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Stephan Günnemann 1

Abstract
Pruning, the task of sparsifying deep neural net-
works, received increasing attention recently. Al-
though state-of-the-art pruning methods extract
highly sparse models, they neglect two main chal-
lenges: (1) the process of finding these sparse
models is often very expensive; (2) unstructured
pruning does not provide benefits in terms of GPU
memory, training time, or carbon emissions. We
propose Early Compression via Gradient Flow
Preservation (EarlyCroP), which efficiently ex-
tracts state-of-the-art sparse models before or
early in training addressing challenge (1), and can
be applied in a structured manner addressing chal-
lenge (2). This enables us to train sparse networks
on commodity GPUs whose dense versions would
be too large, thereby saving costs and reducing
hardware requirements. We empirically show that
EarlyCroP outperforms a rich set of baselines for
many tasks (incl. classification, regression) and
domains (incl. computer vision, natural language
processing, and reinforcment learning). Early-
CroP leads to accuracy comparable to dense train-
ing while outperforming pruning baselines.

1. Introduction
State-of-the-art deep learning typically operates in the over-
parametrized regime. However, a large body of litera-
ture has shown that a high number of carefully chosen pa-
rameters can be removed (i.e. pruned) while maintaining
the network’s predictive performance (LeCun et al., 1990;
Molchanov et al., 2017; Evci et al., 2020; Su et al., 2020;
Lee et al., 2019; Wang et al., 2020).

It was first believed that sparse networks obtained from
pruning pre-trained networks cannot be retrained from
scratch. However, (Frankle & Carbin, 2019) presented
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Figure 1. Our EarlyCroP-S provides the best trade-off between
GPU RAM consumption and test accuracy, outperforming the
accuracy of the dense model and other structured pruning base-
lines. Unstructured baselines hardly bring benefits in GPU RAM
or training time, but can achieve better test accuracy, with our
EarlyCroP-U reaching the highest values. Dataset: CIFAR-100,
architecture: VGG16.

the Lottery Ticket Hypothesis (LTH): randomly initialized
deep neural networks contain sparse sub-networks (winning
tickets) that – when trained in isolation – achieve test per-
formance comparable to the fully trained dense model. This
hypothesis suggests that we could prune a large number of a
network’s weights at initialization (i.e., before training) and
still obtain the full performance after training. That being
said, the procedure proposed in (Frankle & Carbin, 2019)
involves training the dense model to convergence multiple
times, which is computationally very expensive. SNIP (Lee
et al., 2019) and GraSP (Wang et al., 2020) were then pro-
posed with the goal of pruning a randomly initialized model
at initialization using a sensitivity criterion for each weight.

Due to its decreased performance on large network/dataset
combinations, the LTH was later revised for very deep
networks. The authors note that for training the sparse
model, we need to initialize its weights to the dense model’s
weights from a certain point early in training (Frankle et al.,
2020a). This suggests that the best performing subnetworks
can be found early in training (instead of before). Finding
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the earliest point at which we can prune without losing
performance is challenging, and the authors present
Linear Mode Connectivity (LMC), a computationally very
expensive approach involving training multiple copies
of the network. This suggests that to achieve a good
trade-off between performance and efficiency of finding
these subnetworks, pruning should follow the same spirit
as before training methods but be applied early instead.

Besides the question of when to prune, an orthogonal
dimension is structured vs. unstructured pruning. Unstruc-
tured pruning prunes individual weights (i.e., sets weight
matrix elements to zero), while structured pruning removes
entire neurons (i.e., rows/columns of weight matrices or
convolution filters). Thus, structured pruning can reduce the
training/inference time, memory footprint, and carbon emis-
sions of the model; unstructured pruning has no significant
impact on the above. On the other hand, structured pruning
is generally much more challenging, and most previous
works (including the LTH) perform unstructured pruning.

Unless we maintain the learning dynamics of a neural
network, pruning will hinder the learning process. The
learning dynamics of a feed forward neural network can
be described through the Neural Tangent Kernel (NTK)
which approximately remains constant after some epochs of
training in networks (Goldblum et al., 2020). If we preserve
the NTK while pruning, we expect the training process
to not be affected. We develop a novel and principled
pruning method that preserves the Gradient Flow (GF). By
leveraging the close relation of the NTK to the GF, we show
that we can prune a network while keeping the effect on
the NTK minimal. Furthermore, we use the connection
between GF and NTK to track when the learning dynamics
become stable enough to perform early pruning.

We present Early Compression via Gradient Flow
Preservation (EarlyCroP), a method for pruning a network
early in training. EarlyCroP requires training the model
only once, yet maintains the dense network’s performance
at high levels of sparsity. Thus, in the unstructured setting,
EarlyCroP is about 5 times less expensive than the LTH.
In addition, our method can be applied before or early in
training, and extended to structured pruning. Performing
structured pruning before training provides a better
accuracy/efficiency trade-off than most previous structured
baselines, and enables us to train sparse networks whose
dense versions would not fit into the GPU. Furthermore,
EarlyCroP reduces carbon emissions by up to 70% without
affecting dense performance and can thus help mitigate the
environmental impact of deep learning and reduce training
and inference costs.

Contributions. We approach neural network pruning with
the explicit goal of unlocking real-world, practical improve-
ments. Our key contributions are:

• Why to prune? We transfer a GF based pruning crite-
rion to be applicable for structured pruning, which allows
faster forward and backward passes using less GPU mem-
ory and computational cost, while surpassing baselines in
test accuracy;

• How to prune? We leverage a connection between the
NTK and GF by using a pruning criterion that aims to min-
imally affect the GF, and therefore the NTK and learning
dynamics;

• When to prune? We further utilize the connection be-
tween GF and NTK to indicate the smooth transition to
the lazy kernel regime, the phase during which we can
prune the network with little effect on the training dynam-
ics. Thus, this brings the cost saving of structured pruning
during training as well. We also show that our method
can be applied before training, reducing costs even further
at only a small drop in accuracy.

These contributions unlock substantial real-world benefits
for practitioners and researchers: we can train large sparse
models on commodity GPUs whose dense counterparts
would be too large. We evaluate our approach extensively
over a diverse set of model architectures, datasets, and tasks.

