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Abstract
Federated Learning (FL) is a promising frame-
work for performing privacy-preserving, dis-
tributed learning with a set of clients. However,
the data distribution among clients often exhibits
non-IID, i.e., distribution shift, which makes ef-
ficient optimization difficult. To tackle this prob-
lem, many FL algorithms focus on mitigating
the effects of data heterogeneity across clients by
increasing the performance of the global model.
However, almost all algorithms leverage Empiri-
cal Risk Minimization (ERM) to be the local op-
timizer, which is easy to make the global model
fall into a sharp valley and increase a large de-
viation of parts of local clients. Therefore, in
this paper, we revisit the solutions to the distri-
bution shift problem in FL with a focus on local
learning generality. To this end, we propose a
general, effective algorithm, FedSAM, based on
Sharpness Aware Minimization (SAM) local op-
timizer, and develop a momentum FL algorithm
to bridge local and global models, MoFedSAM.
Theoretically, we show the convergence analysis
of these two algorithms and demonstrate the gen-
eralization bound of FedSAM. Empirically, our
proposed algorithms substantially outperform ex-
isting FL studies and significantly decrease the
learning deviation.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) is a col-
laborative training framework that enables a large number
of clients, which can be phones, network sensors, or alterna-
tive local information sources (Kairouz et al., 2019; Mohri
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et al., 2019). FL trains machine learning models without
transmitting client data over the network, and thus it can
protect data privacy at some basic levels. Two important
settings are introduced in FL (Kairouz et al., 2019): the
cross-device FL and the cross-silo FL. The cross-silo FL is
related to a small number of reliable clients, e.g., medical
or financial institutions. By contrast, the cross-device FL
includes a large number of clients, e.g., billion-scale android
phones (Hard et al., 2018). In cross-device FL, clients are
usually deployed in various environments. It is unavoidable
that the distribution of the local dataset of each client varies
considerably and incurs a distribution shift problem, highly
degrading the learning performance.

Many existing FL studies focus on the distribution shift
problem mainly based on the following three directions:
(i) The most popular solution to address this problem is to
set the number of local training epochs performed between
each communication round (Li et al., 2020b; Yang et al.,
2021). (ii) Many algorithmic solutions in (Li et al., 2018b;
Karimireddy et al., 2020; Acar et al., 2021) mainly focus
on mitigating the influence of heterogeneity across clients
via giving a variety of proximal terms to control the local
model updates close to the global model. (iii) Knowledge
distillation based techniques (Lin et al., 2020; Gong et al.,
2021; Zhu et al., 2021) aggregate locally-computed logits
for building global models, helping eliminate the need for
each local model to follow the same architecture to the
global model.

Motivation. In centralized learning, the network general-
ization technique has been well studied to overcome the
overfitting problem (Lakshminarayanan et al., 2017; Wood-
worth et al., 2020). Even in standard settings where the
training and test data are drawn from a similar distribution,
models still overfit the training data and the training model
will fall into a sharp valley of the loss surface by using Em-
pirical Risk Minimization (ERM) (Chaudhari et al., 2019).
This effect is further intensified when the training and test
data are of different distributions. Similarly, in FL, over-
fitting the local training data of each client is detrimental
to the performance of the global model, as the distribution
shift problem creates conflicting objectives among local
models. The main strategy to improve the FL performance
is to mitigate the local models to the global model from the
average perspective (Karimireddy et al., 2020; Yang et al.,
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2021; Li et al., 2018b), which has been demonstrated to
accelerate the convergence of FL. However, fewer existing
FL studies focus on how to protect the learning performance
of the clients with poor performance, and hence parts of
clients may lose their unique properties and incur large
performance deviation. Therefore, a focus on improving
global model generality should be of primary concern in the
presence of the distribution shift problem. Improving local
training generality would inherently position the objective
of the clients closer to the global model objective.

Recently, efficient algorithms Sharpness Aware Minimiza-
tion (SAM) (Foret et al., 2021) have been developed to make
the surface of loss function more smooth and generalized. It
does not need to solve the min-max objectives as adversar-
ial learning (Goodfellow et al., 2014; Shafahi et al., 2020);
instead, it leverages linear approximation to improve the
efficiency. As we discussed previously, applying SAM to be
the local optimizer for generalizing the global model in FL
should be an effective approach. We first introduce a basic
algorithm adopting SAM in FL settings, called FedSAM,
where each local client trains the local model with the same
perturbation bound.

Although FedSAM can help to make the global model gen-
eralization and improve the training performance, they do
not affect the global model directly. In order to bridge the
smooth information on both local and global models with-
out accessing others’ private data, we develop our second
and more important algorithm in our framework, termed
Momentum FedSAM (MoFedSAM) by additionally down-
loading the global model updates of the previous round,
and then letting clients perform local training on both local
dataset and global model updates by SAM.

Contributions. We summarize our contributions as follows:
(1) We approach one of the most troublesome cross-device
FL challenges, i.e., distribution shift caused by data hetero-
geneity. To generalize the global model, we first propose a
simple algorithm FedSAM performing SAM to be the local
optimizer.

(2) We prove the convergence results O( L√
RKN

) and

O(
√
K√
RS

) for FedSAM algorithm, which matches the best
convergence rate of existing FL studies. For the part of
local training in the convergence rate, our proposed algo-
rithms show speedup. Moreover, the generalization bound
of FedSAM is also presented.

(3) To directly smooth the global model, we develop
MoFedSAM algorithm, which performs local training with
both local dataset and global model updates by SAM
optimizer. Then, we present the convergence rates are
O(

√
βL√
RKN

) and O(
√
βK√
RS

) on full and partial client partici-
pation strategies, which achieves speedup and implies that
MoFedSAM is a more efficient algorithm to address the

distribution shift problem.

Related work. In this paper, we aim to evaluate and distin-
guish the generalization performance of clients. Throughout
this paper, we only focus on the classic cross-device FL set-
ting (McMahan et al., 2017; Li et al., 2018b; Karimireddy
et al., 2020) in which a single global model is learned from
and served to all clients. In the Personalized FL (PFL) set-
ting (T Dinh et al., 2020; Fallah et al., 2020; Singhal et al.,
2021), the goal is to learn and serve different models for
different clients. While related, our focus and contribution
are orthogonal to personalization. In fact, our proposed al-
gorithms are easy to extend to the PFL setting. For example,
by solving a hyperparameter to control the interpolation be-
tween local and global models (Deng et al., 2020; Li et al.,
2021), the participating clients can be defined as the clients
that contribute to the training of the global model. We can
use SAM to develop the global model and generate the local
models by ERM to improve the performance.

Momentum FL is an effective way to address the distribution
shift problem and accelerate the convergence, which is based
on injecting the global information into the local training
directly. Momentum can be set on the server (Wang et al.,
2019; Reddi et al., 2020), client (Karimireddy et al., 2021;
Xu et al., 2021) or both (Khanduri et al., 2021). As we
introduce previously, while these algorithms accelerate the
convergence, the global model will locate in a sharp valley
and overfit. As such, the global model may not be efficient
for all clients and generate a large deviation.

We propose to train global models using a set of participat-
ing clients and examine their performance both on training
and validation datasets. In the centralized learning, some
studies(Keskar et al., 2016; Lakshminarayanan et al., 2017;
Woodworth et al., 2020) consider the out-of-distribution
generalization problem, which shows on centrally trained
models that even small deviations in the morphology of
deployment examples can lead to severe performance degra-
dation. The sharpness minimization is an efficient way to
deal with this problem (Foret et al., 2021; Kwon et al., 2021;
Zhuang et al., 2022; Du et al., 2021a). The FL setting differs
from these other settings in that our problem assumes data
is drawn from a distribution of client distributions even if
the union of these distributions is stationary. Therefore, in
FL settings, we consider the training performance and vali-
dation. It incurs more challenges than centralized learning.
Although some studies develop algorithms to generalize the
global model in FL (Mendieta et al., 2021; Yuan et al., 2021;
Yoon et al., 2021), they lack theoretical analysis of how the
proposed algorithm can improve the generalization and may
incur privacy issues. A recent study (Caldarola et al., 2022)
shows via empirical experiments that using SAM to be the
local optimizer can improve the generalization of FL.
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2. Preliminaries and Proposed Algorithms
2.1. FedAvg Algorithm

Consider a FL setting with a network including N clients
connected to one aggregator. We assume that for every
i ∈ [N ] the i-th client holds m training data samples ξi =
(Xi, Y ) drawn from distribution Di. Note that Di may
differ across different clients, which corresponds to client
heterogeneity. Let Fi(w) be the training loss function of the
client i, i.e., Fi(w) , Eξi∼Di [Li(w, ξi)], where Li(w, ξi)
is the per-data loss function. The classical FL problem
(McMahan et al., 2017; Li et al., 2020b; Karimireddy et al.,
2020) is to fit the best model w to all samples via solving
the following empirical risk minimization (ERM) problem
on each client:

min
w

{
F (w) :=

1

N

∑
i∈[N ]

Fi(w)

}
. (1)

where F (w) is the loss function of the global model.
FedAvg (McMahan et al., 2017) is one of the most popular
algorithms to address (1). In the communication round r,
the server randomly samples Sr clients with the number
of S and downloads the global model wr to them. After
receiving the global model, these sampled clients run K
times local Stochastic Gradient Descent (SGD) epochs us-
ing their local dataset in parallel, and upload the local model
updates wri,K to the server. When the server receives all
the local model updates, it averages these to obtain the new
global model wr+1. The pesudocode of FedAvg is shown
in Algorithm 1.

2.2. FedSAM Algorithm

Statistically heterogeneous local training dataset across the
clients is one of the most important problems in FL studies.
By capturing the Non-IID nature of local datasets in FL, the
common assumption in existing FL studies (Mohri et al.,
2019; Li et al., 2020a; Karimireddy et al., 2020; Reisizadeh
et al., 2020) considers that the data samples of each client
have a local distribution shift from a common unknown
mixture distribution D, i.e., Di 6= D. While training via
minimizing ERM by SGD searches for a single point w
with a low loss, which can perfectly fit the distribution D, it
often falls into a sharp valley of the loss surface (Chaudhari
et al., 2019). As a result, the global model w may be biased
to parts of clients (i.e., low heterogeneity compared to the
mixture distribution D) and cannot guarantee enough gen-
eralization that makes all clients perform well. Moreover,
since the training dataset distribution of each client may
be different from the validation dataset with high probabil-
ity, i.e., Dtra

i 6= Dval
i , and the validation dataset cannot be

accessible during the training process, the global model w
may not guarantee the learning performance of every client
even for the clients working well during the training process.

To address this problem, some FL algorithms with fairness
guarantee have been developed (Li et al., 2020a; Du et al.,
2021b), but they only consider the learning performance
from the average perspective and do not protect the worse
clients. In order to focus on the average and deviation for
all clients at the same time, it is necessary to create a more
general global model to serve all clients.

Instead of searching for a single point solution such as ERM,
the state-of-the-art algorithm Sharpness Aware Minimiza-
tion (SAM) (Foret et al., 2021) aims to seek a region with
low loss values via adding a small perturbation to the mod-
els, i.e., w + δ with less performance degradation. Due to
the linear property of the FL optimization in (1), it is not
difficult to observe that training the perturbed loss via SAM,
i.e., w̃ = w + δi, on each client should reduce the impact
on the distribution shift and improve the generalization of
the global model. Based on this observation, we design a
more general FL algorithm called FedSAM in this paper.
The optimization of FedSAM is formulated as follows:

min
w

max
‖δi‖22≤ρ

{
f(w̃) :=

1

N

∑
i∈[N ]

fi(w̃)

}
, (2)

where f(w̃) , max‖δ‖≤ρ F (w + δ), fi(w̃) ,
max‖δi‖≤ρ Fi(w+δi), ρ is a predefined constant controlling
the radius of the perturbation and ‖ · ‖22 is a l2-norm, which
will be simplified to ‖ · ‖ in the rest paper. Next, we take a
close look at the local perturbed loss function Fi(w + δi)
and introduce how to use SAM to approach it. For a small
value of ρ, using first order Taylor expansion around w, the
inner maximization in (2) turns into the following linear
constrained optimization:

δi = argmax
‖δi‖≤ρ

Fi(w + δi)

≈ argmax
‖δi‖≤ρ

Fi(w) + δ>i ∇Fi(w) +O(ρ2)

= ρsign(∇Fi(w))
∇Fi(w)

‖∇Fi(w)‖
,

(3)

where sign(·) denotes element-wise signum function.
Therefore, the local optimizer of FedSAM changes to
minw Fi(w) = minw̃ fi(w̃), where w̃ , w + ρ ∇Fi(w)

‖∇Fi(w)‖ .
We call w̃ is the perturbed model with the highest loss within
the neighborhood. Local SAM optimizer solves the min-
max problem by iteratively applying the following two-step
procedure for epoch k = 0, . . . ,K − 1 in communication
round r:  w̃ri,k = wri,k + ρ

gri,k
‖gri,k‖

wri,k+1 = wri,k − ηlg̃ri,k,
(4)

where ηl is the learning rate of local model updates on
each client, gri,k = ∇Fi(wri,k, ξri ) of∇Fi(wi,k) and g̃ri,k =
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Algorithm 1 FedAvg and FedSAM

Initialization: w0, ρ0 ∆0 = 0, learning rates ηl, ηg and
the number of epochs K.
for r = 0, . . . , R− 1 do

Sample subset Sr ⊆ [N ] of clients.
wti,0 = wr.
for each client i ∈ Sr in parallel do

for k = 0, . . . ,K − 1 do
Compute a local training estimate gri,k =
∇Fi(wri,k, ξri,k) of ∇Fi(wri,k).
wri,k = wri,k − ηlgri,k.

