
Large-scale Stochastic Optimization of NDCG Surrogates for
Deep Learning with Provable Convergence

Zi-Hao Qiu * 1 Quanqi Hu * 2 Yongjian Zhong 2 Lijun Zhang 1 Tianbao Yang 2

Abstract

NDCG, namely Normalized Discounted Cumu-
lative Gain, is a widely used ranking metric in
information retrieval and machine learning. How-
ever, efficient and provable stochastic methods for
maximizing NDCG are still lacking, especially
for deep models. In this paper, we propose a
principled approach to optimize NDCG and its
top-K variant. First, we formulate a novel com-
positional optimization problem for optimizing
the NDCG surrogate, and a novel bilevel com-
positional optimization problem for optimizing
the top-K NDCG surrogate. Then, we develop
efficient stochastic algorithms with provable con-
vergence guarantees for the non-convex objec-
tives. Different from existing NDCG optimiza-
tion methods, the per-iteration complexity of our
algorithms scales with the mini-batch size instead
of the number of total items. To improve the
effectiveness for deep learning, we further pro-
pose practical strategies by using initial warm-
up and stop gradient operator. Experimental re-
sults on multiple datasets demonstrate that our
methods outperform prior ranking approaches in
terms of NDCG. To the best of our knowledge,
this is the first time that stochastic algorithms
are proposed to optimize NDCG with a prov-
able convergence guarantee. Our proposed meth-
ods are implemented in the LibAUC library at
https://libauc.org/.

*Equal contribution 1National Key Laboratory for Novel Soft-
ware Technology, Nanjing University, Nanjing, China 2the Uni-
versity of Iowa, Iowa City, USA. Correspondence to: Lijun
Zhang <zhanglj@lamda.nju.edu.cn>, Tianbao Yang <tianbao-
yang@uiowa.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
NDCG is a performance metric of primary interest for learn-
ing to rank in information retrieval (Liu, 2011), and is also
adopted in many machine learning tasks where ranking is of
foremost importance (Liu & Yang, 2008; Bhatia et al., 2015).
In the following, we use the terminologies from information
retrieval to describe NDCG and our methods. The goal is to
rank the relevant items higher than irrelevant items for any
given query. For a query q and a list of n items, the ranking
model assigns a score for each item, and then we obtain an
ordered list by sorting these scores in descending order. The
NDCG score for q can be computed by:

NDCGq =
1

Zq

n∑
i=1

2yi − 1

log2(1 + r(i))
, (1)

where yi denotes the relevance score of the i-th item, r(i)
denotes the rank of the i-th item in the ordered list, and Zq
is a normalization factor that is the Discounted Cumulative
Gain (DCG) score (Järvelin & Kekäläinen, 2002) of the
optimal ranking for q. The top-K variant of NDCG can
be defined similarly by summing over items whose ranks
are in the top K positions of the ordered list. In many real-
world applications, e.g., recommender systems, we want to
recommend a small set of K items from a large collection
of items (Cremonesi et al., 2010), thus top-K NDCG is a
popular metric in these applications.

There are several challenges for optimizing NDCG and
its top-K variant. First, computing the rank of each item
among all n items is expensive. Second, the rank opera-
tor is non-differentiable in terms of model parameters. To
tackle non-differentiability, surrogate functions have been
proposed in the literature for approximating NDCG and its
top-K variant (Taylor et al., 2008; Qin et al., 2010; Swezey
et al., 2021; Pobrotyn & Bialobrzeski, 2021). However, to
the best of our knowledge, the computational challenge of
computing the gradient of (1) that involves sorting n items
has never been addressed. All existing gradient-based meth-
ods have a complexity ofO(nd) per-iteration, where d is the
number of model parameters, which is prohibitive for deep
learning tasks with big n and big d. A naive approach is to
update the model parameters by the gradient of the NDCG
surrogate over a mini-batch of samples, however, since the

https://libauc.org/

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

surrogate for NDCG is complicated and non-convex, an
unbiased stochastic gradient is not readily computed, which
makes existing methods lack theoretical guarantee.

In this paper, we propose the first stochastic algorithms
with a per-iteration complexity of O(Bd), where B is the
mini-batch size, for optimizing the surrogates for NDCG
and its top-K variant, and establishing their convergence
guarantees. For optimizing the NDCG surrogate, we first
formulate a novel finite-sum coupled compositional opti-
mization (FCCO) problem. Then, we develop an efficient
stochastic algorithm inspired by a recent work on average
precision maximization (Qi et al., 2021). We establish an it-
eration complexity ofO(1

ϵ4) for finding an ϵ-level stationary
solution, which is better than that proved by Qi et al. (2021),
i.e., O(1

ϵ5). To tackle the challenge of optimizing the top-
K NDCG surrogate that involves a selection operator, we
propose a novel bilevel optimization problem, which con-
tains many lower level problems for top-K selection of all
queries. Then we smooth the non-smooth functions in the
selection operator, and propose an efficient algorithm with
the iteration complexity of O(1

ϵ4). The algorithm is based
on recent advances of stochastic bilevel optimization (Guo
et al., 2021a), but with unique features to tackle the compo-
sitional upper level problem and a mini-batch of randomly
sampled lower level problems per iteration for optimizing
the top-K NDCG surrogate.

To improve the effectiveness of optimizing the NDCG sur-
rogates, we also study two practical strategies. First, we pro-
pose initial warm-up to find a good initial solution. Second,
we use stop gradient operator to simplify the optimization of
the top-K NDCG surrogate. We conduct comprehensive ex-
periments on two tasks, learning to rank and recommender
systems. Empirical results demonstrate that the proposed
algorithms can consistently outperform prior approaches in
terms of NDCG, and show the effectiveness of two proposed
strategies.

We summarize our contributions below:

• We formulate the optimization of the NDCG surrogate
as a finite-sum coupled compositional optimization
problem, and propose a novel stochastic algorithm with
provable convergence guarantees.

• We propose a novel bilevel compositional optimization
formulation for optimizing the top-K NDCG surro-
gate. Then we develop a novel stochastic algorithm
and establish its convergence rate.

• To improve the effectiveness for deep learning, we
also study practical strategies by using initial warm-up
and stop gradient operator. Experimental results on
multiple datasets demonstrate the effectiveness of our
algorithms and strategies.

2. Related Work
Listwise LTR approaches. Learning to rank (LTR) is an
extensively studied area (Liu, 2011), and we only review
the listwise LTR approaches that are closely related to this
work. The listwise methods can be classified into three
groups. The first group uses ranking metrics to dynamically
re-weight instances during training. For example, Lamb-
daRank algorithms (Burges et al., 2005a; Burges, 2010)
define a weight ∆NDCG, which is the NDCG difference
when a pair of items is swapped in the current list, and use
it to re-weight the pair during training. Although algorithms
in this group take NDCG into account, the underlying losses
of them remain unknown and their theoretical relations to
NDCG are difficult to analyze. The second group defines
loss functions over the entire item lists to optimize the agree-
ment between predictions and ground truth rankings. For
example, ListNet (Cao et al., 2007) minimizes cross-entropy
between predicted and ground truth top-one probability dis-
tributions. ListMLE (Xia et al., 2008) aims to maximize the
likelihood of the ground truth list given the predicted results.
However, optimizing these loss functions might not nec-
essarily maximize NDCG. In addition, efficient stochastic
algorithms for optimizing these losses are still lacking. The
third group directly optimizes ranking metrics, and most of
works focus on the widely used NDCG, as reviewed below.

NDCG Optimization. Some earlier works employ tradi-
tional optimization techniques, e.g., genetic algorithm (Yeh
et al., 2007), boosting (Xu & Li, 2007; Valizadegan et al.,
2009), and SVM framework (Chakrabarti et al., 2008). How-
ever, these methods are not scalable to big data. A popular
class of approaches is to approximate ranks in NDCG with
smooth functions and then optimize the resulting surrogates.
For example, SoftRank (Taylor et al., 2008) tries to use
rank distributions to smooth NDCG, however, it suffers
from a high computational complexity of O(n3). Approx-
NDCG (Qin et al., 2010) approximates the indicator func-
tion in the computation of ranks, and the top-K selector in
the computation of top-K variant by a generalized sigmoid
function. Recently, PiRank (Swezey et al., 2021) and Neu-
ralNDCG (Pobrotyn & Bialobrzeski, 2021) are proposed to
smooth NDCG by approximating non-continuous sorting
operator based on NeuralSort (Grover et al., 2019). How-
ever, these methods mainly focus on how to approximate
NDCG with differentiable functions, and remain computa-
tionally expensive as their per-iteration complexity isO(nd).
Moreover, little attention has been paid to the convergence
guarantee for the stochastic optimization of these surrogates.
In contrast, this is the first work to develop stochastic algo-
rithms with provable convergence guarantee for optimizing
the surrogates for NDCG and its top-K variant.

Stochastic Compositional Optimization. Optimization
of a two-level compositional function in the form of

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Eξ[f(Eζ [g(w; ζ)]; ξ)] where ξ and ζ are independent ran-
dom variables, or its finite-sum variant has been studied
extensively (Wang et al., 2017; Balasubramanian et al.,
2020; Chen et al., 2021b). In this paper, we formulate
the surrogate function of NDCG into a similar but more
complicated two-level compositional function of the form
Eξ[f(Eζ [g(w; ζ, ξ))] where ξ and ζ are independent and
ξ has a finite support inspired by (Qi et al., 2021). The
key difference between our compositional function and the
ones considered in previous work is that the inner func-
tion g(w; ζ, ξ) also depends on the random variable ξ of
the outer level. Our algorithm is developed based on that
of Qi et al. (2021) for average precision maximization, but
establishes an improved complexity of O(1

ϵ4) for finding an
ϵ-stationary solution. It is also notable that our algorithm
and convergence result for optimizing NDCG is similar to
that in a concurrent work (Wang & Yang, 2022) dedicated to
FCCO. However, the key difference is that our convergence
analysis for optimizing NDCD follows that for optimizing
top-K NDCG in a novel bi-level optimization framework.

Stochastic Bilevel Optimization. Stochastic bilevel opti-
mization (SBO) has a long history in the literature (Colson
et al., 2007; Kunisch & Pock, 2013; Liu et al., 2020). Recent
works on SBO focus on algorithms with provable conver-
gence rates (Ghadimi & Wang, 2018; Ji et al., 2020; Hong
et al., 2020; Chen et al., 2021a). However, most of these
studies do not explicitly consider the challenge for deal-
ing with SBO with many lower level problems. Guo et al.
(2021a) consider SBO with many lower level problems and
develop a stochastic algorithm with convergence guarantee.
However, their algorithm is not applicable to our problem
for optimizing the compositional top-K NDCG surrogate
and a mini-batch of randomly sampled lower level prob-
lems in each iteration, and is not practical as it requires
evaluating the stochastic gradients twice per-iteration at two
different points. In this paper, we propose a novel stochas-
tic algorithm for optimizing the top-K NDCG surrogate,
which contains many lower level problems, and establish its
iteration complexity of O(1

ϵ4).

3. Preliminaries
In this section, we provide some preliminaries and notations.
Let Q denote the query set of size N , and q ∈ Q denote
a query. Sq denotes a set of Nq items (e.g., documents,
movies) to be ranked for q. For each xqi ∈ Sq, let yqi ∈ R+

denote its relevance score, which measures the relevance
between query q and item xqi . Let S+

q ⊆ Sq denote a set of
N+
q items relevant to q, whose relevance scores are non-zero.

Denoted by S = {(q,xqi), q ∈ Q,xqi ∈ S+
q } all relevant

query-item (Q-I) pairs. Let hq(x;w) denote the predictive
function for x with respect to the query q, whose parameters
are denoted by w ∈ Rd (e.g., a deep neural network). Let

I(·) denote the indicator function, which outputs 1 if its
input is true and 0 otherwise. Let

r(w;x,Sq) =
∑

x′∈Sq

I(hq(x′;w)− hq(x;w) ≥ 0)

denote the rank of x with respect to the set Sq, where we
simply ignore the tie.

According to the definition in (1), the averaged NDCG over
all queries can be expressed by

NDCG:
1

N

N∑
q=1

1

Zq

∑
xqi∈S

+
q

2y
q
i − 1

log2(r(w;xqi ,Sq) + 1)
,

where Zq is the maximum DCG of a perfect ranking of
items in Sq, which can be pre-computed. Note that xqi are
summed over S+

q instead of Sq , because only relevant items
have non-zero relevance scores and contribute to NDCG.

An important variant of NDCG is its top-K variant, which
is defined over the items xqi ∈ Sq whose prediction scores
are in the top-K positions, i.e.,

1

N

N∑
q=1

1

ZKq

∑
xqi∈S+

q

I(xqi ∈ Sq[K])
2y

q
i − 1

log2(r(w;xqi ,Sq) + 1)
,

where Sq[K] denotes the top-K items whose prediction
scores are in the top-K positions among all items in Sq , and
ZKq denotes the top-K DCG score of the perfect ranking.

4. Optimizing a Smooth NDCG Surrogate
To address the non-differentiability of the rank function
r(w;x,Sq), we approximate it by a continuous and differ-
entiable surrogate function

ḡ(w;x,Sq) =
∑

x′∈Sq

ℓ(hq(x
′;w)− hq(x;w)),

where ℓ(·) is a surrogate loss function of I(· ≥ 0). In this
paper, we use a convex and non-decreasing smooth surro-
gate loss, e.g., squared hinge loss ℓ(x) = max(0, x + c)2,
where c is a margin parameter. Other choices are possible
with pros and cons discussed in the literature (Wu et al.,
2009; Qin et al., 2010). Below, we abuse the notation
ℓ(w;x′,x, q) = ℓ(hq(x

′;w)− hq(x;w)).

Using the surrogate function, we cast NDCG maximization
into:

max
w∈Rd

L(w) :=
1

|S|
N∑
q=1

∑
xqi∈S

+
q

2y
q
i − 1

Zq log2(ḡ(w;xqi ,Sq) + 1)
.

(2)
The following lemma justifies the maximization over L(w)
for NDCG maximization:
Lemma 4.1. When ℓ(w;x′,x, q) ≥ I(hq(x′;w) −
hq(x;w) ≥ 0), then L(w) is a lower bound of NDCG.

The key challenge in designing an efficient algorithm for
solving the above problem lies at (i) computing ḡ(w;xqi ,Sq)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Algorithm 1 Stochastic Optimization of NDCG: SONG

Require: η, γ0, β1, u(1) = 0
Ensure: wT

1: for t = 1, ...T do
2: Draw some relevant Q-I pairs B = {(q,xqi)} ⊂ S
3: For each sampled q draw a batch of items Bq ⊂ Sq
4: for each sampled Q-I pair (q,xqi) ∈ B do
5: Let ĝq,i(wt) =

1
|Bq|

∑
x′∈Bq ℓ(wt;x

′,xqi , q)

6: Compute u(t+1)
q,i = (1− γ0)u

(t)
q,i + γ0ĝq,i(wt)

7: Compute pq,i = ∇fq,i(u(t)q,i)
8: end for
9: Compute the stochastic gradient estimator G(wt) by

G(wt) =
1

|B|
∑

(q,xqi)∈B

pq,i∇ĝq,i(wt)

10: Compute mt+1 = β1mt + (1− β1)G(wt)
11: update wt+1 = wt − ηmt+1

12: end for

and its gradient is expensive when Nq = |Sq| is very
large; and (ii) an unbiased stochastic gradient of the ob-
jective function is not readily available. To highlight the
second challenge, let us consider the gradient of the function
ϕ(w) = 1

log2(ḡ(w;xqi ,Sq)+1)
, which is given by

∇ϕ(w) =
− log2(e) · ∇ḡ(w;xqi ,Sq)

log22(ḡ(w;xqi ,Sq) + 1) · (ḡ(w;xqi ,Sq) + 1)
.

We can estimate ḡ(w;xiq,Sq) by its unbiased estimator
using a mini-batch of Bq items x′ ∈ Bq ⊂ Sq, i.e.,
Nq
Bq

∑
x′∈Bq ℓ(hq(x

′;w) − hq(x
i
q;w)). However, directly

plug this unbiased estimator of ḡ(w;xiq,Sq) into the above
expression will produce a biased estimator of ∇ϕ(w) due
to the non-linear function of ḡ. The optimization error will
be large if the mini-batch size Bq is small (Hu et al., 2020).