2. Related work
Pruning Criterion. In order to prune network weights, they
need to be ranked according to an importance score. This
concept is not new, in fact, it was introduced in ‘Optimal
Brain Damage’ (LeCun et al., 1990) and ‘Optimal Brain
Surgeon’ (Hassibi et al., 1993). Yet, it only regained traction
when (Han et al., 2015) showed successful deep compres-
sion by pruning based on weight magnitude. Most pruning
research since then has followed this approach (Zhou et al.,
2019; Evci et al., 2020; Mostafa & Wang, 2019; Bellec et al.,
2018; Dettmers & Zettlemoyer, 2019; Mocanu et al., 2018;
You et al., 2020; Chen et al., 2020). However, the biggest
drawback of using weight magnitudes is that the network
needs to be trained first to achieve a good accuracy. There-
fore, more recent works have focused on scoring weights
without the need for training using first order (Lee et al.,
2019; Tanaka et al., 2020) and second order (Wang et al.,
2020; Lubana & Dick, 2021) information. Note that the
pruning process can be applied in one-shot or iteratively
(de Jorge et al., 2021; Verdenius et al., 2020).

Pruning Time. Up until the introduction of the LTH (Fran-
kle & Carbin, 2019), the consensus in the literature was that
pruned models cannot be trained from scratch. Therefore,
all sparse networks were extracted either from pre-trained
networks (Han et al., 2015; LeCun et al., 1990; Hassibi
et al., 1993; Wang et al., 2019; Li et al., 2016), or through-
out training (Srinivas & Babu, 2016; Louizos et al., 2018;
Evci et al., 2020; Mostafa & Wang, 2019; Bellec et al.,
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2018; Dettmers & Zettlemoyer, 2019; Mocanu et al., 2018).
However, the LTH showed that there exist sparse models
within the original randomly initialized dense model that
can achieve comparable performance to the dense model.
That being said, the LTH’s pruning algorithm, Iterative Mag-
nitude Pruning (IMP), requires multiple iterations of a train-
prune cycle. Nevertheless, the LTH’s findings motivated
works that strove to extract these sparse networks directly
from the randomly initialized dense network (Su et al., 2020;
Lee et al., 2019; Wang et al., 2020; de Jorge et al., 2020;
Frankle et al., 2020b; Verdenius et al., 2020).

The first method that introduced pruning before training was
SNIP (Lee et al., 2019), with the goal of preserving weights
that have the highest effect on the loss. A subsequent work,
GraSP (Wang et al., 2020), uses the Hessian-gradient prod-
uct in its score and prunes the weights with the goal of
increasing the Gradient Flow (GF). Finally, Lubana & Dick
(2021) show that GraSP can lead to an increasing loss and
instead propose to prune the weights that least affect the GF.

The performance of the LTH degrades with bigger networks
and datasets (Frankle et al., 2020c). Subsequently, the LTH
was updated to indicate that the best performing sparse
models do not necessarily exist at initialization but rather
that they appear early in training.

To the best of our knowledge, the only work that explores
the extraction of sparse models early in training is Early
Bird Tickets (You et al., 2020). They perform structured
pruning early in training when the Hamming Distance
between pruning masks at subsequent epochs becomes
smaller than some threshold. However, they do not offer
any theoretical justification for pruning early in training and
they only show their results for a maximum pruning ratio
of 70%, suggesting that the Hamming Distance is not an
effective criterion to achieve high sparsities.

The Early Phase of DNN Training. Another line of work
aims to analyze the early phase of neural network training.
Gur-Ari et al. (2018) study the Hessian eigenspectrum
and observe that during training, a few large eigenvalues
emerge in which gradient descent happens, whereas the
rest get close to zero. However, these observations depend
on the architecture. Achille et al. (2019) found that the
network goes through critical training periods during which
perturbing the data can cause irreversible damage to the net-
work’s final performance, after which the network becomes
robust to these perturbations. However, the critical periods
occur very late in the training process. Finally, Frankle et al.
(2020a) propose the Linear Mode Connectivity (LMC) as a
method for detecting when networks become stable to SGD
noise. However, LMC is extremely expensive, requiring to
train two copies of a network to completion at every epoch.

Structured Pruning. Pruning methods are divided into

two categories: (1) unstructured methods which generate a
binary mask that is applied before every forward pass (Fran-
kle & Carbin, 2019; Lee et al., 2019; Tanaka et al., 2020;
Wang et al., 2020), and (2) structured methods that remove
entire neurons or convolutional filters (Ding et al., 2019;
Li et al., 2016; Louizos et al., 2018; Verdenius et al., 2020;
You et al., 2019). Unstructured pruning is the more com-
mon variant for its simplicity and ease of implementation.
However, since the entire dense network remains the same
size, pruning does not provide improvements in GPU RAM,
time, and carbon emissions. While these improvements
can be obtained for unstructured pruning by using opera-
tions on sparse compressed matrices, they require significant
changes to the network when dealing with advanced layers.
Conversely, structured pruning reduces the size of weight
matrices, thereby requiring less space, time and energy dur-
ing training and inference. We highlight: (1) SNAP (Verde-
nius et al., 2020), which adapts the SNIP (Lee et al., 2019)
score to the structured setting to prune before training, (2)
Gate Decorators (You et al., 2019), which builds on top of
(Liu et al., 2017) by adding a sensitivity-based criterion and
pruning the network iteratively during training, and (3) Effi-
cientConvNets (Li et al., 2016), which prunes a pre-trained
network by scoring filters by their L1-norm. Other recent
works include (He et al., 2020; 2019; Lym et al., 2019) but
we omit them since GateDecorators outperforms them.

3. Background
Neural Tangent Kernel (NTK). The NTK is defined as
gY (Θt)

T gY (Θt) (Jacot et al., 2018) where gY (Θt) denotes
the gradient of the model prediction Y w.r.t. the model
parameters Θt at time t. The NTK is known to accurately
describe the dynamics of the network’s prediction during
training, under the assumption that the following Taylor
expansion holds:

Y (Θt) ≈ Y (Θ0) + gY (Θ0)
T (Θt −Θ0) (1)

Under the NTK assumption, a neural network reduces to
a linear model with the Neural Tangent Kernel (NTK). The
NTK assumption is particularly accurate for wide neural
networks. In practice, this assumption holds (i.e. the NTK
remains approximately constant) after the model training
dynamic has transitioned from the rich active regime to the
lazy kernel regime (see Section 4.3).

