)

(
δ2

Lu

(
1− m

n

)
+

σ2
u

Lu
+

σ2
vm

Lvn

)
,

σ2
sim,2 = (1 + χ2)

(
δ2

Lu
+

σ2
u

Lu
+

σ2
v

Lv

)
(1− τ−1) .

The bound of FedSim is analogous to that of FedAlt, with
the only difference in the noise terms σ2

sim,1 and σ2
sim,2.

FedAlt vs. FedSim: Two Regimes. Comparing the vari-
ances σ2

alt,1 and σ2
sim,1 in the leading 1/

√
T term, we iden-

tify two regimes in terms of problem parameters. The
regime where FedAlt dominates FedSim is characterized by
the condition

σ2
v

Lv

(
1− 2m

n

)
<

σ2
u + δ2(1−m/n)

mLu
.

A practically relevant scenario where this is true is σ2
v ≈ 0

and σ2
u ≈ 0 from using a large or full batch on a small

number of samples per device. In this case, the rate of
FedAlt is better than FedSim by a factor of (1 + χ2)1/2,
indicating that the rate of FedAlt is less affected by the
coupling χ2 between the personal and shared parameters.
Our experiments in §4 corroborate the practical relevance
of this regime.

Extensions and Discussion. Theorems 1 and 2 are also
interesting because of the broad generality of the optimiza-
tion model (3), as we discussed in §2 and as pointed out
by Hanzely et al. (2021). In particular, Theorems 1 and 2
also give rates for full personalization schemes without
convergence guarantees in the nonconvex case such as Fe-
dRes (Agarwal et al., 2020), Mapper (Mansour et al., 2020),
and Ditto (Li et al., 2021). Furthermore, our rates are better
than those of (Dinh et al., 2020) for their pFedMe objective.
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Table 1. Summary of datasets and models. A histogram of data per device is given in Figure 6 (Appendix B).
Task Dataset #Classes Model # Model Params #Devices #Data per device

Mean Max

Next-word prediction StackOverflow 10000 4-layer transformer 6M 1000 4964 15520
Landmark recognition GLDv2 2028 ResNet-18 12M 823 88 1000
Character recognition EMNIST 63 ResNet-18 11M 1114 298 418
Speech recognition LibriSpeech N/A 6-layer transformer 15M 902 8.3 min 15 min

We give fully non-asymptotic versions of these theorems un-
der more general assumptions in Appendix A. The O(1/T )
term is lower order and can be ignored for T ≥ Ω((n/m)2)
for FedAlt and T ≥ Ω(n/m) for FedSim.

4. Experiments
We experimentally compare different model personalization
schemes using FedAlt and FedSim. Further details about the
experiments and hyperparameters as well as additional ex-
perimental results are provided in the appendices. The code
to reproduce the experimental results is publicly available.1

Datasets, Tasks and Models. We consider four learning
tasks, summarized in Table 1.

(a) Next-Word Prediction: We use the StackOverflow
dataset, where each device corresponds to the questions
and answers of one user on stackoverflow.com.
This is representative of mobile keyboard predictions.
We use a 4-layer transformer model (Vaswani et al.,
2017) trained with the cross entropy loss and evaluated
with top-1 accuracy of next word prediction.

(b) Landmark Recognition: We use GLDv2 (Weyand et al.,
2020), a large-scale image dataset of global landmarks.
Each device corresponds to a Wikipedia contributor and
is representative of smartphone users capturing images
while traveling. We use ResNet-18 (He et al., 2016).
with group norm instead of batch norm (Hsieh et al.,
2020) and images are reshaped to 224×224. It is trained
with the cross entropy loss and evaluated with the classi-
fication accuracy.

(c) Character Recognition: We use the EMNIST
dataset (Cohen et al., 2017), where the input is a 28× 28
grayscale image of a handwritten character and the out-
put is its label (0-9, a-z, A-Z). Each device corresponds
to a writer of the character. We use a ResNet-18 model
with input and output layers modified to accommodate
the smaller image size and number of classes.

(d) Speech Recognition (ASR): We construct a federated
version of the LibriSpeech dataset (Panayotov et al.,
2015), partitioned by the speaker of the audio. The

1https://github.com/krishnap25/FL_
partial_personalization

input is an audio clip of English speech represented
by log-mel filterbank coefficients and the output is its
text transcription. We use a 6-layer transformer model
trained with the connectionist temporal classification
(CTC) criterion (Graves et al., 2006) and report the word
error rate for evaluation.

Model Partitioning for Partial Personalization. We con-
sider three partitioning schemes.

(a) Input layer personalization: This architecture person-
alizes the input layer to learn personal representations,
while the rest of the model is shared (Figure 1b). For
next-word prediction, we personalize the first trans-
former layer instead of the embedding layer.

(b) Output layer personalization: This architecture learns
a shared representation but personalizes the prediction
layer (Figure 1a). We personalize the last transformer
layer for a transformer model instead of the output layer.

(c) Adapter personalization: Each device adds personal
adapter modules to a shared model (Figure 2a). We use
the transformer adapters of Houlsby et al. (2019) and
the residual adapters of Rebuffi et al. (2017).

Algorithms and Experimental Pipeline. We consider three
full personalization baselines: (i) Finetune, where each de-
vice finetunes its personal full model starting from a learned
common model, (ii) Ditto (Li et al., 2021), which is fine-
tuning with ℓ2 regularization, and, (iii) pFedMe (Dinh et al.,
2020) which minimizes the objective (2). All methods, in-
cluding FedAlt, FedSim and the baselines are initialized
with a global model trained with FedAvg.

4.1. Experimental Results

Partial personalization nearly matches full personaliza-
tion and can sometimes outperform it. Table 2 shows the
average test accuracy across all devices of different FL al-
gorithms. We see that on the StackOverflow dataset, output
layer personalization (25.05%) makes up nearly 90% of the
gap between the non-personalized baseline (23.82%) and
full personalization (25.21%). On EMNIST, adapter per-
sonalization exactly matches full personalization. Most sur-
prisingly, on GLDv2, adapter personalization outperforms
full personalization by 3.5pp (percentage points).

stackoverflow.com
https://github.com/krishnap25/FL_partial_personalization
https://github.com/krishnap25/FL_partial_personalization
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Table 2. Comparison of partial model personalization with full model personalization in terms of the average test accuracy % across
devices. The subscript denotes the standard deviation over 5 random runs. The boldfaced/highlighted numbers denote entries within one
standard deviation of the maximum in each row. For partial personalization, we show the accuracy of FedAlt; see Table 4 for FedSim.

Non-pers. Full Model Personalization Partial Model Personalization

FedAvg Finetune Ditto pFedMe Input Layer Output Layer Adapter

StackOverflow 23.82 25.200.01 25.200.01 25.210.01 24.440.01 25.050.01 24.820.01
GLDv2 51.43 62.850.02 62.850.01 62.920.02 53.940.07 56.640.05 66.410.06

EMNIST 93.18 94.130.01 94.130.01 94.130.01 93.620.04 93.570.05 94.130.03
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Figure 4. Absolute change in accuracy (percentage points) due to personalization plotted against number of personal parameters (i.e.,
dimensionality of vi). Note that the x-axis is in log scale.

This success of adapter personalization can be explained
partly by the nature of GLDv2. On average, the training
data on each device contains 25 classes out of a possible
2028 while the testing data contains 10 classes not seen
in its own training data. These unseen classes account for
nearly 23% of all testing data. Personalizing the full model
is susceptible to “forgetting” the original task (Kirkpatrick
et al., 2017), making it harder to get these unseen classes
right. Such catastrophic forgetting is worse when finetuning
on a very small local dataset, as we often have in FL. On
the other hand, personalizing the adapters does not suffer as
much from this issue (Rebuffi et al., 2017).

Partial personalization only requires a fraction of the
parameters to be personalized. Figure 4 shows that the
number of personal parameters required to compete with full
personalization is rather small. On StackOverflow, personal-
izing 1.2% of the parameters with adapters captures 72% of
the accuracy boost from personalizing all 5.7M parameters;
this can be improved to nearly 90% by personalizing 14%
of the parameters (output layer). Likewise, we match full
personalization on EMNIST and exceed it on GLDv2 with
adapters, personalizing 11.5-12.5% of parameters.

The best personalized architecture is model and task
dependent. Table 2 shows that personalizing the final trans-
former layer (denoted as “Output Layer”) achieves the best
performance for StackOverflow, while the residual adapter
achieves the best performance for GLDv2 and EMNIST.
In contrast, input layer personalization achieves the best

Table 3. Comparison of finetuning and partial personalization for
ASR on Librispeech. We report the word error rate (WER, %) on
the test data, averaged across devices. Smaller values are better.

Finetune Input Layer Output Layer Adapter

15.55 15.13 15.53 15.50

performance for speech recognition, cf. Table 3.

This variation is explained via the primary source of data
heterogeneity across devices for each task. The choice of
the next word after a context can vary between users, so the
output layer is the right component to personalize for this
task. Likewise, there is greater heterogeneity in the audio
of LibriSpeech (accent, tone, and voice of the speaker) than
the text (standard literary English), so input layer personal-
ization works best in this case. This shows that the approach
of personalizing a fixed model part, as in past works, is
suboptimal. Our framework allows for the use of domain
knowledge to determine customized personalization.

Finetuning is competitive with other full personaliza-
tion methods. Full finetuning matches the performance
of pFedMe and Ditto on StackOverflow and EMNIST.
On GLDv2, however, pFedMe outperforms finetuning by
0.07pp, but is still 3.5pp worse than adapter personalization.

FedAlt outperforms FedSim by a small but consistent
margin. Table 4 shows that FedAlt almost always outper-
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Table 4. FedAlt vs. FedSim for partial personalization. “FT (part.)” means finetuning the personal parameters vi while fixing the shared
parameters u from FedAvg. The numbers are averaged over 5 random runs and the subscript denotes the standard deviation.

StackOverflow GLDv2 EMNIST

FT (part.) FedAlt FedSim FT (part.) FedAlt FedSim FT (part.) FedAlt FedSim

Input Layer 24.960.01 24.440.01 24.810.01 51.970.02 53.940.06 53.640.08 93.290.00 93.620.03 93.550.05
Output Layer 24.930.01 25.050.01 25.020.01 53.210.01 56.640.05 56.240.04 93.370.01 93.570.04 93.550.05

Adapter 24.710.00 24.820.01 24.740.01 63.860.06 66.410.05 66.350.03 93.660.00 94.130.03 94.070.03
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Figure 5. StackOverflow task: Scatter plot of change in training and test accuracy (pp) per-device versus the number of training samples
on the device for (a) Left: full personalization with finetuning, and, (b) Right: partial personalization with the output layer.

forms FedSim by a small margin, e.g., 0.08pp for StackOver-
flow/Adapter and 0.3pp for GLDv2/Input Layer. FedSim in
turn yields a higher accuracy than simply finetuning the per-
sonal part of the model by a margin of 0.12pp for StackOver-
flow/Output Layer and 2.55pp for GLDv2/Adapter. Further-
more, we observe that the difference between FedAlt and
FedSim is much larger than the standard deviation across
runs. For instance, under output layer personalization for
GLDv2, this difference is 0.4pp (= 8× std).

As a practical recommendation, we recommend using FedAlt
as a default, but it does not hurt much to use FedSim.

4.2. Effects of Personalization on Generalization

Personalization hurts the test accuracy on some devices.
Figure 5 shows the change in training and test accuracy of
each device, over a non-personalized model baseline. We
see that personalization leads to an improvement in training
accuracy across all devices, but a reduction in test accuracy
on some of the devices. Devices whose testing performance
is hurt by personalization are mostly on the left side of the
plot, meaning that they have relatively small number of
training samples. On the other hand, many devices with the
most improved test accuracy also appear on the left side,
signaling the benefit of personalization. Therefore, there is
a large variation of results for devices with few samples.

Additional results in Appendix C show that using ℓ2 regular-
ization as in (2), or weight decay does not mitigate this issue.
Increasing regularization strength (less personalization) can

reduce the spread of per-device accuracy, but degrades the
average accuracy. Dropout does not fix this issue either.

An ideal personalized method would boost performance on
most of the devices without causing a reduction in (test)
accuracy on any device. Realizing this goal calls for a sound
statistical analysis for personalized FL and may require
sophisticated methods for local performance diagnosis and
structured regularization.

5. Discussion
In addition to a much smaller memory footprint than full
model personalization and being less susceptible to catas-
trophic forgetting, partial model personalization has other
advantages. For example, it reduces the amount of commu-
nication between the server and the devices because only
the shared parameters are transmitted. While the commu-
nication savings may not be significant (especially when
the personal parameters are only a small fraction of the full
model), communicating only the shared parameters may
have significant implications for privacy. Intuitively, it can
be harder to infer private information from partial model
information. This is especially the case if the more sensitive
features of the data are processed through personal compo-
nents of the model that are kept local at the devices. For
example, we speculate that less noise needs to be added to
the communicated parameters in order to satisfy differential
privacy requirements (Abadi et al., 2016).
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A. Convergence Analysis: Full Proofs
We give the full convergence proofs here. The outline of this section is:

• §A.1: Review of setup and assumptions;

• §A.2: Virtual Full Participation: Background and Details

• §A.3: Convergence analysis of FedAlt and the full proof of Theorem 1 (see Theorem 3 and Corollary 4);

• §A.4: Convergence analysis of FedSim and the full proof of Theorem 2 (see Theorem 11 and Corollary 12);

• §A.5: Technical lemmas used in the analysis.