Compute local model wri,k from (4).

end for
∆r
i = wri,K − wr.

end for
∆r+1 = 1

S

∑
i∈Sr ∆r

i .
wr+1 = wr + ηg∆

r.
end for

∇f(w̃ri,k, ξ
r
i ) of fi(w̃ri,k). We can see that from (4), local

training of each client estimates the point wri,k+δri at which
the local loss is maximized around wri,k in a region with
a fixed perturbed radius approximately by using gradient
ascent, and calculates gradient descent at wri,k based on the
gradient at the maximum point wri,k + δri .

To present the difference between FedAvg and FedSAM,
we summarize the training procedures in Algorithm 1. SAM
optimizer comes from the similar idea of adversarial train-
ing, and it has been used in FL (Reisizadeh et al., 2020)
called FedRobust. It is based on solving min-max objec-
tives, which brings up more computational cost for local
training and the worse convergence performance than our
proposed algorithms. We will show the comparison both on
theoretical and empirical perspectives.

Remark 2.1 Here, we briefly mention the SAM local opti-
mizer can improve the generalization and help convergence
from the smoothness perspective. We assume that the local
loss function f(w) is L-smooth. Clearly, the loss function
f is smoother, when L is smaller. Assume that f(w̃) is
G-Lipschitz continuous, and δ ∼ N (0, ε2I), by leveraging
(Nesterov & Spokoiny, 2017), we obtain that the perturbed
loss function f(w̃) of FedSAM is 2G

ε -smooth. Based on
the analysis in (Lian et al., 2017; Goyal et al., 2017), the
best convergence rate should be 1

L . For SGD based FL with
the original loss surface, L can be very high (even close to
+∞ due to the non-smooth nature of the ReLU activation).
Obviously, L of the perturbed loss f(w̃) in FedSAM should
be much smaller due to the loss region. This can explain
the intuition why increasing smoothness can significantly
improve the convergence of FL.

3. Theoretical Analysis
In what follows, we show the convergence results of
FedSAM algorithm for general non-convex FL settings. In
order to propose the convergence analysis, we first state our
assumptions as follows.

Assumption 1 (Smoothness). fi is L-smooth for all i ∈
[N ], i.e.,

‖∇fi(w)−∇fi(v)‖ ≤ L‖w − v‖,

for all w, v in its domain and i ∈ [N ].

Assumption 2 (Bounded variance of global gradient with-
out perturbation). The global variability of the local gradi-
ent of the loss function without perturbation δi is bounded
by σ2

g , i.e.,

‖∇Fi(wr)−∇F (wr)‖2 ≤ σ2
g ,

for all i ∈ [N ] and r.

Assumption 3 (Bounded variance of stochastic gradient).
The stochastic gradient ∇fi(w, ξi), computed by the i-th
client of model parameter w using mini-batch ξi is an unbi-
ased estimator∇Fi(w) with variance bounded by σ2, i.e.,

Eξi

∥∥∥∥ ∇Fi(w, ξi)‖∇Fi(w, ξi)‖
− ∇Fi(w)

‖∇Fi(w)‖

∥∥∥∥2 ≤ σ2
l ,

∀i ∈ [N ], where the expectation is over all local datasets.

Assumptions 1 and 2 are standard in general non-convex FL
studies (Li et al., 2020b; Karimireddy et al., 2020; Reddi
et al., 2020; Karimireddy et al., 2021; Yang et al., 2021)
in order to assume the loss function continuous and bound
the heterogeneity of FL systems. Note that we consider
that σ2

g mainly depends on the data-heterogeneity, and the
perturbation should be calculated. Hence, we only bound
it without perturbation. We will present the upper bound
of ‖∇fi(w̃r) − ∇f(w̃r)‖2 in Appendix A. Assumption 3
bounds the variance of stochastic gradient. Although many
FL studies use the similar assumption to bound the stochas-
tic gradient variance (Li et al., 2020b; Karimireddy et al.,
2020), the definition is Eξi‖∇Fi(w, ξi)−∇Fi(w)‖2 ≤ σ2

l ,
which is not easy to measure the value of σ2

l , and the upper
bound of σ2

l may be closed to +∞. In this paper, Assump-
tion 3 is considered as the norm of difference in unit vectors
that can be upper bounded by the arc length on a unit cir-
cle. Therefore, σ2 should be less than π2. Clearly, this
assumption is tighter than existing FL studies.

3.1. Convergence Analysis of FedSAM

We now state our convergence results for FedSAM algo-
rithm. The detailed proof is in Appendix B.
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Theorem 3.1 Let the learning rates be chosen as ηl =
O( 1√

RKL
), ηg =

√
KN and the perturbation amplitude ρ

proportional to the learning rate, e.g., ρ = O( 1√
R

). Under
Assumptions 1-3 and full client participation, the sequence
of iterates generated by FedSAM in Algorithm 1 satisfies:

O
(

LF√
RKN

+
σ2
g

R
+

L2σ2
l

R3/2
√
KN

+
L2

R2

)
,

where F = f(w̃0)− f(w̃∗) and f(w̃∗) = minw̃ f(w̃).

For the partial client participation strategy and S ≥ K, if
we choose the learning rates ηg = O( 1√

RKL
), ηg =

√
KS

and ρ = O( 1√
R

), the sequence of iterates generated by
FedSAM in Algorithm 1 satisfies:

O
(

LF√
RKS

+

√
KG2

√
RS

+
L2σ2

R3/2K
+
L2

R2

)
.

Remark 3.2 For the full and partial client participation
strategies of FedSAM algorithm in this theorem, the dom-
inant terms of the convergence rate are O( L√

RKN
) and

O(
√
K√
SR

) by properly choosing the learning rates ηl and
ηg, which match the best convergence rate in existing gen-
eral non-convex FL studies (Karimireddy et al., 2020; Yang
et al., 2021; Acar et al., 2021). Since the convergence rate
structures in this theorem of these two strategies are simi-
lar, it indicates that uniformly sampling does not result in
fundamental changes of convergence. In addition, both con-
vergence rates include four main terms with an additional
term compared to (Karimireddy et al., 2020; Yang et al.,
2021; Acar et al., 2021). Note that we only show the domi-
nant part of each term in the main paper. The detailed proof
can be found in Appendix.

Remark 3.3 The additional term O(L
2

R2 ) comes from the
additional SGD step for smoothness via SAM local opti-
mizer in (4). However, this term can be negligible due
to its higher order. More specifically, since the smooth-
ness is due to the local training, we can combine it with
the local training term, i.e., O( σ2

R3/2K
+ 1

R2 ). Clearly, this
term also achieves speedup than the existing best rate, i.e.,
O( 1

R ). For the partial participation strategy, the dominant
term is due to fewer clients participating and random sam-
pling (heterogeneity), i.e.,O(

√
KG2

RS ). The convergence rate
improves substantially as the number of clients increases,
which matches the results of partial client participation FL
(Karimireddy et al., 2020; Yang et al., 2021; Acar et al.,
2021). Intuitively, increasing the convergence rate of this
term is because SAM optimizer can make the global model
more generalization and reduce the distribution shift.

Remark 3.4 The FedRobust (Reisizadeh et al., 2020)
algorithm is an adversarial learning framework in FL setting,

which is based on the similar idea of FedSAM. It has the
convergence rate ofO( Lf

(RN)1/3
+ L2

R1/3N2/3 ), and it does not
perform well from the convergence perspective compared
with FedSAM. Since multiple gradient descents steps should
be computed in each local training epoch, FedRobustwill
waste more running time and computational cost to process
the local training.

3.2. Generalization Bounds of FedSAM

Based on the margin-based generalization bounds in
(Neyshabur et al., 2018; Bartlett et al., 2017; Farnia et al.,
2018; Reisizadeh et al., 2020), we propose the generaliza-
tion error of FedSAM algorithm with the general neural
network as follows:

LSAM
γ (F (w)) :=

1

N

N∑
i=1

Pi
(
Fi(w + δi,X)[Y ]

−max
j 6=Y

Fi(w + δi,X)[j] ≤ γ
)
.

(5)

Here, Fi(w + δi,X) is the loss function solving by SAM
local optimizer for client i in (2), X is an input, Pi is the
probability of the underlying distribution of client i, and
Fi(w + δi,X)[j] is the output of the last softmax layer for
label j about the training neural network. It is worth noting
that γ is a constant, and for γ = 0, (5) can be simplified to
the average misclassification rate with the distribution shift,
which is denoted by LSAM. In addition, we use L̂SAM

γ (w)
as the above margin risk to represent the empirical distri-
bution of training samples, and hence we use P̂i to replace
the underlying Pi to be the empirical probability, which is
calculated by the m training samples on client i.

The following theorem aims to bound the difference of the
empirical and the margin-based error defined in (5) under
a general deep neural network. We use the spectral norm
based generalization bound framework (Neyshabur et al.,
2018; Farnia et al., 2018; Chatterji et al., 2019) to prove the
next theorem. In order to demonstrate the margin-based er-
ror bounds, we assume that the neural network with smooth
ReLU activation functions θ are 1-Lipschitz activation func-
tions. The detailed proof is shown in Appendix C.

Theorem 3.5 Let input X be an n× n image whose norm
is bounded by A, f(w) be the classification function with d
hidden-layer neural network with h units per hidden-layer,
and satisfy 1-Lipschitz activation θ(0) = 0. We assume the
constant M ≥ 1 for each layer Wj satisfies 1

M ≤
‖Wj‖
φw
≤

M , where φw := (
∏d
j=1 ‖Wj‖)1/d denotes the geometric

mean of f(w)’s spectral norms across all layers. Then, for
any margin value γ, size of local training dataset on each
client m, ζ > 0, with probability 1 − ζ over the training
set, any parameter of SAM local optimizer w̃ = w + δ such
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Algorithm 2 MoFedSAM algorithm.

1: Initialization: w0, ∆0 = 0, ρ0, momentum parameter
β the number of local updates K.

2: for r = 0, . . . , R− 1 do
3: Sample subset Sr ⊆ [N ] of clients.
4: wti,0 = wr.
5: for each client i ∈ Sr in parallel do
6: for k = 0, . . . ,K − 1 do
7: Compute a local training estimate gri,k =

∇Fi(wri,k, ξri,k) of∇Fi(wri,k).
8: Compute local model wri,k from (6).
9: end for

10: ∆r
i = wri,K − wr.

11: end for
12: ∆r+1 = − 1

ηlKS

∑
i∈Sr ∆r

i .
13: wr+1 = wr − ηg∆r+1.
14: end for

that maxX∈Di ‖Fi(w) − f(w̃)‖ ≤ γ
8 , we can obtain the

following generalization bound:

LSAM(F (w)) ≤ L̂SAM
γ (F (w + δ))

+O
(

32Ad2h log(dh)Q(F (w)) + d log Nmd log(M)
ζ

γ2m

)
,

where Q(F (w)) :=
∏d
j=1 ‖Wj‖

∑d
i=1

‖Wj‖2F
‖Wj‖ and ‖Wj‖2F

is the Frobenius norm.

Theorem 3.5 proposes a non-asymptotic bound on the gener-
alization risk of FedSAM for general neural networks. The
PAC-Bayesian bounds of SAM (Foret et al., 2021; Kwon
et al., 2021; Zhuang et al., 2022; Du et al., 2021a) does not
provide the insight about the underlying reason that results
in generalization, i.e., how to choose the value of λ in the
Gaussian noise N (0, λI) to be the perturbation. In Theo-
rem 3.5, we present the dependence of the perturbation δ
and the different neural network parameters in which we can
enforce the loss surface around a point in order to guarantee
the smoothness.