Gradient Flow (GF). We define the GF as gL(Θt)
T gL(Θt)

(Lubana & Dick, 2021), where gL(Θt) denotes the gradient
of the model loss L w.r.t. the model parameters Θt. The
GF is known to accurately describe the dynamics of
the network’s gradient norm during training, under the



Winning the Lottery Ahead of Time: Efficient Early Network Pruning

assumption that the following Taylor expansion holds:

gL(Θt)
T gL(Θt) = ||gL(Θt)||22 (2)

≈ ||gL(Θ0)||22 + 2(HL(Θ0)gL(Θ0))
T (Θt −Θ0) (3)

where HL(Θt) denote the model’s Hessian at time t. In
order to prune the weights which least affect the GF,
Lubana & Dick (2021) propose to use the following weight
importance score:

I(Θt) = |ΘT
t HL(Θt)gL(Θt)| , (4)

and remove ρ% of the parameters with the lowest
scores. Preserving the GF stands in stark contrast to
the importance score of GraSP (Wang et al., 2020)
IGraSP(Θt) = −ΘT

t HL(Θt)gL(Θt), that maximizes the GF.
Note that while the importance score (4) was initially used
before training, we propose to use this importance score
to prune during training either in one-shot or iteratively.

4. Method
The core motivation of our work is to improve the applica-
bility of sparse neural networks w.r.t. concrete real-world
metrics such as carbon emissions, price, time or memory at
both training and inference time. To this end, our method
first transfers the pruning criterion (4) to structured prun-
ing, thus allowing faster forward and backward passes (see
Sec. 4.1). Second, we derive a relation between the NTK
and the GF suggesting that preserving the GF also preserves
the NTK (see Sec. 4.2). Hence, the pruning criterion (4) is
a suitable importance weight score for pruning a neural net-
work once the NTK assumption holds i.e. in the lazy kernel
regime. Third, our method detects when we enter the lazy
kernel regime to prune early in training without impacting
the training dynamics (see Sec. 4.3), thereby extending the
cost saving of our (structured) sparse neural networks to the
training phase while achieving a high test accuracy.

4.1. Why to prune?

The main use case of unstructured pruning is to highlight the
overparametrized nature of neural networks. In particular,
while dense-like sparsity for deep learning (Zhou et al.,
2021) is a promising research direction, it suffers from
multiple downsides: (a) models are typically only sparsified
in the forward pass and hence dense-like sparsity has
limited potential in speeding up training. (b) Not all deep
learning frameworks (e.g. PyTorch) support it. (c) Only
the newest GPUs (starting Nvidia Ampere 2020) support
dense-like sparsity.

In order to really benefit from pruning, we need to prune
full structures (neurons and channels) instead. This
reduction in dimensions/channels directly translates into
lower computational cost on existing GPUs without further

implementation efforts or any usage of any specialized
tensor operations. Thus, this leads to a sparse model
that provides improvements in time, memory and carbon
emissions. Combined with the fact that we can apply
our pruning method before and early in training, we can
drastically reduce not only model costs after training but
during training as well (see Sec. 4.3).

In order to achieve structured pruning, we need to score
entire nodes instead of individual weights, i.e. generate a
score for a node’s activation function fl. However, since
fl is simply a function and not a learnable parameter, we
cannot use pruning score (4) directly. Instead, similarly
to Verdenius et al. (2020), we define auxiliary gates of a
layer l by cl = 1 over each node’s input, which in turn will
act as a learnable parameter whose gradient information
represents the activation’s information. We can formally
define this for a linear layer l with weight Θl and bias bl,
and an input x in the following way:

fl(Θl ∗ x+ bl) = fl(cl(Θl ∗ x+ bl)) (5)
I(fl) = |HL(cl)gL(cl)| (6)

After scoring the nodes using the auxiliary gates, the pruning
process follows the original one by removing ρ% of nodes.

4.2. How to prune?

In this section, we draw an important connection between
GF and NTK showing that pruning the weights with the
lowest importance score (4) aims at preserving the training
dynamics of both the network’s gradient norm and the net-
work’s prediction during training. First, we observe that GF
and NTK are connected by the following relation:

GF = gL(Θt)
T gL(Θt) (7)

= gL(Y )T gY (Θt)
T gY (Θt)gL(Y ) (8)

= gL(Y )TNTKgL(Y ) (9)

Second, Lubana & Dick (2021) present evidence that pre-
serving the GF also implicitly preserves the model loss
L(Θt). In particular, preserving the GF also preserves the
gradient of the loss w.r.t. the prediction gL(Y ). Hence, the
relation (7) and the preservation gL(Y ) imply that the NTK
is also preserved when the GF is preserved.

Furthermore, given that Taylor expansions (1) and (3) hold,
the pruning criteria (4) which preserves the GF – which
maintains the gradient-norm dynamics – is also preserving
the NTK – which maintains the prediction dynamics. This
remark is crucial since while the dynamics of the neural
network’s predictions during training can be approximated
well by (1) during the lazy kernel regime, this approximation
might not be accurate during the rich active regime.
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4.3. When to prune?

First, we show in an introductory experiment that the prun-
ing time has an important impact on the final accuracy of the
pruned model. Hence, we train multiple ResNet50 models
on CIFAR100 and prune each to 98% from epoch 0 (i.e.
before pruning) to epoch 80 (see Fig.2). We observe that
(1) the longer we train the dense model before pruning, the
higher the final accuracy of the sparse model, and most im-
portantly (2) after a certain point in time, further training of
the dense model before pruning does not bring significant
improvement on the final accuracy. Indeed, we observe a 3%
improvement in the final accuracy of the sparse model when
pruning at epoch 1 of training instead of before training, an
11% improvement when pruning at epoch 26, and no great
improvement when pruning after epoch 30.