A.1. Review of Setup and Assumptions

We consider a federated learning system with n devices. Let the loss function on device i be Fi(u, vi), where u ∈ Rd0

denotes the shared parameters across all devices and vi ∈ Rdi denotes the personal parameters at device i. We aim to
minimize the function

F (u, V ) :=
1

n

n∑
i=1

Fi(u, vi) , (8)

where V = (v1, · · · , vn) is a concatenation of all the personalized parameters. This is a special case of (3) with the equal
per-device weights, i.e., αi = 1/n. Recall that we assume that F is bounded from below by F ⋆.

For convenience, we reiterate Assumptions 1, 2 and 3 from the main paper as Assumptions 1′, 2′ and 3′ below respectively,
with some additional comments and discussion.

Assumption 1′ (Smoothness). For each device i = 1, . . . , n, the objective Fi is smooth, i.e., it is continuously differentiable
and,

(a) u 7→ ∇uFi(u, vi) is Lu-Lipschitz for all vi,
(b) vi 7→ ∇vFi(u, vi) is Lv-Lipschitz for all u,
(c) vi 7→ ∇uFi(u, vi) is Luv-Lipschitz for all u, and,
(d) u 7→ ∇vFi(u, vi) is Lvu-Lipschitz for all vi.

Further, we assume for some χ > 0 that
max{Luv, Lvu} ≤ χ

√
LuLv .

The smoothness assumption is a standard one. We can assume without loss of generality that the cross-Lipschitz coefficients
Luv, Lvu are equal. Indeed, if Fi is twice continuously differentiable, we can show that Luv, Lvu are both equal to the
operator norm ∥∇2

uvFi(u, vi)∥op of the mixed second derivative matrix. Further, χ denotes the extent to which u impacts
the gradient of vi and vice-versa.

For concreteness, consider the full personalization setting of Eq. (2), where each Fi is L-smooth; this is a special case of the
formulation (8), as we argue in §2. In this case, a simple calculation shows that

χ2 =
λ

λ+ L
≤ 1 .

Our next assumption is about the variance of the stochastic gradients, and is standard in literature. Compared to the main
paper, we adopt a more precise notation about stochastic gradients.

Assumption 2′ (Bounded Variance). Let Di denote a probability distribution over the data space Z on device i. There exist
functions Gi,u and Gi,v which are unbiased estimates of∇uFi and∇vFi respectively. That is, for all u, vi:

Ez∼Di
[Gi,u(u, v, z)] = ∇uFi(u, vi), and Ez∼Di

[Gi,v(u, v, z)] = ∇vFi(u, vi) .

Furthermore, the variance of these estimators is at most σ2
u and σ2

v respectively. That is,

Ez∼Di
∥Gi,u(u, v, z)−∇uFi(u, vi)∥2 ≤ σ2

u ,

Ez∼Di
∥Gi,v(u, v, z)−∇vFi(u, vi)∥2 ≤ σ2

v .
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In practice, one usually has Gi,u(u, vi, z) = ∇ufi((u, vi), z), which is the gradient of the loss on datapoint z ∼ Di under
the model (u, vi), and similarly for Gi,v .

Finally, we make a gradient diversity assumption.

Assumption 3′ (Partial Gradient Diversity). There exist δ ≥ 0 and ρ ≥ 0 such that for all u and V ,

1

n

n∑
i=1

∥∇uFi(u, vi)−∇uF (u, V )∥2 ≤ δ2 + ρ2∥∇uF (u, V )∥2 . (9)

This is a generalization of Assumption 3′ used in the main paper, which is a special case of Assumption 3 with ρ = 0. We
allow the partial gradient diversity to grow with the squared norm of the gradient with a factor of ρ2. This assumption is
analogous to the bounded variance assumption (Assumption 2′), but with the stochasticity coming from the sampling of
devices. It characterizes how much local steps on one device help or hurt convergence globally.

Similar gradient diversity assumptions are often used for analyzing non-personalized federated learning (Koloskova et al.,
2020; Karimireddy et al., 2020). Finally, it suffices for the partial gradient diversity assumption to only hold at the iterates
(u(t), V (t)) generated by either FedSim or FedAlt.

A.2. Virtual Full Participation: Background and Details

We recap the challenge of dependent random variables with FedAlt, and explain the technique of virtual full participation in
some more detail. For this section, we assume full gradients on each device (σ2

u = 0 = σ2
v) and a single local update per

device (τu = 1 = τv). The only stochasticity in the algorithm comes from partial device participation, i.e., sampling m
devices in each round.

Background: Stochastic Gradient Convergence Analysis. Consider the minimization problem

min
w∈Rd

f(w) ,

where the function f : Rd → R is L-smooth. Starting from some fixed w(0) ∈ Rd, consider the stochastic gradient
iterations w(t+1) = w(t) − γg(t), where γ is a fixed learning rate, and g(t) is an unbiased estimate of ∇f(w(t)), i.e.,
E[g(t)|w(t)] = ∇f(w(t)).

Typical proofs of convergence proceed in the general nonconvex case with the smoothness bound

f(w(t+1))− f(w(t)) ≤ ⟨∇f(w(t)), w(t+1) − w(t)⟩+ L

2
∥w(t+1) − w(t)∥2 (10)

= −γ⟨∇f(w(t)), g(t)⟩+ γ2L

2
∥g(t)∥2 .

Since the stochastic gradient g(t) is unbiased, we get (under typical assumptions) an inequality

Et

[
f(w(t+1))

]
− f(w(t)) ≤ −cγ ∥∇f(w(t))∥2 +O(γ2) , (11)

where c > 0 is some absolute constant and Et[·] = E[ · |w(t)] takes an expectation only over the randomness in step t. The
second term is a noise term that can be made small by choosing an appropriately small learning rate γ. Telescoping the
inequality over t and rearranging gives a convergence bound.

The key intuition behind this proof is that the update is unbiased in linear term of the smoothness upper bound (10). The
same intuition holds for most smooth nonconvex stochastic gradient convergence analyses (Bottou et al., 2018). In particular,
this takes the following form in this case

Et

[
⟨∇f(w(t)), w(t+1) − w(t)⟩

]
=
〈
∇f(w(t)),Et[w

(t+1) − w(t)]
〉
. (12)

This ensures that the contribution of the stochasticity occurs in a lower order O(γ2) term. As we shall see next, such an
equality does not hold for FedAlt in the partial participation case due to dependent random variables.

The Challenge in FedAlt with Partial Participation. Consider the iterates (u(t), V (t)) generated by FedAlt. The progress
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in one round is the combined progress of the v-step (call it Tv) and the u-step (call it Tu) so that

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)
= F

(
u(t), V (t+1)

)
− F

(
u(t), V (t)

)
︸ ︷︷ ︸

=:Tv

+F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
︸ ︷︷ ︸

=:Tu

.

The analysis of the v-step is easy because the unbiasedness condition similar to (12) holds:

Et

〈
∇V F

(
u(t), V (t)

)
, V (t+1) − V (t)

〉
=
〈
∇V F

(
u(t), V (t)

)
,Et

[
V (t+1) − V (t)

]〉
,

since Et[·] takes an expectation w.r.t. the client sampling S(t). The recipe laid out earlier gives a descent condition similar
to (11).

For the u-step, an unbiasedness condition similar to (12) does not hold:

Et

〈
∇uF

(
u(t), V (t+1)

)
, u(t+1) − u(t)

〉
̸=
〈
Et

[
∇uF

(
u(t), V (t+1)

)]
,Et

[
u(t+1) − u(t)

]〉
.

The expectation cannot pass into the inner product because V (t+1) and u(t+1) are dependent random variables. Both are
dependent on the device sampling S(t), as shown Figure 3 (left).

Virtual Full Participation. We decouple these random variables by using virtual full participation. Define a virtual iterate
Ṽ (t+1) as the result of local v-updates as if every device had participated. Specifically, we introduce Ṽ (t+1) on the right
hand side of the smoothness bound applied on Tu to get

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
≤ E(t) +

〈
∇uF (u(t), Ṽ (t+1)), u(t+1)−u(t)

〉
+

Lu

2

∥∥u(t+1)−u(t)
∥∥2 ,

where E(t) is the error term from replacing V (t+1) with Ṽ (t+1) Since Ṽ (t+1) is independent of the client sampling S(t), we
can now take an expectation Et[·] over u(t+1) only, leading us to a situation similar to (12); cf. Figure 3 (right).

We bound the error term E(t) using Young’s inequality and smoothness (Assumption 1′) respectively as

E(t) = ⟨∇uF (u(t), V (t+1))−∇uF (u(t), Ṽ (t+1)), u(t+1) − u(t)⟩

≤ Lu

2
∥u(t+1) − u(t)∥2 + 1

2Lu
∥∇uF (u(t), V (t+1))−∇uF (u(t), Ṽ (t+1))∥2

≤ Lu

2
∥u(t+1) − u(t)∥2 + χ2Lv

2n

n∑
i=1

∥ṽ(t+1)
i − v

(t+1)
i ∥2 .

These two terms are similar to the quadratic terms we get from the smoothness upper bound. We can similarly show
Et[E

(t)] = O(Luγ
2
u + χ2Lvγ

2
v), so the error term from virtual full participation is also a lower order O(γ2) term.

Virutal Iterates in Related Work. Virtual or shadow iterates have long been used in decentralized optimization (Yuan et al.,
2016), and have since been adopted in the analysis of federated optimization algorithms in the non-personalized setting (Li
et al., 2020; Koloskova et al., 2020; Wang et al., 2021).

In our notation, the shadow iterates used in (Koloskova et al., 2020; Wang et al., 2021) take the form

ū
(t)
k =

1

n

n∑
i=1

u
(t)
i,k ,

which is an average of the local versions of the shared parameters. This only makes sense for the case of full participation
since u

(t)
i,k is only defined for selected devices i ∈ S(t). In partial participation case, Li et al. (2020) define the virtual

sequence (ũ
(t)
i,k)

τu
k=0 as the local SGD updates on all devices i irrespective of whether they were selected. Then, they define

the average

ū
(t)
k =

1

n

n∑
i=1

ũ
(t)
i,k .
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Their proof relies on the fact that ES(t) [u(t+1)] = ū
(t)
τu due to the properties of the sampling.

In contrast, we consider personalized federated learning — the problem of dependent random variables only shows up
in the analysis of FedAlt with partial participation, a setting not considered in prior works. We employ virtual personal
parameters ṽ(t)i,k to overcome this problem. We believe that this technique of decoupling dependent random variables can be
of independent interest for (distributed) stochastic optimization, including personalized extensions of nonsmooth federated
learning objectives (Deng et al., 2020b; Pillutla et al., 2021) or more general multi-task learning formulations (Misra et al.,
2016).

A.3. Convergence Analysis of FedAlt

We give the full form of FedAlt in Algorithms 4 for the general case of unequal αi’s but focus on αi = 1/n for the analysis.
Theorem 1 of the main paper is a simplification of Corollary 4 below, which in turn is proved based on Theorem 3.

Throughout this section, we use the constants

σ2
alt,1 =

δ2

Lu

(
1− m

n

)
+

σ2
u

Lu
+

σ2
v(m+ χ2(n−m))

Lvn
, σ2

alt,2 =
σ2
u + δ2

Lu
(1− τ−1

u ) +
σ2
vm

Lvn
(1− τ−1

v ) +
χ2σ2

v

Lv
.

We also recall the definitions

∆(t)
u =

∥∥∥∇uF
(
u(t), V (t+1)

)∥∥∥2 , and, ∆(t)
v =

1

n

n∑
i=1

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 .
Theorem 3 (Convergence of FedAlt). Suppose Assumptions 1′, 2′ and 3′ hold and the learning rates in FedAlt are chosen
as γu = η/(Luτu) and γv = η/(Lvτv), with

η ≤ min

{
1

24(1 + ρ2)
,

m

128χ2(n−m)
,

√
m

χ2n

}
.

Then, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ η σ2

alt,1 + η2 σ2
alt,2 .

Before proving the theorem, we have the corollary with optimized learning rates.

Corollary 4 (Final Rate of FedAlt). Consider the setting of Theorem 3 and let the number of rounds T be known in
advance. Suppose we set the learning rates γu = η/(τLu) and γv = η/(τLv), where (ignoring absolute constants),

η =

(
∆F0

Tσ2
alt,1

)1/2∧(
∆F 2

0

T 2 σ2
alt,2

)1/3∧ 1

1 + ρ2

∧ m

χ2(n−m)

∧√
m

χ2n
.

We have, ignoring absolute constants,

1

T

T−1∑
t=0

(
1

Lu
E
∥∥∥∇uF

(
u(t), V (t)

)∥∥∥2 + m

Lvn2

n∑
i=1

E
∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2) ≤
(
∆F0 σ

2
alt,1

)1/2
√
T

+

(
∆F 2

0 σ2
alt,2

)1/3
T 2/3

+
∆F0

T

(
1 + ρ2 + χ2

( n

m
− 1
)
+

√
χ2

n

m

)
.