4. Momentum FedSAM (MoFedSAM)
4.1. Algorithm of MoFedSAM

Since ∆r serves as the direction for the global model, while
FedSAM algorithm achieves efficient convergence rate the-
oretically, the influence of local optimizer cannot directly
affect the global model, i.e., the term including σ2

g in the
convergence rate. Note that ∆r aggregates the global model
information of participating clients, and reusing this infor-
mation should be useful to guide the local training on the
participated clients in next communication round, which is
similar to momentum FL (Wang et al., 2019; Reddi et al.,
2020; Karimireddy et al., 2021; Khanduri et al., 2021; Xu

et al., 2021). Inspired by this motivation, we now provide
our second algorithm, termed MoFedSAM, which aims to
smooth and generalize the global model directly. The train-
ing procedure of k-th local training epoch in round r is
formulated as follows:

w̃ri,k = wri,k + ρ
gri,k
‖gri,k‖

vri,k = βg̃ri,k + (1− β)∆r

wri,k = wri,k − ηlvri,k,

(6)

where β is the momentum rate. If β = 1, MoFedSAM is
equivalent to FedSAM. From (6), we can see that the global
model information ∆r directly contributes the local training
epoch, since wri,k includes g̃ri,k and ∆r at the same time.
Therefore, it indicates that MoFedSAM make the local and
global models smoothness at the same time. Especially,
even if only a subset of clients are sampled in each com-
munication round, the information of gradients of previous
local model updates can be still contained in ∆r. Therefore,
MoFedSAM also works well of partial client participation
FL. More specifically, the global model information term
∆r is considered as an approximation to the gradient of the
global model ∇f(w̃), i.e., ∆r ≈ ∇f(w̃r). One advantage
is that MoFedSAM adds a correction term to the local gra-
dient direction, and it also asymptotically aligns with the
difference between global and local gradient. It is worth
noting that we use (G,B)-BGD in Assumption 2 to prove
the convergence rate, which is tighter than (G, 0)-BGD in
(Xu et al., 2021).

4.2. Convergence Analysis of MoFedSAM

Next theorem is the convergence rate of MoFedSAM algo-
rithm, and the detailed proof is in Appendix D.

Theorem 4.1 Let the learning rates be chosen as ηl =

O( 1√
RβKL

), ηg = O(
√
KN√
RβL

) and the perturbation ampli-

tude ρ proportional to the learning rate, e.g., ρ = O( 1√
R

).
Under the Assumptions 1-3, any momentum parameter
β ≤ 1

2 and the full client participation strategy, the se-
quence of {w̃r} generated by MoFedSAM in Algorithm 2
satisfies:

O
(

βLF√
RKN

+
βσ2

g

RL2
+
Lσ2

R2β
+
βL2

R2

)
,

where F = f(w̃0)− f(w̃∗) and f(w̃∗) = minw̃ f(w̃).

For the partial client participation strategy, if we choose
the learning rates ηg = O( 1√

RβKL
), ηg = O(

√
KS√
RβL

) and

ρ = O( 1√
R

), the following convergence holds:

O
(

βLF√
RKS

+
β
√
Kσ2

g√
RS

+
L2σ2

R3/2K
+

√
KL2

R3/2
√
S

)
.



Generalized Federated Learning via Sharpness Aware Minimization

0 25 50 75 100 125 150 175 200
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

FedAvg
SCAFFOLD
FedRobust
FedCM
MimeLite
FedSAM
FedGSAM
MoFedSAM

(a) EMNIST dataset.
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(b) CIFAR-10 dataset.
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(c) CIFAR-100 dataset.

Figure 1. Testing accuracy on different datasets.

Table 1. Average (standard deviation) training accuracy and testing accuracy. Communication round to achieve the targeted testing
accuracy: EMNIST 80%, CIFAR-10 80% and CIFAR-100 50%.

Algorithm EMNIST CIFAR-10 CIFAR-100

Train Validation Round Train Validation Round Train Validation Round

FedAvg 95.07 (0.94) 84.38 (4.03) 43 93.15 (1.44) 81.87 (5.09) 307 79.57 (1.84) 53.57 (5.40) 302
SCAFFOLD 93.85 (1.31) 84.09 (4.56) 69 91.76 (1.89) 80.61 (5.64) 546 78.49 (2.02) 51.49 (5.87) 551
FedRobust 93.17 (0.62) 83.70 (3.37) 91 90.82 (1.27) 79.63 (4.21) 847 76.80 (1.70) 49.06 (4.75) 893

FedCM 96.16 (1.14) 84.85 (4.11) 28 95.61 (1.50) 83.30 (4.77) 136 82.13 (1.96) 55.50 (5.04) 182
MimeLite 96.22 (1.16) 84.88 (4.22) 25 95.73 (1.56) 83.18 (4.65) 152 82.46 (2.00) 55.73 (5.11) 189
FedSAM 95.73 (0.49) 84.75 (3.04) 38 94.20 (1.08) 83.06 (3.87) 269 81.04 (1.59) 54.69 (4.36) 245

MoFedSAM 96.42 (0.42) 85.07 (2.95) 24 95.67 (1.16) 83.92 (3.65) 124 82.62 (1.53) 56.60 (4.42) 124

Remark 4.2 When T is sufficiently large compared to K,
convergence rates under full and partial client participation
strategies of MoFedSAM algorithm are O(

√
βL√
RKN

+ β
RL2 )

and O( βL√
RKS

+ β
√
K√
RS

). The momentum parameter β is
small enough, i.e., 0.1 (Karimireddy et al., 2021; Xu et al.,
2021), from which the effect is important for convergence,
due to the number of local epochs setting less than 20 in
usual (Reddi et al., 2020; Yang et al., 2021; Acar et al.,
2021). Therefore, our convergence results achieve speedup
compared with FedSAM. We also note that the convergence
related to the local training isO( L

R2β+ βL2

R2 ) andO( L2

R3/2K
+

√
KL2

R3/2
√
S

), where the second part comes from sharpness, and
it can be negligible. From the convergence analysis of
FedCM (Xu et al., 2021), i.e., O(

√
KSL√
R

+ L
β2/3R2/3 ), we

can see that MoFedSAM achieves speedup both on the dom-
inant part and local training part. The analysis indicates the
benefit of bridging the sharpness between local and global
models.

5. Experiments
We evaluate our proposed algorithms on extensive and rep-
resentative datasets and learning models to date. To accom-
plish this, we conduct experiments on three learning models
across three datasets comparing to five FL benchmarks with
varying different parameters.

5.1. Experimental Setup

Benchmarks and hyper-parameters. We consider five
FL benchmarks: without momentum FL FedAvg (McMa-
han et al., 2017), SCAFFOLD (Karimireddy et al., 2020),
FedRobust (Reisizadeh et al., 2020); momentum FL
MimeLite (Karimireddy et al., 2021) and FedCM (Xu
et al., 2021). The learning rates are individually tuned and
other optimizer hyper-parameters such as ρ = 0.5 for SAM
and β = 0.1 for momentum, unless explicitly stated other-
wise. We refer to Appendices E-F for detailed experimental
setup and additional ablation studies.

Datasets and models. We use three images datasets: EM-
NIST (Cohen et al., 2017), CIFAR-10, and CIFAR-100
(Krizhevsky et al., 2009). Our cross-device FL setting in-
cludes 100 clients in total with participation rate 20%. In
each communication round, each client is sampled inde-
pendently of each other, with probability 0.2. We simulate
the data heterogeneity by sampling the label ratios from a
Dirchlet distribution with parameter 0.6 (Acar et al., 2021),
the number of local epochs is set as K = 10 by default.
We adopt two learning models on each dataset: (i) CNN on
EMNIST with batch 32 and (ii) ResNet-18 (He et al., 2016)
on CIFAR-10 and CIFAR-100 with batch 128. The detailed
experimental setup and other additional experiments and
ablation studies will be shown in Appendices E-F.
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Table 2. Impact of the heterogeneity on CIFAR-10 dataset (IID, Dirichlet 0.6 and Dirichlet 0.3).

Algorithm IID Dirichlet 0.6 Dirichlet 0.3

Train Validation Round Train Validation Round Train Validation Round

FedAvg 94.95 (1.01) 85.97 (3.53) 238 93.15 (1.44) 81.87 (5.09) 307 91.89 (1.63) 77.39 (5.62) -
SCAFFOLD 93.04 (1.13) 83.82 (3.72) 290 91.76 (1.89) 80.61 (5.64) 546 90.02 (2.08) 75.67 (5.93) -
FedRobust 91.63 (0.91) 82.44 (3.15) 361 90.82 (1.27) 79.63 (4.21) 847 89.72 (1.42) 73.11 (5.11) -

FedCM 97.02 (1.10) 88.14 (3.33) 87 95.61 (1.50) 83.30 (4.77) 136 93.88 (1.67) 81.34 (5.50) 583
MimeLite 97.16 (1.08) 88.53 (3.53) 82 95.73 (1.56) 83.18 (4.65) 152 93.97 (1.72) 81.83 (5.53) 548
FedSAM 95.42 (0.81) 87.36 (2.85) 205 94.20 (1.08) 83.06 (3.87) 269 92.90 (1.26) 79.82 (4.98) 816

MoFedSAM 97.22 (0.88) 88.96 (2.94) 75 95.67 (1.16) 83.92 (3.65) 124 94.12 (1.31) 83.35 (5.06) 490
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(c) MoFedSAM.

Figure 2. Loss surface of FedAvg, FedSAM and MoFedSAM algorithm with ResNet-18 on CIFAR-10 dataset.
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Figure 3. Impacts of different parameters on CIFAR-10 dataset.

5.2. Performance Evaluation

(1) Performance with compared benchmarks. We first
investigate the effect of our proposed algorithms with com-
pared benchmarks on different datasets in Figure 1 and Ta-
ble 1. From these results, we can clearly see that for the per-
formance of without momentum FL: FedSAM > FedAvg
> SCAFFOLD > FedRobust, and the performance mo-
mentum FL: MoFedSAM > MimeLite > FedCM. Our
proposed algorithms outperform other benchmarks both on
accuracy and convergence perspectives. We do not compare
the FL algorithms with momentum FL, since momentum
FL is required to transmit more information than FL, e.g.,
∆r+1. This is the reason why momentum FL outperforms
FL benchmarks. More specifically, to present the general-
ization performance, we show the deviation, i.e., best and
worst local accuracy. In addition, the performance improve-

ment on CIFAR-100 dataset is more obvious than others,
since SAM optimizers perform more efficiently on more
complicated datasets.

(2) Impact of Non-IID levels. In Tables 2, 3, 4 and 5,
we can see that our proposed algorithms outperforms the
benchmarks across different client distribution levels on
the same FL categories. We consider heterogeneous client
distributions by varying balanced-unbalanced, number of
clients and participation levels settings on various datasets.
Client distributions become more non-IID as we go from
IID, Dirichlet 0.6 to Dirichlet 0.3 splits which makes global
optimization more difficult. For example, as non-IID lev-
els increasing, MoFedSAM achieves a higher test accuracy
0.43%, 1.24% and 1.52% and saving communication round
7, 40, and 59 than MimeLite on CIFAR-10 dataset. In
summary, although almost all the algorithms perform well
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enough for training dataset, the testing accuracy usually has
a significant degradation especially the deviation of local
clients. In Table 1, we can see that our proposed algorithms
significantly decrease the deviation of local clients, which
indicates that our proposed algorithms show enough gener-
alization of the global model.

(3) Loss surface visualization. To visualize the sharp-
ness of the flat minima obtained by FedAvg, FedSAM and
MoFedSAM, we show the loss surface, which are trained
with ResNet-18 under the CIFAR-10 dataset. We display the
loss surfaces in Figure 3, following the plotting algorithm in
(Li et al., 2018a). The x- and y-axes are two random sam-
pled orthogonal Gaussian perturbations. We can clearly see
that both FedSAM and MoFedSAM improve the sharpness
significantly in comparison to FedAvg, which indicates
that our proposed algorithms perform more generalization.

(4) Impact of other parameters. Here, we show the im-
pact of different parameters, e.g., number of participated
clients S, number of epochsK, perturbation radius ρ for our
proposed algorithms and momentum value β in Figures 3,
7, 8 and 9. Our proposed algorithms outperform the same
FL categories, i.e., with or without momentum. Similar to
existing FL studies, increasing batch size and number of
participated clients can improve the learning performance.
Increasing the number of epochs K cannot guarantee better
accuracy substantially, however, all the benchmarks perform
worst when K = 1. The best ρ for each dataset is different,
the best performance of ρ value is set as 0.2 for EMNIST,
0.5 for CIFAR-10 and 0.6 for CIFAR-100.

6. Conclusion
In this paper, we study the distribution shift coming from
the data heterogeneity challenge of cross-device FL from
a simple yet unique perspective by making global model
generality. To this end, we propose two algorithms FedSAM
and MoFedSAM, which do not generate more communica-
tion costs compared with existing FL studies. By deriving
the convergence of general non-convex FL settings, these
algorithms achieve competitive performance. Furthermore,
we also provide the generalization bound of FedSAM algo-
rithm. The extensive experiments strongly support that our
proposed algorithms decrease the performance deviation
among all local clients significantly.
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A. Preliminary Lemmas
For giving the theoretical analysis of the convergence rate of all proposed algorithms, we firstly state some preliminary
lemmas as follows:

Lemma A.1 (Relaxed triangle inequality). Let {v1, . . . , vτ} be τ vectors in Rd. Then, the following are true: (1)
‖vi + vj‖2 ≤ (1 + a)‖vi‖2 + (1 + 1

a )‖vj‖2 for any a > 0, and (2) ‖
∑τ
i=1 vi‖2 ≤ τ

∑τ
i=1 ‖vi‖2.

Lemma A.2 For random variables x1, . . . , xn, we have

E[‖x1 + · · ·+ xn‖2] ≤ nE[‖x1‖2 + · · ·+ ‖xn‖2].