We now introduce the pruning time detection score used
by EarlyCroP which is motivated from both practical and
theoretical perspectives. EarlyCroP aims to detect the
best time for pruning in two steps: (1) at every epoch we
compute the pruning time score

∆t
0 = ||Θ(t)−Θ(0)||2, (10)

and, (2) if the difference of the scores at two subsequent
epochs relative to the initial score ∆1

0 is smaller than a
defined threshold th,

|∆t
0 −∆t−1

0 |
|∆1

0|
< th (11)

we run the EarlyCroP pruning algorithm described in
Algorithm 1. It can be clearly deduced that the smaller
the pruning time score, the more negligible the second
order term in eq. 3 will be, making the latter a good
approximation. Additionally, by the triangle inequality, we
can extract the following upper bound from 11

|∆t
0 −∆t−1

0 |
|∆1

0|
≤ ∥Θ(t)−Θ(t− 1)∥

∥Θ(1)−Θ(0)∥
(12)

which is expected to lie in [0, 1] when weights change less
significantly over time. Hence, the scale of the threshold
is expected to be similar for different models and datasets.
The complexity of computing the score is O(m) where
m is the number of model parameters, thus incurring only
minor computation overhead at every epoch to detect the
pruning time.

From a theoretical perspective, the pruning time detection
algorithm’s goal is to detect when the linearization of the
prediction dynamics (1) assumed by the NTK holds during
training. In the early phase of training called rich active
regime, neural network parameters move to a significant
distance from the initial weights. Thus the linearization
of the prediction dynamics (1) usually does not hold in

early training epochs and the NTK quickly changes. This
rich active regime is crucial to achieve high performance,
in particular for deep models (Woodworth et al., 2020).
In the second phase of training called lazy kernel regime,
the parameters move by a small distance, thus making
the linearization (1) a good approximation of the training
dynamics of the predictions (Sun, 2019). Since our impor-
tance weight score (4) assumes the linearization (1), the
best moment to prune is when the model transitions to the
lazy kernel regime during which the NTK is approximately
constant. Further, previous works (Sun, 2019; ichi Amari,
2020; Ghorbani et al., 2020) showed that constancy of the
NTK is a consequence of a constant weight norm during
training. The transition to the lazy kernel training regime
is gradual and can be detected when the relative change in
the weight norm from initialization ∆t

0 becomes roughly

constant i.e. when |∆t
0−∆t−1

0 |
|∆1

0|
becomes very close to 0.

In practice, we expect the pruning time criteria to be a
reliable indicator of the final accuracy of the pruned model.
Indeed, we observed that the detection score correlates well
with the final test accuracy of the sparse model (see Fig.2).
It can be clearly seen that the smaller the detection score
at the moment of pruning, the higher the final test accuracy
of the pruned model. In practice, we observed in Fig. 2 and
in Fig. 8 in the appendix that pruning to higher sparsities
benefits more from longer training. Therefore, we use
th = 1 − ρ which connects the time pruning threshold th
to the target sparsity ρ. As desired, a higher target sparsity
ρ leads to longer dense training (see Fig.8)

Figure 2. ResNet50 pruned to sparsity 98% at different points dur-
ing training on CIFAR10 plotted against the final test accuracy of
the pruned model after 200 epochs of training (purple) and the
difference between the Relative Weight Change in two subsequent
epochs (blue). ⋆ denotes when the Relative Weight Change in
two subsequent epochs is below the threshold th = 1− ρ.

5. Empirical Evaluation
We now show the effectiveness of our EarlyCroP for struc-
tured pruning (EarlyCroP-S) and unstructured pruning
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(EarlyCroP-U). For this we determine the point for early
pruning as described in Section 4.3. We use CroP as our
pruning criterion before training and CroPit if pruning is
additionally performed iteratively. We use a cloud instance
of GTX 1080 TIs for all experiments. Further details about
the experimental setup can be found in the appendix. The
code and further supplementary material is available online1.

Image Classification. The datasets used for Image
Classification are the common public benchmarks CIFAR10
(Krizhevsky & Hinton, 2009), CIFAR100 (Krizhevsky
& Hinton, 2009), and Tiny-Imagenet (Deng et al., 2009).
Regarding networks, we use ResNet18, VGG16, ResNeXt-
101 32x16d and ResNeXt-101 32x48d. For unstructured
pruning baselines, we use random pruning, SNIP (Lee
et al., 2019), GraSP (Wang et al., 2020), and LTR (Frankle
et al., 2020a). For structured pruning baselines, we use
random pruning, EfficientConvNets (Li et al., 2016),
GateDecorators (You et al., 2019), and SNAP (Verdenius
et al., 2020). All models are trained for 80 epochs, except
LTR which re-trains the network up to 10 times. We report
train and test accuracy, weight and node sparsity, batch
and total training time in seconds, GPU memory in GB,
disk size in MB, carbon emitted from the extraction and
training of the sparse model using CodeCarbon (Schmidt
et al., 2021) in grams. Note that total training time includes
the time to find and train the sparse model.

Regression. We evaluate a Fully Convolutional Residual
Network (Laina et al., 2016) on the NYU Depth Estimation
task (Nathan Silberman & Fergus, 2012). We compare
EarlyCroP-S and EarlyCroP-U against all unstructured base-
lines since they are stronger than the structured baselines.
All pruned models are trained for 10 epochs. We report the
performance using the Root Mean Squared Error (RMSE).

Natural Language Processing (NLP). We evaluate the
Pointer Sentinal Mixture Model(Merity et al., 2017) on the
PTB language modeling dataset(Marcus et al., 1993). We
compare EarlyCroP-S and EarlyCroP-U to all unstructured
baselines since they are stronger than the structured
baselines. We train the pruned models for 30 epochs and
we report the achieved log perplexity.

Reinforcement Learning (RL). We use the FLARE frame-
work (Akbik et al., 2019) to evaluate a simple 3-layer FCNN
with layer size 256 using the A2C algorithm on the classic
control game CartPole-v0 (Brockman et al., 2016). We run
20 agents with 640 games each. We compare our EarlyCroP-
S and EarlyCroP-U against LTR and Random baselines. All
pruned models are trained for 30 epochs. We report the per-
formance of the pruned models using the average returned
environment reward.

