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Abstract

In this paper, we initiate the study of one-pass
algorithms for solving the maximum-a-posteriori
(MAP) inference problem for Non-symmetric De-
terminantal Point Processes (NDPPs). In particu-
lar, we formulate streaming and online versions
of the problem and provide one-pass algorithms
for solving these problems. In our streaming set-
ting, data points arrive in an arbitrary order and
the algorithms are constrained to use a single-pass
over the data as well as sub-linear memory, and
only need to output a valid solution at the end of
the stream. Our online setting has an additional
requirement of maintaining a valid solution at any
point in time. We design new one-pass algorithms
for these problems and show that they perform
comparably to (or even better than) the offline
greedy algorithm while using substantially lower
memory.

1. Introduction

Determinantal Point Processes (DPPs) were first introduced
in the context of quantum mechanics (Macchi, 1975) and
have subsequently been extensively studied with applica-
tions in several areas of pure and applied mathematics like
graph theory, combinatorics, random matrix theory (Hough
et al., 2006; Borodin, 2009), and randomized numerical
linear algebra (Derezinski & Mahoney, 2021). Discrete
DPPs have gained widespread adoption in machine learning
following the seminal work of (Kulesza & Taskar, 2012)
and have also seen a recent explosion of interest in the ma-
chine learning community. For instance, some of the very
recent uses of DPPs include automation of deep neural net-
work design (Nguyen et al., 2021), deep generative models
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(Chen & Ahmed, 2021), document and video summariza-
tion (Perez-Beltrachini & Lapata, 2021), image processing
(Launay et al., 2021), and learning in games (Perez-Nieves
et al., 2021).

A DPP is a probability distribution over subsets of items and
is characterized by some kernel matrix such that the proba-
bility of sampling any particular subset is proportional to the
determinant of the submatrix corresponding to that subset
in the kernel. Until very recently, most prior work on DPPs
focused on the setting where the kernel matrix is symmet-
ric. Due to this constraint, DPPs can only model negative
correlations between items. Recent work has shown that
allowing the kernel matrix to be nonsymmetric can greatly
increase the expressive power of DPPs and allows them to
model compatible sets of items (Gartrell et al., 2019; Brunel,
2018). To differentiate this line of work from prior litera-
ture on symmetric DPPs, the term Nonsymmetric DPPs
(NDPPs) has often been used. Modeling positive correla-
tions can be useful in many practical scenarios. For instance,
an E-commerce company trying to build a product recom-
mendation system would want the system to increase the
probability of suggesting a router if a customer adds a mo-
dem to a shopping cart.

State-of-the-art algorithms for MAP inference of NDPPs
(Gartrell et al., 2021; Anari & Vuong, 2022) require storing
the full data in memory and take multiple passes over the
complete dataset. Therefore, these algorithms take too much
memory to be useful for large scale data, where the size of
the entire dataset can be much larger than the random-access
memory available. These algorithms are also not practical
in settings where data is generated on the fly, for example,
in E-commerce applications where new items are added to
the store over time.

Technical contributions.

* We give the first problem formulations for streaming
and online versions of MAP Inference of low-rank-
NDPPs. Our formulations provide a good structure
on how to store NDPP models which are so large that
they cannot fit by themselves in the memory (RAM)
of any single machine (this is an extremely important
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practical problem due to the massive scale of industryDPP MAP Inference. MAP Inference in DPPs is a very
datasets) i.e. store ti& matrix separately and all the well studied NP-hard problem (Ko et al., 1995) with nu-
v; andb; as(vi; b;) pairs (the straight-forward way to merous applications in machine learning (Gillenwater et al.,
store the data would be to stove; C ;B separately 2012; Han et al., 2017; Chen et al., 2018; Han & Gillenwa-
(as in the open-source code provided by Gartrell et aker, 2020). Since matrix log-determinant is a submodular
(2021)). function, several of ine algorithms for submodular func-
) ) ) ) tion maximization (Krause & Golovin, 2014) have been
* In Section 4, we provide our rst streaming algorithm, 5npjied to the problem. For instance, Civril & Magdon-
PARTITION GREEDY, which is a streaming version of gmai (2009) showed that the standard greedy algorithm
th_e st_andard greedy algorithm for submoo!ular Maxinf Nemhauser et al. (1978) provides @x¢k!) factor ap-
mization(Nemhauser et al., 1978), and provide bounds,oyimation. Nevertheless, even in the case of symmetric

for the approximation ratio, space used, and time takeryppg, the study of streaming and online algorithms is in