Lemma A.3 For independent, mean 0 random variables x1, . . . , xn, we have

E[‖x1 + · · ·+ xn‖2] = E[‖x1‖2 + · · ·+ ‖xn‖2].

Lemma A.4 (Separating mean and variance for SAM). The stochastic gradient ∇Fi(w, ξi) computed by the i-th client at
model parameter w using minibatch ξ is an unbiased estimator of ∇Fi(w) with variance bounded by σ2. The gradient of
SAM is formulated by

E
[∥∥∥∥K−1∑

k=0

gri,k

∥∥∥∥2] ≤ K K−1∑
k=0

E[‖∇Fi(wir,k)‖2] +
KL2ρ2

N
σ2
l ,

E
[∥∥∥∥K−1∑

k=0

gri,k

∥∥∥∥2] ≤ K K−1∑
k=0

E[‖∇Fi(wir,k)‖2] +KL2ρ2σ2
l .

Proof. For the first inequality, we can bound as follows

E
[∥∥∥∥K−1∑

k=0

gri,k

∥∥∥∥2] = E
[∥∥∥∥K−1∑

k=0

gri,k

∥∥∥∥2]+ E
[∥∥∥∥K−1∑

k=0

(gri,k −∇F (wri,k))

∥∥∥∥2]
(a)
≤ K

K−1∑
k=0

E[‖gri,k‖2] + L2
K−1∑
k=0

E
[∥∥∥∥ 1

N

∑
i∈[N ]

(wri,k + δri,k(w̃ri,k; ξri,k)− wri,k − δri,k(w̃ri,k))

∥∥∥∥2]
(b)
≤ K

K−1∑
k=0

E[‖gri,k‖2] +
KL2ρ2σ2

l

N
.

where (a) is from Assumption 1 and (b) is from Assumption 3 and Lemma A.3. Similarly, we can obtain the second
inequality, and hence we omit it here. �

Lemma A.5 (Bounded global variance of ‖∇Fi(w + δi)−∇F (w + δ)‖2.) An immediate implication of Assumptions 1
and 2, the variance of local and global gradients with perturbation can be bounded as follows:

‖∇Fi(w + δi)−∇F (w + δ)‖2 ≤ 3σ2
g + 6L2ρ2.

Proof.

‖∇fi(w̃)−∇f(w̃)‖2 = ‖∇Fi(w + δi)−∇F (w + δ)‖2

= ‖∇Fi(w + δi)−∇Fi(w) +∇Fi(w)−∇F (w) +∇F (w)−∇F (w + δ)‖2

(a)
≤ 3‖∇Fi(w + δi)−∇Fi(w)‖2 + 3‖∇Fi(w)−∇F (w)‖2 + 3‖∇F (w)−∇F (w + δ)‖2

(b)
≤ 3σ2

g + 6L2ρ2,

where (a) is from Lemma A.2 and (b) is from Assumption 1, 2 and the perturbation is bounded by ρ. �
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Algorithm 3 FedSAM: Federated Sharpness Aware Minimization

1: Initialization: w0, ρ0, γ the number of local updates K, batch size b, local learning ηl and global learning rate ηg .
2: for each round r = 0, . . . , R− 1 do
3: Sample subset Sr ⊆ [N ] of clients.
4: communicate wr to all clients i ∈ Sr.
5: for each client i ∈ Sr in parallel do
6: initialize local model wri,0 ← wr.
7: for k = 0, . . . ,K − 1 do
8: Compute gri,k−1 by taking an estimation∇Fi(wri,k−1, ξri ) of ∇Fi(wri,k−1).

9: w̃ri,k−1 = wri,k−1 + ρ
gri,k−1

‖gri,k−1‖
.

10: Compute g̃ri,k−1 by taking an estimation∇fi(w̃ri,k−1, ξri ) of ∇fi(w̃ri,k−1, ξri ).
11: wri,k = wri,k−1 − ηlg̃ri,k−1.
12: end for
13: ∆r

i = wri,K − wr.
14: end for
15: ∆r+1 = 1

S

∑
i∈Sr ∆r

i .
16: wr+1 = wr + ηg∆

r.
17: end for

B. Convergence Analysis for FedSAM
B.1. Description of FedSAM Algorithm and Key Lemmas

We outline the FedSAM algorithm in Algorithm 3. In round r, we sample Sr ⊆ [N ] clients with |Sr| = S and then perform
the following updates:

• Starting from the shared global parameters wri,0 = wr−1, we update the local parameters for k ∈ [K]

w̃ri,k = wri,k−1 + ρ
gri,k−1
‖gri,k−1‖

wri,k = wri,k−1 − ηlg̃ri,k−1,

• After K times local epochs, we obtain the following

∆r
i = wri,K − wr. (7)

• Compute the new global parameters using only updates from the clients i ∈ Sr and a global step-size ηg:

∆r+1 =
1

S

∑
i∈Sr

∆r
i

wr+1 = wr + ηg∆
r.

Lemma B.1 (Bounded Eδ of FedSAM). Suppose our functions satisfies Assumptions 1-2. Then, the updates of FedSAM for
any learning rate satisfying ηl ≤ 1

4KL have the drift due to δi,k − δ:

Eδ =
1

N

∑
i

E[‖δi,k − δ‖2] ≤ 2K2β2η2l ρ
2.

Proof. Recall the definitions of δ and δi,k as follows:

δ = ρ
∇F (w)

‖∇F (w)‖
, δi,k = ρ

∇Fi(wi,k, ξi)
‖∇Fi(wi,k, ξi)‖

.
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If the local learning rate ηl is small, the gradient of one epoch ∇Fi(wi,k, ξi) is small. Based on the first order Hessian
approximation, the expected gradient is

∇Fi(wi,k) = ∇Fi(wi,k−1 + gi,k−1) = ∇Fi(wi,k−1) +Hηlgi,k−1 +O(‖ηlgi,k−1‖2),

where H is the Hessian at wi,k−1. Therefore, we have

E[‖δi,k − δ‖2] = ρ2E
[∥∥∥∥ ∇Fi(wi,k)

‖∇Fi(wi,k)‖
− ∇Fi(w)

‖∇Fi(w)‖

∥∥∥∥2] ≤ ρ2φi,k, (8)

where φi,k is the square of the angle between the unit vector in the direction of∇Fi(wi,k) and ∇Fi(wi,0). The inequality

follows from that (1)
∥∥∥∥ ∇Fi(·)‖∇Fi(·)‖

∥∥∥∥2 < 1, and hence we replace δ with a unit vector in corresponding directions multiplied by

ρ2 and obtain the upper bound, (2) the norm of difference in unit vectors can be upper bounded by the square of the arc
length on a unit circle. When the learning rate ηl and the local model update of one epoch ∇Fi(wi,k) are small, φi,k is also
small. Based on the first order Taylor series, i.e., tanx = x+O(x2), we have

tanφi,k =
‖∇Fi(wi,k)−∇Fi(wi,0)‖2

‖∇Fi(wi,0)‖2
+O(φ2i,k)

=
‖∇Fi(wi,k−1)−Hηlgi,k−1 −O(‖ηlgi,k−1‖2)−∇Fi(wi,0)‖2

‖∇Fi(wi,0)‖2
+O(φ2i,k)

(a)
≤
(

1 +
1

K − 1

)
‖∇Fi(wi,k−1)−∇Fi(wi,0)‖2

‖∇Fi(wi,0)‖2
+
K‖Hηlgi,k−1 +O(‖ηlgi,k−1‖2)‖2

‖∇Fi(wi,0)‖2
+O(φ2i,k)

(b)
≤
(

1 +
1

K − 1

)
‖∇Fi(wi,k−1)−∇Fi(wi,0)‖

‖∇Fi(wi,0)‖
+KL2η2l ,

where (a) is from Lemma A.1 with a = 1
K−1 and (b) is due to maximum eigenvalue of H is bounded by L because F

function is L-smooth. Unrolling the recursion above, we have

1

N

∑
i∈[N ]

‖∇Fi(wi,k)−∇Fi(wi,0)‖2

‖∇Fi(wi,0)‖2
+O(φ2i,k) ≤

k−1∑
τ=1

(
1 +

1

K − 1

)τ
KL2η2l ≤ 2K2L2η2l . (9)

Plugging (9) into (8), we have

Eδ =
1

N

∑
i∈[N ]

E[‖δi,k − δ‖2] ≤ 2K2L2η2l ρ
2.

This completes the proof. �

Lemma B.2 (Bounded Ew of FedSAM). Suppose our functions satisfies Assumptions 1-2. Then, the updates of FedSAM
for any learning rate satisfying ηl ≤ 1

10KL have the drift due to wi,k − w:

Ew =
1

N

∑
i

E[‖wi,k − w‖2] ≤ 5Kη2l (2L2ρ2σ2
l + 6K(3σ2

g + 6L2ρ2) + 6K‖∇f(w̃)‖2) + 24K3η4l L
4ρ2.
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Proof. Recall that the local update on client i is wi,k = wi,k−1 − ηlg̃i,k−1. Then,

E‖wi,k − w‖2 = E‖wi,k−1 − w − ηlg̃i,k−1‖2

(a)
≤ E‖wi,k−1 − w − ηl(g̃i,k−1 −∇fi(w̃i,k−1) +∇fi(w̃i,k−1)−∇fi(w̃) +∇fi(w̃))−∇f(w̃) +∇f(w̃)‖2

(b)
≤
(

1 +
1

2K − 1

)
E‖wi,k−1 − w‖2 + E‖ηl(g̃i,k−1 −∇fi(w̃i,k−1))‖2

+ 6KE‖ηl(∇fi(w̃i,k−1)−∇fi(w̃))‖2 + 6KE‖ηl(∇fi(w̃)−∇f(w̃))‖2 + 6K‖ηl∇f(w̃)‖2

(c)
≤
(

1 +
1

2K − 1
+ 2L2η2l

)
E‖wi,k−1 − w‖2 + 2η2l L

2ρ2σ2
l + 12Kη2l L

2E‖wi,k−1 − w‖2

+ 12KL2η2l E‖δi,k−1 − δ‖2 + 6Kη2l E‖∇fi(w̃)−∇f(w̃)‖2 + 6K‖∇f(w̃)‖2

(d)
≤
(

1 +
1

2K − 1
+ 12Kη2l L

2 + 2L2η2l

)
E‖wi,k−1 − w‖2 + 2η2l L

2ρ2σ2
l + 12KL2η2l E‖δi,k − δ‖2

+ 6Kη2l (3σ2
g + 6L2ρ2) + 6K‖∇f(w̃)‖2,

where (a) follows from the fact that g̃i,k−1 is an unbiased estimator of∇fi(w̃i,k−1) and Lemma A.3; (b) is from Lemma A.2;
(c) is from Assumption 3 and Lemma A.2 and (d) is from Lemma A.5.

Averaging over the clients i and learning rate satisfies ηl ≤ 1
10KL , we have

1

N

∑
i∈[N ]

E‖wi,k − w‖2 ≤
(

1 +
1

2K − 1
+ 12Kη2l L

2 + 2L2η2l

)
1

N

∑
i∈[N ]

E‖wi,k−1 − w‖2

+ 2η2l L
2ρ2σ2

l + 12KL2η2l
1

N

∑
i∈[N ]

E‖δi,k − δ‖2 + 6Kη2l (3σ2
g + 6L2ρ2) + 6K‖∇f(w̃)‖2

(a)
≤
(

1 +
1

K − 1

)
1

N

∑
i∈[N ]

E‖wi,k−1 − w‖2 + η2l L
2ρ2σ2

l

+ 12KL2η2l
1

N

∑
i∈[N ]

E‖δi,k − δ‖2 + 6Kη2l (3σ2
g + 6L2ρ2) + 6K‖∇f(w̃)‖2

≤
k−1∑
τ=0

(
1 +

1

K − 1

)τ
[2η2l L

2ρ2σ2
l + 6Kη2l (3σ2

g + 6L2ρ2) + 6K‖∇f(w̃)‖2] + 12KL2η2l
1

N

∑
i∈[N ]

E‖δi,k − δ‖2

(b)
≤ 5Kη2l (2L2ρ2σ2

l + 6K(3σ2
g + 6L2ρ2) + 6K‖∇f(w̃)‖2) + 24K3η4l L

4ρ2,

where (a) is due to the fact that ηl ≤ 1
10KL and (b) is from Lemma B.1. �

B.2. Convergence Analysis of Full client participation FedSAM

Lemma B.3

〈∇f(w̃r),Er[∆r + ηlK∇f(w̃r)]〉 ≤ ηlK

2
‖∇f(w̃r))‖2 +KηlL

2Ew +KηlL
2Eδ −

ηl
2KN2

Er
∥∥∥∥∑
i,k

∇fi(w̃i,k)

∥∥∥∥2.
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Proof.