1www.cs.cit.tum.de/daml/early-crop/

5.1. Image Classification

Accuracy. We present the accuracy over different sparsity
levels for the model-dataset combinations ResNet18/ CI-
FAR10, ResNet18/Tiny-Imagenet, VGG16/CIFAR10, and
VGG16/CIFAR100 in Figure 3 a-d, respectively. Our meth-
ods EarlyCroP-S and EarlyCroP-U consistently outperform
all other methods but the LTR, where we perform on par.
However, as will be discussed later, the LTR comes with
a 3-5 times higher training time than the dense model
while our methods reduce training time. There are two
further exceptions when it comes to the best accuracy on
ResNet18/Tiny-ImageNet. First, GateDecorators performs
as well as EarlyCroP-S. Second, for lower sparsity rates,
EarlyCroP-U is outperformed by some methods that prune
before training.

Structured vs. Unstructured. EarlyCroP-S closes the ac-
curacy gap of existing approaches between unstructured and
structured pruning on CIFAR10 dataset. However, a gap re-
mains for the larger and more complex datasets CIFAR100
and Tiny-Imagenet. Nevertheless, structured pruning can be
used to reduce the training time and memory requirements.
This also implies that with our EarlyCroP-S we can use a
larger model while saving compute (see Sec. 5.2).

Training cost. In Tables 1 & 2 we complement the
accuracy with the training time, batch time, GPU RAM,
Disk space and CO2 emissions for a sparsity of 95% on
ResNet18/CIFAR10 and 98% on VGG16/CIFAR10 respec-
tively. We see that our EarlyCroP-S is not only preserving
the high accuracy but also comes with significant improve-
ment in training time (33% and 36% resp.) and time per
batch (39% and 61% resp.). It is as efficient as the other
structured pruning methods or outperforms them. When
only considering the CO2 footprint, CroPit-S and SNAP
outperform methods that prune later in training. In the ap-
pendix, we also give details about different model-dataset
combinations. In summary, the stated observations also hold
for the other evaluated model-dataset combinations.

Pruning early vs. before. Pruning early in training (i.e.
when we enter the lazy kernel regime) outperforms pruning
before training. Our EarlyCroP-S and EarlyCroP-U have a
clear edge over the methods that prune before training. This
is even true if we use the same pruning criterion (CroP) and
additionally prune iteratively (CroPit). The only drawback
of pruning early in training vs. before is that for the first
epochs we either require more GPU RAM or need to reduce
the batch size. For the model size on disk we do not find a
significant difference among pruning methods.

5.2. Pruning a Large Model

The goal of this experiment is two-fold: we show that (1)
our criterion can be used to prune large models that don’t

www.cs.cit.tum.de/daml/early-crop/
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(a) (b)

(c) (d)

Figure 3. Structured (Left) and Unstructured (Right) test accuracy for ResNet18/CIFAR10 (a), ResNet18/Tiny-Imagenet (b),
VGG16/CIFAR10 (c), and VGG16/CIFAR100 (d) with increasing weight sparsity.

Table 1. Comparison between different pruning criteria on ResNet18/CIFAR10 at 95% sparsity, averaged over three runs. Since for
structured pruning we cannot precisely control the weight sparsity, we show results closest to 95% weight sparsity. ± denotes standard
deviation, and ↑/↓ indicate metrics where higher/lower is better. Bold/underline indicate best/second best results. GPU RAM and Disk
correspond to those of the final pruned model.

Method Test accuracy ↑ Weight
sparsity

Node
sparsity

Training
time (h) ↓ Batch

time (ms)↓
GPU RAM

(GB) ↓ Disk
(MB) ↓

Emissions
(g) ↓

Dense 91.5% ± 0.12 - - 0.78 109 2.38 398 83

St
ru

ct
ur

ed

Random-S 86.3% ± 0.06 93.7% 75.0% 0.68 82 0.62 24.9 38
SNAP 87.6% ± 0.94 93.6% 72.6% 0.70 81 0.63 25.4 39
CroP-S 87.5% ± 0.36 93.6% 72.3% 0.67 91 0.63 25.4 43
CroPit-S 87.8% ± 0.33 95.0% 74.5% 0.52 0.48 0.59 19.6 35

EarlyBird 84.3% ± 0.32 95.3% 65.0% 0.48 72 0.58 19.1 55
EarlyCroP-S 91.0% ± 0.52 95.1% 65.8% 0.52 66 0.56 19.2 68

GateDecorators 87.3% ± 0.09 95.7% 73.7% 0.72 83 0.58 17.2 54

EfficientConvNets 70.5% ± 0.53 95.9% 79.7% 0.77 83 0.76 25.4 63

U
ns

tr
uc

tu
re

d

Random-U 84.9% ± 0.24 95.0% - 0.78 102 2.86 12.0 79
SNIP 88.2% ± 0.57 95.0% - 0.79 105 2.86 12.0 80
GRASP 88.4% ± 0.13 95.0% - 0.79 106 2.84 12.0 81
CroP-U 87.9% ± 0.16 95.0% - 0.75 107 2.88 12.0 79
CroPit-U 89.1% ± 0.24 95.0% - 0.80 113 2.88 12.0 87

EarlyCroP-U 91.1% ± 0.23 95.0% - 0.74 97 2.86 12.0 83

LTR 91.5% ± 0.26 95.0% - 1.94 111 2.51 12.0 202
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Table 2. Comparison between different pruning criteria on VGG16/CIFAR10 at 98% sparsity. Since for structured pruning we cannot
precisely control the weight sparsity, we show results closest to 98% weight sparsity. ↑/↓ indicate metrics where higher/ lower is better.
Bold/ underline indicate best/ second best results. GPU RAM and Disk correspond to those of the final pruned model.