To address this challenge, we cast the problem into the
following equivalent minimization form:

min
w∈Rd

F (w) :=
1

|S|
∑

(q,xqi)∈S

fq,i(g(w;xqi ,Sq)), (3)

where g(w;xqi ,Sq) = 1
Nq
ḡ(w;xqi ,Sq) and fq,i(g) =

1
Zq

1−2y
q
i

log2(Nqg+1) . It is a special case of a family of finite-sum
coupled compositional stochastic optimization problems,
which was first studied by Qi et al. (2021) for maximiz-
ing average precision. Inspired by their method, we de-
velop a stochastic algorithm for solving (3). The complete
procedure is provided in Algorithm 1, which is named as
Stochastic Optimization of NDCG (SONG).

To motivate the proposed method, we first derive the gradi-
ent of F (w) by the chain rule, which is given by

∇F (w) =
1

|S|
∑

(q,xqi)∈S

∇fq,i(g(w;xqi ,Sq))∇g(w;xqi ,Sq).

The major cost for computing ∇F (w) lies at comput-
ing g(w;xqi ,Sq) and its gradient, which involves all
items in Sq. To this end, we approximate these quanti-
ties by stochastic samples. The gradient ∇g(w;xqi ,Sq)
can be simply approximated by the stochastic gradient
∇ĝq,i(wt) = 1

|Bq|
∑

x′∈Bq ∇ℓ(wt;x
′,xqi , q), where Bq is

sampled from Sq. Note that ∇fq,i(g(w;xqi ,Sq)) is non-
linear with g(w;xqi ,Sq), thus we need a better way to es-
timate g(w;xqi ,Sq) to control the approximation error and
provide convergence guarantee. We borrow a technique
from Qi et al. (2021) by using a moving average estimator
to keep track of g(wt;x

q
i ,Sq) for each xqi ∈ S+

q . To this
end, we maintain a scalar uq,i for each relevant query-item
pair (q,xqi) and update it by a linear combination of his-
torical one u(t)q,i and an unbiased estimator of g(wt;x

q
i ,Sq)

denoted by ĝq,i(wt) in Step 5 and 6, where γ0 ∈ (0, 1) is
a parameter. Intuitively, when t increases, wt−1 is getting
closer to wt, hence the previous value of the estimator, i.e.,
u
(t)
q,i is useful for estimating gq,i(wt). With these stochastic

estimators, we can compute the gradient of the objective
in (3) with controllable approximation error in Step 9. We
implement the momentum update for wt+1 in Step 10 and
11, where β1 ∈ (0, 1) is the momentum parameter. The
momentum update can be also replaced by the Adam-style
update (Guo et al., 2021b), where the step size η is replaced
by an adaptive step size. We can establish the same conver-
gence rate for the Adam-style update.

We also have several remarks about SONG: (i) the total
per-iteration complexity of SONG is O(Bd + B2). The
details can be found in Appendix A. For a large model size
d ≫ B, we have the per-iteration complexity of O(Bd),
which is similar to the standard cost of deep learning and
is independent of the length of Sq for each query; and (ii)
the additional memory cost is the size of uq,i, i.e., the num-
ber of all relevant Q-I pairs. It is worth to mention that in
many real-world datasets the number of relevant Q-I pairs
are much fewer than all Q-I pairs (i.e., data is sparse) (Yuan
et al., 2014; Yin et al., 2020; Singh, 2020). Thus the addi-
tional memory cost is acceptable in most cases.

Next, we establish the convergence guarantee of SONG in
the following theorem.
Theorem 4.2. Under appropriate conditions and proper
settings of parameters γ0, γ1, η = O(ϵ2), β1 = 1−γ1, Algo-
rithm 1 ensures that after T = O(1

ϵ4) iterations we can find
an ϵ-stationary solution of F (w), i.e., E[∥∇F (wτ)∥2] ≤ ϵ2

for a randomly selected τ ∈ {1, . . . , T}.

Remark: The above theorem indicates that SONG has the
same O(1

ϵ4) iteration complexity as the standard SGD for
solving standard non-convex losses (Ghadimi & Lan, 2013).
We refer the interested readers to Appendix E for the proof,
where we also exhibit the settings for γ0, β1, η and the con-
ditions. The conditions are imposed mainly for ensuring

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

fq,i(g) and g(w;xqi ,Sq) are smooth and Lipchitz continu-
ous. It is worth mentioning that the above complexity is
better than that proved by Qi et al. (2021), i.e., O(1/ϵ5). In
addition, we do not have any requirement on the batch size,
i.e., |B|, |Bq|, which can be as small as 1. However, we can
enjoy parallel speed-up for a large batch size.

5. Optimizing a Smooth Top-K NDCG
Surrogate

In this section, we propose an efficient stochastic algo-
rithm to optimize the top-K variant of NDCG. By using
the smooth surrogate loss ℓ(·) for approximating the rank
function, we have the following objective for top-K NDCG:

1

N

N∑
q=1

1

ZKq

∑
xqi∈S+

q

I(xqi ∈ Sq[K])
2y

q
i − 1

log2(ḡ(w;xqi ,Sq) + 1)
,

where Sq[K] denotes the set of top-K items in Sq whose
prediction scores are in the top-K positions. Compared
with optimizing the NDCG surrogate in (3), there is another
level of complexity, i.e., the selection of top-K items from
Sq, which is non-differentiable. In the literature, Qin et al.
(2010) and Wu et al. (2009) use the relationship I(xqi ∈
Sq[K]) = I(K − r(w;xqi ,Sq) ≥ 0) and approximate it by
ψ(K − ḡ(w;xqi ,Sq)), where ψ is a continuous surrogate
of the indicator function. However, there are two levels of
approximation error, one lies at approximating r(w;xqi ,Sq)
by ḡ(w;xqi ,Sq) and the other one lies at approximating
I(· ≥ 0) by ψ(·). To reduce the error for selecting xqi ∈
Sq[K], we propose a more effective method, which relies
on the following lemma:
Lemma 5.1. Let λq(w) = argminλ(K + ε)λ +∑

x′∈Sq (hq(x
′;w) − λ)+, where ε ∈ (0, 1), then λq(w)

is the (K + 1)-th largest value among hq(x′,w),∀x′ ∈ Sq ,
and hence xqi ∈ Sq[K] is equivalent to hq(x

q
i ;w) >

λq(w).

Remark: We can show that the optimal solution λq(w) can
be served as the threshold for selecting top-K items in Sq .
As a result, the problem can be converted into

min
1

|S|
N∑
q=1

∑
xqi∈S+

q

I(hq(xqi ;w)− λq(w) > 0)(1− 2y
q
i)

ZKq log2(g(w;xqi ,Sq) + 1)

s.t., λq(w) = argmin
λ

K + ε

Nq
λ+

1

Nq

∑
x′∈Sq

(hq(x
′;w)− λ)+.

However, there are still several challenges that prevent us
developing a provable algorithm. In particular, the selec-
tion operator I(hq(xqi ;w) − λq(w) > 0) is a non-smooth
function of w due to (i) the indicator function I(·) is non-
continuous and non-differentiable; and (ii) λq(w) is a non-
smooth function of w because the lower optimization prob-
lem is non-smooth and non-strongly convex.

To address the above challenges, we first approximate I(· >
0) by a smooth and Lipschtiz continuous function ψ(·). The
choice of ψ can be justified by the following lemma:

Lemma 5.2. If ψ(hq(x
q
i ;w)−λq(w)) ≤ CI(hq(xqi ;w)−

λq(w) > 0) holds for some constant C > 0 and
ℓ(w;x′,x, q) ≥ I(hq(x′;w) − hq(x;w) > 0), then the

function 1
N

∑N
q=1

∑
xqi∈S

+
q

ψ(hq(x
q
i ;w)−λq(w))(2y

q
i −1)

CZKq log2(ḡ(w;xqi ,Sq)+1)
is a

lower bound of the top-K NDCG.

Remark: When hq(x;w) is bounded, it is not hard to find
a smooth and Lipschtiz continuous function ψ(·) satisfying
the above condition. A simple choice is ψ(s) = max(s, 0)2.

Next, we smooth λ(w). The idea is to make the objective
function in the lower level problem smooth and strongly
convex, while not affecting the optimal solution λ(w) too
much. To this end, we replace the lower level problem by

λ̂q(w) = argmin
λ
Lq(λ;w) :=

K + ε

Nq
λ+

τ2
2
λ2

+
1

Nq

∑
xi∈Sq

τ1 ln(1 + exp((hq(xi;w)− λ)/τ1)).

The following lemma justifies the above smoothing.

Lemma 5.3. Assuming hq(x,w) ∈ (0, ch] , if τ1 = τ2 = ε

for some ε ≪ 1 , then we have |λ̂q(w) − λq(w)| ≤ O(ε)
for any w. In addition, Lq(λ;w) is a smooth and strongly
convex function in terms of λ for any w.

As a result, we propose to solve the following optimization
problem for top-K NDCG maximization:

min
1

|S|
∑

(q,xqi)∈S

ψ(hq(x
q
i ;w)− λ̂q(w))fq,i(g(w;xqi ,Sq))

s.t., λ̂q(w) = argmin
λ
Lq(λ;w),∀q ∈ Q, (4)

where we employ fq,i(g) to denote 1
ZKq

1−2y
q
i

log2(Nqg+1) .

Our bilevel formulation is more advantageous than previ-
ous NDCG@K formulation. First, our formulation only
approximates r(w;xqi ,Sq) by ḡ(w;xqi ,Sq) once in the de-
nominator, while previous one approximates r(w;xqi ,Sq)
twice (one in ψ(K − r(w;xqi ,Sq)) and one in the de-
nominator). In addition, ψ(hq(x

q
i ;w) − λq(w)) is ar-

guably better than ψ(K − ḡ(w;xqi ,Sq)) for approximating
I(K − r(w;xqi ,Sq) ≥ 0) due to Lemma 5.1.

Although (4) is a bilevel optimization problem, existing
stochastic algorithms for bilevel optimization are not appli-
cable to solving the above problem. That is because there
are several differences from the standard bilevel optimiza-
tion problem studied in the literature. First, an unbiased
stochastic gradient of the objective function is not readily
computed as we explained before. Second, there are multi-
ple lower level problems in (4), whose solutions cannot be
updated at the same time for all q ∈ Q when N is large. To

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

address these challenges, we develop a tailored stochastic
algorithm for solving (4).

The proposed algorithm is presented in Algorithm 2, to
which we refer as K-SONG. To motivate K-SONG, we first
consider the gradient of the objective function denoted by
FK(w), which can be computed as

∇FK(w) =
1

|S|
∑

(q,xqi)∈S

(
ψ′(hq(x

q
i ;w)− λ̂q(w))·

(∇hq(xqi ;w)−∇wλ̂q(w))

)
fq,i(g(w;xqi ,Sq)) (5)

+ ψ(hq(x
q
i ;w)− λ̂q(w))∇g(w;xqi ,Sq)f ′q,i(g(w;xqi ,Sq).

Similar to SONG, we can estimate g(wt;x
q
i ,Sq) by u(t)q,i.

An inherent challenge of bilevel optimization is to estimate
the implicit gradient ∇wλ̂(w). According to the optimality
condition of λ̂(w) (Ghadimi & Wang, 2018), we can derive

∇wλ̂q(w) = −∇2
λ,wLq(λ̂q(w);w)(∇2

λLq(λ̂q(w);w))−1.

To estimate ∇2
λ,wLq(λ̂(w);w) at the t-th iteration, we

use the current estimate λq,t in place of λ̂q(wt) and use
Lq(λ̂,w;Bq) that is defined by a mini-batch samples of Bq
in place of Lq(λ̂;w), i.e.,

Lq(λ,w;Bq) =
K

Nq
λ+

τ2
2
λ2 (6)

+
1

|Bq|
∑

xi∈Bq

τ1 ln(1 + exp((hq(xi;w)− λ)/τ1)).

The issue of estimating (∇2
λLq(λ̂q(w);w))−1 is more

tricky. In the literature (Ghadimi & Wang, 2018), a common
method is to use von Neuman series with stochastic sam-
ples to estimate it. However, such method requires multiple
samples in the order of O(1/τ2), which is a large number
when τ2 is small. To address this issue, we follow a similar
strategy of Guo et al. (2021a) to estimate ∇2

λLq(λ̂q(w);w)
directly by using mini-batch samples. In the proposed algo-
rithm, we use a moving average estimator denoted by sq as
shown in Step 10. Finally, we have the following stochastic
gradient estimator:

G(wt) =
1

|B|
∑

(q,xqi)∈B

pq,i∇ĝq,i(wt)

+ ψ′(hq(x
q
i ;wt)− λq,t)

[
∇whq(x

q
i ;wt)

−∇2
λ,wLq(wt, λ

t
i;Bt)s−1

q,t

]
f(u

(t)
q,i)

(7)

where pq,i is computed in Step 7 in K-SONG.

We follow a similar strategy as Guo et al. (2021b) to update
λq,t+1 by a simple stochastic gradient update, shown in Step
11. It is notable that different from Guo et al. (2021a), we
update λq,t+1 for a mini-batch of randomly sampled queries
q, which makes the analysis more challenging.

Algorithm 2 Stochastic Optimization of top-K NDCG: K-
SONG
Require: η0, η1, γ0, γ′0, β1, u(1) = 0, λ = 0
Ensure: wT

1: for t = 1, ...T do
2: Draw some relevant Q-I pairs B = {(q,xqi)} ⊂ S
3: For each sampled q draw a batch of items Bq ⊂ Sq
4: for each sampled Q-I pair (q,xqi) ∈ B do
5: Let ĝq,i(wt) =

1
|Bq|

∑
x′∈Bq ℓ(wt;x

′,xqi , q)

6: Let u(t+1)
q,i = (1− γ0)u

(t)
q,i + γ0ĝq,i(wt)

7: Let pq,i = ψ(hq(x
q
i ;wt)− λq,t)∇fq,i(utq,i)

8: end for
9: for each sampled query q ∈ B do

10: Let sq,t+1 = (1−γ′0)sq,t+γ′0∇2
λLq(λq,t;wt;Bq)

11: Let λq,t+1 = λq,t − η0∇λLq(λq,t;wt;Bq)
12: end for
13: Compute a stochastic gradient G(wt) according

to (7) or (8)
14: Compute mt+1 = β1mt + (1− β1)G(wt)
15: Update wt+1 = wt − η1mt+1

16: end for

Finally, we present the convergence guarantee of K-SONG.

Theorem 5.4. Under appropriate conditions and
proper settings of parameters γ0, γ

′
0, η0 = O(|Bq|ϵ2),

γ1 = O(min{|B|, |Bq|}ϵ2), β1 = 1 − γ1, η1 =

O
(
min

{
|B||Bq|ϵ2

|S| ,min{|B|, |Bq|}ϵ2
})

, Algorithm 2 en-

sures that after T = O
(
max

{
|S|

|B||Bq|ϵ4 ,
1

min{|B|,|Bq|}ϵ4

})
iterations we can find an ϵ-stationary solution of FK(w),
i.e., E[∥∇FK(wτ)∥2] ≤ ϵ2 for a randomly selected
τ ∈ {1, . . . , T}.
Remark: The above theorem indicates that K-SONG also
has the iteration complexity ofO(1

ϵ4) in terms of ϵ. We refer
the interested readers to Appendix E for details.

6. Practical Strategies
In this section, we present two practical strategies for im-
proving the effectiveness of SONG/K-SONG.

Initial Warm-up. A potential problem of optimizing
NDCG is that it may not lead to a good local minimum
if a bad initial solution is given. To address this issue, we
use warm-up to find a good initial solution by solving a
well-behaved objective. Similar strategies have been used
in the literature (Yuan et al., 2020; Qi et al., 2021), however,
their objectives are not suitable for ranking. Here we choose
the listwise cross-entropy loss (Cao et al., 2007), i.e.,

min
w

1

N

N∑
q=1

1

Nq

∑
xqi∈S+

q

− ln

(
exp(hq(x

q
i ;w)∑

xqj∈Sq hq(x
q
j ;w))

)
,

which is the cross-entropy between predicted and ground
truth top-one probability distributions. The objective can be

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

formulated as a similar finite-sum coupled compositional
problem as NDCG, and a similar algorithm to SONG can
be used to solve it. We present the formulation and detailed
algorithm in Appendix B.

Stop Gradient for the top-K Selector. Given a good initial
solution, we justify that the second term in (7) is close
to 0 under a reasonable condition, and present the details
in Appendix C. Thus, the gradient of the top-K selector
ψ(h(xqi ,w) − λ̂q(w)) is not essential. We can apply the
stop gradient operator on the top-K selector, and compute
the gradient estimator by

G(wt) =
1

|B|
∑

(q,xqi)∈B

pq,i∇ĝq,i(wt), (8)

which simplifies K-SONG by avoiding maintaining and
updating sq,t. We refer to the K-SONG using the gradient
in (7) as theoretical K-SONG, and the K-SONG using the
gradient in (8) as practical K-SONG.