« In Section 5, we providONLINE-LSSandONLINE- a nascenF stage. In particu_lar, (Indyk gt al., 20;9; 2020;
2-NEIGHBOUR, our online algorithms based on local Maha.badl et al., 2020) provided streaming algorithms for
search with a stash, which are generalizations of th/AP inference of DPPs and (Bhaskara et al., 2020) were
online local search algorithm for MAP Inference of the rst to propose online algorithms for MAP inference of

symmetric DPPs by (Bhaskara et al., 2020), and prol_DPPs. Also, (Liu et al., 2021) designed the rst streaming
vide bounds for the space used and time taken. algorithms for the maximum induced cardinality objective

proposed by (Gillenwater et al., 2018). However, there has
* In Section 6, we provide a hard instance for one-pas$iot yet been any work other than ours which has focused on
sublinear-space MAP Inference of NDPPs on whicheither streaming or online algorithms for NDPPs.
all of our algorithms fail to output solutions with a
bounded approximation ratio. This illustrates that it Streaming and Online Algorithms. Streaming (Alon
might even be impossible to prove approximation facet al., 1999; Muthukrishnan, 2005) and online (Karp et al.,
tor guarantees for our algorithms without additional1990; Karp, 1992; Borodin & El-Yaniv, 2005) algorithms
strong assumptions. The hard instance uses propertigsave been extensively studied in theoretical computer sci-
of NDPPs that differ from symmetric DPPs illustrating ence. In particular, they have also seen many applications
some of the divergence between them. We also providén machine learning such as reinforcement learning (Shri-
some additional comparison between MAP Inferencevastava et al., 2021), projected gradient descent (Xu et al.,
of nonsymmetric DPPs and symmetric DPPs in this2021), training over-parameterized neural networks (Song
section. et al., 2021a;b), and solving linear programs (Song & Yu,

2021).
 In Section 7, we evaluate our proposed online NDPP )

MAP Inference algorithms on several datasets and C

show that they show that they perform comparably3- Preliminaries

to _(or even bettgr than) the of ine greedy algorithm 5 1 Notation

which takes multiple passes over the data and also uses

substantially more memory (linear in number of items).Throughout the paper, we use uppercase bold letée)s (
to denote matrices and lowercase bold lettajs¢ denote
vectors. Letters in normal fona) will be used for scalars.

2. Related Work For any positive integen, we use[n] to denote the set
) ) f1;2;:::;ng. AmatrixM is said to be skew-symmetric if
Nonsymmetric DPPs. A special subset of NDPPs called \ = M > where> is used to represent matrix transposi-

signed DPPs were the rst class of NDPPs to be studiegigp.

(Brunel et al., 2017). Gartrell et al. (2019) studied a more

general class o_f NDPPs and provided learning and MAR; 5 Background on DPPs

Inference algorithms, and also showed that NDPPs have

additional expressiveness over symmetric DPPs and can bé-DPP is a probability distribution on all subsets [of

ter model certain problems. This was improved by Gartrelicharacterized by a matrix 2 R" ". The probability

et al. (2021) in which they provided a new decompositionof sampling any subsed  [n] i.e. Pr[S] / det(Ls)
which enabled linear time learning and MAP Inference forwhereL s is the submatrix of. obtained by keeping only
NDPPs. More recently, Anari & Vuong (2022) proposed thethe rows and columns corresponding to indiceS.inThe

rst algorithm with ak® () approximation factor for MAP  normalization constant for this distribution can be computed
Inference on NDPPs whekeis the number of items to be  ef ciently since we know that g ,, det(Ls) =det( L +
selected. In) (Kulesza & Taskar, 2012, Theorem 2.1). Therefore,
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Table 1.Summary of our MAP inference algorithms for NDPPs. We obnifor simplicity. All algorithms use only a single-pass over the
data.