〈∇f(w̃r),Er[∆r + ηlK∇f(w̃r)]〉

(a)
=
ηlK

2
‖∇f(w̃r))‖2 +

ηl
2KN2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)−∇fi(w̃r)
∥∥∥∥2 − ηl

2KN2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(b)
≤ ηlK

2
‖∇f(w̃r))‖2 +

ηl
2N

∑
i,k

Er‖∇fi(w̃ri,k)−∇fi(w̃r)‖2 −
ηl

2KN2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(c)
≤ ηlK

2
‖∇f(w̃r))‖2 +

ηlβ
2

2N

∑
i,k

Er‖w̃ri,k − w̃r‖2 −
ηl

2KN2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(d)
≤ ηlK

2
‖∇f(w̃r))‖2 +

ηlL
2

N

∑
i,k

Er‖wri,k − wr‖2 +
ηlL

2

N

∑
i,k

Er‖δri,k − δr‖2 −
ηl

2KN2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2

=
ηlK

2
‖∇f(w̃r))‖2 +KηlL

2Ew +KηlL
2Eδ −

ηl
2KN2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2,

(10)

where (a) is from that 〈a, b〉 = 1
2 (‖a‖2 + ‖b‖2 − ‖a− b‖2) with a =

√
ηlK∇f(w̃r) and b = −

√
ηl

N
√
K

∑
i,k(∇fi(w̃ri,k)−

∇fi(w̃r)); (b) is from Lemma A.2; (c) is from Assumption 1 and (d) is from Lemma A.2.

Lemma B.4 For the full client participation scheme, we can bound E[‖∆r‖2] as follows:

Er[‖∆r‖2] ≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

[∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2].
Proof. For the full client participation scheme, we have:

Er[‖∆r‖2]
(a)
≤ η2l
N2

Er
[∥∥∥∥∑

i,k

g̃ri,k

∥∥∥∥2] (b)
=

η2l
N2

Er
[∥∥∥∥∑

i,k

(g̃ri,k −∇fi(w̃ri,k))

∥∥∥∥2]+
η2l
N2

Er
[∥∥∥∥∑

i,k

∇fi(w̃ri,k)

∥∥∥∥2]
(c)
≤ Kη2l L

2ρ2

N
σ2
l +

η2l
N2

[∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2],
where (a) is from Lemma A.2; (b) is from Lemma A.3 and (c) is from Lemma A.4. �

Lemma B.5 (Descent Lemma). For all r ∈ R− 1 and i ∈ Sr, with the choice of learning rate , the iterates generated by
FedSAM in Algorithm 3 satisfy:

Er[f(w̃r+1)] ≤ f(w̃r)−Kηgηl
(

1

2
− 30K2L2η2l

)
‖∇f(w̃r)‖2 +Kηgηl(10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2

+ 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l )

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. We firstly propose the proof of full client participation scheme. Due to the smoothness in Assumption 1, taking
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expectation of f(w̃r+1) over the randomness at communication round r, we have:

Er[F (wr+1)] = Er[f(w̃r+1)] ≤ f(w̃r) + Er〈∇f(w̃r), w̃r+1 − w̃r]〉+
L

2
Er[‖w̃r+1 − w̃r‖2]

(a)
= f(w̃r) + Er〈∇f(w̃r),−∆r +Kηgηl∇f(w̃r)−Kηgηl∇f(w̃r)〉+

L

2
η2gEr[‖∆r‖2]

(b)
= f(w̃r)−Kηgηl‖∇f(w̃r)‖2 + ηg〈∇f(w̃r),Er[−∆r +Kηl∇f(w̃r)]〉+

L

2
η2gEr[‖∆r‖2]

(c)
≤ f(w̃r)− Kηgηl

2
‖∇f(w̃r)‖2 +KηgηlL

2Ew +KηgηlL
2Eδ −

ηgηl
2KN

Er
[∥∥∥∥∑

i,k

∇fi(w̃ri,k)

∥∥∥∥2]+
L

2
η2gEr[‖∆r‖2]

(d)
≤ f(w̃r)− Kηgηl

2
‖∇f(w̃r)‖2 +KηgηlL

2Ew +KηgηlL
2Eδ +

Kη2gη
2
l L

3ρ2

N
σ2
l

(e)
≤ f(w̃r)−Kηgηl

(
1

2
− 30K2L2η2l

)
‖∇f(w̃r)‖2 +Kηgηl(10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2

+ 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l ),

where (a) is from the iterate update given in Algorithm 3; (b) results from the unbiased estimators; (c) is from Lemma B.3;
(d) is from Lemma B.4 and due to the fact that ηgηl ≤ 1

KL and (e) is from Lemmas B.1 and B.2. �

Theorem B.6 Let constant local and global learning rates ηl and ηg be chosen as such that ηl ≤ 1
10KL , ηgηl ≤ 1

KL .
Under Assumption 1-2 and with full client participation, the sequence of outputs {wr} generated by FedSAM satisfies:

min
r∈[R]

E‖∇F (wr)‖2 ≤ F 0 − F ∗

CKηgηl
+ Φ,

where Φ = 1
C [10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N σ2
l ]. If we

choose the learning rates ηl = 1√
RKL

, ηg =
√
KN and perturbation amplitude ρ proportional to the learning rate, e.g.,

ρ = 1√
R

, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKN

+
σ2
g

R
+

L2σ2

R3/2
√
KN

+
L2

R3/2

)
.

Proof. For full client participation, summing the result of Lemma B.5 for r = [R] and multiplying both sides by 1
CKηgηlR

with ( 1
2 − 30K2L2η2l ) > C > 0 if ηl < 1√

30KL
, we have

1

R

R∑
r=1

E[‖F (wr+1)‖2] =
1

R

R∑
r=1

E[‖f(w̃r+1)‖2]

≤ f(w̃r)− f(w̃r+1)

CKηgηlR

+
1

C
(10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l )

≤ f(w̃0)− f∗

CKηgηlR

+
1

C
(10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l ),

where the second inequality uses f(w̃r+1) ≥ f∗ and f(w̃0) ≥ f(w̃r). If we choose the learning rates ηl = 1√
RKL

,

ηg =
√
KN and perturbation amplitude ρ proportional to the learning rate, e.g., ρ = 1√

R
, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKN

+
σ2
g

R
+
L2σ2

l

R2K
+

L2σ2
l

R3/2
√
KN

+
L2

R2K
+

L2

R3/2
+

L2

R3K

)
.
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Note that the term G2

R is due to the heterogeneity between each client, ( L2

R2K + L2

R3/2
√
KN

)σ2 is due to the local SGD and
1

R3/2 + 1
R3K is due to the local SAM. We can see that L2

R3/2 + L2

R3K only obtains higher order, and hence SAM part does not
take large influence of convergence. After omitting the higher order, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKN

+
σ2
g

R
+

L2σ2

R3/2
√
KN

+
L2

R3/2

)
.

This completes the proof. �

B.3. Convergence Analysis of Partial Client Participation FedSAM

Lemma B.7 For the partial client participation, we can bound Er[‖∆r‖2]:

Er[‖∆r‖2] ≤ Kη2l L
2ρ2

S
σ2
l +

S

N

∑
i

∥∥∥∥K−1∑
j=1

∇fi(w̃ri,k)

∥∥∥∥2 +
S(S − 1)

N2

∥∥∥∥K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2.

For the partial client participation scheme w/o replacement, we have:

Er[‖∆r‖2]
(a)
≤ η2l
S2

Er
[∥∥∥∥ ∑

i∈Sr

∑
k

g̃i,k

∥∥∥∥2] =
η2l
S2

Er
[∥∥∥∥∑

i

I{i ∈ Sr}
∑
k

g̃i,k

∥∥∥∥2]
(b)
=

η2l
SN

Er
[∥∥∥∥∑

i

K−1∑
j=0

(g̃ri,j −∇fi(w̃ri,j))
∥∥∥∥2]+

η2l
S2

Er
[∥∥∥∥∑

i

I{i ∈ Sr}
K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2]

(c)
≤ Kη2l L

2ρ2

S
σ2
l +

η2l
S2

Er
[∥∥∥∥ S∑

i=1

K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2]

=
Kη2l L

2ρ2

S
σ2
l +

η2l
NS

∑
i

∥∥∥∥K−1∑
j=1

∇fi(w̃ri,k)

∥∥∥∥2 +
(S − 1)η2l
SN2

∥∥∥∥K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2,

where (a) is from Lemma A.2; (b) is from Lemma A.3 and (c) is from Lemma A.4. �

Lemma B.8 For E[‖
∑
k∇fi(w̃i,k)‖2], where ∇fi(w̃i,k)2 for all k ∈ [K] and i ∈ [N ] is chosen according to FedSAM,

we have:∑
i

E
[∥∥∥∥∑

k

∇fi(w̃i,k)

∥∥∥∥2] ≤ 30NK2L2η2l (2L2ρ2σ2
l + 6K(3σ2

g + 6L2ρ2) + 6K‖∇f(w̃)‖2) + 144K4L6η4l ρ
2

+ 12NK4L2η2l ρ
2 + 3NK2(3σ2

g + 6L2ρ2) + 3NK2‖∇f(w̃)‖2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof.

∑
i

E
[∥∥∥∥∑

k

∇fi(w̃i,k)

∥∥∥∥2] =
∑
i

E
[∥∥∥∥∑

k

∇fi(w̃i,k)−∇fi(w̃) +∇fi(w̃)−∇f(w̃) +∇f(w̃)

∥∥∥∥2]
(a)
≤ 6KL2

∑
i,k

E[‖wi,k − w‖2] + 6KL2
∑
i,k

E[‖δi,k − δ‖2] + 3NK2(3σ2
g + 6L2ρ2) + 3NK2‖∇f(w̃)‖2

(b)
≤ 30NK2L2η2l (2L2ρ2σ2

l + 6K(3σ2
g + 6L2ρ2) + 6K‖∇f(w̃)‖2) + 144K4L6η4l ρ

2

+ 12NK4L2η2l ρ
2 + 3NK2(3σ2

g + 6L2ρ2) + 3NK2‖∇f(w̃)‖2.

where (a) is from Assumption 1, Lemmas A.2 and A.5; (b) is from Lemmas B.1 and B.2. �
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Theorem B.9 Let constant local and global learning rates ηl and ηg be chosen as such that ηl ≤ 1
10KL , ηgηl ≤ 1

KL and
the condition ( 1

2 − 30K2L2η2l −
Lηgηl
2S (3K + 180K3L2η2l )) > 0 holds. Under Assumption 1-3 and with partial client

participation, the sequence of outputs {wr} generated by FedSAM satisfies:

min
r∈[R]

E‖∇F (wr)‖2 ≤ F 0 − F ∗

CKηgηl
+ Φ,

where Φ = 1
C [10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S σ2 +
ηgηl
S (30KL5η2l ρ

2σ2
l + 180K2L3η2l σ

2
g + 360KL5η2l ρ

2 + 72K3L7η4l ρ
2 + 6K3L3η2l ρ

2 + 6KLσ2
g + 6KL3ρ2)]. If we

choose the learning rates ηl = 1√
RKL

, ηg =
√
KS and perturbation amplitude ρ proportional to the learning rate, e.g.,

ρ = 1√
R

, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

R3/2K
+

√
KL2

R3/2
√
S

)
.

E[‖f(w̃r+1)‖]
(a)
≤ f(w̃r)− Kηgηl

2
‖∇f(w̃r)‖2 +KηgηlL

2Ew +KηgηlL
2Eδ −

ηgηl
2KN

Er
[∥∥∥∥∑

i,k

∇fi(w̃ri,k)

∥∥∥∥2]+
L

2
η2gEr[‖∆r‖2]

(b)
≤ f(w̃r)− Kηgηl

2
‖∇f(w̃r)‖2 +KηgηlL

2Ew +KηgηlL
2Eδ +

Kη2gη
2
l L

3ρ2

2S
σ2
l

− ηgηl
2KN

Er
[∥∥∥∥∑

i,k

∇fi(w̃ri,k)

∥∥∥∥2]+
η2gLS

2N

∑
i

∥∥∥∥K−1∑
j=1

∇fi(w̃ri,k)

∥∥∥∥2 +
η2gLS(S − 1)

2N2

∥∥∥∥K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2

(c)
≤ f(w̃r)− Kηgηl

2
‖∇f(w̃r)‖2 +KηgηlL

2Ew +KηgηlL
2Eδ +

Kη2gη
2
l L

3ρ2

2S
σ2
l +

Lη2gη
2
l

2NS

∑
i

‖
∑
k

∇fi(w̃ri,k)‖2

(d)
≤ f(w̃r)−Kηgηl

(
1

2
− 30K2L2η2l −

Lηgηl
2S

(3K + 180K3L2η2l )

)
‖∇f(w̃r)‖2

+Kηgηl

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S
σ2

)
+
Kη2gη

2
l

S
(30KL5η2l ρ

2σ2
l + 180K2L3η2l σ

2
g + 360KL5η2l ρ

2 + 72K3L7η4l ρ
2 + 6K3L3η2l ρ

2 + 6KLσ2
g + 6KL3ρ2)

(e)
≤ f(w̃r)− CKηgηl‖∇f(w̃r)‖2

+Kηgηl

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S
σ2

)
+
Kη2gη

2
l

S
(30KL5η2l ρ

2σ2
l + 180K2L3η2l σ

2
g + 360KL5η2l ρ

2 + 72K3L7η4l ρ
2 + 6K3L3η2l ρ

2 + 6KLσ2
g + 6KL3ρ2),

where (a) is from Lemma B.5; (b) is from B.4; (c) is based on taking the expectation of r-th round and if the learning rates
satisfy that KLηgηl ≤ S−1