7. Experiments
In this section, we evaluate our algorithms through com-
prehensive experiments on two different domains: learn-
ing to rank and recommender systems. Experimental re-
sults show that our algorithms can outperform prior rank-
ing methods in terms of NDCG. We also conduct exper-
iments to demonstrate the convergence speed of training
and verify our algorithmic designs, including the moving
average estimator and the bilevel formulation for K-SONG.
In addition, we examine the effectiveness of initial warm-
up and stop gradient operator. We implement our pro-
posed methods in the LibAUC1 library. To show the ad-
vantages of our library, we compare SONG and K-SONG
in LibAUC with several listwise ranking approaches im-
plemented in TensorFlow Ranking2 library. The code to
reproduce the results in this paper is available at https:
//github.com/zhqiu/NDCG-Optimization.

We compare our algorithms, SONG and K-SONG, against
the following methods that optimize different loss functions.
RankNet (Burges et al., 2005b) is a commonly used pair-
wise loss. ListNet (Cao et al., 2007) and ListMLE (Xia
et al., 2008) are two listwise losses that optimize the agree-
ment between predictions and ground truth rankings. Lamb-
daRank (Burges et al., 2005a) is a listwise loss that takes
NDCG into account, but not directly optimizes NDCG.
ApproxNDCG (Qin et al., 2010) and NeuralNDCG (Po-
brotyn & Bialobrzeski, 2021) are two losses that optimize
the NDCG surrogates directly. Similar to NeuralNDCG, Pi-
Rank (Swezey et al., 2021) also employs NeuralSort (Grover
et al., 2019) to approximate NDCG, so we do not compare
with it. We do not compare with SoftRank (Taylor et al.,

1https://libauc.org/
2https://www.tensorflow.org/ranking

2008), as its O(n3) complexity is prohibitive.

For all methods, we sample a batch of queries, and a few
(e.g., 10) relevant items and some irrelevant items for each
query per iteration. For K-SONG, we report its practical
version results unless specified otherwise. We use the Adam-
style update for all methods and set the momentum parame-
ters to their default values (Kingma & Ba, 2015). The hyper-
parameters of all losses are fine-tuned using grid search
with training/validation splits mentioned below. Due to
the limited space, we present the detailed implementation
and datasets information in Appendix D.1 and D.2, respec-
tively. To further show the effectiveness of our methods, we
conduct more experiments on multi-label classification and
provide the results in Appendix D.4.

7.1. Learning to Rank

Data. Learning to rank (LTR) algorithms aim to rank a set
of candidate items for a given search query. We consider
two datasets: MSLR-WEB30K (Qin & Liu, 2013) and Ya-
hoo! LTR dataset (Chapelle & Chang, 2011), which are
the largest public LTR datasets from commercial search
engines. Both datasets contain query-document pairs repre-
sented by real-valued feature vectors, and have associated
relevance scores on the scale from 0 to 4. Following Ai et al.
(2019), we use the training/validation/test sets in the Fold1
of MSLR-WEB30K dataset for evaluation. The Yahoo!
LTR dataset splits the queries arbitrarily and uses 19,944
for training, 2,994 for validation and 6,983 for testing.

Setup. For the backbone network, we adopt the Context-
Aware Ranker (Pobrotyn et al., 2020), a ranking model
based on the Transformer. For all methods, we first pre-
train a model by initial warm-up. Then we re-initialize
the last layer and train the model by different methods as
mentioned before. In both stages, we set the initial learning
rate and batch size to 0.001 and 64, respectively. We train
the networks for 100 epochs, decaying the learning rate by
0.1 after 50 epochs. We tune γ0 and K in our algorithms
from {0.1, 0.2, 0.3, 0.4, 0.5} and {10, 20, 50}, respectively.

Results. We evaluate all methods and calculate NDCG@k
(k ∈ [1, 3, 5]) on the test data. We provide partial results
in Table 1, and full results in Table 5 in Appendix D.3.
We notice that, in general, methods that directly optimize
the NDCG surrogates achieve higher performance. Similar
conclusions have been reached in other studies (Qin et al.,
2010; Pobrotyn & Bialobrzeski, 2021). We also observe
that our SONG and K-SONG can consistently outperform
all baselines on both datasets. These results clearly show
that our methods are effective for LTR tasks.

7.2. Recommender Systems

Data. Recommender systems (RS) are widely used in IT

https://github.com/zhqiu/NDCG-Optimization
https://github.com/zhqiu/NDCG-Optimization

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Table 1. The test NDCG on four datasets. We report the average NDCG@3 for two LTR datasets, the average NDCG@20 for two RS
datasets, and standard deviation (within brackets) over 3 runs with different random seeds. Full results are in Appendix D.3.

METHOD NDCG@3 NDCG@20

MSLE WEB30K YAHOO! LTR MOVIELENS20M NETFLIX PRIZE

RANKNET 0.5105±0.0004 0.7150±0.0004 0.0744±0.0013 0.0489±0.0003
LISTNET 0.5058±0.0001 0.7151±0.0004 0.0875±0.0004 0.0700±0.0002
LISTMLE 0.5074±0.0002 0.7146±0.0006 0.0799±0.0001 0.0508±0.0004
LAMBDARANK 0.5118±0.0003 0.7155±0.0002 0.0913±0.0002 0.0693±0.0002
APPROXNDCG 0.5114±0.0005 0.7152±0.0007 0.0938±0.0003 0.0592±0.0009
NEURALNDCG 0.5101±0.0005 0.7139±0.0001 0.0901±0.0003 0.0718±0.0003
SONG 0.5136±0.0006 0.7187±0.0004 0.0969±0.0002 0.0749±0.0002
K-SONG 0.5147±0.0006 0.7191±0.0004 0.0973±0.0003 0.0743±0.0003

industry (Lu et al., 2015). We use two large-scale movie
recommendation datasets: MovieLens20M (Harper & Kon-
stan, 2015) and Netflix Prize dataset (Bennett et al., 2007).
Both datasets contain large numbers of users and movies,
which are represented with integer IDs. All users have rated
several movies, with ratings range from 1 to 5. To create
training/validation/test sets, we use the most recent rated
item of each user for testing, the second recent item for
validation, and the remaining items for training, which is
widely-used in the literature (He et al., 2018; Wang et al.,
2020a). When evaluating models, we need to collect irrele-
vant (unrated) items and rank them with the relevant (rated)
item to compute NDCG metrics. During training, inspired
by Wang et al. (2019a), we randomly sample 1000 unrated
items to save time. When testing, however, we adopt the all
ranking protocol (Wang et al., 2019b; He et al., 2020) — all
unrated items are used for evaluation.

Setup. We choose NeuMF (He et al., 2017) as the back-
bone network, which is commonly used in RS tasks. For all
methods, models are first pre-trained by our initial warm-
up method for 20 epochs with the learning rate 0.001 and
a batch size of 256. Then the last layer is randomly re-
initialized and the network is fine-tuned by different meth-
ods. At the fine-tuning stage, the initial learning rate and
weight decay are set to 0.0004 and 1e-7, respectively. We
train the models for 120 epochs with the learning rate mul-
tiplied by 0.25 at 60 epochs. The hyper-parameters of all
methods are individually tuned for fair comparison, e.g., we
tune γ0 in SONG and K-SONG from {0.1, 0.2, 0.3, 0.4,
0.5}, and K in K-SONG in a range {50, 100, 300, 500}.

Results. We evaluate all methods and calculate NDCG@k
(k ∈ [10, 20, 50]) on the test data. Part of the results are
reported in Table 1, and full results are in Table 6 in Ap-
pendix D.3. First, SONG outperforms all baselines on both
datasets. Specifically, SONG achieves 3.30% and 4.32%
improvements on NDCG@20 over the best baseline on
MovieLens20M and Netflix Prize, respectively. Besides,
K-SONG performs better than SONG in most cases. These
results clearly demonstrate that our algorithms are effective
for optimizing NDCG and its top-K variant. It is worth to

0 20 40 60 80 100 120
Epochs

0.25

0.28

0.30

0.33

0.35

0.38

0.40

ND
CG

@
5

MovieLens20M

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

0 20 40 60 80 100 120
Epochs

0.22

0.24

0.26

0.28

0.30

0.32

ND
CG

@
5

Netflix Prize

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

Figure 1. Comparison of convergence of different methods in terms
of validation NDCG@5 scores on two RS datasets.

0 50 100 150 200 250 300
Epochs

0.25

0.30

0.35

0.40

ND
CG

@
5

MovieLens20M

SONG (γ0=1.0)
SONG without warm-up
SONG

0 20 40 60 80 100 120
Epochs

0.20

0.23

0.25

0.28

0.30

0.33

ND
CG

@
5

Netflix Prize

SONG (γ0=1.0)
SONG without warm-up
SONG

Figure 2. Ablation study on two variants of SONG.

mention that the improvements from our methods on RS
datasets are higher than that on LTR datasets. The reason is
that RS datasets have about 20,000 items per query, while
most queries in LTR datasets have less than 1,000 items (de-
tailed statistics in Appendix D.2). These results validate that
our methods are more advantageous for large-scale data.

7.3. More Studies

Convergence Speed. We plot the convergence curves for
optimizing NDCG on two RS datasets in Figure 1. All
convergence curves for four datasets are shown in Figure 9
in Appendix D.3. We can observe that our proposed SONG
and K-SONG converge much faster than other methods.

Ablation Studies. We now study the effects of the moving
average estimators in our methods and initial warm-up. We
present the experimental results of two RS datasets in Fig-
ure 2 and more results in Figure 10 in Appendix D.3. First,
we can observe that maintaining the moving average estima-
tors enables our algorithm perform better. To further study
the effect of γ0, we provide more results and analysis in
Appendix D.3. Second, we consistently observe that initial
warm-up can bring the model to a good initialization state
and improve the final performance of the model.

Comparison with Full-Items Training. We compare three

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

0 20 40 60 80 100 120
Epochs

0.30

0.32

0.34

0.36

0.38

0.40

ND
CG

@
5

MovieLens20M

full-items
mini-batch γ0 = 1.0
mini-batch γ0 = 0.1

0 20 40 60 80 100 120
Epochs

0.24

0.26

0.28

0.30

0.32

0.34

ND
CG

@
5

Netflix Prize

full-items
mini-batch γ0 = 1.0
mini-batch γ0 = 0.3

Figure 3. Comparison of full-items and mini-batch training.

0 20 40 60 80 100 120
Epochs

0.28

0.30

0.32

0.34

0.36

0.38

0.40

ND
CG

@
5

MovieLens20M

K-SONG (Theoretical)
K-SONG (Practical)

0 20 40 60 80 100 120
Epochs

0.26

0.28

0.30

0.32
ND

CG
@

5
Netflix Prize

K-SONG (Theoretical)
K-SONG (Practical)

Figure 4. Comparison of theoretical and practical K-SONG.

different training methods: full-items gradient descent that
uses all items in Sq to computing g(w;xqi ,Sq) and its gra-
dient, biased mini-batch gradient descent (i.e., set γ0 = 1.0
in our algorithms), and our algorithms (i.e., with γ0 tuned).
We compare these methods for NDCG maximization and
present the results in Figure 3. We can see that our methods
converge to that of full-items gradient descent, which proves
the effectiveness of our algorithms. We also provide the neg-
ative loglikelihood loss curves of three different training
methods for warm-up in Figure 12 in Appendix D.3, and
similar conclusions can be reached.

Theoretical and Practical K-SONG. To verify the effec-
tiveness of stop gradient operator, we present the compari-
son of theoretical K-SONG and practical K-SONG in Fig-
ure 4. We observe that practical K-SONG and theoretical
K-SONG achieve similar performance on both datasets,
which indicates that the proposed stop gradient operator is
effective in simplifying theoretical K-SONG.

The advantage of the bi-level formulation. To demon-
strate the advantage of our bi-level formulation for optimiz-
ing the top-K NDCG surrogate, we implement previous
NDCG@K formulation by modifying our Algorithm 1 for
optimizing the NDCG@K objective with ψ(K − ḡ(w,x))
in place of I(K ≥ r(w;x)). We compare these two formu-
lations and present the results in Figure 5, and we can see
that our bi-level formulation is more advantageous.

Comparison with TensorFlow Ranking. We implement
our SONG and K-SONG into the LibAUC library and com-
pare it with TensorFlow Ranking library (Pasumarthi et al.,
2019) (TFR), which is an open-source library for neural
learning to rank implemented by Google. Specifically, we
compare our implementations of SONG and K-SONG with
four listwise ranking methods implemented in TFR, in-
cluding ListNet, ListMLE, ApproxNDCG, and Gumbel-
ApproxNDCG. For all methods, models are trained for 120
epochs on MovieLens20M with the learning rate 0.001 and
a batch size of 256. For SONG and K-SONG, we first train

0 20 40 60 80 100 120
Epochs

0.25

0.28

0.30

0.33

0.35

0.38

0.40

ND
CG

@
5

MovieLens20M

previous NDCG@K formulation
bi-level NDCG@K formulation (ours)

0 20 40 60 80 100 120
Epochs

0.26

0.28

0.30

0.32

ND
CG

@
5

Netflix Prize

previous NDCG@K formulation
bi-level NDCG@K formulation (ours)

Figure 5. Comparison of our bilevel NDCG@K formulation and
previous NDCG@K formulation.

0 20 40 60 80 100 120
Epoch

0.25

0.30

0.35

0.40

ND
CG

@
5

LibAUC vs Tensorflow-Ranking (TFR) on MovieLens 20M

TFR (GumbelApproxNDCG)
TFR (ApproxNDCG)
TFR (ListMLE)
TFR (ListNet)
LibAUC (ListNet)
LibAUC (SONG w/o ListNet warm-up)
LibAUC (SONG w/ ListNet warm-up)
LibAUC (K-SONG)

TFR
(ListNet)

TFR
(ListMLE)

TFR
(Approx-
NDCG)

TFR
(Gumbel-

ApproxNDCG)

LibAUC
(SONG)

LibAUC
(K-SONG)

Method

0

20

40

60

Ti
m

e
(s

ec
on

ds
)

Comparison on training time per epoch

Figure 6. Comparison of convergence (left) and training time
(right) between LibAUC (ours) and TensorFlow Ranking library.

the models by initial warm-up for the first 20 epochs, and
then keep training the models by SONG or K-SONG for
100 epochs. We present the comparison of convergence
and training time per epoch in Figure 6. We notice that
our implementation of SONG and K-SONG in the LibAUC
library with initial warm-up converge faster than the al-
gorithms implemented in the TFR library by Google, and
the training time our methods is competitive if not better
than that of TFR library, which indicates the advantages
of our implementations in LibAUC. In addition, our algo-
rithm for optimizing ListNet in LibAUC is better than that
implemented in TFR due to that our algorithm has rigor-
ous convergence guarantee and that in TFR is a mini-batch
based heuristic method.

8. Conclusion
In this work, we propose stochastic methods to optimize
NDCG and its top-K variant that have been widely used in
various ranking tasks. The optimization problems of NDCG
and top-K NDCG are casted into a novel compositional opti-
mization problem and a novel bilevel optimization problem,
respectively. We design efficient stochastic algorithms with
provable convergence guarantee to compute the solutions.
We also study initial warm-up and stop gradient operator
to improve the effectiveness for deep learning. Extensive
experimental results on multiple domains demonstrate that
our methods can achieve promising results.

Acknowledgements
Q. Hu, Y. Zhong and T. Yang were partially supported
by NSF Grant 2110545 and NSF Career Award 1844403.
Z. Qiu and L. Zhang were partially supported by NSFC
(62122037, 61921006). Part work of Z. Qiu was done when
he was visiting T. Yang’s lab virtually.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

References
Ai, Q., Wang, X., Bruch, S., Golbandi, N., Bendersky, M.,

and Najork, M. Learning groupwise multivariate scoring
functions using deep neural networks. In Proceedings of
the 2019 ACM SIGIR International Conference on Theory
of Information Retrieval, pp. 85–92, 2019.

Balasubramanian, K., Ghadimi, S., and Nguyen, A. Stochas-
tic multi-level composition optimization algorithms with
level-independent convergence rates. arXiv preprint
arXiv:2008.10526, 2020.

Bennett, J., Lanning, S., et al. The netflix prize. In Proceed-
ings of KDD Cup and Workshop, volume 2007, pp. 35,
2007.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. Sparse
local embeddings for extreme multi-label classification.
In Advances in Neural Information Processing Systems,
volume 29, pp. 730–738, 2015.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., and Hullender, G. Learning to rank
using gradient descent. In Proceedings of the 22nd In-
ternational Conference on Machine Learning, pp. 89–96,
2005a.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N., and Hullender, G. Learning to rank
using gradient descent. In Proceedings of the 22nd In-
ternational Conference on Machine Learning, pp. 89–96,
2005b.