Inference Problem Algorithm Update Time Total Time Space
Streaming STREAM-PARTITION (Alg. 1) N/A Taer (k;d) n k2+ d?
ONLINE-LSS(Alg. 2) Taer (k;d) klog?()  Taer (k;d) (nk+ k log?()) k?+ d?+ dlog ()
Online ONLINE 2-NEIGH (Alg. 3) Taet (k;d) k?log®()  Taet (k;d) nk?+k2log®()  k*+d?+dlog ()
ONLINE-GREEDY (Alg. 4) Tget (k;d) k Taet (K; d) nk k2+ o2

PI[S] = giy. For the DPP corresponding toto be  3.3. Background on Streaming and Online Algorithms

a valid probability distribution, we neetet(Ls) O for
allS [n]sincePr[S] OforallS [n]. Matrices which
satisfy this property are known &-matrices (Fiedler &
Ptak, 1966). For any symmetric matfix det(Ls) O

The main difference between streaming and online algo-
rithms are their parameters of interest. In streaming algo-
rithms (Muthukrishnan, 2005), the main focus is on the
) N " ) : solution quality at the end of the stream and memory used
for all S [?] ifand only if L is posr|1t|ve semi-de nite by the algorithm throughout the stream. Instead, in online
(PSD) i.e. x"Lx Oforall x 2 R". Therefore, all algorithms (Karp et al., 1990), the main focus is on the

symmetric matrices which correspond to valid DPPs are,olution quality at every time step and update time after

PSD. B;Jt there arE’o-ma_i.nces Wh.'%h ar_f notFnecessan:y seeing a new input. In the streaming and online models we
symmetric (or even positive semi-de nite). For example, i qe ne. the online setting is a more restrictive version

L = 11 is a nonsymmetri®q matrix. of the streaming setting. Therefore, for us, any algorithms

11 which are valid online algorithms are also valid streaming
Any matrixL can be uniquely written as the sum of a sym-algorithms. However, not all streaming algorithms are on-
metric and skew-symmetric matrix: = (L + L>)=2+ line algorithms. For instance, our main streaming algorithm
(L L?)=2. For the DPP characterized ly, the sym- (Algorithm 1) is not a valid online algorithm.
metric part of the decomposition can be thought of as en-
coding nggative correlatipns bety\(een items _and the skevyr_ Streaming MAP Inference
symmetric part as encoding positive correlations. Gartrell
et al. (2019) proposed a decomposition which covers thén this section, we formulate the streaming MAP inference
set of all nonsymmetric PSD matrices (a subsé®pmmatri-  problem for NDPPs and design an algorithm for this prob-
ces) which allowed them to provide a cubic time algorithmlem with guarantees on the solution quality, space, and time.
(in the ground set size) for NDPP learning. This decom-
positionisL = V>V +(BC> CB~). Gartrelletal. 4.1. Streaming MAP Inference Problem

(2021) provided more ef cient (linear time) algorithms for )
learning and MAP inference using a new decomposition’/e Study the MAP Inference problem in low-rank NDPPs

L = V>V + B> CB . Although both these decomposi- in the streaming setting where we see columns2d a n
tions only cover a subset & matrices, it turns out that matrix in order (column-arrival model). Given some xed

. : it .
they are quite useful for modeling real world instances andkeW-symmetric matri 2 R® ¢, consider a stream of

provide improved results when compared to (symmetricfd-dimensional vectors (which can be viewed as pairs of
DPPs. d-dimensional vectors) arriving in order:

For the decompositioh = V>V + B>CB , we have  (V1;b2); (V2;b2); 125 (Vn; bn) wherevy; by 2 R%; 8t 2 [n]
V;B 2 RY " C 2 RY 9 andC is skew-symmetric.