Proof. The proof follows from invoking Lemma 25 on the bound of Theorem 3.

Remark 5 (Asymptotic Rate). The asymptotic 1/
√
T rate of Theorem 1 is achieved when the 1/T term is dominated by

the 1/
√
T term. This happens when (ignoring absolute constants)

T ≥ ∆F0

σ2
alt,1

(
1 + ρ4 + χ4 n

2

m2

)
.
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Algorithm 4 FedAlt: Alternating updates of shared and personalized parameters

1: Input: Initial iterates u(0), V (0), Number of communication rounds T , Number of devices per round m, Number of
local updates τu, τv , Local step sizes γu, γv ,

2: for t = 0, 1, · · · , T − 1 do
3: Sample m devices from [n] without replacement in S(t)

4: for each selected device i ∈ S(t) in parallel do
5: Initialize v

(t)
i,0 = v

(t)
i

6: for k = 0, · · · , τv − 1 do
7: // Update personal parameters
8: Sample data z

(t)
i,k ∼ Di

9: v
(t)
i,k+1 = v

(t)
i,k − γvGi,v(u

(t), v
(t)
i,k, z

(t)
i,k)

10: Update v
(t+1)
i = v

(t)
k,τv

11: Initialize u
(t)
i,0 = u(t)

12: for k = 0, · · · , τu − 1 do
13: // Update shared parameters
14: u

(t)
i,k+1 = u

(t)
i,k − γuGi,u(u

(t)
i,k, v

(t+1)
i , z

(t)
i,k)

15: Update u
(t+1)
i = u

(t)
i,τu

16: Update u(t+1) =
∑

i∈S(t) αiu
(t+1)
i /

∑
i∈S(t) αi at the server with secure aggregation

17: return u(T ), v
(T )
1 , · · · , v(T )

n

We now prove Theorem 3.

Proof of Theorem 3. The proof mainly applies the smoothness upper bound to write out a descent condition with suitably
small noise terms. We start with some notation.

We introduce the notation ∆̃
(t)
u as the analogue of ∆(t)

u with the virtual variable Ṽ (t+1):

∆̃(t)
u =

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2 .
Notation. Let F (t) denote the σ-algebra generated by

(
u(t), V (t)

)
and denote Et[ · ] = E[ · |F (t)]. For all devices, including

those not selected in each round, we define virtual sequences ũ(t)
i,k, ṽ

(t)
i,k as the SGD updates in Algorithm 4 for all devices

regardless of whether they are selected. For the selected devices i ∈ S(t), we have v
(t)
i,k = ṽ

(t)
i,k and u

(t)
i,k = ũ

(t)
i,k. Note now

that the random variables ũ(t)
i,k, ṽ

(t)
i,k are independent of the device selection S(t). Finally, we have that the updates for the

selected devices i ∈ S(t) are given by

v
(t+1)
i = v

(t)
i − γv

τv−1∑
k=0

Gi,v

(
u(t), ṽ

(t)
i,k, z

(t)
i,k

)
,

and the server update is given by

u(t+1) = u(t) − γu
m

∑
i∈S(t)

τu−1∑
k=0

Gi,u

(
ũ
(t)
i,k, ṽ

(t)
i,τv

, z
(t)
i,k

)
.

Proof Outline and the Challenge of Dependent Random Variables. We start with

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)
=F

(
u(t), V (t+1)

)
− F

(
u(t), V (t)

)
+ F

(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
.

(13)
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The first line corresponds to the effect of the v-step and the second line to the u-step. The former is easy to handle with
standard techniques that rely on the smoothness of F

(
u(t), ·

)
. The latter is more challenging. In particular, the smoothness

bound for the u-step gives us

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
≤
〈
∇uF

(
u(t), V (t+1)

)
, u(t+1) − u(t)

〉
+

Lu

2

∥∥∥u(t+1) − u(t)
∥∥∥2 .

The standard proofs of convergence of stochastic gradient methods rely on the fact that we can take an expectation w.r.t. the
sampling S(t) of devices for the first order term. However, both V (t+1) and u(t+1) depend on the sampling S(t) of devices.
Therefore, we cannot directly take an expectation with respect to the sampling of devices in S(t).

Virtual Full Participation to Circumvent Dependent Random Variables. The crux of the proof lies in replacing V (t+1)

in the analysis of the u-step with the virtual iterate Ṽ (t+1) so as to move all the dependence of the u-step on S(t) to the
u(t+1) term. This allows us to take an expectation; it remains to carefully bound the resulting error terms.

Finally, we will arrive at a bound of the form

1

T

T−1∑
t=0

(γuτu
8

E[∆̃(t)
u ] +

γvτvm

16n
E[∆(t)

v ]
)
≤ ∆F0

T
+O(γ2

u + γ2
v) .

Next, we translate this bound from gradient E[∆̃
(t)
u ] of the virtual Ṽ (t+1) to E[∆

(t)
u ], which is the gradient computed at the

actual iterate V (t). A careful analysis shows that we only incur a lower order term of O(γuγ
2
v) in this translation. Choosing

γu and γv small enough will give us the final result.

Analysis of the u-Step with Virtual Full Participation. We introduce the virtual iterates Ṽ (t+1) into the analysis of the
u-step as follows:

F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)
≤
〈
∇uF

(
u(t), V (t+1)

)
, u(t+1) − u(t)

〉
+

Lu

2

∥∥∥u(t+1) − u(t)
∥∥∥2

=
〈
∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1) − u(t)

〉
+

Lu

2

∥∥∥u(t+1) − u(t)
∥∥∥2

+
〈
∇uF

(
u(t), V (t+1)

)
−∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1) − u(t)

〉
≤
〈
∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1) − u(t)

〉
+ Lu

∥∥∥u(t+1) − u(t)
∥∥∥2

+
1

2Lu

∥∥∥∇uF
(
u(t), V (t+1)

)
−∇uF

(
u(t), Ṽ (t+1)

)∥∥∥2
≤
〈
∇uF

(
u(t), Ṽ (t+1)

)
, u(t+1) − u(t)

〉
︸ ︷︷ ︸

T1,u

+Lu

∥∥∥u(t+1) − u(t)
∥∥∥2︸ ︷︷ ︸

T2,u

+
χ2Lv

2n

n∑
i=1

∥∥∥ṽ(t+1)
i − v

(t+1)
i

∥∥∥2︸ ︷︷ ︸
T3,u

.

The last two inequalities follow from Young’s inequality and Lipschitzness of V 7→ ∇uF (u, V ) respectively.

We have now successfully eliminated the dependence of the first-order term T1,u on V (t+1). The virtual iterates Ṽ (t+1) are
now independent of S(t). This allows us to take an expectation w.r.t. the sampling S(t) of the devices.

We bound each of these terms in Claims 6 to 8 below to get

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)]

≤ −γuτu
4

Et[∆̃
(t)
u ] +

2γuL
2
u

n

n∑
i=1

τu−1∑
k=0

Et

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2︸ ︷︷ ︸
=:T ′

2,u

+4γ2
vτ

2
vLvσ

2
vχ

2(1−m/n)

+
Luγ

2
uτ

2
u

m

(
σ2
u + 3δ2

(
1− m

n

))
+ 8γ2

vτ
2
vLvχ

2(1−m/n)∆(t)
v .
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Note that we used the fact that 24Luγuτu(1 + ρ2) ≤ 1 to simply the coefficients of some of the terms above. The second
term has also been referred to as client drift in the literature; we bound it with Lemma 22 and invoke the assumption on
gradient diversity (Assumption 3′) to get

T ′
2,u ≤

16γ3
uL

2
uτu(τu − 1)

n

n∑
i=1

Et

∥∥∥∇uFi

(
u(t), ṽ

(t+1)
i

)∥∥∥2 + 8γ3
uL

2
uτ

2
u(τu − 1)σ2

u

≤ 16γ3
uL

2
uτu(τu − 1)

n

(
δ2 + ρ2Et

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2)+ 8γ3
uL

2
uτ

2
u(τu − 1)σ2

u .

Plugging this back in, we get,

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t+1)

)]

≤ −γuτu
8

Et[∆̃
(t)
u ] +

Luγ
2
uτ

2
u

m

(
σ2
u + 2δ2(1−m/n)

)
+ 4γ2

vτ
2
vLvσ

2
vχ

2(1−m/n)

+ 8γ2
vτ

2
vLvχ

2(1−m/n)∆(t)
v + 8γ2

uL
3
uτ

2
u(τu − 1)(σ2

u + 2δ2u) .

Note that we used 128γ2
uL

2
uτu(τu − 1)ρ2 ≤ 1, which is implied by 24Luγuτu(1 + ρ2) ≤ 1.

Bound with the Virual Iterates. We plug this analysis of the u-step and Claim 9 for the v-step into (13) next. We also
simplify some coefficients using 128γvτvLvχ

2(n/m− 1) ≤ 1. This gives us

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)]
≤ − γuτu

8
Et[∆̃

(t)
u ]− γvτvm

16n
Et[∆

(t)
v ] + 4γ2

vLvτ
2
vσ

2
v

(m
n

+ χ2(1−m/n)
)

+
γ2
uLuτ

2
u

m

(
σ2
u + 2δ2(1−m/n)

)
+ 8γ3

uL
2
uτ

2
u(τu − 1)(σ2

u + 2δ2) +
4γ3

vL
2
vτ

2
v (τv − 1)σ2

vm

n
.

Taking an unconditional expectation, summing it over t = 0 to T − 1 and rearranging this gives

1

T

T−1∑
t=0

(γuτu
8

E[∆̃(t)
u ] +

γvτvm

16n
E[∆(t)

v ]
)

(14)

≤ ∆F0

T
+ 4γ2

vLvτ
2
vσ

2
v

(m
n

+ χ2(1−m/n)
)
+

γ2
uLuτ

2
u

m

(
σ2
u + 2δ2(1−m/n)

)
+ 8γ3

uL
2
uτ

2
u(τu − 1)(σ2

u + 2δ2) +
4γ3

vL
2
vτ

2
v (τv − 1)σ2

vm

n
.

This is a bound in terms of the virtual iterates Ṽ (t+1). However, we wish to show a bound in terms of the actual iterate V (t).

Obtaining the Final Bound. It remains now to relate ∆̃(t)
u with ∆

(t)
u . Using the Cauchy-Schwartz inequality and smoothness,

we have,

Et

∥∥∥∇uF
(
u(t), V (t)

)
−∇uF

(
u(t), Ṽ (t+1)

)∥∥∥2
≤ 1

n

n∑
i=1

Et

∥∥∥∇uFi

(
u(t), v

(t)
i

)
−∇uFi

(
u(t), ṽ

(t+1)
i

)∥∥∥2
≤ χ2LuLv

n

n∑
i=1

Et

∥∥∥ṽ(t+1)
i − v

(t)
i

∥∥∥2
≤ χ2LuLv

n

n∑
i=1

(
16γ2

vτ
2
v

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 + 8γ2
vτ

2
vσ

2
v

)
= 8γ2

vτ
2
vσ

2
vχ

2LuLv + 16γ2
vτ

2
vχ

2LuLv∆
(t)
v ,
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where the last inequality followed from Lemma 23. Using∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 ≤ 2
∥∥∥∇uF

(
u(t), V (t)

)
−∇uF

(
u(t), Ṽ (t+1)

)∥∥∥2 + 2
∥∥∥∇uF

(
u(t), Ṽ (t+1)

)∥∥∥2 ,
we get,

E[∆(t)
u ] ≤ 2E[∆̃(t)

u ] + 16γ2
vτ

2
vσ

2
vχ

2LuLv + 32γ2
vτ

2
vχ

2LuLv E[∆(t)
v ] .

Therefore, we get,

γuτu
16

E[∆(t)
u ] +

γvτvm

32n
E[∆(t)

v ]

≤ γuτu
8

E[∆̃(t)
u ] +

γvτvm

16n

(
1

2
+

32η2χ2m

n

)
E[∆(t)

v ] + γuτuγ
2
vτ

2
vσ

2
vχ

2LuLv

≤ γuτu
8

E[∆̃(t)
u ] +

γvτvm

16n
E[∆(t)

v ] + γuτuγ
2
vτ

2
vσ

2
vχ

2LuLv ,

where we used 32η2χ2m
n ≤ 1/2, which is one of the conditions we assume on η.

Summing this up and plugging in (14) gives

1

T

T−1∑
t=0

(γuτu
16

E[∆(t)
u ] +

γvτvm

32n
E[∆(t)

v ]
)

≤ 1

T

T−1∑
t=0

(γuτu
8

E[∆̃(t)
u ] +

γvτvm

16n
E[∆(t)

v ]
)
+ γuτuγ

2
vτ

2
vσ

2
vχ

2LuLv

≤ ∆F0

T
+ 4γ2

vLvτ
2
vσ

2
v

(m
n

+ χ2(1−m/n)
)
+

γ2
uLuτ

2
u

m

(
σ2
u + 2δ2(1−m/n)

)
+ 8γ3

uL
2
uτ

2
u(τu − 1)(σ2

u + 2δ2) +
4γ3

vL
2
vτ

2
v (τv − 1)σ2

vm

n
+ γuτuγ

2
vτ

2
vσ

2
vχ

2LuLv .