Burges, C. J. From ranknet to lambdarank to lambdamart:
An overview. Learning, 11(23-581):81, 2010.

Cao, Z., Qin, T., Liu, T., Tsai, M., and Li, H. Learning
to rank: from pairwise approach to listwise approach.
In Proceedings of the 24th International Conference on
Machine Learning, pp. 129–136, 2007.

Chakrabarti, S., Khanna, R., Sawant, U., and Bhattacharyya,
C. Structured learning for non-smooth ranking losses.
In Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 88–96, 2008.

Chapelle, O. and Chang, Y. Yahoo! learning to rank chal-
lenge overview. In Proceedings of the Learning to Rank
Challenge, pp. 1–24. PMLR, 2011.

Chen, T., Sun, Y., and Yin, W. A single-timescale
stochastic bilevel optimization method. arXiv preprint
arXiv:2102.04671, 2021a.

Chen, T., Sun, Y., and Yin, W. Solving stochastic composi-
tional optimization is nearly as easy as solving stochastic
optimization. IEEE Transactions on Signal Processing,
69:4937–4948, 2021b.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of Operations Research, 153
(1):235–256, 2007.

Cremonesi, P., Koren, Y., and Turrin, R. Performance of
recommender algorithms on top-n recommendation tasks.
In Proceedings of the 4th ACM Conference on Recom-
mender Systems, pp. 39–46, 2010.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv preprint arXiv:1802.02246,
2018.

Grover, A., Wang, E., Zweig, A., and Ermon, S. Stochastic
optimization of sorting networks via continuous relax-
ations. In the 7th International Conference on Learning
Representations, 2019.

Guo, Z., Hu, Q., Zhang, L., and Yang, T. Random-
ized stochastic variance-reduced methods for multi-
task stochastic bilevel optimization. arXiv preprint
arXiv:2105.02266, 2021a.

Guo, Z., Xu, Y., Yin, W., Jin, R., and Yang, T. On stochastic
moving-average estimators for non-convex optimization.
arXiv preprint arXiv:2104.14840, 2021b.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Transactions on Interactive
Intelligent Systems, 5(4):1–19, 2015.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua,
T.-S. Neural collaborative filtering. In Proceedings of the
26th International Conference on World Wide Web, pp.
173–182, 2017.

He, X., He, Z., Song, J., Liu, Z., Jiang, Y.-G., and Chua,
T.-S. Nais: Neural attentive item similarity model for
recommendation. IEEE Transactions on Knowledge and
Data Engineering, 30(12):2354–2366, 2018.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang,
M. Lightgcn: Simplifying and powering graph convolu-
tion network for recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 639–648,
2020.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale framework for bilevel optimization: Complex-
ity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Hu, Y., Zhang, S., Chen, X., and He, N. Biased stochastic
first-order methods for conditional stochastic optimiza-
tion and applications in meta learning. Advances in Neu-
ral Information Processing Systems, 33, 2020.

Järvelin, K. and Kekäläinen, J. Cumulated gain-based evalu-
ation of ir techniques. ACM Transactions on Information
Systems, 20(4):422–446, 2002.

Ji, K., Yang, J., and Liang, Y. Provably faster algorithms
for bilevel optimization and applications to meta-learning.
arXiv preprint arXiv:2010.07962, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In the 3rd International Conference on
Learning Representations, 2015.

Kunisch, K. and Pock, T. A bilevel optimization approach
for parameter learning in variational models. SIAM Jour-
nal on Imaging Sciences, 6(2):938–983, 2013.

Lin, T., Jin, C., and Jordan, M. I. On gradient descent
ascent for nonconvex-concave minimax problems. arXiv
preprint arXiv:1906.00331, 2019.

Liu, J., Chang, W.-C., Wu, Y., and Yang, Y. Deep learning
for extreme multi-label text classification. In Proceed-
ings of the 40th international ACM SIGIR conference on
research and development in information retrieval, pp.
115–124, 2017.

Liu, N. N. and Yang, Q. Eigenrank: a ranking-oriented
approach to collaborative filtering. In Proceedings of the
31st International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 83–90,
2008.

Liu, R., Mu, P., Yuan, X., Zeng, S., and Zhang, J. A generic
first-order algorithmic framework for bi-level program-
ming beyond lower-level singleton. In Proceedings of the
37th International Conference on Machine Learning, pp.
6305–6315, 2020.

Liu, T.-Y. Learning to Rank for Information Retrieval.
Springer, 2011.

Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. Rec-
ommender system application developments: a survey.
Decision Support Systems, 74:12–32, 2015.

Mencia, E. L. and Fürnkranz, J. Efficient pairwise multilabel
classification for large-scale problems in the legal domain.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 50–65. Springer,
2008.

Nesterov, Y. Smooth minimization of non-smooth functions.
Math. Program., 103(1):127–152, 2005.

Pasumarthi, R. K., Bruch, S., Wang, X., Li, C., Bender-
sky, M., Najork, M., Pfeifer, J., Golbandi, N., Anil, R.,
and Wolf, S. Tf-ranking: Scalable tensorflow library
for learning-to-rank. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2970–2978, 2019.

Pobrotyn, P. and Bialobrzeski, R. Neuralndcg: Direct opti-
misation of a ranking metric via differentiable relaxation
of sorting. arXiv preprint arXiv:2102.07831, 2021.

Pobrotyn, P., Bartczak, T., Synowiec, M., Białobrzeski, R.,
and Bojar, J. Context-aware learning to rank with self-
attention. arXiv preprint arXiv:2005.10084, 2020.

Qi, Q., Luo, Y., Xu, Z., Ji, S., and Yang, T. Stochastic
optimization of area under precision-recall curve for deep
learning with provable convergence. In Advances in Neu-
ral Information Processing Systems, volume 34, 2021.

Qin, T. and Liu, T.-Y. Introducing letor 4.0 datasets. arXiv
preprint arXiv:1306.2597, 2013.

Qin, T., Liu, T.-Y., and Li, H. A general approximation
framework for direct optimization of information retrieval
measures. Information Retrieval, 13(4):375–397, 2010.

Singh, M. Scalability and sparsity issues in recommender
datasets: a survey. Knowledge and Information Systems,
62(1):1–43, 2020.

Swezey, R., Grover, A., Charron, B., and Ermon, S. Pi-
rank: Scalable learning to rank via differentiable sorting.
Advances in Neural Information Processing Systems, 34,
2021.

Taylor, M., Guiver, J., Robertson, S., and Minka, T. Soft-
rank: optimizing non-smooth rank metrics. In Proceed-
ings of the 2008 International Conference on Web Search
and Web Data Mining, pp. 77–86, 2008.

Valizadegan, H., Jin, R., Zhang, R., and Mao, J. Learning
to rank by optimizing ndcg measure. In Advances in
Neural Information Processing Systems, volume 22, pp.
1883–1891, 2009.

Wang, B. and Yang, T. Finite-sum coupled compositional
stochastic optimization: Theory and applications. In
Proceedings of the 39th International Conference on Ma-
chine Learning, 2022.

Wang, C., Zhang, M., Ma, W., Liu, Y., and Ma, S. Modeling
item-specific temporal dynamics of repeat consumption
for recommender systems. In Proceedings of the 28th
International Conference on World Wide Web, pp. 1977–
1987, 2019a.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Wang, C., Zhang, M., Ma, W., Liu, Y., and Ma, S. Make
it a chorus: knowledge-and time-aware item modeling
for sequential recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 109–118,
2020a.

Wang, C., Zhang, M., Ma, W., Liu, Y., and Ma, S. Make
it a chorus: knowledge-and time-aware item modeling
for sequential recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 109–118,
2020b.

Wang, M., Fang, E. X., and Liu, H. Stochastic composi-
tional gradient descent: algorithms for minimizing com-
positions of expected-value functions. Mathematical Pro-
gramming, 161(1-2):419–449, 2017.

Wang, X., He, X., Wang, M., Feng, F., and Chua, T.-S.
Neural graph collaborative filtering. In Proceedings of the
42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 165–174,
2019b.

Wu, M., Chang, Y., Zheng, Z., and Zha, H. Smoothing dcg
for learning to rank: A novel approach using smoothed
hinge functions. In Proceedings of the 18th ACM Con-
ference on Information and Knowledge Management, pp.
1923–1926, 2009.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. List-
wise approach to learning to rank: theory and algorithm.
In Proceedings of the 25th International Conference on
Machine Learning, pp. 1192–1199, 2008.

Xu, J. and Li, H. Adarank: a boosting algorithm for infor-
mation retrieval. In Proceedings of the 30th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 391–398, 2007.

Yang, T. and Lin, Q. Rsg: Beating subgradient method
without smoothness and strong convexity. Journal of
Machine Learning Research, 19(6):1–33, 2018.

Yeh, J.-Y., Lin, J.-Y., Ke, H.-R., and Yang, W.-P. Learning to
rank for information retrieval using genetic programming.
In Proceedings of SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval, 2007.

Yin, H., Wang, Q., Zheng, K., Li, Z., and Zhou, X. Over-
coming data sparsity in group recommendation. IEEE
Transactions on Knowledge and Data Engineering, 2020.

Yuan, T., Cheng, J., Zhang, X., Qiu, S., and Lu, H. Recom-
mendation by mining multiple user behaviors with group
sparsity. In Twenty-Eighth AAAI Conference on Artificial
Intelligence, 2014.

Yuan, Z., Yan, Y., Sonka, M., and Yang, T. Robust deep
auc maximization: A new surrogate loss and empirical
studies on medical image classification. arXiv preprint
arXiv:2012.03173, 2020.

Zubiaga, A. Enhancing navigation on wikipedia with social
tags. arXiv preprint arXiv:1202.5469, 2012.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

A. Per-iteration Complexity
For complexity analysis, let Qt denote the sampled queries at the t-th iteration and B+

q denote the sampled relevant items
for each sampled query. In terms of the per-iteration complexity of SONG, we need to conduct forward propagation for
computing hq(x

q
i ,w),∀xiq ∈ B+

q ∪ Bq and back-propagation for computing ∇hq(xqi ,w),∀xiq ∈ B+
q ∪ Bq . The complexity

for these forward propagations and back-propagations is
∑
q∈Qt(|B

q
+|+ |Bq|)d ≤ O(Bd), whereB =

∑
q∈Qt(|B+

q |+ |Bq|)
is the total mini-batch size. With these computed, the cost for computing ĝq,i(wt) and ∇ĝq,i(wt) for all q,xqi ∈ B+

q is∑
q∈Qt |B+

q ||Bq| ≤ O(B2). Hence, the total complexity per iteration is O(Bd + B2). For a large model size d ≫ B,
we have the per-iteration complexity of O(Bd), which is similar to the standard cost of deep learning per-iteration and is
independent of the length of Sq for each query.

B. Initial Warm-up
The listwise cross-entropy loss can be reformulated as follows:

min
w

1

N

N∑
q=1

1

Nq

∑
xqi∈S+

q

− ln

(
exp(hq(x

q
i ;w)∑

xqj∈Sq hq(x
q
j ;w))

)

=
1

N

N∑
q=1

1

Nq

∑
xqi∈S+

q

ln

 ∑
xqj∈Sq

exp(hq(x
q
j)− hq(x

q
i))

 .

The above objective has the same structure of the NDCG surrogate, i.e., it is an instance of finite-sum coupled compositional
stochastic optimization problem. Hence, we can use a similar algorithm to SONG to solve the above problem. We present
the details in Algorithm 3.

Algorithm 3 Stochastic Optimization of Listwise CE loss: SOLC

Require: η, β0, β1, u(1) = 0
Ensure: wT

for t = 1, ...T do
draw a set of queries denoted by Qt

For each query draw a batches of examples {B+
q ,Bq}, where B+

q denote a set of sampled relevant documents for q and
Bq denote a set of sampled documents from Sq
for xqi ∈ B+

q for each q ∈ Qt do
u
(t+1)
q,i = (1− γ0)u

(t)
q,i + γ0

1
|Bq|

∑
x′∈Bq exp(hq(x

′;w)− hq(x;w))

Compute pq,i = 1/ut+1
q,i

end for
Compute gradient

G(wt) =
1

|Qt|
1

|B+
q |

1

|Bq|
∑
q∈Qt

∑
xqi∈B+

q

∑
xqj∈Bq

pq,i∇w(hq(x
q
j ;wt)− hq(x

q
i ;wt))

Compute mt+1 = β1mt + (1− β1)G(wt)
Update wt+1 = wt − ηmt+1

end for

C. Justification of Stop Gradient Operator
Below, we provide a justification by showing that the second term in (7) is close to 0 under a reasonable condition. For
simplicity of notation, we let ψi(w, λ̂q(w)) = ψ(h(xqi ,w)− λ̂q(w)). Its gradient is given by

∇wψi = ψ′
i(w, λ̂q(w))

(
∇wh(x

q
i ,w)−∇2

wλLq(w, λ̂q(w))[∇2
λLq(w, λ̂q(w))]−1

)
.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
[x]+ = max(x, 0)

φ(x) = τ1 ln(1 + e
x
τ1)

κ(x) = maxα∈[0,1] αx− τ1α
2

2

Figure 7. Curves of [·]+, ϕ(·), and κ(·).

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0I(·)
ψ(·)

Figure 8. An example of ψ(·)

For the purpose of justification, we can approximate ϕ(hq(xi;w) − λ) = τ1 log(1 + exp((hq(xi;w) − λ)/τ1)) by a
smoothed hinge loss function, κ(hq(xi;w)− λ) = maxα α(hq(xi;w)− λ)− τ1α

2/2, which is equivalent to

κ(hq(xi;w)− λ) =

0, hq(xi;w)− λ ≤ 0
(hq(xi;w)−λ)2

2τ1
, 0 < hq(xi;w)− λ ≤ τ1

hq(xi;w)− λ− τ1
2 , hq(xi;w)− λ > τ1

Please refer to Figure 7 for the curves of [·]+ and ϕ(·) and κ(·). Below, we assume Lq(w, λ) is defined by using
κ(hq(xi;w)− λ) in place of ϕ(hq(xi;w)− λ).

For any w, let us consider a subset Cq = {xqi ∈ S+
q : hw(xqi)− λ̂q(w) ∈ (0, τ1)}. It is not difficult to show that

∇2
wλLq(w, λ̂q(w)) =

1

Nq

∑
xqi∈Cq

−∂wh(xqi ;w)

τ1

∇2
λLq(w, λ̂q(w)) =

1

Nq

∑
xqi∈Cq

1

τ1
+ τ2 ≈ 1

Nq

∑
xqi∈Cq

1

τ1

for sufficiently small τ1, τ2. Then we have
∇2

wλLq(w, λ(w))

∇2
λLq(w, λq(w))

=
1

|Cq|
∑

xqi∈Cq

−∂hw(xqi).

Assume that ψ is chosen such that ψ′
i(w, λq(w)) ≈ 0 if hw(xqj) − λq(w) ̸∈ [0, τ1], and ψ′

i(w, λq(w)) ≈ c1 and
fq,i(g(w;xqi ,Sq)) ≈ c2 if hw(xqj)− λq(w) ∈ [0, τ1], then we have

∑
xqi∈Sq

∇wψifq,i(g(w;xqi ,Sq)) ≈
∑

xqi∈Cq

ψ′
i(w, λq(w)) ·

(
∇wh(x

q
i ;w)− 1

|Cq|
∑

xqj∈Cq

∇wh(x
q
j ;w)

)
fq,i(g(w;xqi ,Sq))

≈ c1c2
∑

xqi∈Cq

∇whw(xqi ;w) +
1

|Cq|
∑

xqj∈Cq

−∇wh(x
q
j ;w)

= 0

As a result, when τ1 is small enough the condition ψ′
i(w, λq(w)) ≈ 0 if hw(xqj)− λq(w) ̸∈ [0, τ1], and ψ′

i(w, λq(w)) ≈ c
if hw(xqj)− λq(w) ∈ [0, τ1] is well justified. An example of such ψ(·) is provided in the Figure 8. As a result, with initial
warm-up, we can compute the gradient estimator by

G(wt) =
1

|B|
∑

(q,xqi)∈B

pq,i∇ĝq,i(wt),

which simplifies K-SONG by avoiding maintaining and updating sq,t.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Table 2. Statistics of Learning to Rank Datasets.

DATASET MSLR-WEB30K YAHOO! LTR DATASET

QUERY 30,000 29,921
Q-D PAIR 3,771,125 709,877
MAX Q-D PAIR PER QUERY 1,245 135
MIN Q-D PAIR PER QUERY 1 1

Table 3. Statistics of Recommender Systems Datasets.