Here we can think of the items having having a latent lowThe main goal in the streaming setting is to output the maxi-
dimensional representatidm; ; b;) wherev;;b; 2 RY. In-  mum likelihood subse$  [n] of cardinalityk at the end
tuitively, a low-dimensional representation (when comparedf the stream assuming th&tis drawn from the NDPP

to n) is suf cient for representing items because any particcharacterizedbi = V>V + B> CB i.e.

ular item only interacts with a small number of other items

in real-world datasets, as evidenced by the fact that the max- S= Sar[%]r?j‘;i ’ det(Ls) (1)
imum basket size encountered in real-world data is much ' R .
smaller tham. = argmax det(Vg Vs+ B5CBy)

S [nLijSi=k

ForanyS [n];Vs 2 RY Siisthe matrix whose each col-
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Algorithm 1 Streaming Partition Greedy MAP Inference of the datai.eP; = f 20 +1; (L N0 4 5. ing
for low-rank NDPPs
1: Input: Length of the streamn and a stream of data fVl; b1); (Va; bzz; 5 (Viek bn:kf; s )
pointsf (v1; b1); (V2;b2);::1; (Vi bn)g 12
2: Output: A solution setS of cardinalityk at the end of '
the stream. fvn (n=k)+1 > Pn ({17:k 31 ) (Vs bni
3S ; ;S0 ; Py
4: while new data(vy; b;) arrives in stream at timedo
5 : d %e Theorem 2. For a random-order arrival stream, i§ is
6: iff(S 1[f tg)>f (S 1[f sig)then the solution output by Algorithm 1 at the end of the stream
£ . ?i t ] and min > lwhere min and max denote the smallest
8:  if tis amultiple ofg then and largest singular values &fs among allS  [n] and
9: Si Sials iSj 2k, then
10: S |
11: return Sy Ellog det(L s)] . 1
|Og(OPT) (l' %) (2log  max 109 min )
min
where Ls = VJVs + BZCBs and OPT =

> >
umn corresponds tiv; ;i 2 Sg. Similarly,Bs 2 R Siis g [r??;aj)léj:k det(Vg Vr + BRCB ).

the matrix whose columns correspond ;i 2 Sg. In the

case of symmetric DPPs, this maximization problem in the/Ve will rst give a high-level proof sketch for this theorem
non-streaming setting corresponds to MAP Inference in cagnd defer the full proof to Appendix A.

dinality constrained DPPs, also knownlka®PPs (Kulesza

& Taskar, 2011).
) Proof sketch.For a random-order arrival stream, the distri-

bution of any set of consecutiveck elements is the same
De nition 1. Given three matrice¥ 2 R ¥;B 2 RY X 35 the distribution ofi=k elements picked uniformly at
andC 2 RY 9, let Tye (k; d) denote the running time of random (without replacement) frof]. If the objective
computingdet(V >V + B~ CB ). We can takdget (k;d)  functionf is submodular, then this algorithm has an approx-
beingO(kd?) as a crude estimate. imation guarantee dfL  2=€) by (Mirzasoleiman et al.,
Note thatTae (K:d) = 2 Toar (d; K:d) + Tomae (d: d: K) + 2015). But neithedet(L s) norlog det(L s) are submod-
Tomar (K: k: k) WhereTmg: (a: b: § is the time required to mul- ular. Instead, (Gartrell et al., 2021) [Equation 45] showed

tiply two matrices of dimensiors bandb c. We have thatlogdet(L s) is “close” to submodular whenmin > 1
the lastTma (k: k; k) term because computing the determi-Where this closeness is measured using a parameter known

nant of ak  k matrix can be done (essentially) in the same S “submodularity ratio” (Bian et al., 2017). Usi'ng this
time as computing the product of two matrices of dimensiorPa@meter, we can prove a guarantee for our algorithm.
k k (Ahoetal., 1974, Theorem 6.6).

where(vi;b) 2 R RY 8t 2 [n], the space used is
We will now describe a streaming algorithm for MAP in- O(k? + d?) and the total time taken i©(n  Tget (k; d))
ference in NDPPs, which we call the "Streaming Partitionwhere Tget (k; d) is the time taken to compufe(S) =
Greedy" algorithm. det(Vg'V + BSCB) forjSj = k.