Plugging in γu = η/(Luτu) and γv = η/(Lvτv) completes the proof.

The analysis of each of the terms in the u-step is given in the following claims.

Claim 6 (Bounding T1,u). We have,

Et [T1,u] ≤ −
γuτu
2

Et

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2 + γuL
2
u

n

n∑
i=1

τu−1∑
k=0

Et

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 .
Proof. For i ∈ S(t), we have that ũ(t)

i,k = u
(t)
i,k. Therefore, we have,

Et[T1,u] = −γuEt

〈
∇uF

(
u(t), Ṽ (t+1)

)
,
1

m

∑
i∈S(t)

τu−1∑
k=0

∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
i

)〉
.

Using that ũ(t)
i,k is independent of S(t), we get,

Et[T1,u] = −γuEt

〈
∇uF

(
u(t), Ṽ (t+1)

)
,
1

n

n∑
i=1

τu−1∑
k=0

∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
i

)〉

= − γuτuEt

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2
− γu

τu−1∑
k=0

Et

〈
∇uF

(
u(t), Ṽ (t+1)

)
,
1

n

n∑
i=1

∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
)
−∇uFi

(
u(t), ṽ(t+1)

)〉

Invoking ⟨x, y⟩ ≤ ∥x∥2/2 + ∥y∥2/2 for vectors x, y followed by smoothness completes the proof.
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Claim 7 (Bounding T2,u). We have,

Et [T2,u] ≤ 3Luγ
2
uτ

2
u

(
1 +

2ρ2

m
(1−m/n)

)
Et

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2
+

3L2
uγ

2
uτu

n

n∑
i=1

τu−1∑
k=0

Et

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + 6Luγ
2
uτ

2
uδ

2

m
(1−m/n) .

Proof. We use E∥z∥2 = ∥E[z]∥2 +E∥z −E[z]∥2 for a random vector z to get

Et[T2,u] ≤
Luγ

2
uτ

2
uσ

2
u

m
+ Luγ

2
uτu

τu−1∑
k=0

Et

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
i

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:T ′

k

.

We break the term T ′
k as

T ′
k ≤ 3

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

(
∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
i

)
−∇uFi

(
u(t), ṽ

(t+1)
i

))∥∥∥∥∥∥
2

+ 3

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
u(t), ṽ

(t+1)
i

)
−∇uF

(
u(t), Ṽ (t+1)

)∥∥∥∥∥∥
2

+ 3
∥∥∥∇uF

(
u(t), Ṽ (t+1)

)∥∥∥2 .
For the first term, we use Jensen’s inequality to take the squared norm inside the sum, then use smoothness and take an
expectation over the sampling of devices to get

Et

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

(
∇uFi

(
ũ
(t)
i,k, ṽ

(t+1)
i

)
−∇uFi

(
u(t), ṽ

(t+1)
i

))∥∥∥∥∥∥
2

≤ L2
u

n

n∑
i=1

Et

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 .
For the second term, we use the fact that S(t) was sampled without replacement (cf. Lemma 21) and invoke the gradient
diversity assumption (Assumption 3′) to get,∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
u(t), ṽ

(t+1)
i

)
−∇uF

(
u(t), Ṽ (t+1)

)∥∥∥∥∥
2

≤
(
n−m

n− 1

)
1

mn

n∑
i=1

∥∥∥∇uFi

(
u(t), ṽ

(t+1)
i

)
−∇uF

(
u, Ṽ (t+1)

)∥∥∥2
≤ 2

m

(
1− m

n

)(
δ2 + ρ2Et

∥∥∥∇uF
(
u(t), Ṽ (t+1)

)∥∥∥2) .

To complete the proof, we plug these terms back into the definition of T ′
k and Et[T2,u] to complete the proof.

Claim 8 (Bounding T3,u). We have,

Et [T3,u] ≤ 8γ2
vτ

2
vLvχ

2
(
1− m

n

)
∆(t)

v + 4χ2γ2
vτ

2
vLvσ

2
v

(
1− m

n

)
.

Proof. Since v
(t+1)
i = ṽ

(t+1)
i for i ∈ S(t), we have that

T3,u =
χ2Lv

2n

∑
i/∈S(t)

∥∥∥ṽ(t+1)
i − v

(t)
i

∥∥∥2 .
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Since
∥∥∥ṽ(t+1)

i − v
(t)
i

∥∥∥2 is independent of S(t), we can take an expectation to get

Et[T3,u] =
χ2Lv

2n

n∑
i=1

P(i /∈ S(t))Et

∥∥∥ṽ(t+1)
i − v

(t)
i
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=

χ2Lv
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(
1− m

n

) n∑
i=1

Et
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i − v

(t)
i

∥∥∥2 .
Plugging in Lemma 23 completes the proof.

The analysis of the v-step is given in the next result.
Claim 9. Consider the setting of Theorem 3 and assume that γvτvLv ≤ 1/8. We have,

Et

[
F
(
u(t), V (t+1)

)
− F

(
u(t), V (t)

)]
≤ −γvτvm∆
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v
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2
vLvσ

2
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+

4γ3
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2
v (τv − 1)σ2
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n
.

Proof. From smoothness, we get,
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(
u(t), ṽ
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)
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〈
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.

We bound the first term as

Et[T1,v] = −γvEt
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(t)
i,k

)
−∇vFi

(
u(t), v

(t)
i

)∥∥∥2
≤ −γvτv

2

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 + γvL
2
v

2

τv−1∑
k=0
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Next, we observe that

Ez∥Gi,v(u, vi, z)∥2 = ∥∇vFi(u, vi)∥2 +Ez∥Gi,v(u, vi, z)−∇vFi(u, vi)∥2 ≤ ∥∇vFi(u, vi)∥2 + σ2
v .

We invoke this inequality to handle the second term as
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Algorithm 5 FedSim: Simultaneous update of shared and personal parameters

1: Input: Initial iterates u(0), V (0), Number of communication rounds T , Number of devices per round m, Number of
local updates τ , Local step sizes γu, γv .

2: for t = 0, 1, · · · , T − 1 do
3: Sample m devices from [n] without replacement in S(t)

4: for each selected device i ∈ S(t) in parallel do
5: Initialize v

(t)
i,0 = v

(t)
i and u

(t)
i,0 = u(t)

6: for k = 0, · · · , τ − 1 do
7: // Update all parameters jointly
8: Sample data z

(t)
i,k ∼ Di

9: v
(t)
i,k+1 = v

(t)
i,k − γvGi,v(u

(t)
i,k, v

(t)
i,k, z

(t)
i,k)

10: u
(t)
i,k+1 = u

(t)
i,k − γuGi,u(u

(t)
i,k, v

(t)
i,k, z

(t)
i,k)

11: Update v
(t+1)
i = v

(t)
i,τ and u

(t+1)
i = u

(t)
i,τ

12: Update u(t+1) =
∑

i∈S(t) αiu
(t+1)
i /

∑
i∈S(t) αi at the server with secure aggregation

13: return u(T ), v
(T )
1 , · · · , v(T )

n

Plugging these bounds for T1,v and T2,v into the initial smoothness bound and using γvLvτv ≤ 1/4 gives

Et

[
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(
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)
− Fi
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i

) ]
≤
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4
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2
vσ

2
v

2
.

We invoke Lemma 22 to bound the
∑

k Et∥ṽ(t)i,k − v
(t)
i ∥2 term, which is also known as client drift. We simplify some

coefficients using 8γvτvLv ≤ 1 to get

Et

[
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(
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i

)
− Fi

(
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(t)
i

) ]
≤

− γvτv
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(
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i

)∥∥∥2 + γ2
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2
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2
v

2
+ 4γ3

vLvτ
2
v (τv − 1)σ2

v .

It remains to invoke that S(t) is a uniformly random sample of m devices from {1, · · · , n} and that ṽ(t+1)
i is independent of

S(t). To this end, note that

Et

[
F
(
u(t), V (t+1)

)
− F

(
u(t), V (t)

)]
=

m

n
Et

 1

m

∑
i∈S(t)

Fi

(
u(t), ṽ
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i

)
− Fi

(
u(t), v
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≤ m
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Et

[
Fi

(
u(t), ṽ
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i

)
− Fi

(
u(t), v

(t)
i

)]
.

Plugging in the previous bound completes the proof.

Remark 10. We only invoked the partial gradient diversity assumption (Assumption 3) at (virtual) iterates (u(t), Ṽ (t+1));
therefore, it suffices if the assumption only holds at iterates (u(t), Ṽ (t+1)) generated by FedAlt, rather than at all (u, V ).

A.4. Convergence Analysis of FedSim

We give the full form of FedSim in Algorithm 5 for the general case of unequal αi’s but focus on αi = 1/n for the analysis.
Theorem 2 of the main paper is a simplification of Corollary 12 below, which in turn is proved based on Theorem 11.

Throughout this section, we use constants

σ2
sim,1 = (1 + χ2)

(
δ2

Lu

(
1− m

n

)
+

σ2
u

Lu
+

σ2
vm

Lvn

)
, and , σ2

sim,2 = (1 + χ2)

(
δ2

Lu
+

σ2
u

Lu
+

σ2
v

Lv

)
(1− τ−1) .
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Theorem 11 (Convergence of FedSim). Suppose Assumptions 1′, 2′ and 3′ hold and the learning rates in FedSim are
chosen as γu = η/(Luτ) and γv = η/(Lvτ) with

η ≤ min

{
1

12(1 + χ2)(1 + ρ2)
,

√
m/n

196(1− τ−1)(1 + χ2)(1 + ρ2)

}
.

Then, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ η σ2

sim,1 + η2 σ2
sim,2 .

Before proving the theorem, we give the following corollary with optimized learning rates.

Corollary 12 (Final Rate of FedSim). Consider the setting of Theorem 11 and let the total number of rounds T be known
in advance. Suppose we set the learning rates γu = η/(τLu) and γv = η/(τLv), where (ignoring absolute constants),

η =

(
∆F0

T σ2
sim,1

)1/2∧(
∆F 2

0

T 2 σ2
sim,2

)1/3∧ 1

(1 + χ2)(1 + ρ2)

∧√
m/n

(1− τ−1)(1 + χ2)(1 + ρ2)
.

We have, ignoring absolute constants,

1

T

T−1∑
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(
1

Lu
E
∥∥∥∇uF

(
u(t), V (t)

)∥∥∥2 + m

Lvn2
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E
∥∥∥∇vFi

(
u(t), v

(t)
i
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(
∆F0 σ

2
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√
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(
∆F 2

0 σ2
sim,2

)1/3
T 2/3

+
∆F0(1 + χ2)(1 + ρ2)

T
+

∆F0

√
n
m (1− τ−1)(1 + χ2)(1 + ρ2)

T
.

Proof. The proof follows from invoking Lemma 25 on the bound of Theorem 11.

Remark 13 (Asymptotic Rate). The asymptotic 1/
√
T rate of Theorem 2 is achieved when the 1/T term is dominated by

the 1/
√
T term. This happens when (ignoring absolute constants)

T ≥ ∆F0(1 + χ2)(1 + ρ2)

σ2
sim,1

max
{
(1− τ−1)

n

m
, (1 + χ2)(1 + ρ2)

}
.

Note that T ≥ Ω(n/m) is necessary for each device to be seen at least once on average, or the personal parameters of
some devices will never be updated.

We now prove Theorem 11.

Proof of Theorem 11. The proof mainly applies the smoothness upper bound to write out a descent condition with suitably
small noise terms. We start with some notation.

Notation. Let F (t) denote the σ-algebra generated by
(
u(t), V (t)

)
and denote Et[·] = E[·|F (t)]. For all devices, including

those not selected in each round, we define virtual sequences ũ(t)
i,k, ṽ

(t)
i,k as the SGD updates in Algorithm 5 for all devices

regardless of whether they are selected. For the selected devices k ∈ S(t), we have
(
u
(t)
i,k, v

(t)
i,k

)
=
(
ũ
(t)
i,k, ṽ

(t)
i,k

)
. Note now

that the random variables ũ(t)
i,k, ṽ

(t)
i,k are independent of the device selection S(t). The updates for the devices i ∈ S(t) are

given by

v
(t+1)
i = v

(t)
i − γv

τ−1∑
k=0

Gi,v

(
ũ
(t)
i,k, ṽ

(t)
i,k, z

(t)
i,k

)
,
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and the server update is given by

u(t+1) = u(t) − γu
m

∑
i∈S(t)

τ−1∑
k=0

Gi,u

(
ũ
(t)
i,k, ṽ

(t)
i,k, z

(t)
i,k

)
. (15)

Proof Outline. We use the smoothness of Fi, more precisely Lemma 20, to obtain

F
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)
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〈
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2

∥∥∥u(t+1) − u(t)
∥∥∥2︸ ︷︷ ︸

T2,u

+
1

n

n∑
i=1

Lv(1 + χ2)

2

∥∥∥v(t+1)
i − v

(t)
i

∥∥∥2︸ ︷︷ ︸
T2,v

.

(16)

Our goal will be to bound each of these terms to get a descent condition from each step of the form

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)]
≤ −γuτ

8

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 − γvτm

8n2

n∑
i=1

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 +O(γ2
u + γ2

v) ,

where the O(γ2
u + γ2

v) terms are controlled using the bounded variance and gradient diversity assumptions. Telescoping this
descent condition gives the final bound.