DATASET # USERS # ITEMS # INTERACTIONS SPARSITY

MOVIELENS20M 138,493 26,744 20,000,263 99.46%
NETFLIX PRIZE DATASET 236,117 17,770 89,973,534 97.86%

D. Experiments
D.1. Details of Implementation

For the experiments on two LTR datasets, we adopt allRank framework3 (Pobrotyn et al., 2020). We implement some
baseline methods based on their code. For the recommender systems experiments, we use ReChorus framework4 (Wang
et al., 2020b), which is a general PyTorch framework for Top-K recommendation. We also follow the scripts in ReChorus to
preprocess the datasets. The hyper-parameters for SONG and K-SONG are presented in Table 4.

We train our models on one Tesla V100 GPU with 32GB memory. The training on the Context-Aware Ranker model takes
about 2˜3 hours for convergence, while the training of the NeuMF model takes about 8˜12 hours for convergence.

D.2. Details of Data

MSLR-WEB30K5 and Yahoo! LTR dataset6 are the largest public LTR datasets from commercial English search engines.
We provide the statistics of these two datasets in Table 2. In MSLR-WEB30K dataset, there are 5 folds containing the same
data, and each fold randomly splits to training, validation, and test sets. Due to privacy concerns, these datasets do not
disclose any text information and only provide feature vectors for each query-document pair. For these two LTR datasets,
we standarize the features, log-transforming selected ones, before feeding them to the learning algorithms. Since the lengths
of search results lists in the datasets are unequal, we truncate or pad samples to the length of 40 and 100 for Yahoo! LTR
dataset and MSLR-WEB30K when training, respectively, but use the full list for evaluation.

MovieLens20M7 contains 20 million ratings applied to 27,000 movies by 138,000 users, and all users have rated at least 20
movies. Netflix Prize dataset8 consists of about 100,000,000 ratings for 17,770 movies given by 480,189 users. We filter the
Netflix Prize dataset by retaining users with at least 100 interactions to cater sufficient information for modeling. In both
datasets, users and movies are represented with integer IDs, while ratings range from 1 to 5. The statistics of these two
datasets are shown in Table 3.

D.3. Additional Experimental Results

Convergence Speed. We present the training curves on four different datasets (MovieLens20M, Netflix Prize dataset,
MSLR WEB30K, and Yahoo! LTR dataset) in Figure 9.

Ablation Studies. We provide the full ablation studies on four datasets in Figure 10.

The Effect of Varying γ0. We adjust γ0 in our algorithms from {0.1, 0.3, 0.5, 0.7, 1.0}, and report the training curves of

3https://github.com/allegro/allRank
4https://github.com/THUwangcy/ReChorus
5https://www.microsoft.com/en-us/research/project/mslr/
6https://webscope.sandbox.yahoo.com
7https://grouplens.org/datasets/movielens/20m/
8https://www.kaggle.com/netflix-inc/netflix-prize-data

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Table 4. Hyper-parameters for SONG and K-SONG.

MOVIELENS20M NETFLIX PRIZE MSLR-WEB30K YAHOO! LTR

γ0 0.1 0.3 0.3 0.3
K 300 300 10 10

Table 5. The test NDCG on two Learning to Rank datasets. We report the average NDCG@k (k ∈ [1, 3, 5]) and standard deviation (within
brackets) over 3 runs with different random seeds.

METHOD
MSLR WEB30K YAHOO! LTR DATASET

NDCG@1 NDCG@3 NDCG@5 NDCG@1 NDCG@3 NDCG@5

RANKNET 0.5138±0.0008 0.5105±0.0004 0.5159±0.0003 0.7066±0.0006 0.7150±0.0004 0.7368±0.0005
LISTNET 0.5105±0.0001 0.5058±0.0001 0.5146±0.0002 0.7066±0.0002 0.7151±0.0004 0.7352±0.0004
LISTMLE 0.5153±0.0012 0.5074±0.0002 0.5136±0.0005 0.7067±0.0008 0.7146±0.0006 0.7353±0.0007
LAMBDARANK 0.5173±0.0014 0.5118±0.0003 0.5187±0.0003 0.7084±0.0003 0.7155±0.0002 0.7352±0.0004
APPROXNDCG 0.5204±0.0007 0.5114±0.0005 0.5179±0.0006 0.7085±0.0009 0.7152±0.0007 0.7350±0.0006
NEURALNDCG 0.5160±0.0006 0.5101±0.0005 0.5155±0.0002 0.7076±0.0003 0.7139±0.0001 0.7349±0.0003
SONG 0.5265±0.0005 0.5136±0.0006 0.5206±0.0003 0.7131±0.0002 0.7187±0.0004 0.7390±0.0002
K-SONG 0.5271±0.0006 0.5147±0.0006 0.5204±0.0003 0.7128±0.0004 0.7191±0.0004 0.7394±0.0008

0 20 40 60 80 100 120
Epochs

0.25

0.28

0.30

0.33

0.35

0.38

0.40

ND
CG

@
5

MovieLens20M

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

0 20 40 60 80 100 120
Epochs

0.22

0.24

0.26

0.28

0.30

0.32

ND
CG

@
5

Netflix Prize

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

0 20 40 60 80 100
Epochs

0.500

0.505

0.510

0.515

0.520

ND
CG

@
5

MSLR WEB30K

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

0 20 40 60 80 100
Epochs

0.728

0.730

0.732

0.734

0.736

0.738

0.740

ND
CG

@
5

Yahoo! LTR dataset

RankNet
LambdaRank
ApproxNDCG
ListNet

ListMLE
NeuralNDCG
SONG (ours)
K-SONG (ours)

Figure 9. Comparison of convergence of different methods in terms of validation NDCG@5 scores.

0 50 100 150 200 250 300
Epochs

0.25

0.30

0.35

0.40

ND
CG

@
5

MovieLens20M

SONG (γ0=1.0)
SONG without warm-up
SONG

0 20 40 60 80 100 120
Epochs

0.20

0.23

0.25

0.28

0.30

0.33

ND
CG

@
5

Netflix Prize

SONG (γ0=1.0)
SONG without warm-up
SONG

0 20 40 60 80 100
Epochs

0.470

0.480

0.490

0.500

0.510

0.520

ND
CG

@
5

MSLR WEB30K

SONG
SONG (γ0=1.0)
SONG without warm-up

0 20 40 60 80 100
Epochs

0.700

0.710

0.720

0.730

0.740

ND
CG

@
5

Yahoo! LTR dataset

SONG
SONG (γ0=1.0)
SONG without warm-up

Figure 10. Ablation study on two variants of SONG on four different datasets.

warm-up and SONG in Figure 11. We observe that γ0 = 0.1 achieves the best performance in most cases. Setting γ0 = 1.0
is equivalent to update the model with a biased stochastic gradient, which leads to the worst performance. These results
signify the importance of moving average estimators in our methods.

0 20 40 60 80 100 120
Epochs

0.26

0.28

0.30

0.32

0.34

0.36

ND
CG

@
5

MovieLens20M

γ0=0.1
γ0=0.3
γ0=0.5
γ0=0.7
γ0=1.0

0 20 40 60 80 100 120
Epochs

0.20

0.21

0.22

0.23

0.24

0.25

0.26

ND
CG

@
5

Netflix Prize dataset

γ0 = 0.1
γ0 = 0.3
γ0 = 0.5
γ0 = 0.7
γ0 = 1.0

0 20 40 60 80 100 120
Epochs

0.32

0.34

0.36

0.38

0.40

ND
CG

@
5

MovieLens20M

γ0=0.1
γ0=0.3
γ0=0.5
γ0=0.7
γ0=0.9

0 20 40 60 80 100 120
Epochs

0.28

0.29

0.30

0.31

0.32

0.33

ND
CG

@
5

Netflix Prize

γ0=0.1
γ0=0.3
γ0=0.5
γ0=0.7
γ0=0.9

Figure 11. The effect of varying γ0 for warm-up (left two) and SONG (right two).

Comparison with Full-Items Training. We provide the negative loglikelihood loss curves of three different training
methods for warm-up in Figure 12.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Table 6. The test NDCG on two movie recommendation datasets. We report the average NDCG@k (k ∈ [10, 20, 50]) and standard
deviation (within brackets) over 3 runs with different random seeds.

METHOD
MOVIELENS20M NETFLIX PRIZE DATASET

NDCG@10 NDCG@20 NDCG@50 NDCG@10 NDCG@20 NDCG@50

RANKNET 0.0538±0.0011 0.0744±0.0013 0.1086±0.0013 0.0362±0.0002 0.0489±0.0003 0.0730±0.0003
LISTNET 0.0660±0.0003 0.0875±0.0004 0.1227±0.0003 0.0532±0.0002 0.0700±0.0002 0.0992±0.0002
LISTMLE 0.0588±0.0001 0.0799±0.0001 0.1137±0.0001 0.0376±0.0003 0.0508±0.0004 0.0753±0.0001
LAMBDARANK 0.0697±0.0001 0.0913±0.0002 0.1259±0.0001 0.0531±0.0002 0.0693±0.0002 0.0976±0.0003
APPROXNDCG 0.0735±0.0005 0.0938±0.0003 0.1284±0.0002 0.0434±0.0005 0.0592±0.0009 0.0873±0.0012
NEURALNDCG 0.0692±0.0003 0.0901±0.0003 0.1232±0.0007 0.0554±0.0002 0.0718±0.0003 0.1003±0.0002
SONG 0.0748±0.0002 0.0969±0.0002 0.1326±0.0001 0.0571±0.0002 0.0749±0.0002 0.1050±0.0003
K-SONG 0.0747±0.0002 0.0973±0.0003 0.1340±0.0001 0.0573±0.0003 0.0743±0.0003 0.1042±0.0001

0 20 40 60 80 100 120
Epochs

0.30

0.32

0.34

0.36

0.38

0.40

ND
CG

@
5

MovieLens20M

full-items
mini-batch γ0 = 1.0
mini-batch γ0 = 0.1

0 20 40 60 80 100 120
Epochs

0.24

0.26

0.28

0.30

0.32

0.34

ND
CG

@
5

Netflix Prize

full-items
mini-batch γ0 = 1.0
mini-batch γ0 = 0.3

0 50 100 150 200 250 300 350 400
Epochs

1.5

2.0

2.5

Ne
ga

tiv
e

Lo
gL

ik
el

ih
oo

d

MovieLens20M
mini-batch, γ0 = 1.0
mini-batch, γ0 = 0.1
full-items

0 50 100 150 200 250 300 350 400
Epochs

2.4

2.6

2.8

3.0

3.2

3.4

Ne
ga

tiv
e

Lo
gL

ik
el

ih
oo

d

Netflix Prize
mini-batch, γ0 = 1.0
mini-batch, γ0 = 0.3
full-items

Figure 12. Comparison of full-items and mini-batch training on SONG (left two) and warm-up (right two).

D.4. Experiments on Multi-label Classification

To further verify the effectiveness of our methods, we also conduct experiments on multi-label datasets. Similar to Learning
to Rank task, we treat each instance as a query and each label as an item. We adopt XML-CNN9 (Liu et al., 2017) as our
base model. We download data from The Extreme Classification Repository10 and conduct experiments on two datasets:
EUR-Lex (Mencia & Fürnkranz, 2008) and Wiki10-31K (Zubiaga, 2012). The statistics of these two datasets are presented
in Table 7. In our experiments, we use raw data to classify.

Table 7. Statistics of Multi-label Datasets.

Dataset Labels Training Testing Avg. Points Avg. Labels
Samples Samples per Label per Points

EURLex-4K 3,993 15,539 3,809 25.73 5.31
Wiki10-31K 309,38 14,146 6,616 8.52 18.64

In extreme multi-label (XML) classification, label spaces usually are large; however, each instance only has very few relevant
labels. Therefore, we adopt NDCG@k as our evaluation metric, which is also a common way in evaluating XML methods.

Upon XML-CNN, we compare our method with other NDCG optimization methods: ApproxNDCG (Qin et al., 2010) and
NeuralNDCG (Pobrotyn & Bialobrzeski, 2021). The results are summarized in Table 8.

Table 8. Results in NDCG@k; bold indicates the best performance among all methods

Datasets Metrics Baseline ApproxNDCG NeuralNDCG SONG K-SONG

EUR-Lex NDCG@3 67.15 66.59 67.68 67.84 68.11
NDCG@5 61.13 60.23 61.86 61.32 61.74

Wiki10-31K NDCG@3 71.26 71.49 71.52 72.90 74.01
NDCG@5 63.23 62.43 62.85 65.10 66.15

9https://github.com/siddsax/XML-CNN
10http://manikvarma.org/downloads/XC/XMLRepository.html#Bi13

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

E. Convergence Analysis
E.1. Analysis of SONG

For simplicity, we rewrite problem (3) as the following compositional optimization problem,

min
w

1

n

∑
i∈S

fi(gi(w)). (9)

One may reorder the set of queries S so that each pair (q,xqi) has a single index. We abuse the notation S denoting the set
of the new indexing. Then the equivalence between problem (3) and (9) is established. Furthermore, SONG can be rewritten
as Algorithm 4 accordingly. In fact, problem (9) can be seen as a special case of problem (10), where ψi’s are constant
functions. Hence, Theorem 4.2 naturally follows from Theorem 5.4, of which the proof will be presented in the following
section.

Algorithm 4
Require: w0,m0, u

0, γ0, β1, η
Ensure: wT

for t = 0, 1, . . . , T − 1 do
Draw batch of queries Bt1 ∈ {1, . . . , n}
Draw batch of items Bt2,i for each i ∈ Bt1

Compute ut+1
i =

{
(1− γ0)u

t
i + γ0gi(wt;Bt2,i) if i ∈ Bt1

uti o.w.
Compute stochastic gradient estimator G(wt) =

1
|Bt1|

∑
i∈Bt1

∇gi(wt;Bt2,i)∇fi(uti)
mt+1 = β1mt + (1− β1)G(wt)
wt+1 = wt − ηmt+1

end for

E.2. Analysis of K-SONG

In this section, we present a convergence analysis for K-SONG. Similarly to the analysis of SONG, we reorder the set of
queries S and generalize problem (4) into the following compositional bilevel optimization problem,

min
w

F (w) :=
1

n

∑
i∈S

ψi(w, λi(w))fi(gi(w))

s.t. λi(w) = argmin
λ
Li(w, λ).

(10)

This allows us to rewrite K-SONG into Algorithm 5 accordingly.

Notations: Throughout this convergence analysis section, all subscript i represents the block of variable or function
corresponding to the ith query. The following notations will be used,

δλ,t := ∥λ(wt)− λt∥2, δg,t := ∥g(wt)− ut∥2, δLλλ,t := ∥∇2
λλL(wt, λ(wt))− st∥2

We make the following assumptions regarding problem (10).

Assumption E.1.

• Functions ψi, fi, gi, Li are Lψ, Lf , Lg, LL-smooth respectively for all i.

• Functions ψi, fi, gi are Cψ, Cf , Cg-Lipschitz continuous respectively for all i. Function Li is µL-strongly convex for
all i.

• ∇2
wλLi(w, λ),∇2

λλLi(w, λ) are LLwλ, LLλλ-Lipschitz continuous respectively with respect to (w, λ) for all i.

• ψi and fi are bounded by Bψ and Bf respectively, i.e. ∥ψi(w, λ)∥ ≤ Bψ and ∥fi(g)∥ ≤ Bf for all w, λ, i, g.

• ∥∇2
wλLi(w, λ)∥2 ≤ C2

Lwλ, γI ⪯ ∇2
λλLi(w, λ;B) ⪯ LLI for all i

• Unbiased stochastic oracles gi,∇gi,∇λLi,∇2
λλLi,∇2

wλLi have bounded variance σ2.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Algorithm 5
Require: w0,m0, λ

0, u0, s0, γ0, γ
′
0, β1, η0, η1

Ensure: wT

for t = 0, 1, . . . , T − 1 do
Draw batch of queries Bt1 ∈ {1, . . . , n}
Draw batch of items Bt2,i for each i ∈ Bt1

Compute ut+1
i =

{
(1− γ0)u

t
i + γ0gi(wt;Bt2,i) if i ∈ Bt1

uti o.w.

Compute λt+1
i =

{
λti − η0∇λLi(wt, λ

t
i;Bt2,i) if i ∈ Bt1

λti o.w.