Method Test accuracy ↑ Weight
sparsity

Node
sparsity

Training
time (h) ↓ Batch

time (ms)↓
GPU RAM

(GB) ↓ Disk
(MB) ↓

Emissions
(g) ↓

- Dense 90.2% - - 1.82 290 1.02 1720 246

St
ru

ct
ur

ed

Random-S 89.3% 98.0% 86.1% 0.67 82 0.23 33.6 43
SNAP 89.8% 98.2% 89.0% 0.68 89 0.22 30 55
CroP-S 91.1% 98.0% 88.0% 0.71 91 0.23 33.6 83
CroPit-S 92.4% 98.0% 88.0% 0.81 112 0.23 30.4 100

EarlyBird 85.9% 98% 89 % 0.52 110 0.32 36.2 160
EarlyCroP-S 93.0% 98.0% 89.0% 1.16 112 0.63 36.0 156

GateDecorators 90.0% 98.0% 87.0% 1.07 111 0.23 37.8 143

EfficientConvNets 84.2% 98.0% 86.0% 1.66 89 0.64 34.2 209

U
ns

tr
uc

tu
re

d

Random-U 88.5% 98.0% - 2.03 159 1.22 35.0 247
SNIP 90.1% 98.0% - 2.02 157 1.22 35.0 248
GRASP 92.0% 98.0% - 2.03 157 1.23 35.0 249
CroP-U 91.8% 98.0% - 2.02 157 1.22 35.0 248
CroPit-U 91.6% 98.0% - 2.02 157 1.22 35.0 249

EarlyCroP-U 93.0% 98.0% - 2.01 157 1.22 35.0 250

LTR 93.6% 98.0% - 4.07 158 1.22 35.0 592

fit on commodity GPUs, and (2) the resulting sparse model
matches the performance of the dense one, and outperforms
a dense model of the same size. To this end, we introduce
the ResNext101 32x48d as our large model, a network that
has 829 Million parameters and requires 15.5 GB to be
loaded into GPU memory; exceeding the memory of com-
mon GPUs such as the RTX 3080 Ti. Nevertheless, with
our method we can still efficiently train such a large model.
For this, we perform one initial pruning step before training
using the CPU and then continue on a commodity GPU as
usual. We also introduce the ResNext101 32x16d as our
smaller dense model which has 193 Million parameters and
requires 3.9 GB to be loaded into GPU memory. The results
of the experiment are depicted in Table 3.

First, we observe that the large ResNext101 32x48d pruned
to 98.5% weight sparsity matches the performance of its
dense counterpart in test accuracy. Moreover, training the
sparse subnetwork has a 14 times smaller carbon footprint,
is 7 times faster to train, is 192 times smaller on disk, and
takes 4.9 times less GPU memory than the large dense
model. Interestingly, the pruned model also outperforms the
ResNext101 32x16d model of the same size, while training
6.2 times faster and emitting 9.5 times less carbon. Finally,
we show that when training for more epochs, the sparse
model achieves an even bigger performance gap compared
to both dense models while still taking less total training
time. This experiment not only shows that CroP-S makes
training large models on commodity machines possible, but
can extract sparse models that are more efficient and more

accurate compared to dense models of the same size.

Table 3. Comparison of a pruned ResNext101 32x48d (RN48)
model and a similar sized dense ResNext101 32x16d (RN16)
model (CIFAR10). RN48-S are models pruned with CroP-S.

Model Test
acc.

Weight
sparsity

Node
sparsity Epochs Training

time (h)
VRAM
(GB)

Emissi-
ons (g)

RN48 92.4% - - 30 4.60 18.84 634
RN16 92.1% - - 30 4.02 3.89 445

RN48-S 92.5% 98.5% 89.9% 30 0.64 3.56 47

RN48-S 93.2% 98.5% 89.9% 80 2.60 3.56 194

5.3. Regression

Regarding Regression, we can see from Figure 5 that both
variants of EarlyCroP preserve the dense model’s RMSE
even at 99.9% weight sparsity. All Before training meth-
ods except GraSP have an instant increase to 0.20 RMSE
with continuous decline at higher sparsities. Surprisingly,
Random Pruning outperforms GraSP at all pruning ratios.
This is due to GraSP pruning entire layers and limiting the
network’s learning capabilities.

5.4. Natural Language Processing

NLP presents itself as the most challenging out of all evalu-
ated tasks. Nevertheless, both versions of EarlyCroP outper-
form all other baselines until 89% sparsity (see Figure 6).
Beyond that, the unstructured version is on par or slightly
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Figure 4. Sparse model performance on the classic control game
Cartpole-v0 in average reward (higher is better)

Figure 5. Sparse model performance on the NYU Depth Estimation
task in RMSE (lower is better)

better than other unstructured baselines whereas the struc-
tured version continues to outperform all compared base-
lines. In this task, the importance of early pruning is ac-
centuated by the large gap between the early and before
versions of CroP. Interestingly, LTR performs very poorly
compared to all other baselines on all reported pruning ra-
tios. Indeed, certain layers in the PSMM network converge
to small weight magnitudes during training compared to the
rest of the network. This means that any pruning method
relying solely on the weight magnitudes, and operating at
a global scale in the network, would prune these layers
entirely, leading to an untrainable network. Thus, this exper-
iment highlights the importance of gradient-based informa-
tion when evaluating the importance of model parameters.
We show additional NLP results by evaluating BERT on
multiple language tasks (see Appendix E.2).

Figure 6. Sparse model performance on the PTB language mod-
elling task in log perplexity (lower is better)

5.5. Reinforcement Learning

We can observe from Figure 4 that EarlyCroP outperforms
LTR in both the structured and unstructured setting. Note
that the EarlyCroP-S once again outperforms its unstruc-
tured counterpart. However, if we allow the unstructured
models to train for a longer time, they achieve similar per-
formance to the structured version. This can be explained
by the ease of training of structured models, which are still
fully-connected models where all computed gradients con-
tribute to the weight updates, whereas unstructured models
compute gradients that are not used by the pruned weights,
rendering the training slower.

6. Conclusion
We have demonstrated that, for vision, NLP, and RL tasks,
EarlyCroP-U extracts winning tickets matching and often
outperforming those found by the LTR by pruning early
in training when the model enters lazy kernel training.
Additionally, we showed that EarlyCroP-S outperforms
other structured methods, providing the best trade-off
between final test accuracy and efficiency in terms of time,
space, and carbon emissions. Finally, we show that we can
use CroP-S to train models that do not fit on commodity
GPUs by extracting sparse models that preserve the initial
model’s performance and outperform a similarly sized
dense model for the same number of epochs. Thus, our
methods bring tangible real-world benefits for researchers
and practitioners. We hope that the results shown in this
paper motivate more research on the study of structured
pruning in the early phase of DNN training.