Main Proof. Towards this end, we prove non-asymptotic bounds on each of the terms T1,v, T1,u, T2,v and T2,u, in Claims
14 to 17 respectively. We then invoke them to get the bound

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)]
≤ −γuτ

4
∆(t)

u −
γvτm

4n
∆(t)

v

+
Lu(1 + χ2)γ2

uτ
2

2

(
σ2
u +

12δ2

m
(1−m/n)

)
+

Lv(1 + χ2)γ2
vτ

2σ2
vm

2n

+
2

n

n∑
i=1

τ−1∑
k=0

Et

∥∥∥u(t)
i,k − u(t)

∥∥∥2 (L2
uγu +

m

n
χ2LuLvγv

)
+

2

n

n∑
i=1

τ−1∑
k=0

Et

∥∥∥v(t)i,k − v(t)
∥∥∥2 (m

n
L2
vγv + χ2LuLvγu

)
.

(17)

Note that we simplified some constants appearing on the gradient norm terms using

γu ≤
(
12Lu(1 + χ2)(1 + ρ2)τ

)−1
and γv ≤

(
6Lv(1 + χ2)τ

)−1
.

Our next step is to bound the last two lines of (17) with Lemma 18 and invoke the gradient diversity assumption (Assump-
tion 3′) as

1

n

n∑
i=1

∥∥∥∇uFi

(
u(t), v

(t)
i

)∥∥∥2 ≤ δ2 + (1 + ρ2)
∥∥∥∇uF

(
u(t), V (t)

)∥∥∥2 .
This gives, after plugging in the learning rates and further simplifying the constants,

Et

[
F
(
u(t+1), V (t+1)

)
− F

(
u(t), V (t)

)]
≤− c∆

(t)
u

8Lu
− cm∆

(t)
v

8Lvn
+ c2(1 + χ2)

(
σ2
u

2Lu
+

mσ2
v

nLv
+

6δ2

Lum

(
1− m

n

))
+ c3(1 + χ2)(1− τ−1)

(
24δ2

Lu
+

4σ2
u

Lu
+

4σ2
v

Lu

)
.
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Taking full expectation, telescoping the series over t = 0, · · · , T − 1 and rearranging the resulting terms give the desired
bound in Theorem 11.

Claim 14 (Bounding T1,v). Let T1,v be defined as in (16). We have,

Et[T1,v] ≤ −
γvτm

2n2

n∑
i=1

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2
+

γvm

n

n∑
i=1

τ−1∑
k=0

Et

[
χ2LuLv

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + L2
v

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2] .

Proof. Define T1,v,i to be contribution of the ith term to T1,v . For i /∈ St, we have that T1,v,i = 0, since v
(t+1)
i = v

(t)
i . On

the other hand, for i ∈ S(t), we use the unbiasedness of the gradient estimator Gi,v and the independence of z(t)i,k from

u
(t)
i,k, v

(t)
i,k to get

Et [T1,v,i] = −γv
τ−1∑
k=0

Et

〈
∇vFi

(
u(t), v

(t)
i

)
,∇vFi

(
u
(t)
i,k, v

(t)
i,k

)〉
= −γv

τ−1∑
k=0

Et

〈
∇vFi

(
u(t), v

(t)
i

)
,∇vFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)〉
=− γvτ

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2
− γv

τ−1∑
k=0

Et

〈
∇vFi

(
u(t), v

(t)
i

)
,∇vFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇vFi

(
u(t), v

(t)
i

)〉
≤ −γvτ

2

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 + γv
2

τ−1∑
k=0

Et

∥∥∥∇vFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇vFi

(
u(t), v

(t)
i

)∥∥∥2 . (18)

For the second term, we add and subtract∇vFi

(
u(t), ṽ

(t)
i,k

)
and use smoothness to get

∥∥∥∇vFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇vFi

(
u(t), v

(t)
i

)∥∥∥2 ≤ 2χ2LuLv

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + 2L2
v

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2 . (19)

Since the right hand side of this bound is independent of St, we get,

Et[T1,v] =
m

n
Et

 1

m

∑
i∈S(t)

T1,v,i

 =
m

n2

n∑
i=1

Et[T1,v,i] ,

and plugging in (18) and (19) completes the proof.

Claim 15 (Bounding T1,u). Consider T1,u defined in (16). We have the bound,

Et[T1,u] ≤ −
γuτ

2

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2
+

γu
n

n∑
i=1

τ−1∑
k=0

Et

[
L2
u

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + χ2LuLv

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2] .
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Proof. Due to the independence of S(t) from ũ
(t)
i,k, ṽ

(t)
i,k, we have,

Et

[
u(t+1) − u(t)

]
= −γuEt

 1

m

∑
i∈S(t)

τ−1∑
k=0

∇uFi

(
u
(t)
i,k, v

(t)
i,k

)
= −γuEt

 1

m

∑
i∈S(t)

τ−1∑
k=0

∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
= −γu

n

n∑
i=1

τ−1∑
k=0

Et

[
∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)]
,

where the last equality took an expectation over S(t), which is independent of ũ(t)
i,k, ṽ

(t)
i,k. Now, using the same sequence of

arguments as Claim 14, we have,

Et

〈
∇uF

(
u(t), V (t)

)
, u(t+1) − u(t)

〉
= −γu

τ−1∑
k=0

Et

〈
∇uF

(
u(t), V (t)

)
,
1

n

n∑
i=1

∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)〉

≤ −γuτ

2

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 + γu
2

τ−1∑
k=0

Et

∥∥∥∥∥ 1n
n∑

i=1

∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇uF

(
u(t), V (t)

)∥∥∥∥∥
2

(∗)
≤ −γuτ

2

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 + γu
2n

n∑
i=1

τ−1∑
k=0

Et

∥∥∥∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇uFi

(
u(t), v

(t)
i

)∥∥∥2
≤ −γuτ

2

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2 + γu
n

n∑
i=1

τ−1∑
k=0

Et

[
L2
u

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + L2
uv

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2] ,

where the inequality (∗) follows from Jensen’s inequality as

∥∥∥∥∥ 1n
n∑

i=1

∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇uF

(
u(t), V (t)

)∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)
−∇uFi

(
u
(t)
i,k, v

(t)
)∥∥∥2 .

Claim 16 (Bounding T2,v). Consider T2,v as defined in (16). We have the bound,

Et[T2,v] ≤
3Lv(1 + χ2)γ2

vτ
2m

2n2

n∑
i=1

∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2 + Lv(1 + χ2)γ2
vτ

2mσ2
v

2n

+
3Lv(1 + χ2)γ2

vτm

2n2

n∑
i=1

τ−1∑
k=0

Et

[
L2
v

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2 + χ2LuLv

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2] .
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Proof. We start with

Et

∥∥∥ṽ(t)k,τ − v(t)
∥∥∥2 = γ2

vEt

∥∥∥∥∥
τ−1∑
k=0

Gi,v

(
ũ
(t)
i,k, ṽ

(t)
i,k, z

(t)
i,k

)∥∥∥∥∥
2

≤ γ2
vτ

τ−1∑
k=0

Et

∥∥∥Gi,v

(
ũ
(t)
i,k, ṽ

(t)
i,k, z

(t)
i,k

)∥∥∥2
≤ γ2

vτ
2σ2

v + γ2
vτ

τ−1∑
k=0

Et

∥∥∥∇vFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)∥∥∥2
≤ γ2

vτ
2σ2

v + 3γ2
vτ

2
∥∥∥∇vFi

(
u(t), v

(t)
i

)∥∥∥2
+ 3γ2

vτ

τ−1∑
k=0

Et

[
L2
v

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2 + χ2LuLv

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2] .

Using (a) v(t+1)
i = ṽ

(t)
i,τ for i ∈ S(t), and, (b) S(t) is independent from ũ

(t)
i,k, ṽ

(t)
i,k, we get,

Et[T2,v] =
Lv(1 + χ2)m

2n
Et

 1

m

∑
i∈S(t)

∥∥∥ṽ(t)i,τ − v
(t)
i

∥∥∥2


≤ Lv(1 + χ2)m

2n2

n∑
i=1

Et

∥∥∥ṽ(t)i,τ − v
(t)
i

∥∥∥2
Plugging in the bound Et

∥∥∥ṽ(t)i,τ − v(t)
∥∥∥2 completes the proof.

Claim 17 (Bounding T2,u). Consider T2,u as defined in (16). We have,

Et[T2,u] ≤
Lu(1 + χ2)γ2

uτ
2

2m

(
σ2
u + 12δ2

(
1− m

n

))
+ 3Lu(1 + χ2)γ2

uτ
2(1 + ρ2)

∥∥∥∇uFi

(
u(t), V (t)

)∥∥∥2
+

3Lu(1 + χ2)γ2
uτ

2n

n∑
i=1

τ−1∑
k=0

Et

[
L2
u

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + χ2LuLv

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2] .

Proof. We proceed with the first two inequalities as in the proof of Claim 16 to get

Et

∥∥∥u(t+1) − u(t)
∥∥∥2 ≤ γ2

uτ
2σ2

u

m
+ γ2

uτ

τ−1∑
k=0

Et

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
ũ
(t)
i,k, ṽ

(t)
i,k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
=:T3,j

.

For T3,j , (a) we add and subtract ∇uF (u(t), V (t)) and ∇uFi(u
(t), ṽ

(t)
i,k), (b) invoke the squared triangle inequality, and, (c)

use smoothness to get

T3,j =6Et

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
u(t), v

(t)
i

)
−∇uF

(
u(t), V (t)

)∥∥∥∥∥∥
2

+ 6
∥∥∥∇uF

(
u(t), V (t)

)∥∥∥2

+ 3Et

 1

m

∑
i∈S(t)

(
L2
u

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + χ2LuLv

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2)




Federated Learning with Partial Model Personalization

For the first term, we use the fact that S(t) is obtained by sampling without replacement to apply Lemma 21 together with
the gradient diversity assumption to get

Et

∥∥∥∥∥∥ 1

m

∑
i∈S(t)

∇uFi

(
u(t), v

(t)
i

)
−∇uF

(
u(t), V (t)

)∥∥∥∥∥∥
2

≤ 1

m

(
n−m

n− 1

)
1

n

n∑
i=1

∥∥∥∇uFi

(
u(t), v

(t)
i

)
−∇uF

(
u(t), V (t)

)∥∥∥2
≤ 1

m

(
n−m

n− 1

)(
δ2 + ρ2

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2) .

Therefore,

T3,j =
12δ2

m

(
1− m

n

)
+ 6(1 + ρ2)

∥∥∥∇uF
(
u(t), V (t)

)∥∥∥2
+

3

n

n∑
i=1

Et

[
L2
u

∥∥∥ũ(t)
i,k − u(t)

∥∥∥2 + χ2LuLv

∥∥∥ṽ(t)i,k − v
(t)
i

∥∥∥2] ,

where we also used the independence between S(t) and (ũ
(t)
i,k, ṽ

(t)
i,k). Plugging this into the expression for Et∥u(t+1)−u(t)∥2

completes the proof.

Lemma 18. Let Fi satisfy Assumptions 1′-3′, and consider the iterates

uk+1 = uk − γuGi,u(uk, vk, zk) , and, vk+1 = vk − γvGi,v(uk, vk, zk) ,

for k = 0, · · · , τ − 1, where zk ∼ Di. Suppose the learning rates satisfy γu = cu/(τLu) and γv = cv/(τLv) with
cu, cv ≤ 1/

√
6max{1, χ−2}. Further, define,

A = γuL
2
u + fχ2γvLuLv , and, B = fγvL

2
v + χ2γuLuLv ,

where f ∈ (0, 1] is given. Then, we have the bound,

τ−1∑
k=0

E
[
A∥uk − u0∥2+B∥vk − u0∥2

]
≤ 4τ2(τ − 1)

(
γ2
uσ

2
uA+ γ2

vσ
2
vB
)

+ 12τ2(τ − 1)
(
γ2
uA∥∇uFi(u0, v0)∥2 + γ2

vB∥∇vFi(u0, v0)∥2
)
.

Proof. If τ = 1, there is nothing to prove, so we assume τ > 1. Let ∆k := A∥uk − u0∥2 +B∥vk − v0∥2 and denote by
Fk the sigma-algebra generated by (wk, vk). Further, let Ek[·] = E[·|Fk]. We use the inequality 2αβ ≤ α2/δ2 + δ2β2 for
reals α, β, δ to get,

Ek∥uk+1 − u0∥2 ≤
(
1 +

1

τ − 1

)
∥uk − u0∥2 + τγ2

uEk∥Gi,u(uk, vk, zk)∥2

≤
(
1 +

1

τ − 1

)
∥uk − u0∥2 + τγ2

uσ
2
u + τγ2

u∥∇uFi(uk, vk)∥2

≤
(
1 +

1

τ − 1

)
∥uk − u0∥2 + τγ2

uσ
2
u + 3τγ2

u∥∇uFi(u0, v0)∥2

+ 3τγ2
uL

2
u∥uk − u0∥2 + 3τγ2

uLuv∥vk − v0∥2 ,

where the last inequality followed from the squared triangle inequality (from adding and subtracting ∇uFi(u0, vk) and
∇uFi(u0, v0)) followed by smoothness. Together with the analogous inequality for the v-update, we get,

Ek[∆k+1] ≤
(
1 +

1

τ − 1

)
∆k +A′∥uk − u0∥2 +B′∥vk − v0∥2 + C ,
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where we have

A′ = 3τ(γ2
uL

2
uA+ γ2

vχ
2LuLvB), and, B′ = 3τ(γ2

vL
2
vB + γ2

uχ
2LuLvA) and,

C ′ = τγ2
uσ

2
uA+ τγ2

vσ
2
vB + 3τγ2

uA∥∇uFi(u0, v0)∥2 + 3τγ2
vB∥∇vFi(u0, v0)∥2 .