S ; (d) is from Lemmas B.1, B.2 and B.8 and (e) holds because there exists a constant C > 0

satisfying ( 1
2 − 30K2L2η2l −

Lηgηl
2S (3K + 180K3L2η2l )) > C > 0.
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Summing the above result for r = [R] and multiplying both sides by 1
CKηgηlR

, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] ≤ f(w̃r)− f(w̃r+1)

CKηgηlR

+
1

C

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S
σ2

+
ηgηl
S

(30KL5η2l ρ
2σ2
l + 180K2L3η2l σ

2
g + 360KL5η2l ρ

2 + 72K3L7η4l ρ
2 + 6K3L3η2l ρ

2 + 6KLσ2
g + 6KL3ρ2)

)
≤ F

CKηgηlR

+
1

C

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S
σ2

+
ηgηl
S

(30KL5η2l ρ
2σ2
l + 180K2L3η2l σ

2
g + 360KL5η2l ρ

2 + 72K3L7η4l ρ
2 + 6K3L3η2l ρ

2 + 6KLσ2
g + 6KL3ρ2)

)
,

where the second inequality uses F = f(w̃0) − f∗ ≤ f(w̃r) − f(w̃r+1). If we choose the learning rates ηl = 1√
RKL

,

ηg =
√
KS and perturbation amplitude ρ proportional to the learning rate, e.g., ρ = 1√

R
, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKS

+
σ2
g

R
+

√
Kσ2

g√
RS

+

√
KSσ2

g

R3/2
+

L2σ2
l

R3/2K
+

L2σ2
l

R3/2
√
KS

+
L2σ2

l

R5/2
√
KS

+
L2

R2
+

1

R4K2
+

L2

R3K
+

√
KS

R5/2SK2
+

√
KS

R7/2SK2
+

√
K

R5/2
√
S

+

√
KL2

R3/2
√
S

)
,

If the number of sampling clients are larger than the number of epochs, i.e., S ≥ K, and omitting the larger order of each
part, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

R3/2K
+

√
KL2

R3/2
√
S

)
.

This completes the proof. �

C. Generalization Bounds
The generalization bound of FedSAM follows the margin-based generalization bounds in (Neyshabur et al., 2018; Bartlett
et al., 2017; Farnia et al., 2018). We consider the margin-based error for analyzing the generalization error in FedSAM with
general neural network as follows:

LSAM
γ (F (w)) :=

1

N

N∑
i=1

Pi
(
fi(w + δi,X)[Y ]−max

j 6=Y
Fi(w + δi,X)[j] ≤ γ

)
. (11)

Our generalization bound is based on the two following Lemmas in (Chatterji et al., 2019) and (Neyshabur et al., 2018):

Lemma C.1 ((Chatterji et al., 2019)). Let F (w) be any predictor function with parameters w and P be a prior distribution
on parameters w. Then, for any γ,m, ζ > 0, with probability 1− ζ over training setM of size m, for any parameter w and
any perturbation distribution Q over parameters such that Pδ∼Q[maxX |F (w + δ)− F (w)| ≤ γ

4 ] ≥ 1
2 , we have:

LSAM(F (w)) ≤ L̂SAM
γ (F (w)) +

√
2KL(w + δ‖P) + log m

ζ

2(m− 1)
.

where KL(·‖P ) is the KL-divergence.
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Lemma C.2 ((Neyshabur et al., 2018)). Let norm of input X be bounded by A. For any A > 0, let F (w) be a neural
network with ReLU activations and depth d with h units per hidden-layer. Then for any w,X ∈ X , and any perturbation δ
s.t. ‖δj‖ ≤ ‖Wj‖, where δj is the size of layer j, the change in the output of the network can be bounded as follows:

‖F (w + δ,X)− F (w,X)‖2 ≤ eA
d∏
j=1

‖Wj‖
d∑
j=1

‖δj‖2
‖Wj‖2

.

Lemma C.1 gives a data-independent deterministic bound which depends on the maximum change of the output function
over the domain after a perturbation. Lemma C.2 bounds the change in the output a network based on the magnitude of the
perturbation.

Theorem C.3 Let input X be an n × n image whose norm is bounded by A, f(w) be the classification function with d
hidden-layer neural network with h units per hidden-layer, and satisfy 1-Lipschitz activation θ(0) = 0. We assume the
constant M ≥ 1 for each layer Wj satisfies:

1

M
≤ ‖Wj‖

φw
≤M,

where φw := (
∏d
j=1 ‖Wj‖)1/d denotes the geometric mean of f(w)’s spectral norms across all layers. Then, for any

margin value γ, size of local training dataset on each client m, ζ > 0, with probability 1 − ζ over the training set, any
parameter of SAM local optimizer w̃ = w + δ such that maxX∈Di ‖Fi(w) − f(w̃)‖ ≤ γ

8 , we can obtain the following
generalization bound:

LSAM(F (w)) ≤ L̂SAM
γ (F (w + δ)) +O

(
32Bd2h log(dh)Q(F (w)) + d log Nmd log(M)

ζ

γ2m

)
,

where Q(F (w)) :=
∏d
j=1 ‖Wj‖

∑d
i=1

‖Wj‖2F
‖Wj‖ and ‖Wj‖2F is the Frobenius norm.

Proof. Based on Lemma C.1, we choose the perturbation δj of each layer which is a zero-mean multivariate Gaussian

distribution with diagonal covariance matrix, i.e., N (0, λ2jI) and λj =
‖W̃j‖
εW̃

λ, where εW̃ := (
∏d
j=1 ‖Wj‖)1/d is the

geometric average of spectral norms across all layers. We consider F (W̃ ) with weights W̃ . Since (1 + 1
d )d ≤ e and

1
e ≤ (1− 1

d )d−1, for any weight vector of Wj such that |‖Wj‖2 − ‖W̃j‖2| ≤ 1
d for every j, we have:

(1/e)
d
d−1

d∏
j=1

‖W̃j‖ ≤
d∏
j=1

‖Wj‖ ≤ e
d∏
j=1

‖W̃i‖.

Then, for the jth layer’s random perturbation vector δj ∼ N (0, λ2jI), we have the following bound from (Tropp, 2012) with
h representing the width of the jth hidden layer:

P
(
εW̃
‖δj‖
‖W̃j‖

> t

)
≤ 2he−

t2

2hλ2 .

Based on (Farnia et al., 2018), we now use a union bound over all layers for a maximum union probability of 1/2, which
implies the normalized εW̃

‖δj‖
‖W̃j‖

for each layer can be upper-bounded by λ
√

2h log(4hd). Then, for any W satisfying

|‖Wj‖ − ‖W̃j‖| ≤ 1
d‖W̃j‖ for all layer j’s, we obtain the following:

‖F (W + δ,X)− F (W,X)‖ ≤ eA
( d∏
j=1

‖wj‖
) d∑
j=1

‖δj‖
‖Wj‖2

≤ 4edAεd−1
W̃

λ
√

2h log(4hd) ≤ γ

8
.

where the last inequality is from choosing λ = γ

32edAεd−1

W̃

√
h log(4hd)

, where the perturbation satisfies the Lemma C.2. Then,
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we can bound the KL-divergence in Lemma C.1 as follows:

KL(w + δ||P) ≤
d∑
j=1

‖Wj‖F
2λ2j

=
322e2d2A2ε2d

W̃
h log(4hd)

γ2

d∑
j=1

‖Wj‖F
‖W̃j‖

≤
322e2d2A2

∏d
j=1 ‖Wj‖h log(4hd)

γ2

d∑
j=1

‖Wj‖F
‖W̃j‖

= O
(
d2A2h log(hd)

∏d
j=1 ‖Wj‖

γ2

d∑
j=1

‖Wj‖F
‖Wj‖

)
.

Based on (Farnia et al., 2018), we have the following result given a fixed underlying distribution P and any ζ > 0 with
probability 1− ζ for any W :

LSAM(F (w)) ≤ L̂SAM
γ (F (w + δ)) +O

(d2A2h log(hd)
∏d
j=1 ‖Wj‖

∑d
j=1

‖Wj‖F
‖Wj‖ + log m

ζ

mγ2

)
.

Now, we use a cover of size O(d log(M)dd) points, and hence it can demonstrate that for a fixed underlying distribution for
any ζ > 0, with probability 1− ζ, we have:

LSAM(F (w)) ≤ L̂SAM
γ (F (w + δ)) +O

(d2A2h log(hd)
∏d
j=1 ‖Wj‖

∑d
j=1

‖Wj‖F
‖Wj‖ + d log dm log(M)

ζ

mγ2

)
.

To apply the above result to the FL network of N clients, we apply a union bound to have the bound hold simultaneously for
the distribution of every client, which proves for every ζ > 0 with probability at least 1− ζ, the average SAM loss of the
clients satisfies the following margin-based bound:

LSAM(F (w)) ≤ L̂SAM
γ (F (w + δ)) +O

(d2A2h log(hd)
∏d
j=1 ‖Wj‖

∑d
j=1

‖Wj‖F
‖Wj‖ + d log dNm log(M)

ζ

mγ2

)
.

This completes the proof. �

D. Convergence Analysis of MoFedSAM
D.1. Description of FedSAM Algorithm and Key Lemmas

We outline the MoFedSAM algorithm in Algorithm 2. In round r, we sample Sr ⊆ [N ] clients with |Sr| = S and then
perform the following updates:

• Starting from the shared global parameters wri,0 = wr−1, we update the local parameters for k ∈ [K]:

w̃ri,k = wri,k−1 + ρ
gri,k−1
‖gri,k−1‖

vri,k−1 = βg̃ri,k−1 + (1− β)∆r

wri,k = wri,k−1 − ηlvri,k−1,

• After K times local epochs, we obtain the following:

∆r
i = wri,K − wr.

• Compute the new global parameters using only updates from the clients i ∈ Sr and a global step-size ηg:

∆r+1 =
1

ηlKS

∑
i∈Sr

∆r
i

wr+1 = wr + ηg∆
r.



Generalized Federated Learning via Sharpness Aware Minimization

To prove the convergence of MoFedSAM, we first propose some lemmas for MoFedSAM as follows:

Lemma D.1 (Bounded Ew of MoFedSAM). Suppose our functions satisfies Assumptions 1-2. Then, for any i ∈ [N ], k ∈ [K]
and r ∈ [R] the updates of MoFedSAM for any learning rate satisfying ηl ≤ 1√

30βKL
have the drift due to wi,k − w:

Ew =
1

N

∑
i

E[‖wi,k − w‖2]

≤ 5Kη2l (2β2L2η2l ρ
2σ2
l + 7Kβ2η2l (3σ2

g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2) + 28β2K3L4η4l ρ
2.

Proof. Recall that the local update on client i is wi,k = wi,k−1 − βηlgi,k−1 + (1− β)∆r. Then, we have:

E‖wi,k − w‖2 = E‖wi,k−1 − w − ηl(βg̃i,k−1 + (1− β)∆)‖2

(a)
≤ E‖wi,k−1 − w − βηl(g̃i,k−1 −∇fi(w̃i,k−1) +∇fi(w̃i,k−1)−∇fi(w̃) +∇fi(w̃)−∇f(w̃) +∇f(w̃))

+ ηl(1− β)∆‖2

(b)
≤
(

1 +
1

2K − 1
+ 2β2L2η2l

)
E‖wi,k−1 − w‖2 + 2β2L2η2l ρ

2σ2
l + 7K2βη2l E‖∇fi(w̃i,k−1)−∇fi(w̃)‖2

+ 7Kβ2η2l (3σ2
g + 6L2ρ2) + 7Kβ2η2l ‖∇f(w̃)‖2 + 7Kη2l (1− β)2‖∆‖2

(c)
≤
(

1 +
1

2K − 1
+ 2β2L2η2l + 14Kβ2L2η2l

)
E‖wi,k−1 − w‖2 + 2β2L2η2l ρ

2σ2
l + 7K(1− β)2η2l ‖∆‖2

+ 14Kβ2L2η2l E‖δi,k−1 − δ‖2 + 7Kβ2η2l (3σ2
g + 6L2ρ2) + 7β2KE‖∇f(w̃)‖2

(d)
≤
(

1 +
1

2K − 1
+ 2β2L2η2l + 14β2KL2η2l

)
E‖wi,k−1 − w‖2 + 2β2L2η2l ρ

2σ2
l + 14Kβ2L2η2l E‖δi,k − δ‖2

+ 7Kβ2η2l (3σ2
g + 6L2ρ2) + 7K(1− β)2η2l ‖∆‖2 + 7β2KE‖∇f(w̃)‖2

(e)
≤
(

1 +
1

2K − 1
+ 2β2L2η2l + 14β2KL2η2l

)
E‖wi,k−1 − w‖2 + 2β2L2η2l ρ

2σ2
l + 14Kβ2L2η2l E‖δi,k − δ‖2

+ 7Kβ2η2l (3σ2
g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2,

where (a) follows from the fact that g̃i,k−1 is an unbiased estimator of∇fi(w̃i,k−1) and Lemma A.3; (b) is from Lemmas A.2
and A.5; (c) is from Assumption 3; Lemma A.2; (d) is from Assumption 2 and (e) is due to the fact that ∆ ≈ ∇f(w̃) and
β < 1

2 .