Compute st+1
i =

{
(1− γ′0)s

t
i + γ′0∇2

λλLi(wt, λ
t
i;Bt2,i) if i ∈ Bt1

sti o.w.
Compute stochastic gradient estimator G(wt) according to (11)
mt+1 = β1mt + (1− β1)G(wt)
wt+1 = wt − η1mt+1

end for

Now we show that problem (4) satisfies Assumption E.1. Here we consider the squared hinge loss ℓ(hq(x′;w), hq(x;w)) =
max{0, hq(x′;w) − hq(x;w) + c}2 where c is a margin parameter. Suppose the score function and its gradients
hq(x;w),∇whq(x;w),∇2

whq(x;w) are bounded by finite constants ch, ch′ , ch′′ respectively. As an average of squared
hinge loss, function gi(w) in problem (10) has bounded gradients ∇gi(w) ≤ 8chch′ and ∇2gi(w) ≤ 8c2h′ + 8chch′′

for each i ∈ S. Hence gi is Lipschitz continuous and smooth. Moreover, with m > 2ch, there exists cℓ > 0 such that

ℓ(hq(x1;w) − hq(x2;w)) ≥ cℓ for all x1,x2. Function fi(g) = fq,i(g) = 1
Zq

1−2y
q
i

log2(Nqg+1) is thus bounded, Lipschitz
continuous and smooth for each i = (q,xqi) ∈ S. For function ψi = ψ(hq(x

q
i ;w) − λ), we consider the logistic loss,

then ψi is naturally bounded, Lipschitz continuous and smooth. The smoothness and strong convexity of Li are proved in
Lemma 5.3. In fact, the strong convexity of Li implies the lower boundedness γ = τ2 of ∇λλLi(w, λ;B). To show the
Lipschitz continuity of ∇2

wλLq(λ;w) and ∇2
λλLq(λ;w) one may simply take the third gradients of Lq(λ;w) and use the

fact exp(λ−hq(xi;w)
τ1

) > 0 and the assumption of the boundedness of hq(x;w) and its gradients to verify.

By using the implicit function theorem, the stochastic gradient estimator of ∇F (wt) in Algorithm 5 is given by

G(wt) =
1

|Bt1|
∑
i∈Bt1

[
∇wψi(wt, λ

t
i)−∇2

wλLi(wt, λ
t
i;Bt2,i)[sti]−1∇λψi(wt, λ

t
i)

]
fi(u

t
i)

+ ψi(wt, λ
t
i)∇gi(wt;Bt2,i)∇fi(uti)

(11)

Note that the parameter τλ in the update of λt+1 exists only for theoretical analysis reason. In practical, τλη0 can be treated
as one parameter. Moreover, we define the gradient approximation at iteration t

∇F (wt, λ
t, ut) =

1

n

∑
i∈S

[
∇wψi(wt, λ

t
i)−∇2

wλLi(wt, λ
t
i)[∇2

λλLi(wt, λ
t
i)]

−1∇λψi(wt, λ
t
i)

]
fi(u

t
i)

+ ψi(wt, λ
t
i)∇gi(wt)∇fi(uti)

Now we present the formal statement of Theorem 5.4 regarding to problem (10).

Theorem E.2. Let F (w0) − F (w∗) ≤ ∆F . Under Assumption E.1 and consider Algo-

rithm 5, with η0 ≤ min
{
µL
L2
L
, 2n
|Bt1|µL

, µLϵ
2

48C5σ2

}
, γ0 ≤

{
1
2 ,

ϵ2

96C6σ2

}
, γ′0 ≤

{
1, ϵ2

96C7σ2

}
, γ1 ≤

ϵ2

12(
C8
|Bt1|

+C9σ2)
, β1 = 1 − γ1, η21 ≤ min

{
γ2
1

64L2
F
,

|Bt1|
2η20µ

2
L

128n2C5C2
λ
,

|Bt1|
2γ2

0

128n2C6C2
g
,

|Bt1|
2γ′2

0

512n2C7L2
Lλλ(1+C

2
λ)

}
, T ≥{

30∆F
η1ϵ2

, 15E[∥∇F (w0)−m1∥2]
γ1ϵ2

,
30C5δλ,0

|Bt1|η0µLϵ2
,
30C6δg,0
|Bt1|γ0ϵ2

,
60C7δLλλ,0
|Bt1|γ′

0ϵ
2

}
, we have

E[∥∇F (wτ)∥2] ≤ ϵ2, E[∥∇F (wτ)−mτ+1)∥2] < 2ϵ2,

where τ is randomly sampled from {0, . . . , T}, C5, C6, C7, C8 are constants defined in the proof, and LF is the Lipschitz
continuity constant of ∇F (w).

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

E.3. Proof of Theorem E.2

To prove Theorem E.2, we first present some required Lemmas.

Lemma E.3. Under Assumption E.1, F (w) is LF -smooth for some constant LF ∈ R.

Lemma E.4. Consider the update wt+1 = wt − η1mt+1. Then under Assumption E.1, with η1LF ≤ 1
2 , we have

F (wt+1) ≤ F (wt) +
ηw
2
∥∇F (wt)−mt+1∥2 −

η1
2
∥∇F (wt)∥2 −

η1
4
∥mt+1∥2.

Lemma E.5 (Lemma 4.3 Lin et al. (2019)). Under Assumption E.1, λi(w) is Cλ-Lipschitz continuous with Cλ = LL/µL
for all i = 1, . . . , n.

Lemma E.6. Consider the updates in Algorithm 5, under Assumption E.1, with η0 ≤ min{µL/L2
L,

2n
|Bt1|µL

} we have
T∑
t=0

E[δλ,t] ≤
2n

|Bt1|η0µL
δλ,0 +

4nη0Tσ
2

µL
+

8n3C2
λη

2
1

|Bt1|2η20µ2
L

T−1∑
t=0

E[∥mt+1∥2] (12)

Lemma E.7. Consider Algorithm 5, under Assumption E.1, with γ0 < 1/2 we have
T∑
t=0

E[δg,t] ≤
2n

|Bt1|γ0
δg,0 + 8nγ0σ

2T +
8n3C2

gη
2
1

|Bt1|2γ20

T−1∑
t=0

E[∥mt+1∥2] (13)

Lemma E.8. Consider Algorithm 5, under Assumption E.1, with γ′0 ≤ 1 we have
T∑
t=0

E[δLλλ,t] ≤
4n

|Bt1|γ′0
δLλλ,0 + 32L2

Lλλ

T−1∑
t=0

E[δλ,t] + 8nγ′0Tσ
2 +

32n3L2
Lλλ(1 + C2

λ)η
2
1

|Bt1|2γ′20

T−1∑
t=0

E[∥mt+1∥2]

Proof of Theorem E.2. First, recall and define the following definitions

∇F (wt) :=
1

n

∑
i∈S

[
∇wψi(wt, λi(wt))−∇2

wλLi(wt, λi(wt))[∇2
λλLi(wt, λi(wt))]

−1∇λψi(wt, λi(wt))

]
fi(gi(wt))

+ ψi(wt, λi(wt))∇gi(wt)∇fi(gi(wi))

∇F (wt, λ
t) :=

1

n

∑
i∈S

∇Fi(wt, λ
t)

:=
1

n

∑
i∈S

[
∇wψi(wt, λ

t
i)−∇2

wλLi(wt, λ
t
i)[s

t
i]
−1∇λψi(wt, λ

t
i)

]
fi(u

t
i)

+ ψi(wt, λ
t
i)∇gi(wt)∇fi(uti)

G(wt) =
1

|Bt1|
∑
i∈Bt1

[
∇wψi(wt, λ

t
i)−∇2

wλLi(wt, λ
t
i;Bt2,i)[sti]−1∇λψi(wt, λ

t
i)

]
fi(u

t
i) + ψi(wt, λ

t
i)∇gi(wt;Bt2,i)∇fi(uti)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Considering the update mt+1 = (1− γ1)mt + γ1G(wt) in Algorithm 5, where γ1 = 1− β1, we have
Et[∥∇F (wt)−mt+1∥2]
= Et[∥∇F (wt)− (1− γ1)mt − γ1G(wt)∥2]
= Et[∥(1− γ1)(∇F (wt−1)−mt) + (1− γ1)(∇F (wt)−∇F (wt−1)) + γ1(∇F (wt)−∇F (wt, λ

t))

+ γ1(∇F (wt, λ
t)−G(wt))∥2]

(a)
= Et[∥(1− γ1)(∇F (wt−1)−mt) + (1− γ1)(∇F (wt)−∇F (wt−1)) + γ1(∇F (wt)−∇F (wt, λ

t))∥2

+ ∥γ1(∇F (wt, λ
t)−G(wt))∥2]

(b)

≤ (1 + γ1)(1− γ1)
2∥∇F (wt−1)−mt∥2 + 2(1 +

1

γ1
)

[
∥∇F (wt)−∇F (wt−1)∥2 + γ21∥∇F (wt)−∇F (wt, λ

t)∥2
]

+ γ21Et[∥∇F (wt, λ
t)−G(wt)∥2]

≤ (1− γ1)∥∇F (wt−1)−mt∥2 + 2(1 +
1

γ1
)

[
L2
F ∥wt −wt−1∥2 + γ21 ∥∇F (wt)−∇F (wt, λ

t)∥2︸ ︷︷ ︸
a⃝

]
+ γ21 Et[∥∇F (wt, λ

t)−G(wt)∥2]︸ ︷︷ ︸
b⃝

(14)

where the (a) follows from Et[∇̂F (wt, λ
t)] = G(wt), and (b) is due to ∥a+b∥2 ≤ (1+β)∥a∥2+(1+ 1

β)∥b∥2. Furthermore,
one may bound the last two terms in (14) as following

a⃝ = Et[∥∇F (wt)−∇F (wt, λ
t)∥2]

≤ 1

n

∑
i∈S

6∥∇wψi(wt, λi(wt))[fi(gi(wt))− fi(u
t
i)]∥2 + 6∥[∇wψi(wt, λi(wt))−∇wψi(wt, λ

t
i)]fi(u

t
i)∥2

+ 12∥[∇2
wλLi(wt, λi(wt))−∇2

wλLi(wt, λ
t
i)][∇2

λλLi(wt, λi(wt))]
−1∇λψi(wt, λi(wt))fi(gi(wt))∥2

+ 12∥∇2
wλLi(wt, λ

t
i)[∇2

λλLi(wt, λi(wt))]
−1[∇λψi(wt, λi(wt))−∇λψi(wt, λ

t
i)]fi(gi(wt))∥2

+ 12∥∇2
wλLi(wt, λ

t
i)[∇2

λλLi(wt, λi(wt))]
−1∇λψi(wt, λ

t
i)[fi(gi(wt))− fi(u

t
i)]∥2

+ 12∥∇2
wλLi(wt, λ

t
i)
[
[∇2

λλLi(wt, λi(wt))]
−1 − [sti]

−1
]
∇λψi(wt, λ

t
i)fi(u

t
i)∥2

+ 6∥[ψi(wt, λi(wt))− ψi(wt, λ
t
i)]∇gi(wt)∇fi(gi(wi))∥2

+ 6∥ψi(wt, λ
t
i)∇gi(wt)[∇fi(gi(wi))−∇fi(uti)]∥2

≤
(
6C2

ψC
2
f

n
+

12C2
LwλC

2
ψC

2
f

µ2
Ln

+
6B2

ψC
2
gL

2
f

n

)
∥g(wt)− ut∥2 +

12C2
LwλC

2
ψB

2
f

µ2
Lγ

2n
∥∇2

λλL(wt, λ(wt))− st∥2

+

(
6L2

ψB
2
f

n
+

12L2
LwλC

2
ψB

2
f

µ2
Ln

+
12C2

LwλL
2
ψB

2
f

µ2
Ln

+
6C2

gC
2
f

n

)
∥λ(wt)− λt∥2

=:
C6

4n
δg,t +

C7

4n
δLλλ,t +

C̃5

4n
δλ,t

with some properly chosen constants C̃5, C6, C7.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

On the other hand, part b⃝ can be bounded by some constant,
b⃝ = Et[∥∇F (wt, λ

t)−G(wt)∥2]

≤ Et

2
∥∥∥∥∥∥ 1n
∑
i∈S

∇Fi(wt, λ
t)− 1

|Bt1|
∑
i∈Bt1

∇Fi(wt, λ
t)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥ 1

|Bt1|
∑
i∈Bt1

∇Fi(wt, λ
t)− 1

|Bt1|
∑
i∈Bt1

Gi(wt)

∥∥∥∥∥∥
2

≤
12C2

ψB
2
f +

12C2
LwλC

2
ψB

2
f

γ2 + 12B2
ψC

2
gC

2
f

|Bt1|

+ 2Et
[

1

|Bt1|
∑
i∈Bt1

∥∥[∇2
wλLi(wt, λ

t
i)−∇2

wλLi(wt, λ
t
i;Bt2,i)][sti]−1∇λψi(wt, λ

t
i)fi(u

t
i)
∥∥2

+
∥∥ψi(wt, λ

t
i)[∇gi(wt)−∇gi(wt;Bt2,i)]∇fi(uti)

∥∥2]

≤
12C2

ψB
2
f +

12C2
LwλC

2
ψB

2
f

γ2 + 12B2
ψC

2
gC

2
f

|Bt1|
+
C2
ψB

2
fσ

2

γ2
+B2

ψC
2
fσ

2 =:
C8

|Bt1|
+ C9σ

2

Thus, with the natural assumption γ1 ≤ 1, we have
Et[∥∇F (wt)−mt+1∥2]

≤ (1− γ1)∥∇F (wt−1)−mt∥2 +
4

γ1

[
L2
F η

2
1∥mt−1∥2 + γ21

C̃5

4n
δλ,t + γ21

C6

4n
δg,t + γ21

C7

4n
δLλλ,t

]
+ γ21(

C8

|Bt1|
+ C9σ

2)

(15)

Take expectation over all randomness and summation over t = 1, . . . , T to get

T∑
t=0

E[∥∇F (wt)−mt+1∥2] ≤
1

γ1
E[∥∇F (w0)−m1∥2] +

4L2
F η

2
1

γ21

T∑
t=1

E[∥mt∥2] +
C̃5

n

T∑
t=1

E[δλ,t]

+
C6

n

T∑
t=1

E[δg,t] +
C7

n

T∑
t=1

E[δLλλ,t] + γ1(
C8

|Bt1|
+ C9σ

2)T

(16)

Recall that from Lemma E.6 Lemma E.7, and Lemma E.8 we have bounds for
∑T
t=0 E[δλ,t],

∑T
t=0 E[δg,t] and∑T

t=0 E[δLλλ,t],
T∑
t=0

E[δλ,t] ≤
2n

|Bt1|η0µL
δλ,0 +

4nη0Tσ
2

µL
+

8n3C2
λη

2
1

|Bt1|2η20µ2
L

T−1∑
t=0

E[∥mt+1∥2] (17)

T∑
t=0

E[δg,t] ≤
2n

|Bt1|γ0
δg,0 + 8nγ0σ

2T +
8n3C2

gη
2
1

|Bt1|2γ20

T−1∑
t=0

E[∥mt+1∥2] (18)

T∑
t=0

E[δLλλ,t] ≤
4n

|Bt1|γ′0
δLλλ,0 + 32L2

Lλλ

T−1∑
t=0

E[δλ,t] + 8nγ′0Tσ
2 +

32n3L2
Lλλ(1 + C2

λ)η
2
1

|Bt1|2γ′20

T−1∑
t=0

E[∥mt+1∥2] (19)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

By plugging (17), (18) and (19) into inequality (16), we obtain
T∑
t=0

E[∥∇F (wt)−mt+1∥2]

≤ 1

γ1
E[∥∇F (w0)−m1∥2] +

4L2
F η

2
1

γ21

T∑
t=1

E[∥mt∥2] +
C5

n

T∑
t=0

E[δλ,t] +
C6

n

T∑
t=0

E[δg,t]

+
C7

n

[
4n

|Bt1|γ′0
δLλλ,0 + 8nγ′0Tσ

2 +
32n3L2

Lλλ(1 + C2
λ)η

2
1

|Bt1|2γ′20

T−1∑
t=0

E[∥mt+1∥2]
]
+ γ1(

C8

|Bt1|
+ C9σ

2)T

≤ 1

γ1
E[∥∇F (w0)−m1∥2] +

2C5

|Bt1|η0µL
δλ,0 +

4C5η0Tσ
2

µL
+

2C6

|Bt1|γ0
δg,0 + 8C6γ0σ

2T

+
4C7

|Bt1|γ′0
δLλλ,0 + 8C7γ

′
0Tσ

2 + γ1(
C8

|Bt1|
+ C9σ

2)T

+

[
4L2

F η
2
1

γ21
+

8n2C5C
2
λη

2
1

|Bt1|2η20µ2
L

+
8n2C6C

2
gη

2
1

|Bt1|2γ20
+

32n2C7L
2
Lλλ(1 + C2

λ)η
2
1

|Bt1|2γ′20

]
T∑
t=1

E[∥mt∥2]

(20)

where C5 := 32L2
Lλλ

C7 + C̃5.