Next, we apply Lemma 24 to get that A′ ≤ A/τ and B′ ≤ B/τ under the assumed conditions on the learning rates; this
allows us to write the right hand side completely in terms of ∆k and unroll the recurrence. The intuition behind Lemma 24 is
as follows. Ignoring the dependence on τ, Lu, Lv, χ for a moment, if γu and γv are both O(η), then A′, B′ are both O(η3),
while A and B are O(η). Thus, making η small enough should suffice to get A′ ≤ O(A) and B′ ≤ O(B).

Concretely, Lemma 24 gives

Ek[∆k+1] ≤
(
1 +

2

τ − 1

)
E[∆k] + C ,

and unrolling this recurrence gives for k ≤ τ − 1

E[∆k] ≤
k−1∑
j=0

(
1 +

2

τ − 1

)j

C ≤ τ − 1

2

(
1 +

2

τ − 1

)k

C

≤ τ − 1

2

(
1 +

2

τ − 1

)τ−1

C ≤ e2

2
(τ − 1)C ,

where we used (1 + 1/α)α ≤ e for all α > 0. Summing over k and using the numerical bound e2 < 8 completes the
proof.

Remark 19. We only invoked the partial gradient diversity assumption (Assumption 3) at iterates (u(t), V (t)); therefore, it
suffices if the assumption only holds at iterates (u(t), V (t)) generated by FedSim, rather than at all (u, V ).

A.5. Technical Lemmas

The first lemma involves smoothness of two blocks of variables; we use this in the proof of FedSim.
Lemma 20 (Block Smoothness). Suppose Fi : Rd × Rdi satisfy Assumption 1′. Then, it holds that

Fi(w
′, v′i)− Fi(w, vi) ≤⟨∇wFi(w, vi), w

′ − w⟩+ ⟨∇vFi(w, vi), v
′
i − vi⟩

+
Lw

2
(1 + χ2)∥w′ − w∥2 + Lv

2
(1 + χ2)∥v′i − vi∥2 .

Proof. Using the Lw-smoothness of F (·, v′i) and the Lv-smoothness of F (w, ·), we have

Fi(w
′, v′i)− Fi(w, v

′
i) ≤ ⟨∇wFi(w, v

′
i), w

′ − w⟩+ Lw

2
∥w′ − w∥2,

Fi(w, v
′
i)− Fi(w, vi) ≤ ⟨∇wFi(w, vi), v

′
i − vi⟩+

Lv

2
∥v′i − vi∥2.

Summing the above two inequalities together gives

Fi(w
′, v′i)− Fi(w, vi) ≤⟨∇wFi(w, v

′
i), w

′ − w⟩+ ⟨∇vFi(w, vi), v
′
i − vi⟩

+
Lw

2
∥w′ − w∥2 + Lv

2
∥v′i − vi∥2 . (20)

We can bound the first inner product term on the right-hand side of the above inequality as

⟨∇wFi(w, v
′
i), w

′ − w⟩ = ⟨∇wFi(w, vi), w
′ − w⟩+ ⟨∇wFi(w, v

′
i)−∇wFi(w, vi), w

′ − w⟩
≤ ⟨∇wFi(w, vi), w

′ − w⟩+ ∥∇wFi(w, v
′
i)−∇wFi(w, vi)∥∥w′ − w∥

≤ ⟨∇wFi(w, vi), w
′ − w⟩+ Lwv∥v′i − vi∥∥w′ − w∥

≤ ⟨∇wFi(w, vi), w
′ − w⟩+ χ

√
LwLv∥v′i − vi∥∥w′ − w∥

≤ ⟨∇wFi(w, vi), w
′ − w⟩+ χ2Lv

2
∥v′i − vi∥2 + χ2Lw

2
∥w′ − w∥2,



Federated Learning with Partial Model Personalization

where the first inequality is due to Cauchy-Schwarz, the second inequality is due to Lwv-Lipschitz property of ∇wFi(w, ·),
the third inequality is due to the definition of χ in (5), and the last inequality is due to Young’s inequality. Substituting the
above inequality into (20) yields the desired result.

Next, we have the variance of sampling without replacement. Note the correction factor of (n−m)/(n− 1) over sampling
with replacement. We include the elementary proof for completeness.

Lemma 21 (Sampling Without Replacement). Let a1, · · · , an ∈ Rd be given. Let S be a uniformly random sample of size
m from this collection, where the sampling is without replacement. Denoting the mean ā =

∑n
i=1 ai/n, we have,

ES

∥∥∥∥∥ 1

m

∑
i∈S

ai − ā

∥∥∥∥∥
2

≤
(
n−m

n− 1

)
1

m

(
1

n

n∑
i=1

∥ai − ā∥2
)

.

Proof. The statement is trivially true if m = 1 or m = n. Therefore, we assume now that 2 ≤ m ≤ n− 1. Further, without
loss of generality, we assume that ā = 0. Finally, let S denote the set of all subsets of [n] of size m. Note that |S| =

(
n
m

)
.

We now have,

ES

∥∥∥∥∥ 1

m

∑
i∈S

ai

∥∥∥∥∥
2

=
1

m2
(
n
m

) ∑
S∈S

∑
i∈S

∥ai∥2 +
∑

i,j∈S: i̸=j

⟨ai, aj⟩

 .

For the first term, we have, ∑
S∈S

∑
i∈S

∥ai∥2 =

n∑
i=1

∑
S∈S : i∈S

∥ai∥2 =

(
n− 1

m− 1

) n∑
i=1

∥ai∥2 .

Likewise, for the second term, we use
∑

j ̸=i aj = −ai to get,

∑
i,j∈S: i ̸=j

⟨ai, aj⟩ =
n∑

i=1

∑
j ̸=i

∑
S∈S : i,j∈S

⟨ai, aj⟩ =
(
n− 2

m− 2

) n∑
i=1

∑
j ̸=i

⟨ai, aj⟩ = −
(
n− 2

m− 2

) n∑
i=1

∥ai∥2 .

Therefore, we get,

ES

∥∥∥∥∥ 1

m

∑
i∈S

ai

∥∥∥∥∥
2

=

(
n−1
m−1

)
−
(
n−2
m−2

)
m2
(
n
m

) n∑
i=1

∥ai∥2 =

(
n−2
m−1

)
m2
(
n
m

) n∑
i=1

∥ai∥2 =
n−m

mn(n− 1)

n∑
i=1

∥ai∥2 .

The next two lemmas are about the effect of the local updates in the local SGD literature. The first lemma has also appeared
in (Karimireddy et al., 2020); we give the proof for completeness.

Lemma 22. Consider f : Rd → R which is L-smooth and fix a w(0) ∈ Rd. Define the sequence (w(t)) of iterates produced
by stochastic gradient descent with a fixed learning rate γ starting from w(0):

w(t+1) = w(t) − γg(t) ,

where g(t) is an unbiased (and independent of w) estimator of∇f(w) with bounded variance σ2. Fix a number τ of steps.
If γ ≤ (

√
2τL)−1, we have the bound

τ−1∑
t=0

∥w(t) − w(0)∥2 ≤ 8γ2τ2(τ − 1)∥∇f(w(0))∥2 + 4γ2τ2(τ − 1)σ2 .

Proof. If τ = 1, we have nothing to prove. Assume now that τ ≥ 2. Let F (t) be the sigma-algebra generated by w(t) and
denote Et[·] = E[· |F (t)]. We will use the inequality

Et

∥∥∥g(t)∥∥∥2 = Et

∥∥∥g(t) −∇f(w(t))
∥∥∥2 + ∥∥∥∇f(w(t))

∥∥∥2 ≤ σ2 +
∥∥∥∇f(w(t))

∥∥∥2 . (21)
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We now successively deduce,

Et∥w(t+1) − w(0)∥2 = ∥w(t) − w(0) − γg(t)∥2

(a)

≤
(
1 +

1

τ − 1

)
∥w(t) − w(0)∥2 + γ2τEt∥g(t)∥2

(b)

≤
(
1 +

1

τ − 1

)
∥w(t) − w(0)∥2 + 2γ2τ∥∇f(w(t))−∇f(w(0))∥2 + 2γ2τ∥∇f(w(0))∥2 + γ2τσ2

(c)

≤
(
1 +

1

τ − 1
+ 2γ2τL2

)
∥w(t) − w(0)∥2 + 2γ2τ∥∇f(w(0))∥2 + γ2τσ2

(d)

≤
(
1 +

2

τ − 1

)
∥w(t) − w(0)∥2 + 2γ2τ∥∇f(w(0))∥2 + γ2τσ2 .

Above, we used (a) the inequality 2αβ ≤ α2/δ2 + δ2β2 for reals α, β, δ, (b) Eq. (21), (c) L-smoothness of f , and, (d) the
condition on the learning rate.

Let C = 2γ2τ∥∇f(w(0))∥2 + γ2τσ2. Unrolling the inequality and summing up the series gives for all t ≤ τ − 1

∥w(t) − w(0)∥2 ≤ C
t−1∑
j=0

(
1 +

2

τ − 1

)j

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)t

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)τ−1

≤ C

2
(τ − 1)e2 ,

where we used the bound (1 + 1/α)α ≤ e for all α > 0. Summing over t and using the numerical bound e2 < 8 completes
the proof.

Lemma 23. Consider the setting of Lemma 22. If γ ≤ (2τL)−1, we have the bound

∥w(τ) − w(0)∥2 ≤ 16γ2τ2∥∇f(w(0))∥2 + 8γ2τ2σ2 .

Proof. Proceeding similar to the last proof (expect using δ = τ ) gives us

Et

∥∥∥w(t+1) − w(0)
∥∥∥2 ≤ (1 + 2

τ

)∥∥∥w(t) − w(0)
∥∥∥2 + 4γ2τ

∥∥∥∇f(w(0))
∥∥∥2 + 2γ2τσ2 .

Unrolling and summing up the sequence completes the proof, similar to that of Lemma 22.

The next lemma is about bounding constants.
Lemma 24. Let γu, γv, Lw, Lv, χ, f ∈ R+ and a natural number τ be given. Denote

A := γuL
2
u + fγvχ

2LuLv , and, B := fγvL
2
v + γuχ

2LuLv .

Suppose γu = cu/(τLu) and γv = cv/(τLv) with cu, cv > 0 satisfying

cu, cv ≤
1√
6
max{1, χ−2} .

Then, we have that

γ2
vχ

2LuLvB + γ2
uL

2
uA ≤ A/(3τ2) , and, γ2

uχ
2LuLvA+ γ2

vL
2
vB ≤ B/(3τ2) .

Proof. Note that it suffices to show

3τ2χ2γ2
vLuLvB ≤ A/2 , and, 3τ2χ2γ2

uLuLvA ≤ B/2 .

Plugging in γu, γv , these are equivalent to

6χ2fc3v + 6χ4c2vcu ≤ χ2fcv + cu and, 6χ2c3u + 6χ4fcvc
2
u ≤ fcv + χ2cu .

The assumption on cv implies that 6χ2fc3v ≤ χ2fcv and 6χ4c2vcu ≤ cu. Therefore, the first condition holds. Similarly, the
second condition holds too.
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Figure 6. Distribution of number of training samples per device for each of the tasks considered in the experiments. For GLDv2, we do
not show the long right tail, where the maximum number of data points per device is 1000 (cf. Table 1).

The final lemma is about tuning the learning rate: the proof is elementary and is omitted.
Lemma 25. Consider the map φ : (0,Γ]→ R+ given by

φ(γ) =
A

γT
+Bγ + Cγ2 ,

where Γ, A,B,C > 0 are given. Then, we have,

φ(γ⋆) ≤ A

ΓT
+ 2

(
AB

T

)1/2

+ 2C1/3

(
A

T

)2/3

,

where γ⋆ is given by

γ⋆ = min

{
Γ,

√
A

BT
,

(
A

CT

)1/3
}

.

B. Experiments: Detailed Setup and Hyperparameters
We conduct our experiments on four datasets from three modalities, namely images, text, and speech. The datasets contain a
natural, non-i.i.d. split of data which is reflective of data heterogeneity encountered in federated learning. We describe in
detail the experimental setup and hyperparameters. The code to reproduce the experimental results will be publicly released.

The outline of this section is:

• §B.1 describes the tasks and their associated datasets and metrics.

• §B.2 describes the experimental pipeline as well as the baselines we compare to.

• §B.3 presents the hyperparameters of all the algorithms.