Averaging over the clients i and learning rate satisfies ηl ≤ 1√
30βKL

, we have:

Ew ≤
(

1 +
1

2K − 1
+ 2β2L2η2l + 14β2KL2η2l

)
E‖wi,k−1 − w‖2 + 2β2L2η2l ρ

2σ2
l + 14Kβ2L2η2l E‖δi,k − δ‖2

+ 7Kβ2η2l (3σ2
g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2

(a)
≤
(

1 +
1

K − 1

)
1

N

∑
i∈[N ]

E‖wi,k−1 − w‖2 + 2β2L2η2l ρ
2σ2
l

+ 14Kβ2L2η2l
1

N

∑
i∈[N ]

E‖δi,k − δ‖2 + 7Kβ2η2l (3σ2
g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2

≤
k−1∑
τ=0

(
1 +

1

K − 1

)τ
[2β2L2η2l ρ

2σ2
l + 7Kβ2η2l (3σ2

g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2]

+ 14Kβ2L2η2l
1

N

∑
i∈[N ]

E‖δi,k − δ‖2

(b)
≤ 5K(2β2L2η2l ρ

2σ2
l + 7Kβ2η2l (3σ2

g + 6L2ρ2) + 14K(1− β)2η2l ‖∇f(w̃)‖2) + 28β2K3L4η4l ρ
2,

where (a) is due to the fact that ηl ≤ 1√
30βKL

and β ≤ 1
2 and (b) is from Lemma B.1. �
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D.2. Convergence Analysis of Full client participation MoFedSAM

Lemma D.2 For the full client participation scheme, we can bound E[‖∆r‖2] as follows:

Er[‖∆r‖2] ≤ 2β2L2ρ2

KN
σ2
l +

2

K2N2
Er
[∥∥∥∥∑

i,k

β∇fi(w̃ri,k) + (1 + β)∆r

∥∥∥∥2].

Proof. For the full client participation strategy, we have:

Er[‖∆r+1‖2]
(a)
≤ 1

K2N2η2l
Er
[∥∥∥∥∑

i,k

βηlg̃
r
i,k + (1− β)ηl∆

r

∥∥∥∥2]
(b)
≤ β2

K2N2
Er
[∥∥∥∥∑

i,k

(g̃ri,k −∇fi(w̃ri,k))

∥∥∥∥2]+
1

K2N2
Er
[∥∥∥∥∑

i,k

β∇fi(w̃i,k) + (1− β)∆r

∥∥∥∥2]
(c)
≤ β2L2ρ2

KN
σ2
l +

1

K2N2
Er
[∥∥∥∥∑

i,k

β∇fi(w̃ri,k) + (1− β)∆r

∥∥∥∥2]
(d)
≤ β2L2ρ2

KN
σ2
l +

2(1− β)2

KN
‖f(w̃r)‖2 +

β2

K2N2
Er
[∥∥∥∥∑

i,k

fi(w̃
r
i,k)

∥∥∥∥2],

where (a) is from Lemma A.2; (b) is from Lemma A.3 and (c) is from Lemma A.4. �

Lemma D.3 (Descent Lemma of full client participation MoFedSAM). For all r ∈ R − 1 and i ∈ Sr, with the choice of
learning rate, the iterates generated by MoFedSAM under full client participation in Algorithm 2 satisfy:

Er[f(w̃r+1)] ≤ f(w̃r)−Kηgηl
(

1

2
− 20K2L2η2l B

2

)
‖∇f(w̃r)‖2 +Kηgηl(6K

2η2l β
4ρ2 + 5K2ηlβ

4ρ2σ2

+ 20K3η3l β
2G2 + 16K3η4l β

6ρ2 +
ηgηlβ

3ρ2

N
σ2)

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof.

Er[F (wr+1)] = Er[f(w̃r+1)] ≤ f(w̃r) + Er〈∇f(w̃r), w̃r+1 − w̃r]〉+
L

2
Er[‖w̃r+1 − w̃r‖2]

(a)
= f(w̃r) + ηgEr〈∇f(w̃r),−∆r+1 + β∇f(w̃r)− β∇f(w̃r)〉+

L

2
η2gEr[‖∆r+1‖2]

(b)
= f(w̃r)− βηg‖∇f(w̃r)‖2 + ηg〈∇f(w̃r),Er[−∆r+1 + β∇f(w̃r)]〉+

L

2
η2gEr[‖∆r+1‖2],

(12)

where (a) is from the iterate update given in Algorithm 3 and (b) results from the unbiased estimators.
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For the third term, we bound it as follows:

〈∇f(w̃r),Er[−∆r+1 + β∇f(w̃r)]〉

= −(1− β)‖∇f(w̃r)‖2 +

〈√
β∇f(w̃r),Er

[
−
√
β

KNηl

∑
i,k

(ηl∇fi(w̃ri,k)− ηl∇fi(w̃r))
]〉

(a)
=

(
3β

2
− 1

)
‖∇f(w̃r)‖2 +

β

2K2N2
Er
∥∥∥∥∑
i,k

(∇fi(w̃ri,k)−∇fi(w̃r))
∥∥∥∥2 − β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(b)
≤
(

3β

2
− 1

)
‖∇f(w̃r)‖2 +

β

2KN

∑
i,k

Er‖∇fi(w̃ri,k)−∇fi(w̃r)‖2 −
β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(c)
≤
(

3β

2
− 1

)
‖∇f(w̃r)‖2 +

β

2KN

∑
i,k

Er‖∇fi(w̃ri,k)−∇fi(w̃r)‖2 −
β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(d)
≤
(

3β

2
− 1

)
‖∇f(w̃r)‖2 +

βL2

2KN

∑
i,k

Er‖w̃ri,k − w̃r‖2 −
β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(e)
≤
(

3β

2
− 1

)
‖∇f(w̃r)‖2 + βL2(Ew + Eδ)−

β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2,

(13)

where (a) is from that ∆r = ∇f(w̃r) and ∇f(w̃r) =
∑
i∇fi(w̃r); (b), (c) and (e) are from Lemma A.2 and (d) is from

Assumption 1. Plugging (13) into (12), we have:

Er[f(w̃r+1)]

≤ f(w̃r)−
(
ηg −

βηg
2

)
‖∇f(w̃r)‖2 + βL2ηg(Ew + Eδ)−

βηg
2K2N2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2 +
Lη2g

2
Er[‖∆r+1‖2]

(a)
≤ f(w̃r)−

(
3βηg

4
− 2(1− β)2Lηg

KN

)
‖∇f(w̃r)‖2 + βL2ηg(Ew + Eδ) +

β2L3ρ2η2g
2KN

σ2
l

− βηg
2K2N2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2 +
Lβ2η2g
2K2N2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(b)
≤ f(w̃r)− βηg

(
3

4
− 2(1− β)L

KN
− 70(1− β)K2L2η2l

)
‖∇f(w̃r)‖2

+ βηg

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KN
σ2
l

)
(c)
≤ f(w̃r)− Cβηg‖∇f(w̃r)‖2

+ βηg

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KN
σ2
l

)
,

(a) is from Lemma D.2; (b) is from Lemmas B.1, D.1 and due to the fact that ηg ≤ 1
βL and (c) is due to the fact that the

condition 3
4 −

2(1−β)L
KN − 70(1− β)K2L2η2l > C > 0 and β ≤ 1

2 hold. �

Theorem D.4 (Convergence of MoFedSAM). Let constant local and global learning rates ηl ≤ 1√
30βKL

, ηg ≤ 1
βL and

β ≤ 1
2 and the condition 3

4 −
2(1−β)L
KN − 70(1− β)K2L2η2l > C > 0 holds. Under Assumptions 1-3 and with full client

participation, the sequence of outputs {wr} generated by FedGSAM satisfies:

min
r∈[R]

E‖∇F (wr)‖2 ≤ f0 − f∗

Cβηg
+ Φ,

where Φ = 1
C (20β3L4η2l ρ

2σ2+25β2K2L2η2lG
2+20β2K4L5η4l ρ

2+4β2KL4η2l ρ
2+

βL3ρ2η2g
2KN ). If we choose the learning

rates ηl = O( 1√
RKβL

), ηg = O(
√
KN√
RβL

) and the perturbation amplitude ρ proportional to the learning rate, e.g., ρ = 1√
R

,
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we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FβL√
RKN

+
β2σ2

g

R
+
Lσ2

l

R2β
+

L2

R2β2

)
.

Proof. Summing the result of Lemma D.3 for r = [R] and multiplying both sides by 1
CβηgR

, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] ≤ F

CβηgR

+
1

C

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KN
σ2
l

)
,

where it is from that F = f(w̃0) − f∗ ≤ f(w̃r) − f(w̃r+1). If we choose the learning rates ηl = O( 1√
RKβL

), ηg =

O(
√
KN√
RβL

) and the perturbation amplitude ρ proportional to the learning rate, e.g., ρ = 1√
R

, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FβL√
RKN

+
β2σ2

g

R
+
L2σ2

l

R2K
+
Lσ2

l

R2β
+
βL2

R2
+
KL2

R3β2
+

L2

R2β2

)
.

If we omit the larger order of each part, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FβL√
RKN

+
β2σ2

g

R
+
Lσ2

l

R2β
+

L2

R2β2

)
.

This completes the proof. �

D.3. Convergence Analysis of Partial client participation MoFedSAM

Lemma D.5 For the partial client participation, we can bound Er[‖∆r‖2] as follows:

Er[‖∆r‖2] ≤ KL2η2l ρ
2

S
σ2
l +

η2l
S2

[∥∥∥∥∑
i

P{i ∈ Sr}
K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2].

Proof.

Er[‖∆r‖2]
(a)
≤ 1

K2S2η2l
Er
[∥∥∥∥ ∑

i∈Sr

∑
k

βηlg̃
r
i,k + (1− β)ηl∆

r

∥∥∥∥2]

=
1

K2S2η2l
Er
[∥∥∥∥∑

i

I{i ∈ Sr}
∑
k

βηlg̃
r
i,k − (1− β)∆r

∥∥∥∥2]
(b)
=

β2

K2S2
Er
[∥∥∥∥∑

i

K−1∑
j=0

(g̃ri,j −∇fi(w̃ri,j))
∥∥∥∥2]+

1

K2S2
Er
[∥∥∥∥∑

i

I{i ∈ Sr}
K−1∑
j=0

β∇fi(w̃ri,j) + (1− β)∆r

∥∥∥∥2]
(c)
≤ β2L2ρ2

KS
σ2
l +

2(1− β)2

KS
‖f(w̃r)‖2 +

2β2

K2S2

[∥∥∥∥∑
i

P{i ∈ Sr}
K−1∑
j=0

∇fi(w̃i,j)
∥∥∥∥2]

=
β2L2ρ2

KS
σ2
l +

2(1− β)2

KS
‖f(w̃r)‖2 +

2β2

K2SN

N∑
i=1

Er
∥∥∥∥K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2 +

2β2(S − 1)

K2SN2
Er
∥∥∥∥ N∑
i=1

K−1∑
j=0

∇fi(w̃ri,j)
∥∥∥∥2,

where (a) is from Lemma A.2; (b) is from Lemma A.3 and (c) is from Lemma A.4. �
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Lemma D.6 (Descent Lemma of partial client participation MoFedSAM). For all r ∈ R− 1 and i ∈ Sr, with the choice of
learning rate, the iterates generated by MoFedSAM under partial client participation in Algorithm 2 satisfy:

Er[f(w̃r+1)] ≤ f(w̃r)−Kηgηl
(

1

2
− 20K2L2η2l B

2

)
‖∇f(w̃r)‖2 +Kηgηl(6K

2η2l β
4ρ2 + 5K2ηlβ

4ρ2σ2

+ 20K3η3l β
2G2 + 16K3η4l β

6ρ2 +
ηgηlβ

3ρ2

N
σ2)

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof.

Er[F (wr+1)] = Er[f(w̃r+1)] ≤ f(w̃r) + Er〈∇f(w̃r), w̃r+1 − w̃r]〉+
L

2
Er[‖w̃r+1 − w̃r‖2]

= f(w̃r)− βηg‖∇f(w̃r)‖2 + ηg〈∇f(w̃r),Er[−∆r+1 + β∇f(w̃r)]〉+
L

2
η2gEr[‖∆r+1‖2].