4.2. St ing Partition Greed . . .
reaming Fartition Breedy Proof. For any particular data-poiift; b;), Algorithm 1

Outline of Algorithm 1 : Our algorithm picks the rstel- needs to computd (S; ; [ f tg), where f(S) =
ement of the solution greedily from the rst segnele- det(VgV + BgCBs) andS = S; 1 [f tg. This takes
ments, the second element from the next sequende of at mostO(k? + d?) space andge (k; d) time. The algo-
elements and so on. As described in Algorithm 1, let ugithm also needs to stoi® i;s; andf (S; 1 [f sig) but

the algorithm, wher&; represents the solution set of size compute the determinant. All the other comparison and
i. In particular, we have th&; = S; ; [f sigwheres; = update steps are also much faster and so the total time is
argmax;op; T (S[f jg) andP; denotes thé'th partition  O(n  Tye (k; d))
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Algorithm 2 ONLINE-LSS: Online MAP Inference for low-
rank NDPPs with Stash.
1: Input: A stream

of data points
1
Output: A solution setS of cardinalityk at the end of
the stream.
ST
: while new data poinfvy; b;) arrives in stream at time
do
if jSj <k andf (S[f tg) 6 0 then
S SJftg
else
i argmax,sf(S[f tgnfjg)
if f (S[f tgnfig) > f (S) then
S S|[f tgnfig
T TI[fig
while 9 a
f (S[f bgnfag) >
S
T

2:

iy

10:

11:

12: 2 b 2 T
f(S) do

S[f bgnfag

T[f agnfbg

S;

13:
14:

15: return S

5. Online MAP Inference for NDPPs

We now consider the online MAP inference problem for

NDPPs, which is natural in settings where data is generatelﬁ‘

on the y. In addition to the constraints of the streaming

setting (Section 4.1), our online setting requires us to main
tain a valid solution at every time step. In this section, we'd

provide two algorithms for solving this problem.

5.1. Online Local Search with a Stash

Outline of Algorithm 2 : On a high-level, our algorithm is
a generalization of the Online-LS algorithm for DPPs from
(Bhaskara et al., 2020). At each time ste@ [n] (after

t
of indicesS of cardinalityk from the data seen so far i.e.
S [t]s.t. jSj = k in a streaming fashion. Additionally,
it also maintains two matriceés; B s 2 R41 Si where the
columns ofVg arefv;;i 2 Sgand the columns dB 5 are
fbi;i 2 Sg. Whenever the algorithm sees a new data poin
(vi;by), it replaces an existing index froBwith the newly
arrived index if doing so increaségS) at-least by a factor
of 1 where
think of being2 for understanding the algorithm). Instead
of just deleting the index replaced fro8) it is stored in
an auxiliary sefT called the “stash" (and also maintains
corresponding matricégr ; B 1), which the algorithm then

k), our algorithm maintains a candidate solution subse&

t

is a parameter to be chosen (we can

De nition 4. Letthe rst non-zero value df(S) withjSj =

k that can be achieved in the stream without any swaps be
valn;i.e. till S reaches a sizk, any index seen is added$o

if f (S) remains non-zero even after adding it. Let us de ne

= ?/Zrnzk WhereOPTk =MmaXg [n1;jSi=k det(VS> Vs +
BZCBs).
Note that is a data-dependent parameter which can poten-

tially be unbounded. This happens in the hard-instance we
will describe in Section 6. However, for practical datasets,

doesn't seem to be too bad (see the experiments section
for a more detailed discussion).

where(vi:by) 2 R RY98t 2 [n], the worst case up-
date time of Algorithm 2 i©(Te (k; d) klog?()) where
Tget (K; d) is the time taken to computg¢S) = det( VS V +

B CB) forjSj = k. Furthermore, the amortized update
time isO(Tuer (k; d) (k + K20 )) and the space used
at any time step is at mo§i(k® + d? + dlog ()) .

Proof. For every iteration of the while loop in ling It takes
at mostTye (k; d) time for checking the rst if condition
(lines 5-6). Theargmax ,s f (S[f tgnfjgstep takes at
mostk Tget (k; d) time. The while loop in line 12 takes time
at mostSj jTj Tget (k; d) for every instance of an increase
f (S). Note thaff (S) canincrease at moktg () times
since the value of (S) cannot excee®PTy. Therefore,

the update time of Algorithm 2 is at moBge; (k; d) + k
et(k;d)+log () (iSj JTj Taet(k;d)) T get(k;d)
k+1+ klog?() sincejSj kandjTj log () .
Notice that the cardinality of can increase b only when
the value off (S) increases at least by a factor oind so
iTi log () .