Recall Lemma E.4, we have

F (wt+1) ≤ F (wt) +
ηw
2
∥∇F (wt)−mt+1∥2 −

η1
2
∥∇F (wt)∥2 −

η1
4
∥mt+1∥2.

Combing with (20), we obtain

1

T + 1

T∑
t=0

E[∥∇F (xt)∥2]

≤ 2E[F (w0)− F (wT+1)]

η1T
+

1

T

T∑
t=0

E[∥∇F (wt)−mt+1∥2]−
1

2T

T∑
t=0

E[∥mt+1∥2]

≤ 2[F (w0)− F (w∗)]

η1T
+

1

T

[
E[∥∇F (w0)−m1∥2]

γ1
+

2C5δλ,0
|Bt1|η0µL

+
2C6δg,0
|Bt1|γ0

+
4C7δLλλ,0
|Bt1|γ′0

]

+
4C5η0σ

2

µL
+ 8C6γ0σ

2 + 8C7γ
′
0σ

2 + γ1(
C8

|Bt1|
+ C9σ

2)

+
1

T

[
4L2

F η
2
1

γ21
+

8n2C5C
2
λη

2
1

|Bt1|2η20µ2
L

+
8n2C6C

2
gη

2
1

|Bt1|2γ20
+

32n2C7L
2
Lλλ(1 + C2

λ)η
2
1

|Bt1|2γ′20
− 1

2

]
T∑
t=1

E[∥mt∥2]

(21)

By setting

η21 ≤ min

{
γ21

64L2
F

,
|Bt1|2η20µ2

L

128n2C5C2
λ

,
|Bt1|2γ20

128n2C6C2
g

,
|Bt1|2γ′20

512n2C7L2
Lλλ(1 + C2

λ)

}
we have

4L2
F η

2
1

γ21
+

8n2C5C
2
λη

2
1

|Bt1|2η20µ2
L

+
8n2C6C

2
gη

2
1

|Bt1|2γ20
+

32n2C7L
2
Lλλ(1 + C2

λ)η
2
1

|Bt1|2γ′20
− 1

4
≤ 0

which implies that the last term of the RHS of inequality (21) are less or equal to zero. Hence

1

T + 1

T∑
t=0

E[∥∇F (xt)∥2]

≤ 2[F (w0)− F (w∗)]

η1T
+

1

T

[
E[∥∇F (w0)−m1∥2]

γ1
+

2C5δλ,0
|Bt1|η0µL

+
2C6δg,0
|Bt1|γ0

+
4C7δLλλ,0
|Bt1|γ′0

]

+
4C5η0σ

2

µL
+ 8C6γ0σ

2 + 8C7γ
′
0σ

2 + γ1(
C8

|Bt1|
+ C9σ

2)

(22)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

With

η0 ≤ µLϵ
2

48C5σ2
, γ0 ≤ ϵ2

96C6σ2
, γ′0 ≤ ϵ2

96C7σ2
, γ1 ≤ ϵ2

12(C8

|Bt1|
+ C9σ2)

,

T ≥
{
30[F (w0)− F (w∗)]

η1ϵ2
,
15E[∥∇F (w0)−m1∥2]

γ1ϵ2
,

30C5δλ,0
|Bt1|η0µLϵ2

,
30C6δg,0
|Bt1|γ0ϵ2

,
60C7δLλλ,0
|Bt1|γ′0ϵ2

}
we have

1

T + 1

T∑
t=0

E[∥∇F (xt)∥2] ≤
1

3
ϵ2 +

1

3
ϵ2 < ϵ2.

Furthermore, to show the second part of the theorem, following from inequality (20), we have
T∑
t=0

E[∥∇F (wt)−mt+1∥2] ≤
1

γ1
E[∥∇F (w0)−m1∥2] +

2C5

|Bt1|η0µL
δλ,0 +

4C5η0Tσ
2

µL
+

2C6

|Bt1|γ0
δg,0

+ 8C6γ0σ
2T +

4C7

|Bt1|γ′0
δLλλ,0 + 8C7γ

′
0Tσ

2 + γ1(
C8

|Bt1|
+ C9σ

2)T

+
1

2

T−1∑
t=0

E[∥∇F (wt)∥2 + ∥∇F (wt)−mt+1∥2.

With parameters set above, it follows that

1

T + 1

T∑
t=0

E[∥∇F (wt)−mt+1∥2] < 2ϵ2.

E.4. Proofs of Lemmas

E.4.1. PROOF OF LEMMA 4.1

Proof. Given ℓ(w;x′,x, q) ≥ I(hq(x′;w)− hq(x;w) ≥ 0), we have
ḡ(w;xqi ,Sq) ≥ r(w;xqi ,Sq),

for each (q,xqi), which immediately follows the desired conclusion.

E.4.2. PROOF OF LEMMA 5.1

Proof. To show the equivalence in the Lemma, it suffices to show that λq(w) is the (K + 1)-th largest value in the set
{hq(x′;w)|x′ ∈ Sq}. Let {θ1, θ2, · · · , θNq} denote a sequence of values defined by sorting {hq(x′;w)|x′ ∈ Sq} in
descending order, i.e., θ1 ≥ θ2 ≥ · · · ≥ θNq . θk denote the k-th largest value.

Recall
λq(w) = argmin

λ
(K + ε)λ+

∑
x′∈Sq

(hq(x
′;w)− λ)+,

where ε ∈ (0, 1). Define function Λq(λ) := (K + ε)λ+
∑Nq
i=1(θi − λ)+, then it follows that λq(w) = argminλ Λq(λ).

Take the derivative of Λq(λ), we have

∇λΛq(λ) = K + ε−
Nq∑
i=1

d(θi − λ), where d(θi − λ) =

1, θi > λ

ε
′ ∈ [0, 1], θi = λ

0, θi < λ

.

First, we assume θK > θK+1. One may consider this problem in three cases.

• If λ > θK+1, then
∑Nq
i=1 d(θi − λ) ≤ K, so we have ∇λΛq(λ) ≥ K + ε−K = ε > 0.

• If λ < θK+1, then
∑Nq
i=1 d(θi − λ) ≥ K + 1, so we have ∇λΛq(λ) ≤ K + ε−K − 1 = ε− 1 < 0.

• If λ = θK+1, then
∑Nq
i=1 d(θi − λ) = K + ε

′
, so we have ∇λΛq(λ) = K + ε−K − ε

′
= ε− ε

′
. Thus we will have

∇λΛq(λ) = 0 by setting ε
′
= ε. Hence λq(w) = θK+1.

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Second, if θK = θK+1. One may consider this problem in three cases.

• If λ > θK+1, then
∑Nq
i=1 d(θi − λ) ≤ K − 1, so we have ∇λΛq(λ) ≥ K + ε−K + 1 = 1 + ϵ > 0.

• If λ < θK+1, then
∑Nq
i=1 d(θi − λ) ≥ K + 1, so we have ∇λΛq(λ) ≤ K + ε−K − 1 < 0.

• If λ = θK = θK+1, then
∑Nq
i=1 d(θi−λ) = K−1+2ϵ

′
, so we have ∇λΛq(λ) = K+ ε−K+1−2ε

′
= 1+ ε−2ε

′
.

Thus we will have ∇λΛq(λ) = 0 by setting ε
′
= (1 + ε)/2. Hence λq(w) = θK+1.

In summary, θK+1 = λq(w) = argminλ Λq(λ). The proof is finished.

E.4.3. PROOF OF LEMMA 5.2

Proof. Given the condition ψ(hq(x
q
i ;w) − λq(w)) ≤ CI(hq(xqi ;w) − λq(w) > 0) and ℓ(w;x′,x, q) ≥ I(hq(x′;w) −

hq(x;w) > 0), we have
ψ(hq(x

q
i ;w)− λq(w))(2y

q
i − 1)

CZKq log2(ḡ(w;xqi ,Sq) + 1)
≤ I(xqi ∈ Sq[K])(2y

q
i − 1)

ZKq log2(r(w;xqi ,Sq) + 1)

for each (q,xqi). The desired result follows.

E.4.4. PROOF OF LEMMA 5.3

Proof. Recall

Lq(λ;w) =
K

Nq
λ+

τ2
2
λ2 +

1

Nq

∑
xi∈Sq

τ1 ln(1 + exp((hq(xi;w)− λ)/τ1)).

Define

L̃q(λ;w) =
K

Nq
λ+

1

Nq

∑
xi∈Sq

(hq(xi;w)− λ)+

L̂q(λ;w) =
K

Nq
λ+

τ2
2
λ2 +

1

Nq

∑
xi∈Sq

(hq(xi;w)− λ)+.

For simplicity, we denote λ∗ = argminλ Lq(λ;w), λ̃∗ = argminλ L̃q(λ;w), λ̂∗ = argminλ L̂q(λ;w). Note that it is
obvious to see that when λ ≥ 2ch, function L̃q(λ;w) is monotonically increasing, and monotonically decreasing when
λ ≤ 0. Thus the optimal point is bounded, i.e. λ̃∗ ∈ [0, 2ch]. Similarly, we have ∇λLq(λ;w) < 0 when λ ≤ 0 and
∇λLq(λ;w) ≥ 0 when λ ≥ ch + τ1 lnNmax where Nmax = maxq Nq . This allows us to show that the optimal point λ∗ is
also bounded, i.e. λ∗ ∈ [0, ch + τ1 lnNmax]. By applying Lemma 8 in Yang & Lin (2018) to L̃q(λ;w), we know that there
exists a constant c1 > 0 such that for all λ we have

|λ− λq(w)| ≤ c1(L̃q(λ;w)− L̃q(λq(w);w)). (23)
It is trivial to show τ1 ln(1 + exp(x/τ1)) ≥ x+ ∀x ∈ R and τ1 ln(1 + exp(x/τ1))− x+ ≤ (ln 2)τ1. Then it follows easily
that

L̂q(λ;w) ≤ Lq(λ;w) ≤ L̂q(λ;w) + c2τ1 (24)
where c2 = ln 2. Then with inequality (24) and the optimality of λ∗, we have

L̃q(λ∗;w) = L̂q(λ∗;w)− τ2
2
λ2∗ ≤ Lq(λ∗;w)− τ2

2
λ2∗ ≤ Lq(λ̃∗;w)− τ2

2
λ2∗

≤ L̂q(λ̃∗;w) + c2τ1 −
τ2
2
λ2∗ = L̃q(λ̃∗;w) +

τ2
2
λ̃2∗ + c2τ1 −

τ2
2
λ2∗

which follows that
|L̃q(λ∗;w)− L̃q(λ̃∗;w)| ≤ τ2

2
λ̃2∗ + c2τ1 −

τ2
2
λ2∗ (25)

Combining inequalities (23), (25) and the boundedness of λ∗, λ̃∗, and setting τ1 = τ2 = ε, we obtain

|λq(w)− λ̂q(w)| ≤ c1

(τ2
2
λ̃2∗ + c2τ1 −

τ2
2
λ2∗

)
= O(ε)

To show the smoothness of Lq(λ;w), we first show
τ1 ln(1 + exp(x/τ1)) = max

α∈[0,1]
xα− τ1[α ln(α) + (1− α) ln(1− α)] =: A(α) (26)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Note that the solution to A′(α) = x − τ1[ln(α) − ln(1 − α)] = 0 is α∗ = 1 − (1 + exp(x/τ1))
−1. Then A(α∗) =

τ1 ln(1 + exp(x/τ1)), which implies (26). Moreover, A(α) is strong concave because

(A(α) + τ1α
2)′′ = −τ1(

1

α
+

1

1− α
) + 2τ1 < 0

It follows that

Lq(λ;w) =
K

Nq
λ+

τ2
2
λ2 +

1

Nq

∑
xi∈Sq

max
α∈(0,1)

(hq(xi;w)− λ)α− τ1[α ln(α) + (1− α) ln(1− α)].

Then by Theorem 1 in Nesterov (2005), Lq(λ;w) is smooth. The strong convexity of Lq(λ;w) follows from the convexity
of Lq(λ;w)− τ2

2 λ
2, which can be proved by checking the non-negativity of its second derivative

∇2(Lq(λ;w)− τ2
2
λ2) =

1

Nq

∑
xi∈Sq

1
τ1

exp((λ− hq(xi;w))/τ1)

[1 + exp((λ− hq(xi;w))/τ1)]2
≥ 0

E.4.5. PROOF OF LEMMA E.3

Proof. Take arbitrary w1,w2 ∈ Rd, we have

∥∇F (w1)−∇F (w2)∥ ≤ 1

n

∑
i∈S

∥∇wψi(w1, λi(w1))fi(gi(w1))−∇wψi(w2, λi(w2))fi(gi(w2))∥

+
1

n

∑
i∈S

∥∇2
wλLi(w2, λi(w2))[∇2

λλLi(w2, λi(w2))]
−1∇λψi(w2, λi(w2))fi(gi(w2))

−∇2
wλLi(w1, λi(w1))[∇2

λλLi(w1, λi(w1))]
−1∇λψi(w1, λi(w1))fi(gi(w1))∥

+
1

n

∑
i∈S

∥ψi(w1, λi(w1))∇gi(w1)∇fi(gi(w1))− ψi(w2, λi(w2))∇gi(w2)∇fi(gi(w2))∥

For each i we have
∥∇wψi(w1, λi(w1))fi(gi(w1))−∇wψi(w2, λi(w2))fi(gi(w2))∥2

≤ ∥∇wψi(w1, λi(w1))[fi(gi(w1)− fi(gi(w2))]∥2 + ∥[∇wψi(w1, λi(w1))−∇wψi(w2, λi(w2))]fi(gi(w2))∥2

≤ C2
ψC

2
f∥gi(w1)− gi(w2)∥2 + L2

ψ[∥w1 −w2∥2 + ∥λi(w1)− λi(w2)∥2]B2
f

≤ (C2
ψC

2
fC

2
g +B2

fL
2
ψ(1 + Cλ))∥w1 −w2∥2

=: C2
1∥w1 −w2∥2

and
∥∇2

wλLi(w2, λi(w2))[∇2
λλLi(w2, λi(w2))]

−1∇λψi(w2, λi(w2))fi(gi(w2))

−∇2
wλLi(w1, λi(w1))[∇2

λλLi(w1, λi(w1))]
−1∇λψi(w1, λi(w1))fi(gi(w1))∥

≤ 4∥[∇2
wλLi(w2, λi(w2))−∇2

wλLi(w1, λi(w1))][∇2
λλLi(w2, λi(w2))]

−1∇λψi(w2, λi(w2))fi(gi(w2))∥2

+ 4∥∇2
wλLi(w1, λi(w1))

[
[∇2

λλLi(w2, λi(w2))]
−1 − [∇2

λλLi(w1, λi(w1))]
−1
]
∇λψi(w2, λi(w2))fi(gi(w2))∥2

+ 4∥∇2
wλLi(w1, λi(w1))[∇2

λλLi(w1, λi(w1))]
−1[∇λψi(w2, λi(w2))−∇λψi(w1, λi(w1))]fi(gi(w2))∥2

+ 4∥∇2
wλLi(w1, λi(w1))[∇2

λλLi(w1, λi(w1))]
−1∇λψi(w1, λi(w1))[fi(gi(w2))− fi(gi(w1))]∥2

≤
[(

4L2
LwλC

2
ψB

2
f

µ2
L

+
4C2

LwλL
2
LλλC

2
ψB

2
f

µ4
L

+
4C2

LwλL
2
ψB

2
f

µ2
L

)
(1 + C2

λ) +
4C2

LwλC
2
ψC

2
fC

2
g

µ2
L

]
∥w1 −w2∥2

=: C2
2∥w1 −w2∥2

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

and
∥ψi(w1, λi(w1))∇gi(w1)∇fi(gi(w1))− ψi(w2, λi(w2))∇gi(w2)∇fi(gi(w2))∥2

≤ 3∥[ψi(w1, λi(w1))− ψi(w2, λi(w2))]∇gi(w1)∇fi(gi(w1))∥2

+ 3∥ψi(w2, λi(w2))[∇gi(w1)−∇gi(w2)]∇fi(gi(w1))∥2

+ 3∥ψi(w2, λi(w2))∇gi(w2)[∇fi(gi(w1))−∇fi(gi(w2))]∥2

≤
[
3C2

ψC
2
gC

2
f (1 + C2

λ) + 3B2
ψL

2
gC

2
f + 3B2

ℓC
2
gL

2
fC

2
g

]
∥w1 −w2∥2

=: C2
3∥w1 −w2∥2.