Winning the Lottery Ahead of Time: Efficient Early Network Pruning

References
Achille, A., Rovere, M., and Soatto, S. Critical learning

periods in deep neural networks, 2019. 3

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter,
S., and Vollgraf, R. Flair: An easy-to-use framework for
state-of-the-art nlp. In NAACL 2019, 2019 Annual Con-
ference of the North American Chapter of the Association
for Computational Linguistics (Demonstrations), 2019. 6

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. Deep
rewiring: Training very sparse deep networks. In Inter-
national Conference on Learning Representations, 2018.
2

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016. 6
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Supplementary Material

A. Training and Inference Cost Computation
This section details the computations in Figure 1. We intro-
duce the V100 16GB GPU (2.48$/h) and the V100 32GB
GPU (4.96$/h). We use the total training time needed
to train RN48 and RN48-S for 30 epochs each (see Ta-
ble 3. Consequently, in order to train RN48, we need
4.96$/h × 4.6h = 22.816$. In order to train RN48-S, we
need 2.48$/h× 0.64h = 1.59$

B. Algorithm

Algorithm 1 Early-CroP
1: Initialize the weights Θ, weight mask Mask0 with all

1s, pruning ratio ρ, maximum dense training time m,
score threshold th, and the number of pruning iterations
it;

2: Θ0 = Θ
3: Θprev = Θ
4: while t(epoch) < m do
5: Do one SGD epoch;
6: diff = ||Θ(t)−Θ(0)||2

||Θ(0)||2 - ||Θ(t−1)−Θ(0)||2
||Θ(0)||2

7: if diff ≤ th then
8: break;
9: end if

10: Θprev = Θ
11: end while
12: while i ≤ it do
13: ρi = ρfinal − (ρfinal − 1/2)× (1/2)i

14: I(Θ) = |ΘT
t HL(Θt)gL(Θt)|

15: Maski = CroP (I(Θ), pi)
16: Apply Mask on Network
17: end while
18: Apply Mask on Network
19: while t ≤ tmax do
20: Do one SGD epoch;
21: end while

C. Experimental Setup
C.1. Optimization

Image Classification. For all experiments, we use the
ADAM(Kingma & Ba, 2015) optimizer and a learning rate
of 2e−3. The One Cycle Learning Rate scheduler is used
to train all models except VGG16. The batch size used
for CIFAR10 and CIFAR100 experiments is 256 while for
Tiny-Imagenet it is 128. All sparse models are allowed to
train the same amount of epochs (80) to converge which,
except for LTR, includes the number of epochs required to
extract the sparse model. In the case of LTR the final sparse

model is allowed to train for 80 epochs.
Regression. For all experiments, we use a batch size of 8,
the ADAM optimizer with a learning rate of 1e − 5. All
pruned models are trained for 10 epochs.
Natural Language Processing. For all experiments, we
use a batch size of 128, and the ADAM optimizer with a
learning rate of 1e− 3. All pruned models are trained for
30 epochs.
Reinforcement Learning. A description of the models used
and number of runs used for each environment can be found
in Table 4.

Table 4. A summary of the setup used in Reinforcement Learning

Name Network Algorithm Agents Games

CartPole-v0 MLP(128-128-128-out) A2C 16 8000
Acrobot-v1 MLP(256-256-256-out) A2C 16 8000
LunarLander-v2 MLP(256-256-256-out) A2C 16 8000

C.2. Datasets Pre-Processing

CIFAR10 (Krizhevsky & Hinton, 2009). We augment
the normalized CIFAR10 with Random Crop and Random
Horizontal Flip. Images are additionally resized to 64× 64.

CIFAR100 (Krizhevsky & Hinton, 2009). We augment
the normalized CIFAR100 with Random Crop, Random
Horizontal Flip, and Random Rotation.

Tiny-Imagenet (Deng et al., 2009). We normalize the
dataset and resize each image to 224× 224.

D. Evaluation Metrics
In this section we describe how specific metrics are calcu-
lated.

Time. We report time in two separate ways. First, we report
the total time required (Training time), which is defined
from the start of the experiment until the sparse model’s
training is finished. Second, we report the time it takes to
perform a full forward and backward pass (Batch time) on a
given batch using the CUDA time measurement tool (Paszke
et al., 2019).

GPU RAM. The RAM footprint of a process refers to how
much memory it consumes on the GPU. This effectively
includes the costs of loading the model and performing a
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training step on it. We use the CUDA memory measurement
tool to report this metric(Paszke et al., 2019).

Disk Storage. We estimate the storage needed to store a
model on disk using the CSR sparse matrix format (Buluç
et al., 2009). Similarly to (Verdenius et al., 2020), we used a
ratio of 16:1 float precision on all vectors of the CSR format.

Energy Emissions. We estimate CO2 emissions in g us-
ing CodeCarbon emissions tracker (Schmidt et al., 2021).
These estimates consider all emissions from the start of
experiments until the end of training.

E. Additional Results
E.1. Reinforcement Learning

See Figure 7 for experiments on the Acrobot-v1 and
LunarLander-v2 environments.

E.2. Natural Language Processing

We evaluated BERT on multiple language tasks (see Table
8). At the same pruning sparsity, EarlyCroP-U outperforms
LTR on 5 out of 8 tasks while training 10× faster.

E.3. Pruning Point Experiments

In Figure 8 we present more experiments on pruning models
at different points in training. We can clearly observe a
correlation between the desired pruning rate and the optimal
time to prune. The higher the desired final sparsity, the
longer the network should be trained before being pruned.

E.4. VGG16/CIFAR100

See Table 5 for comparisons between different pruning cri-
terions at the same pruning level on VGG16/CIFAR100.

E.5. ResNet18/TinyImageNet

See Table 6 for comparisons between different pruning crite-
rions at the same pruning level on ResNet18/Tiny-Imagenet.