As discussed in §1, we take the weight αk to be proportional to the number of datapoints available on the device.

B.1. Datasets, Tasks and Models

We consider four tasks motivated by real-world applications of federated learning. The tasks are summarized in Table 1 of
the main paper and the distribution of data across the clients is visualized in Figure 6.

For each model, we consider three partial personalization architectures:

(a) Input layer personalization: Motivated by Liang et al. (2019), this architecture places the first layer on-device to learn
a personalized representation per-client, while the rest of the model is shared. For the next-word prediction transformer
model, we use the first transformer layer in place of the word embedding layer owing to its large size.

(b) Output layer personalization: Motivated by Collins et al. (2021), this architecture learns a shared global representation
but personalizes the prediction layer. For the next-word transformer model, we use the last transformer layer in place of
the last prediction layer owing to its large size. For the same reason, we use the second fully connected layer within the
final transformer block for the speech-to-text transformer.
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Table 5. Summary of partial personalization architectures for the transformer model for next word prediction.

Personalization Type Layer on-device # Personalized
Params.

# Shared
Params.

Input Layer 1st transformer block 0.8M 4.9M
Output Layer Last transformer block 0.8M 4.9M
Adapter Adapter modules 0.07M 5.7M

(c) Adapter personalization: We also consider a novel partial personalization architecture, where the full model is shared
among all clients, while each client adds personalized adapter modules, which are lightweight modules added between
layers of the shared model. We use the transformer adapters proposed by Houlsby et al. (2019) and residual adapters
proposed by Rebuffi et al. (2017).

B.1.1. STACKOVERFLOW FOR NEXT WORD PREDICTION

Dataset. The StackOverflow dataset comprises of questions and answers from the programming question-answer website
stackoverflow.com. The goal of the next word prediction task is to predict the next word given a partial sequence of words in
a question or answer. This task is a good open-source benchmark for next word predictions in mobile keyboards. We use the
StackOverflow dataset provided by TensorFlow Federated.

Client Distributions. Each client corresponds to one user on Stack Overflow; the data on the client corresponds to the
questions and answers posted by this user. We only consider clients with at least 100 training sequences and 10 testing
sequences, where a sequence refers to either a question or an answer. We use a fixed subsample of 1000 of them. Following
Reddi et al. (2021), we restrict the vocabulary to the top 10000 most frequently occurring words in the dataset. We pad and
truncate each sequence of each client to length 20 and consider at most 1000 training sequences on each client.

Model. We use a transformer model (Vaswani et al., 2017) commensurate in size with BERT Mini (Turc et al., 2019). It
has with 4 transformer blocks and 4 attention heads in each self-attention layer with a transformer hidden dimension of
256 and a fully-connected hidden dimension of 1024. The output layer is a causal language modeling head, i.e., a fully
connected layer which assigns a score for each possible vocabulary item, including the special tokens. The model has 6
million parameters, which require around 23 megabytes of memory.

Partial Personalization Architecture. The partial personalization architectures used are summarized in Table 5.

Loss Function and Evaluation Metric. We train the model with the causal language modeling objective. That is, for each
partial sequence, we treat the prediction of the next word as a multiclass classification problem to minimize the multinomial
logistic loss, also known as cross entropy loss. For evaluation, we use the top-1 accuracy of predicting words in the proper
10000-word vocabulary (i.e., ignoring special tokens such as padding, out-of-vocabulary, and beginning/end of sequence).

B.1.2. GLDV2 FOR VISUAL LANDMARK RECOGNITION

Dataset. GLDv2 stands for Google Landmarks Dataset v2 (Weyand et al., 2020), which is a large-scale image dataset. It
contains images of popular landmarks from around the world taken and uploaded by Wikipedia contributors. While the
images vary in size, the most common image size is 800× 600 pixels.

The goal of the visual landmark recognition task is to identify the landmark from its image. This task resembles a scenario
where smartphone users take photos of natural and architectural landmarks while traveling. We use the federated version of
the GLDv2 dataset introduced by Hsu et al. (2020) with 2028 landmarks and provided by TensorFlow Federated.

Client Distributions. Each client corresponds to one Wikipedia user and contains all the images contributed by that user.
We only all 823 clients with at least 50 datapoints. We do not use original test set from GLDv2 from evaluation as it comes
from different clients. Instead, we take 50% of the data on each client as a testing set.

Model. We use a ResNet-18 (He et al., 2016) model pretrained on ImageNet (Deng et al., 2009), with group normalization
instead of batch normalization (Hsieh et al., 2020). We resize all images to 224× 224. We use two data augmentations for
training: a random crop from 256× 256 and a random horizontal flip. The model has 12 million parameters, which require
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Table 6. Summary of partial personalization architectures for the ResNet-18 model for visual landmark recognition.

Personalization Type Layer on-device # Personalized
Params.

# Shared
Params.

Input Layer 1st conv. layer 0.01M 12.2M
Output Layer Last fully connected layer 1M 11.2M
Adapter Residual adapter modules 1.4M 12.2M

Table 7. Summary of partial personalization architectures for the ResNet-18 model for character recognition.

Personalization Type Layer on-device # Personalized
Params.

# Shared
Params.

Input Layer 1st conv. layer 0.7K 11.2M
Output Layer Last fully connected layer 0.03M 11.2M
Adapter Residual adapter modules 1.4M 11.2M

around 49 megabytes of storage.

Partial Personalization Architecture. The partial personalization architectures used are summarized in Table 6.

Loss Function and Evaluation Metric. We use the multinomial logistic loss, also known as cross entropy loss. We evaluate
the performance of the model using its classification accuracy.

B.1.3. EMNIST FOR CHARACTER RECOGNITION

Dataset. EMNIST (Cohen et al., 2017) is a character recognition dataset. The goal is to identify images of handwritten
digits or letters; there are 62 possible options (a-z,A-Z, 0-9). The images are grey-scaled pictures of 28× 28 = 784 pixels.
We use the EMNIST dataset provided by TensorFlow Federated.

Client Distributions. Each client corresponds to one “writer”, i.e., the human subject who hand-wrote the digit/letter during
the data collection process. We only use those clients with at least 100 training points and 25 testing points: there are 1114
of such clients.

Model. We use a ResNet-18 (He et al., 2016) model with group normalization instead of batch normalization (Hsieh et al.,
2020). We make two modifications to handle the smaller image size (28× 28× 1 as opposed to the 224× 224× 3 which
the original ResNet was designed to accept): (a) we use a convolutional kernel of size 3× 3 rather than the original 7× 7 in
the first convolution layer, and, (b) we drop the first pooling layer. The model has 11 million parameters, which require
around 45 megabytes. Note that the number of parameters in this ResNet is smaller than the one for GLDv2 due to the
architectural modifications we make for smaller images as well as the smaller number of classes.

Partial Personalization Architecture. The partial personalization architectures used are summarized in Table 7.

Loss Function and Evaluation Metric. We use the multinomial logistic loss, also known as cross entropy loss. We evaluate
the performance of the model using its classification accuracy.

B.1.4. LIBRISPEECH FOR AUTOMATIC SPEECH RECOGNITION

Dataset. Librispeech is a speech-to-text dataset containing snippets of speech and the associated text from open domain
audiobooks (Panayotov et al., 2015). Given an utterance containing read English speech, the goal is output a text transcription.
Each device corresponds to the narrator of the utterance, leading to a natural non-identical split of the data with differences
in accent, tone, and voice across devices. This task is reflective of voice commands and speech recognition on mobile
phones.

We create a federated version of LibriSpeech. We use the “clean“ subsets of LibriSpeech (a total of 460h of speech) to
pretrain a model in a non-federated manner. We use the “train-other-500“ subset (a total of 500h of audio), which typically
contains noiser audio, to construct a federated dataset. Real-world federated tasks often contain proxy data used to pretrain a
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Table 8. Summary of partial personalization architectures for the transformer model for speech recognition.

Personalization Type Layer on-device # Personalized
Params.

# Shared
Params.

Input Layer Convolutional subsamplers 0.8M 12.6M
Output Layer 2nd f.c. in last transformer block 0.6M 12.8M
Adapter Adapter modules 0.15M 13.4M

model prior to federated training, such as ImageNet-pretrained vision models. We emulate this setup by first pretraining all
our models on the non-federated clean subset of LibriSpeech.

Client Distributions. We construct the federated dataset from the train-other-500 subset of LibriSpeech and do not use the
corresponding dev and test sets. Of the 1166 narrators, we discard those with only one chapter of data.2 For each narrator,
we assign one chapter as the test data and the remaining as the training data. This is done to ensure that each device has
between 10− 50% of the device’s total data in terms of length of audio3 — this leads to approximately 30% of the available
audio being used for testing and the remaining 70% for training. Overall, we get a federated dataset with 902 narrators, each
of whom corresponds to a device in the federated setting.

Model. We use a transformer model (Vaswani et al., 2017) with convolutional subsamplers, as proposed by Synnaeve
et al. (2019). The input audio is represented as a sequence of 40 log-mel filterbank coefficients. The model has two
1D convolutional layers with a stride of 2, followed by 6 transformer blocks and 6 attention heads in each self-attention
layer with a transformer hidden dimension of 384 and a fully-connected hidden dimension of 1536. The final output layer
produces log probabilities on an output vocabulary of 5000 byte pair encodings of subwords. The model has 15 million
parameters, requiring around 60 megabytes of memory.

Partial Personalization Architecture. The partial personalization architectures used are summarized in Table 8.

Loss Function and Evaluation Metric. We train the model with the Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006). This is a structured prediction loss that uses dynamic programming to marginalize over all possible
alignments between the per-frame subwords and the text transcription. For evaluation, we use the word error rate (WER)
obtained from a greedy decoding of the model prediction for a given utterance (or equivalently, beam search with a beam
size of 1 with no external language models).

B.2. Experimental Pipeline and Baselines

There are three components in the training pipeline for all experiments:

(a) Non-personalized federated training: The first step involves training a global model wg using the one-model-fits-all
approach of (1) with FedAvg variants.

(b) Personalized federated training: This optional second step involves training the shared parameters w together with
the personalized parameters vk using a personalized federated learning approach. We warm-start w, vk from the
non-personalized model wg from the previous step.

(c) Final finetuning: The last step involves only finetuning the personalized parameters vk while the shared parameters w
remain unchanged.

For step (b), we initialize vk for each k to be the appropriate part of wg for input/output layer personalization. On the other
hand, for adapters, we initialize vk to be equal to the same set of randomly initialized weights for each device k.

We consider the following baselines:

• Non-personalized: This denotes the performance of step (a) of the pipeline above, i.e., non-personalized federated
training with FedAvg variants.

• Full model personalization: We consider three baselines of personalization of the full model:

2LibriSpeech organizes the data for each narrator into chapters of the source book.
3When multiple candidate chapters are available for use as a test set, we use the one closest in size to 20% of the data.
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Table 9. Hyperparameters for each dataset/task.
Hyperparameter StackOverflow GLDv2 EMNIST LibriSpeech

Common

Batch size 64 64 32 32
Devices per round 50 50 10 50

Local epochs 1 1 1 1
Server Optimizer FedAdam FedAdam FedAvg FedAdam
Client Optimizer SGD SGD SGD SGD
Global Scheduler Linear Linear Exponential Linear

Warm up 10% of rounds 10% of rounds N/A 10% of rounds
LR decay rounds N/A N/A 500 N/A
Max. grad. norm. 0.1 N/A N/A 0.25

Non-personalized training
(step (a) of the pipeline)

# Rounds 1000 2500 2000 500
Server learning rate 5× 10−4 2× 10−4 1.0 10−3

Client learning rate 1 10−2 0.5 10−2

Personalized training
(step (b) of the pipeline)

# Rounds 500 600 500 500
Server learning rate 5× 10−5 2× 10−5 1.0 10−3

Client learning rate 10−1 10−3 10−2 10−2

Local finetuning
(step (c) of the pipeline)

#Epochs 5 5 5 5
Optimizer SGD SGD SGD SGD

Client learning rate 10−1 10−3 10−2 10−4

(i) Finetune: The non-personalized model from step (a) of the pipeline above is finetuned locally on each client
(step (c) of the pipeline). Step (b) is skipped for this baseline.

(ii) Ditto (Li et al., 2021): The non-personalized model from step (a) of the pipeline above is finetuned locally on
each client (step (c) of the pipeline) with ℓ2 regularization ∥v − wg∥2. Step (b) is skipped for this baseline.

(iii) pFedMe (Dinh et al., 2020): The non-personalized baseline model from step (a) is trained further in step (b) to
optimize (2) using the pFedMe algorithm of Dinh et al. (2020). Finally the resulting model w is finetuned locally
in step (c).

• Partial Model Personalization: We consider partial model personalization with three different architectures, as defined
in §B.1. For each personalization approach, we start with the non-personalized model in step (a), continue personalization
in step (b) using either FedAlt or FedSim as the algorithm, and finally run step (c) for the local finetuning.

B.3. Hyperparameters and Evaluation Details

All the tuning of hyperparameters was performed on validation data, formed by holding out 20% of the training data on
each device. Once the tuning was complete, we reran the experiments on the full training data, including those held out for
validation.