Hence
∥∇F (w1)−∇F (w2)∥ ≤ 1

n

∑
i∈S

(C1 + C2 + C3)∥w1 −w2∥ = LF ∥w1 −w2∥,

where LF := C1 + C2 + C3.

E.4.6. PROOF OF LEMMA E.4

Proof. By LF -smoothness of F (w), with η1 ≤ 1
2LF

, we have

F (wt+1) ≤ F (wt) +∇F (wt)
T (wt+1 −wt) +

LF
2

∥wt+1 −wt∥2

= F (wt)− η1∇F (wt)
Tmt+1 +

LF
2
η21∥mt+1∥2

= F (wt) +
η1
2
∥∇F (wt)−mt+1∥2 −

η1
2
∥∇F (wt)∥2 +

(
LF
2
η21 −

η1
2

)
∥mt+1∥2.

E.4.7. PROOF OF LEMMA E.6

Proof. Recall and define the following notations

λt+1
i =

{
λti − η0∇λLi(wt, λ

t
i;Bt2,i) if i ∈ Bt1

λti o.w.
, λ̃ti := λti − η0∇λLi(wt, λ

t
i;Bt2,i)

Then
EBt2,i [∥λ̃

t
i − λi(wt)∥2]

= EBt2,i [∥λ
t
i − η0∇λLi(wt, λ

t
i;Bt2,i)− λi(wt)∥2]

= EBt2,i [∥λ
t
i − η0∇λLi(wt, λ

t
i;Bt2,i)− λi(wt) + η0∇λLi(wt, λi(wt)) + η0∇λLi(wt, λ

t
i)− η0∇λLi(wt, λ

t
i)∥2]

= ∥λti − λi(wt) + η0∇λLi(wt, λi(wt))− η0∇λLi(wt, λ
t
i)∥2 + EBt2,i [∥η0∇λLi(wt, λ

t
i)− η0∇λLi(wt, λ

t
i;Bt2,i)∥2]

≤ ∥λti − λi(wt)∥2 + η20∥∇λLi(wt, λi(wt))−∇λLi(wt, λ
t
i)∥2

+ 2η0⟨λti − λi(wt),∇λLi(wt, λi(wt))−∇λLi(wt, λ
t
i)⟩+ η20σ

2

(a)

≤ ∥λti − λi(wt)∥2 + η20L
2
L∥λti − λi(wt)∥2 − 2η0µL∥λti − λi(wt)∥2 + η20σ

2

(b)

≤ (1− η0µL)∥λti − λi(wt)∥2 + η20σ
2

(27)
where inequality (a) uses the strong monotonicity of Li(wt, ·) as it is assumed to be µL-strongly convex, and (b) uses the
assumption η0 ≤ µL/L

2
L.

Moreover, consider the randomness on the query sampling Bt1, we have

Et[∥λt+1
i − λi(wt)∥2] =

|Bt1|
n

EBt2,i [∥λ̃
t
i − λi(wt)∥2] +

n− |Bt1|
n

∥λti − λi(wt)∥2

which follows

EBt2,i [∥λ̃
t
i − λi(wt)∥2] =

n

|Bt1|
Et[∥λt+1

i − λi(wt)∥2]−
n− |Bt1|
|Bt1|

∥λti − λi(wt)∥2 (28)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Combining inequalities (27) and (28), we obtain

Et[∥λt+1
i − λi(wt)∥2] ≤

n− |Bt1|
n

∥λti − λi(wt)∥2 +
|Bt1|
n

(1− η0µL)∥λti − λi(wt)∥2 +
|Bt1|
n
η20σ

2

≤ (1− |Bt1|η0µL
n

)∥λti − λi(wt)∥2 +
|Bt1|η20σ2

n

(29)

Thus
Et[∥λt+1

i − λi(wt+1)∥2]

≤ (1 +
|Bt1|η0µL

2n
)Et[∥λt+1

i − λi(wt)∥2] + (1 +
2n

|Bt1|η0µL
)Et[∥λi(wt+1)− λi(wt)∥2]

≤ (1− |Bt1|η0µL
2n

)∥λti − λi(wt)∥2 +
2|Bt1|η20σ2

n
+

4nC2
λ

|Bt1|η0µL
Et[∥wt+1 −wt∥2]

(30)

where we use the assumption η0 ≤ 2n
|Bt1|µL

i.e. |Bt1|η0µL
2n ≤ 1.

Taking summation over all queries and expectation over all randomness, we have

E[∥λt+1 − λ(wt+1)∥2] ≤ (1− |Bt1|η0µL
2n

)E[∥λt − λ(wt)∥2] + 2|Bt1|η20σ2 +
4n2C2

λ

|Bt1|η0µL
E[∥wt+1 −wt∥2] (31)

Taking summation over t = 0, . . . , T − 1, we have
T∑
t=0

E[∥λt − λ(wt)∥2] ≤
2n

|Bt1|η0µL
∥λ0 − λ(w0)∥2 +

4nη0Tσ
2

µL
+

8n3C2
λ

|Bt1|2η20µ2
L

T−1∑
t=0

E[∥wt+1 −wt∥2] (32)

E.4.8. PROOF OF LEMMA E.7

Proof. Consider
∥ut+1 − g(wt)∥2 = ∥ut+1 − ut + ut − g(wt)∥2

= ∥ut+1 − ut∥2 + ∥ut − g(wt)∥2 + 2⟨ut+1 − ut, ut − g(wt)⟩
= ∥ut+1 − ut∥2 + ∥ut − g(wt)∥2 + 2

∑
i∈Bt1

⟨ut+1
i − uti, u

t
i − gi(wt)⟩

= ∥ut+1 − ut∥2 + ∥ut − g(wt)∥2 + 2
∑
i∈Bt1

⟨ut+1
i − uti, u

t
i − gi(wt;Bt2,i)⟩︸ ︷︷ ︸

A5

+ 2
∑
i∈Bt1

⟨ut+1
i − uti, gi(wt;Bt2,i)− gi(wt)⟩︸ ︷︷ ︸

A6

(33)

With uti − ut+1
i = γ0(u

t
i − gi(wt;Bt2,i))∀i ∈ Bt1 and the inequality 2⟨b− a, a− c⟩ = ∥b− c∥2 −∥a− b∥2 −∥a− c∥2, we

have
A5 = 2

∑
i∈Bt1

⟨ut+1
i − gi(wt), u

t
i − gi(wt,Bt2,i)⟩+ 2

∑
i∈Bt1

⟨gi(wt)− uti, u
t
i − gi(wt,Bt2,i)⟩

=
2

γ0

∑
i∈Bt1

⟨ut+1
i − gi(wt), u

t
i − ut+1

i ⟩+ 2
∑
i∈Bt1

⟨gi(wt)− uti, u
t
i − gi(wt,Bt2,i)⟩

=
1

γ0

∑
i∈Bt1

[∥uti − gi(wt)∥2 − ∥ut+1
i − gi(wt)∥2 − ∥ut+1

i − uti∥2]

+ 2
∑
i∈Bt1

⟨gi(wt)− uti, u
t
i − gi(wt,Bt2,i)⟩

=
1

γ0
∥ut − g(wt)∥2 −

1

γ0
∥ut+1 − g(wt)∥2 −

1

γ0
∥ut+1 − ut∥2

+ 2
∑
i∈Bt1

⟨gi(wt)− uti, u
t
i − gi(wt,Bt2,i)⟩

(34)

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

where the last equality is due to the fact ∥uti − gi(wt)∥2 = ∥ut+1
i − gi(wt)∥2 and ∥ut+1

i − uti∥2 = 0 for all i ̸∈ Bt1. Taking
expectation over the randomness at iteration t we have

Et[A5] ≤
1

γ0
∥ut − g(wt)∥2 −

1

γ0
Et[∥ut+1 − g(wt)∥2]−

1

γ0
Et[∥ut+1 − ut∥2]

− 2EBt1

∑
i∈Bt1

∥uti − gi(wt)∥2

=
1

γ0
∥ut − g(wt)∥2 −

1

γ0
Et[∥ut+1 − g(wt)∥2]−

1

γ0
Et[∥ut+1 − ut∥2]

− 2
|Bt1|
n

∥ut − g(wt)∥2

(35)

On the other hand, with the assumption γ0 < 1/2, we have

A6 ≤ (
1

γ0
− 1)

∑
i∈Bt1

∥ut+1
i − uti∥2 +

1
1
γ0

− 1

∑
i∈Bt1

∥gi(wt;Bt2,i)− gi(wt)∥2

≤ (
1

γ0
− 1)

∑
i∈Bt1

∥ut+1
i − uti∥2 + 2γ0

∑
i∈Bt1

∥gi(wt;Bt2,i)− gi(wt)∥2

≤ (
1

γ0
− 1)∥ut+1 − ut∥2 + 2γ0|Bt1|σ2

(36)

Then by plugging (34), (35), (36) back into (33), we obtain
E[∥ut+1 − g(wt)∥2]

≤ E[∥ut+1 − ut∥2] + E[∥ut − g(wt)∥2] +
1

γ0
E[∥ut − g(wt)∥2]−

1

γ0
E[∥ut+1 − g(wt)∥2]

− 1

γ0
E[∥ut+1 − ut∥2]− 2

|Bt1|
n

E[∥ut − g(wt)∥2] + (
1

γ0
− 1)E[∥ut+1 − ut∥2] + 2γ0|Bt1|σ2

= (1 +
1

γ0
− 2

|Bt1|
n

)E[∥ut − g(wt)∥2]−
1

γ0
E[∥ut+1 − g(wt)∥2] + 2γ0|Bt1|σ2

Note that
(1+ 1

γ0
−2

|Bt1|
n)

1+ 1
γ0

= 1− 2|Bt1|γ0
(1+γ0)n

≤ 1− |Bt1|γ0
n and (1 + a

2)(1− a) ≤ 1− a
2 . It follows

E[∥ut+1 − g(wt)∥2] ≤ (1− |Bt1|γ0
n

)E[∥ut − g(wt)∥2] + 2γ20 |Bt1|σ2

Moreover, we have
E[∥ut+1 − g(wt+1)∥2]

≤
(
1 +

|Bt1|γ0
2n

)
E[∥ut+1 − g(wt)∥2] +

(
1 +

2n

|Bt1|γ0

)
E[∥g(wt)− g(wt+1)∥2]

≤
(
1 +

|Bt1|γ0
2n

)[
(1− |Bt1|γ0

n
)E[∥ut − g(wt)∥2] + 2γ20 |Bt1|σ2

]
+

(
1 +

2n

|Bt1|γ0

)
C2
gnE[∥wt −wt+1∥2]

≤
(
1− |Bt1|γ0

2n

)
E[∥ut − g(wt)∥2] + 4γ20 |Bt1|σ2 +

4n2C2
gη

2
1

|Bt1|γ0
E[∥mt+1∥2]

Take summation over t = 0, . . . , T − 1 to get
T∑
t=0

E[∥ut − g(wt)∥2] ≤
2n

|Bt1|γ0
E[∥u0 − g(w0)∥2] + 8nγ0σ

2T +
8n3C2

gη
2
1

|Bt1|2γ20

T−1∑
t=0

E[∥mt+1∥2]

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

E.4.9. PROOF OF LEMMA E.8

Proof. Recall and define the following notations

st+1
i =

{
(1− γ′0)s

t
i + γ′0∇2

λλLi(wt, λ
t
i;Bt2,i) if i ∈ Bt1

sti o.w.
, s̃ti = (1− γ′0)s

t
i + γ′0∇2

λλLi(wt, λ
t
i;Bt2,i)

Consider
EBt2,i [∥s̃

t
i −∇2

λλLi(wt, λi(wt))∥2]
= EBt2,i [[∥(1− γ′0)s

t
i + γ′0∇2

λλLi(wt, λ
t
i;Bt2,i)−∇2

λλLi(wt, λi(wt))∥2]
= EBt2,i [∥(1− γ′0)[s

t
i −∇2

λλLi(wt, λi(wt))] + γ′0[∇2
λλLi(wt, λ

t
i;Bt2,i)−∇2

λλLi(wt, λ
t
i)]

+ γ′0[∇2
λλLi(wt, λ

t
i)−∇2

λλLi(wt, λi(wt))]∥2]
= ∥(1− γ′0)[s

t
i −∇2

λλLi(wt, λi(wt))] + γ′0[∇2
λλLi(wt, λ

t
i)−∇2

λλLi(wt, λi(wt))]∥2

+ EBt2,i [∥γ
′
0[∇2

λλLi(wt, λ
t
i;Bt2,i)−∇2

λλLi(wt, λ
t
i)]∥2]

≤ (1 +
γ′0
2
)(1− γ′0)

2∥sti −∇2
λλLi(wt, λi(wt))∥2 + (1 +

2

γ′0
)γ′20 ∥∇2

λλLi(wt, λ
t
i)−∇2

λλLi(wt, λi(wt))∥2 + γ′20 σ
2

≤ (1− γ′0
2
)∥sti −∇2

λλLi(wt, λi(wt))∥2 + 4γ′0L
2
Lλλ∥λti − λi(wt)∥2 + γ′20 σ

2

(37)
Note that for the randomness of query sampling we have

Et[∥st+1
i −∇2

λλLi(wt, λi(wt))∥2] =
|Bt1|
n

EBt2,i [∥s̃
t
i −∇2

λλLi(wt, λi(wt))∥2] +
n− |Bt1|

n
∥sti −∇2

λλLi(wt, λi(wt))∥2

which follows that

EBt2,i [∥s̃
t
i −∇2

λλLi(wt, λi(wt))∥2] =
n

|Bt1|
Et[∥st+1

i −∇2
λλLi(wt, λi(wt))∥2]−

n− |Bt1|
|Bt1|

∥sti −∇2
λλLi(wt, λi(wt))∥2

(38)
Then by plugging the equality (38) into inequality (37), we obtain

n

|Bt1|
Et[∥st+1

i −∇2
λλLi(wt, λi(wt))∥2]−

n− |Bt1|
|Bt1|

∥sti −∇2
λλLi(wt, λi(wt))∥2

≤ (1− γ′0
2
)∥sti −∇2

λλLi(wt, λi(wt))∥2 + 4γ′0L
2
Lλλ∥λti − λi(wt)∥2 + γ′20 σ

2

It follows
Et[∥st+1

i −∇2
λλLi(wt, λi(wt))∥2]

≤ (1− |Bt1|γ′0
2n

)∥sti −∇2
λλLi(wt, λi(wt))∥2 +

4|Bt1|γ′0L2
Lλλ

n
∥λti − λi(wt)∥2 +

|Bt1|γ′20 σ2

n
Furthermore,

Et[∥st+1
i −∇2

λλLi(wt+1, λi(wt+1))∥2]

≤ (1 +
|Bt1|γ′0
4n

)Et[∥st+1
i −∇2

λλLi(wt, λi(wt))∥2] + (1 +
4n

|Bt1|γ′0
)L2

Lλλ(1 + C2
λ)Et[∥wt −wt+1∥2]

≤ (1− |Bt1|γ′0
4n

)∥sti −∇2
λλLi(wt, λi(wt))∥2 +

8|Bt1|γ′0L2
Lλλ

n
∥λti − λi(wt)∥2 +

2|Bt1|γ′20 σ2

n

+
8nL2

Lλλ(1 + C2
λ)

|Bt1|γ′0
Et[∥wt −wt+1∥2]

where we use the assumption γ′0 ≤ 1 ≤ 4n
|Bt1|

i.e. 4n
|Bt1|γ′

0
≥ 1.

Taking expectation over all randomness and taking summation over all queries, we have
E[∥st+1 −∇2

λλL(wt+1, λ(wt+1))∥2]

≤ (1− |Bt1|γ′0
4n

)E[∥st −∇2
λλL(wt, λi(wt))∥2] +

8|Bt1|γ′0L2
Lλλ

n
E[∥λt − λ(wt)∥2] + 2|Bt1|γ′20 σ2

+
8n2L2

Lλλ(1 + C2
λ)

|Bt1|γ′0
E[∥wt −wt+1∥2]

Large-scale Stochastic Optimization of NDCG Surrogates for Deep Learning with Provable Convergence

Taking summation over t = 0, . . . , T − 1, we obtain
T∑
t=0

E[∥st −∇2
λλL(wt, λ(wt))∥2]

≤ 4n

|Bt1|γ′0
∥s0 −∇2

λλL(w0, λi(w0))∥2 + 32L2
Lλλ

T−1∑
t=0

E[∥λt − λ(wt)∥2] + 8nγ′0Tσ
2

+
32n3L2

Lλλ(1 + C2
λ)

|Bt1|2γ′20

T−1∑
t=0

E[∥wt −wt+1∥2]