E.6. VGG16/ImageNet

In Table 7 we present a comparison between a dense VGG16
and a sparse VGG16 pruned using EarlyCroP-S on the
ImageNet-2012 (ILSVRC2012) (Deng et al., 2009) clas-
sification dataset. Given 62 hours of training on ImageNet-
2012 (ILSVRC2012) on a signle V100 GPU, EarlyCroP-S
on VGG16 (50% weights pruned) achieves an accuracy of
61.43% while the dense model only achieves 58.78%. More-

over, for the same number of training epochs, EarlyCrop-S
achieves 60.01% in 51 hours while the dense model achieves
58.78% in 62 hours.
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(a) (b)

Figure 7. Sparse model performance on classic control games (a) Acrobot-v1 and (b) LunarLander-2

(a) (b)

(c)

Figure 8. ResNet18 pruned to sparsity 80%(a), 98%(b), and 99.5% (c) at different points during training on CIFAR10 plotted against the
final test accuracy of the pruned model after 80 epochs of training (purple) and the difference between the Relative Weight Change in two
subsequent epochs (blue). All pruned models are trained for 80 epochs. ⋆ denotes when the Relative Weight Change in two subsequent
epochs is below th < 1− ρ
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Table 5. Comparison between different pruning criteria on VGG16/CIFAR100 at 98% sparsity. Since for structured pruning we cannot
precisely control the weight sparsity, we show results closest to 98% weight sparsity. ↑/↓ indicate metrics where higher/ lower is better.
Bold/ underline indicate best/ second best results. GPU RAM and Disk correspond to those of the final pruned model.

Method Test accuracy ↑ Weight
sparsity

Node
sparsity

Training
time (h) ↓ Batch

time (ms)↓
GPU RAM

(GB) ↓ Disk
(MB) ↓

Emissions
(g) ↓

- Dense 62.1% - - 0.77 114 1.03 1745 88

St
ru

ct
ur

ed

Random-S 53.9% 98.0% 86.0% 0.59 53 0.23 35 29
SNAP 49.3% 98.0% 89.0% 0.67 54 0.16 36 33
CroP-S 57.4% 98.0% 89.0% 0.61 46 0.23 36 35
CroPit-S 56.5% 98.1% 89.0% 0.62 44 0.23 33 30

EarlyBird 60.7% 98.0% 89.0% 0.56 68 0.20 36 62
EarlyCroP-S 62.2% 97.9% 88.0% 0.64 69 0.23 36 58

GateDecorators 55.0% 97.9% 87.0% 0.61 78 0.23 36 68

EfficientConvNets 29.5% 98.0% 86.0% 0.72 55 0.24 36 83

U
ns

tr
uc

tu
re

d

Random-U 55.8% 98.0% - 0.74 118 1.23 35 99
SNIP 61.9% 98.0% - 0.79 109 1.24 35 90
GRASP 63.4% 98.0% - 0.79 113 1.24 35 91
CroP-U 63.8% 98.0% - 0.74 109 1.23 35 94
CroPit-U 56.3% 98.0% - 0.74 111 1.23 35 91

EarlyCroP-U 65.1% 98.0% - 0.74 109 1.23 35 91

LTR 64.7% 98.0% - 3.44 109 1.28 35 301

Table 6. Comparison between different pruning criteria on ResNet18/TinyImageNet at 90% sparsity. Since for structured pruning we
cannot precisely control the weight sparsity, we show results closest to 90% weight sparsity. ↑/↓ indicate metrics where higher/ lower is
better. Bold/ underline indicate best/ second best results. GPU RAM and Disk correspond to those of the final pruned model.

Method Test accuracy ↑ Weight
sparsity

Node
sparsity

Training
time (h) ↓ Batch

time (ms)↓
GPU RAM

(GB) ↓ Disk
(MB) ↓

Emissions
(g) ↓

- Dense 51.3% - - 7.26 320 3.53 569 882

St
ru

ct
ur

ed

Random-S 37.3% 91.2% 80.0% 6.23 289 1.08 51 464
SNAP 38.3% 90.4% 82.6% 6.06 268 0.84 55 514
CroP-S 39.1% 90.1% 77.7% 6.72 237 1.11 54 615
CroPit-S 39.1% 91.4% 79.3% 6.66 236 1.08 49 591

EarlyCroP-S 39.2% 90.8% 84.1% 7.03 202 0.25 49 676

GateDecorators 30.1% 89.2% 91.2% 6.20 193 0.87 61 930

EfficientConvNets 27.7% 91.0% 79.8% 6.60 226 0.22 52 769

U
ns

tr
uc

tu
re

d

Random-U 49.3% 90.0% - 7.25 351 4.20 57 932
SNIP 46.2% 90.0% - 7.27 314 4.18 57 854
GRASP 43.7% 90.0% - 7.27 315 4.22 57 881
CroP-U 46.7% 90.0% - 7.26 314 4.22 57 877
CroPit-U 19.1% 90.0% - 7.26 313 4.22 57 890

EarlyCroP-U 49.8% 90.0% - 7.26 314 4.23 57 880

LTR 46.3% 90.0% - 44.7 603 3.68 57 5540

Table 7. EarlyCroP-S results on VGG16/ImageNet at 50% weight sparsity
Method Top-1 Accuracy Top-5 Accuracy Train Time (hours) Epochs Batch Time (seconds) GPU Memory (GB)
Dense 58.78% 82.55% 62 18 1.01 12.15

EarlyCroP-S 61.43% 87.01% 62 26 0.66 10.63
EarlyCroP-S 60.01% 83.38% 51 18 0.66 10.63
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Table 8. Comparison between LTH and EarlyCroP-U on different learnable BERT tasks.

MNLI QQP STS-B WNLI QNLI RTE SST-2 CoLA Training time

Dense BERT 82.39 90.19 88.44 54.93 89.14 63.30 92.12 54.51 1x

Sparsity 70% 90% 50% 90% 70% 60% 60% 50%

LTR (Rewind 0)% 82.45 89.20 88.12 54.93 88.05 63.06 91.74 52.05 10x
LTR (Rewind 50)% 82.94 89.54 88.41 53.32 88.72 62.45 92.66 52.00 10x

EarlyCroP-U 82.11 89.99 88.02 56.33 89.12 62.1 92.03 52.2 1x