Evaluation Metric. Our primary evaluation metric for next-word prediction and image classification is the weighted average
of the test accuracy on each client, weighted by the number of test examples (the details of how the accuracy is computed
on each dataset is given in §B.1 in the paragraph on “Loss Function and Evaluation Metric”). This corresponds to the
unweighted accuracy obtained by pooling all the data locally, similar to the loss as discussed in §1. The same metric is
used for hyperparameter tuning and is reported in all the tables and plots, unless explicitly noted otherwise. For speech
recognition, we similarly use a weighted average of the word error rate (WER).

The final hyperparameters we use are given in Table 9.

Rounds. We start with the number of communication rounds (i.e., the number of calls to secure aggregation routine for the
shared parameters), which is used to measure the progress of each algorithm. For the non-personalized training, we use
1000 rounds for StackOverflow, 2500 rounds for GLDv2 and 2000 rounds for EMNIST. For the personalized training, we
warm-start the model from the non-personalized one, and run the training for 500 rounds for StackOverflow and EMNIST
and 600 rounds for GLDv2.

Devices per Round. All devices are assumed to be available and selections are made uniformly at random. Following
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Table 10. Memory requirements (in megabytes) for training partial model personalization and full model personalization for the experi-
mental settings considered here.

Mode StackOverflow GLDv2 EMNIST

No personalization 71 186 142
Input layer personalization 67 186 142
Output layer personalization 67 174 142
Adapter personalization 72 222 159
Full personalization 116 263 232

Memory savings with partial personalization 42% 34% 39%

(Reddi et al., 2021; Weyand et al., 2020), we select 50 devices per round for StackOverflow/GLDv2 and 10 per round for
EMNIST, for both the non-personalized as well as the personalized training.

Local Updates and Minibatch Size. Each selected device locally runs 1 epoch of mini-batch stochastic gradient descent
locally for non-personalized as well as personalized federated training. The final finetuning at the end of personalized
training is performed for 5 epochs. We use a minibatch size of 64 for StackOverflow/GLDv2 and 32 for EMNIST for all
settings.

Server and Client Optimizer Details. We use FedAvg for EMNIST and FedAdam (Reddi et al., 2021) for StackOverflow
and GLDv2. We also use a global scheduler, which applies a schedule on the client learning rates across rounds, while the
client learning rate within each round is held constant. We use either a linear scheduler or an exponential scheduler (also
called “stepLR” in PyTorch). A linear scheduler applies a linear warmup, if applicable, until the maximum learning rate
followed by a linear decay to 0. An exponential scheduler halves the client learning rate once every fixed number of rounds.
Both the client and server learning rates are tuned using the validation set.

Regularization Coefficient for pFedMe and Ditto. We tune the regularization coefficient λk = λ for pFedMe and Ditto
using the validation data from the set {10−4, 10−3, · · · , 100} of possible values. The tuned values are:

• StackOverflow: 10−3 for Ditto and 10−4 for pFedMe,

• GLDv2: 10−1 for both Ditto and pFedMe,

• EMNIST: 10−1 for both Ditto and pFedMe.

Random Seed. We report numbers averaged over 5 random seeds for all experiments, with the exception of the speech
recognition task.

B.4. Estimated Memory Requirement

We estimate the memory footprint for partial versus full personalization during training below. During deployment, the
memory footprint of partial and full model personalization is the same since one full model is deployed.

Estimation Procedure. We assume that the following are needed to be stored on device i ∈ S(t) during round t of training:

• u(t), the previous broadcast global model, which is needed to calculate the model delta to be sent back to the server,

• current iterate of the shared parameter u(t)
i,k,

• current iterate of the personal parameter v(t)i,k,

• their respective gradients∇u and ∇v , and,

• the internal buffers required for backpropagation.

The total memory consumption is therefore,

Memory = 3× size(u) + 2× size(v) + size(backprop) .
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Table 11. A comparison of FedAlt and FedSim on the speech recognition task in terms of the word error rate (WER) %. Smaller values
indicate better predictive performance.

Personalization FedAlt FedSim

Finetune 15.55 15.55
Input Layer 15.13 15.47
Output Layer 15.53 15.51
Adapter 15.50 15.54

Table 12. The change in accuracy (percentage points) from the final finetuning for FedAlt and FedSim with stateful devices. The subscript
denotes the standard deviation over 5 random seeds.

StackOverflow GLDv2 EMNIST

FedAlt FedSim FedAlt FedSim FedAlt FedSim

Input Layer −0.060.01 0.040.02 0.120.02 0.170.03 0.120.01 0.120.03
Output Layer 0.000.01 0.250.02 0.490.02 0.570.03 0.090.01 0.090.03
Adapter 0.010.01 0.400.08 0.140.02 0.170.01 0.270.02 0.330.03

We estimate the size of the backpropagation buffers for a batch size of 1.

Training Memory Requirement. For full model personalization size(v) = size(u), whereas size(v) ≪ size(u) for the
partial personalization architectures we have considered. Therefore, the total memory requirement of training partial model
personalization will be smaller than full model model personalization.

From Table 10, we see that partial personalization can result in a 34% to 42% reduction in the memory consumption across
the models and datasets considered in the experiments.

C. Experiments: Additional Results
We now present the detailed experimental results.

C.1. Speech Recognition: FedAlt vs. FedSim

We compare FedAlt and FedSim for speech recognition in Table 11. We find that input layer personalization with FedAlt
has the smallest word error rate of all the models considered.

C.2. Ablation: Final Finetuning for FedAlt and FedSim

We now study the effect of the final finetuning (step (c) of the experimental pipeline; cf. §B.2) for FedAlt and FedSim.

The final finetuning has a minimal impact on partial personalization. We see from Table 12 that the effect of the final
finetuning is much smaller than the improvements from personalization. For instance, the improvements from finetuning
are close to 0 for FedAlt on the StackOverflow dataset. For GLDv2, the finetuning accounts for < 0.5pp of improvement,
whereas personalization overall accounts for 5 to 15pp.

The final finetuning is more important to FedSim than FedAlt. Table 12 also shows that the final finetuning helps FedSim
more than FedAlt. However, FedAlt still outperforms FedSim, as we saw in Table 4. Overall, this shows that FedAlt is
a better algorithm than FedSim. The final finetuning helps FedSim make up some percentage points in accuracy, but not
enough to make up its gap with FedAlt.

C.3. Effect of Personalization on Per-Device Generalization

Summary of all scatter plots. All the scatter plots shown in the main paper are summarized in the violin plot of Figure 7.
We see from the leftmost figure that the training accuracies on all devices improve with personalization. From the second



Federated Learning with Partial Model Personalization

Ditto pFedMe Partial
0

5

10

15

20

25

 A
cc

ur
ac

y
Per-client Statistics (train)

Ditto pFedMe Partial

5

0

5

10

15

 A
cc

ur
ac

y

Pers. helps

Pers. hurts

Per-client Statistics (test)

No Reg. Best Reg. Large Reg.
6

4

2

0

2

4

6

8

10

 A
cc

ur
ac

y

Effect of Regularization (test)

No d/o Best d/o Large d/o

5

0

5

10

15

 A
cc

ur
ac

y

Effect of Dropout (test)

Figure 7. Left two: Distribution of change in the per-device train (left most) and test (center left) accuracy due to personalization on the
StackOverflow dataset. Right two: Distribution of change in the per-device test accuracy of partial personalization under regularization on
the StackOverflow dataset: (a) center right: adapter personalization under ℓ2 regularization, and, (b) rightmost: output layer personalization
under dropout. Note that the “No Reg.” and “No d/o” plots on the right two are different because they personalize different model parts.
Interpretation: The white dot in inside the violin denotes the median, while the black box enclosing this white dot marks the interquartile
range (i.e., 25th and 75th percentiles). The body of the violin is a kernel density estimate of the distribution of accuracies. The lines extend
out to the minimum and maximum accuracy in each case.

figure, we see that the test accuracy of some of the devices reduces with personalization; this is true for both partial and full
personalization.

From the third plot of Figure 7, we see that regularization does not mitigate this overfitting. In fact, the regularization tuned
for best average accuracy leads to a nearly identical distribution of test accuracies. A larger regularization reduces the spread
of accuracies, but does so at the expense of a smaller median (white dot). The fourth plot of Figure 7 shows that the effect of
dropout is similar. The best dropout improves the median accuracy, but it does not mitigate the issue of some devices being
hurt by personalization.

Train Accuracy plots for devices. From Figure 8, we see that personalization leads to a reduction in test accuracy on some
of the devices beyond the initial non-personalized model. The corresponding train accuracy plot is given in Figure 8. We
observe that the personalization always leads to an improvement in the training accuracy but not in the test accuracy. The
analogous plots for GLDv2 are in Figure 9, where the trends are similar.

Whether personalization helps a device or not depends on the random seed. We see in Figure 11 that the shaded region
for some of the devices intersects the dotted line at 0. In other words, personalization sometimes helps this device and
sometimes hurts it, depending on the random seed. This indicates that the best fix in practice is to use A/B testing on the
deployed model to choose whether to use the personalized model or the non-personalized one.

Regularization and dropout do not mitigate this issue. From the first row of Figure 10, we see that the weight decay with
best mean accuracy exactly matches the unreguarlized case in terms of per-device statistics. Increasing the regularization
weight can reduce the spread of per-device accuracy. However, this only leads to a worse mean accuracy and does not
mitigate the issue of personalization hurting individual devices.

From the second row of Figure 10, we see that the best dropout (0.3 in this case) leads to slight increase in average accuracy
(0.18 pp). It also reduces the number of devices hurt by personalization from 256 out of 1000 to 193, but it does not fix this
issue. Increasing dropout further only leads to a degradation of per-device statistics.

C.4. Partial Personalization for Stateless Devices

The algorithms we considered in this paper, namely FedAlt and FedSim, require the devices to maintain the personalized
parameters vi’s as state across rounds. In cross-device federated learning settings, it is also interesting to consider stateless
devices, which are not allowed to maintain state between training rounds.

We give preliminary experiments in this setting. We modify the FedAlt and FedSim algorithms from the main paper so that
the personalized parameters vi are reinitialized each time device i is chosen for participation. We warm-start vi from the
appropriate part of the non-personalized model trained in step (a) of the pipeline. For adapters, we fix a random initialization
once, and reuse it.

FedAlt is better than FedSim for stateless devices, although the improvement is smaller. We see from Table 13 that all
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Figure 8. Scatter plot of change in accuracy (pp) per-device versus the number of training samples on the device for StackOverflow. Top:
Training accuracy. Bottom: Test accuracy. This is the full version of Figure 5 from the main paper.

Table 13. This is the counterpart of Table 4 to stateless devices. We compare FedAlt and FedSim for partial model personalization with
stateless devices. “FT (part.)” corresponds to finetuning the personal parameters vi locally while fixing the shared parameters u from a
non-personalized training. The numbers are averaged over 5 random seeds; the boldfaced numbers denote the highest accuracy in each
row.

StackOverflow GLDv2 EMNIST

FT (part.) FedAlt FedSim FT (part.) FedAlt FedSim FT (part.) FedAlt FedSim

Input Layer 24.960.01 24.840.01 24.890.01 51.970.02 52.760.06 52.740.02 93.290.00 93.510.03 93.480.04
Output Layer 24.930.01 24.940.01 24.940.01 53.210.01 53.300.06 53.300.08 93.370.01 93.530.03 93.510.04
Adapter 24.710.00 24.690.01 24.710.01 63.860.06 64.100.14 63.190.04 93.660.00 93.970.04 93.890.02

algorithms perform similarly for the stateless setting. Nevertheless, we see that FedAlt obtains mild improvements over both
FedSim and finetuning for GLDv2, e.g., 0.24pp with adapters.

The final finetuning is crucial for stateless devices. We see from Table 14 that the final finetuning accounts for most of
improvements in the stateless case. For instance, for GLDv2, the final finetuning accounts for 11.68 and 10.42pp out of a
total of 12.67 and 11.76pp for FedAlt and FedSim respectively. However, the personalized federated training (step (b) of the
pipeline; cf. §B.2) still leads to an increase in accuracy of 1 to 1.34pp.
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Figure 9. Scatter plot of change in accuracy (pp) per-device versus the number of training samples on the device for GLDv2. Top:
Training accuracy. Bottom: Test accuracy.

Table 14. The change in accuracy (percentage points) from the final finetuning for FedAlt and FedSim with stateless devices. The
subscript denotes the standard deviation over 5 random seeds.

StackOverflow GLDv2 EMNIST

FedAlt FedSim FedAlt FedSim FedAlt FedSim

Input Layer 0.860.03 1.000.02 0.440.03 0.420.03 0.110.02 0.100.04
Output Layer 1.080.03 1.100.02 1.470.04 1.460.05 0.150.02 0.110.02
Adapter 0.840.04 0.880.02 11.680.20 10.420.09 0.460.02 0.420.04
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Figure 10. Scatter plot of change in accuracy (pp) per-device versus the number of training samples on the device with the effect of
regularization. Top: ℓ2 regularization a.k.a. weight decay. Bottom: dropout. The “best” values of the ℓ2 regularization parameter and
dropout are chosen to maximize the average test accuracy across all devices.
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Figure 11. Change in per-device accuracy (pp) due to personalization. The solid line is the mean over 5 random runs and the shaded area
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