(14)

Similar to full client participation strategy, we bound the third term in (14) as follows:

〈∇f(w̃r),Er[−∆r+1 + β∇f(w̃r)]〉 ≤
(

3β

2
− 1

)
‖∇f(w̃r)‖2 + βL2(Ew + Eδ)−

β

2K2N2
Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2, (15)

Plugging (15) into (14), we have:

Er[f(w̃r+1)]

≤ f(w̃r)−
(
ηg −

βηg
2

)
‖∇f(w̃r)‖2 + βL2ηg(Ew + Eδ)−

βηg
2K2N2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2 +
Lη2g

2
Er[‖∆r+1‖2]

(a)
≤ f(w̃r)−

(
3βηg

4
− 2(1− β)2Lηg

KS

)
‖∇f(w̃r)‖2 + βL2ηg(Ew + Eδ) +

β2L3ρ2η2g
2KS

σ2
l

− βηg
2K2N2

Er
∥∥∥∥∑
i,k

β∇fi(w̃ri,k)

∥∥∥∥2 +
Lβ2η2g

2K2SN

∑
i

Er
∥∥∥∥∑

k

∇fi(w̃ri,k)

∥∥∥∥2 +
Lβ2(S − 1)η2g
K2SN2

Er
∥∥∥∥∑
i,k

∇fi(w̃ri,k)

∥∥∥∥2
(b)
≤ f(w̃r)− βηg

(
3

4
− 2(1− β)L

KN
− 70(1− β)K2L2η2l −

90βL3ηgη
2
l

S
− 3βLηg

2S

)
‖∇f(w̃r)‖2

+ βηg

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KS
σ2
l

+
βLηg
K2SN

(
30NK2L4η2l ρ

2σ2
l + 270NK3L2η2l σ

2
g + 540NK2L4η2l ρ

2 + 72K4L6η4l ρ
2

+ 6NK4L2η2l ρ
2 + 4NK2σ2

g + 3NK2L2ρ2
))

(c)
≤ f(w̃r)− Cβηg‖∇f(w̃r)‖2

+ βηg

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KS
σ2
l

+
βLηg
K2SN

(
30NK2L4η2l ρ

2σ2
l + 270NK3L2η2l σ

2
g + 540NK2L4η2l ρ

2 + 72K4L6η4l ρ
2

+ 6NK4L2η2l ρ
2 + 4NK2σ2

g + 3NK2L2ρ2
))

,

(a) is from Lemma D.2; (b) is from Lemmas B.1, D.1 and due to the fact that ηg ≤ S
2βL(S−1) and (c) is due to the fact that

the condition 3
4 −

2(1−β)L
KN − 70(1− β)K2L2η2l −

90βL3ηgη
2
l

S − 3βLηg
2S > C > 0 and β ≤ 1

2 hold. �
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Theorem D.7 Let constant local and global learning rates ηl and ηg be chosen as such that ηl ≤ 1√
30βKL

, ηg ≤ S
2βL(S−1)

and the condition 3
4 −

2(1−β)L
KN − 70(1 − β)K2L2η2l −

90βL3ηgη
2
l

S − 3βLηg
2S > 0 holds. Under Assumption 1-3 and with

partial client participation, the sequence of outputs {wr} generated by MoFedSAM satisfies:

min
r∈[R]

E‖∇F (wr)‖2 ≤ F 0 − F ∗

Cβηg
+ Φ,

where Φ = 1
C [10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KS σ2
l +

βLηg
K2SN

(
30NK2L4η2l ρ

2σ2
l + 270NK3L2η2l σ

2
g + 540NK2L4η2l ρ

2 + 72K4L6η4l ρ
2 + 6NK4L2η2l ρ

2 + 4NK2σ2
g +

3NK2L2ρ2
)

]. If we choose the learning rates ηl = 1√
RKβL

, ηg =
√
KS√
RβL

and perturbation amplitude ρ proportional to

the learning rate, e.g., ρ = 1√
R

, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

R3/2K
+

√
KL2

R3/2
√
S

)
.

Proof. Summing the above result for r = [R] and multiplying both sides by 1
CβηgR

, we have

1

R

R∑
r=1

E[‖F (wr+1)‖] ≤ f(w̃r)− f(w̃r+1)

CβηgR

+
1

C

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KS
σ2
l

+
βLηg
K2SN

(
30NK2L4η2l ρ

2σ2
l + 270NK3L2η2l σ

2
g + 540NK2L4η2l ρ

2 + 72K4L6η4l ρ
2

+ 6NK4L2η2l ρ
2 + 4NK2σ2

g + 3NK2L2ρ2
))

≤ F

CβηgR
+

1

C

(
10β2L4η2l ρ

2σ2
l + 35β2KL2η2l (3σ2

g + 6L2ρ2) + 28β2K3L6η4l ρ
2 + 2K2L4η2l ρ

2 +
βL3η2gρ

2

2KS
σ2
l

+
βLηg
K2SN

(
30NK2L4η2l ρ

2σ2
l + 270NK3L2η2l σ

2
g + 540NK2L4η2l ρ

2 + 72K4L6η4l ρ
2

+ 6NK4L2η2l ρ
2 + 4NK2σ2

g + 3NK2L2ρ2
))

,

where the second inequality uses F = f(w̃0) − f∗ ≤ f(w̃r) − f(w̃r+1). If we choose the learning rates ηl = 1√
RKβL

,

ηg =
√
KS√
RβL

and perturbation amplitude ρ proportional to the learning rate, e.g., ρ = 1√
R

, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

βFL√
RKS

+
σ2
g

R
+
β
√
Kσ2

g√
RS

+

√
KSσ2

g

R3/2
+
L2σ2

l

R2K
+
Lσ2

l

R2β
+
L2
√
KSσ2

l

R5/2

+
βL2

R2
+
βL3

R2
+

L2

R3β2
+

L2

R2β2
+

L3

R2β
√
KS

+

√
KL2

R7/2
√
Sβ4

+
K3/2L

R5/2
√
S

)
,

If the number of sampling clients are larger than the number of epochs, i.e., S ≥ K, and omitting the larger order of each
part, we have:

1

R

R∑
r=1

E[‖F (wr+1)‖] = O
(

βFL√
RKS

+

√
KG2

√
RS

+
L2σ2

R3/2K
+

√
KL2

R3/2
√
S

)
.

This completes the proof. �
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Table 3. Datasets and models.
Dataset Task Clients Total samples Model

EMNIST (Cohen et al., 2017) Handwritten character recognition 100/50 81,425 2-layer CNN + 2-layer FFN
CIFAR-10 (Krizhevsky et al., 2009) Image classification 100/50 60,000 ResNet-18 (He et al., 2016)

CIFAR-100 (Krizhevsky et al., 2009) Image classification 100/50 60,000 ResNet-18 (He et al., 2016)

E. Experimental Setup
We ran the experiments on a CPU/GPU cluster, with RTX 2080Ti GPU, and used PyTorch (Paszke et al., 2019) to build and
train our models. The description of datasets is introduced in Table 3.

E.1. Dataset Description

EMNIST (Cohen et al., 2017) is a 62-class image classification dataset. In this paper, we use 20% of the dataset, and we
divide this dataset to each client based on Dirichlet allocation of parameter 0.6 over 100 client by default. We train the same
CNN as in (Reddi et al., 2020; Dieuleveut et al., 2021), which includes two convolutional layers with 3×3 kernels, max
pooling, and dropout, followed by a 128 unit dense layer.

CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) are labeled subsets of the 80 million images dataset. They both share
the same 60,000 input images. CIFAR-100 has a finer labeling, with 100 unique labels, in comparison to CIFAR-10, having
10 unique labels. The Dirichlet allocation of these two datasets are also 0.6. For both of them, we train ResNet-18 (He et al.,
2016) architecture.

E.2. Hyperparameters

For each algorithm and each dataset, the learning rate was set via grid search on the set {10−0.5, 10−1, 10−1.5, 10−2}.
FedCM, MimeLite and MoFedSAM momentum term β was tuned via grid search on {0.01, 0.1, 0.2, 0.5, 1}. The global
learning rate ηg = 1, and local learning rate ηl = 0.1 by default.

F. Additional Experiments
F.1. Training accuracy on different datasets
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(a) EMNIST dataset.
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(b) CIFAR-10 dataset.
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(c) CIFAR-100 dataset.

Figure 4. Training accuracy on different datasets.

Figure 4 shows that the training accuracy on different datasets. Comparing with the validation accuracy results in Figure 1,
the performance divergence is not clear. The reason is because the global model is easy to overfit the training dataset. Since
the distribution of validation dataset on each client is different from training datasets, compared benchmarks perform less
generalization. This indicates that our proposed algorithms benefits. Although FedSAM does not show better performance
compared to the momentum FL, i.e., FedCM and MimeLite, it saves more transmission costs, since it does not need
to download ∆r. For example, on CIFAR-100 dataset, FedCM achieves 85.26% training accuracy with 4.41% deviation
of local models, however, it obtains 54.09% validation accuracy with 14.38% deviation. For MoFedSAM algorithm, it
can achieve 86.02% training accuracy with 3.23% deviation of local models, and 55.13% validation accuracy with 3.25%
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Table 4. Impact of the heterogeneity on EMNIST dataset (IID, Dirichlet 0.6 and Dirichlet 0.3).

Algorithm IID Dirichlet 0.6 Dirichlet 0.3

Train Validation Round Train Validation Round Train Validation Round

FedAvg 96.98(0.73) 89.95(1.95) 32 95.07 (0.94) 84.38 (4.03) 43 93.66(1.27) 82.83(4.42) 61
SCAFFOLD 96.04(1.01) 88.79(2.38) 51 93.85 (1.31) 84.09 (4.56) 69 92.85(1.68) 82.01(4.95) 88
FedRobust 95.63(0.56) 87.67(1.63) 66 93.17 (0.62) 83.70 (3.37) 91 92.10(1.00) 81.80(3.79) 103
FedCM 97.47(0.87) 91.13(2.07) 18 96.22 (1.16) 84.85 (4.22) 25 94.83(1.29) 83.09(4.58) 47

MimeLite 97.26(0.85) 91.29(2.11) 16 95.73 (0.49) 84.88 (3.04) 38 94.90(1.33) 83.14(4.55) 46
FedSAM 97.42(0.49) 90.22(1.50) 22 96.16 (1.14) 84.75 (4.11) 28 94.32(0.91) 82.97(3.56) 53
MoFedSAM 97.58(0.51) 91.52(1.53) 13 96.42 (0.42) 85.07 (2.95) 24 94.98(0.95) 83.28(3.59) 41

Table 5. Impact of the heterogeneity on CIFAR-100 dataset (IID, Dirichlet 0.6 and Dirichlet 0.3).

Algorithm IID Dirichlet 0.6 Dirichlet 0.3

Train Validation Round Train Validation Round Train Validation Round

FedAvg 84.68 (1.46) 58.97 (3.56) 253 79.57 (1.84) 53.57 (5.40) 302 77.61 (1.99) 51.22 (6.17) 593
SCAFFOLD 83.41 (2.07) 57.16 (4.32) 327 78.49 (2.02) 51.49 (5.87) 551 76.30 (2.67) 48.89 (6.59) -
FedRobust 82.58 (1.35) 55.87 (3.35) 378 76.80 (1.70) 49.06 (4.75) 893 75.26 (1.87) 47.92 (5.86) -

FedCM 87.05 (1.48) 59.64 (3.73) 149 82.46 (2.00) 55.73 (5.11) 189 79.91 (2.02) 52.57 (6.28) 410
MimeLite 87.42 (1.56) 59.87 (3.67) 143 82.53 (2.08) 55.82 (5.04) 182 79.96 (2.00) 52.60 (6.31) 397
FedSAM 85.65 (1.27) 59.11 (3.11) 228 81.04 (1.59) 54.69 (4.36) 245 78.05 (1.71) 51.78 (5.43) 561

MoFedSAM 87.82 (1.32) 60.02 (3.20) 129 82.62 (1.53) 56.60 (4.42) 124 80.09 (1.77) 52.90 (5.62) 373

deviation of local models.

Tables 2, 4 and 5 aim to show the impact of heterogeneous degrees of FL. From these results, we can clearly see that
increasing the degree of heterogeneity makes huge degradation of learning performance. However, it does not effect the
training accuracy significantly. For example, on CIFAR-10 dataset, FedSAM obtains 95.42%, 94.20%, and 92.90% training
accuracy, when heterogeneity is IID, Dirichlet 0.6 and Dirichlet 0.3, and 87.36%, 82.55% and 79.82% for validation accuracy.
More specifically, the influence of heterogeneity for our proposed algorithms are less than compared benchmarks, which is
due to the fact that the more generalized global model, the less impact of distribution shift.

F.2. Impact of hypeparameters
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(a) Impact of S.
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(b) Impact of K.
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(c) Impact of ρ.
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(d) Impact of β.

Figure 5. Impacts of different parameters on EMNIST dataset.

Figures 3-6 aim to show the impacts of different hyperparameters, i.e., the number of participated clients S in each
communication round, the number of local epochs K, the perturbation control parameter ρ of SAM optimizer, and the
momentum parameter β. We can see that increasing S can improve the performance. However, increasing K cannot
guarantee increasing the performance. For ρ and β, they depend on the different algorithms and datasets. By grid searching,
it is not difficult to find the suitable value to optimize the performance.
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(a) Impact of S.
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(b) Impact of K.
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(c) Impact of ρ.
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(d) Impact of β.

Figure 6. Impacts of different parameters on CIFAR-100 dataset.