During any time stept, the algorithm needs to store
the indices inS;T and the corresponding matrices
Vs:;Bs;Vr;B1. SincejSj K;jTj log () andit
akesd words to store every; andb;, we need at most
k+log ()+2 dk+2dlog () words to store all these

in memory. The space needed to compiggVS Vs +
BZCBs) is at mostO(k? + d?). We compute all such
determinants one after the other in our algorithm. So the
algorithm only needs space for one such computation during
it's run. Therefore, the space required by Algorithm 2 is
O(k? + d? + dlog ()) .

5.2. Online 2-neighborhood Local Search Algorithm
with a Stash

Before we describe our algorithm, we will dene a

uses to performs a local search over to nd a locally optimalneighborhoodf any solution, which will be useful for de-

solution.

We now de ne a data-dependent parametewhich we will

need to describe the time and space used by Algorithm 2.

scribing the local search part of our algorithm.

De nition 6 (N, (S;T)). For any natural number 1
and any set$§; T we de ne ther-neighborhood of with
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Algorithm 3 ONLINE-2-NEIGHBOR: Local Search over 2-neighborhoods with Stash for Online NDPP MAP Inference.

1: Input: A stream of data points(v1;b1); (v2;b2);:::;(vn;bn)g, and a constant 1
2: Output: A solution setS of cardinalityk at the end of the stream.
35T

4: while new datgvy; by) arrives in stream at timedo

5: if jSj <k andf (S[f tg) 6 0 then

6: S SJ[ftg

7: else

8: fi;jg argmaxanzs (f(S[f tgnfag);f (S[f t 1,tgnfa;hy))
9: fmax  MaXapzs (f(S[f tgnfag);f (S[f t 1;tgnfa;hy))

10: if fmax > f (S) then

11 if two items are chosen to be replactten

12: S SJ[ft ZLtgnfijg

13: T TI[fijg

14: else

15: S S|[f tgnfig

16: T TI[fig

17: while9a;b2 S; c;d2 T :f (S[f c;dgnfa;by) > f(S)do
18: S S|f c;dgnfa;bg

19: T TI[f a;bgnfc;dg

20: return S

respect tor step takes at mo$t® Tge (k; d) time. The while loop

in line 18 takes time at mo$8j> jTj® Taet (Kk;d) for

every instance of an increase fifS). Similar to LSS,

f (S) can increase at most by a factorlofy () since

Outline of Algorithm 3 : Similar to Algorithm 2, our new  the value off (S) cannot exceedOPT,. Therefore,

algorithm also maintains two subsets of indi€eandT, and  the update time of Algorithm 3 is at mo3te (k; d) +

correspo_ndmg data matrlcé’g;Bs;VT-;BT._ Whenevgr k2 Teee(k:d) + log () ij2 jTj2 Tyer (K: d)

the algorithm sees a new data-pofmt; b;), it checks if ) 9r .3 ) o

the solution qualityf (S) can be improved by a factor of Tdet(kid) k“+1+ k%log”()  sincejS] k and
by replacing any element i@ with the newly seen data- 1Ti 109 () -

point. Additionally, it also checks if the solution quality Ajthough Algorithm 3 executes more number of determi-
can be made better by including both the poiits by) and  pant computations than Algorithm 2, all of them are done
the data-poinfvy 1;by 1). Further, the algorithm tries to  sequentially and only the maximum value among all the
improve the solution quality by performing a local searchpreviously computed values in any speci ¢ iteration needs
OnNz(S,T) i.e. the nEighborhOOd of the candidate SOIUtiontO be stored in memory. Therefore1 the space needed is

S using the stasfi by replacing at most two elements of (nearly) the same for both the algorithms.
S. There might be interactions capturedfmirs of items

which are much stronger than single items in NDPPs (se
exampleb from (Anari & Vuong, 2022)).

N, (S;T)=fS° S[ TjjSY=jSjandjsSnSj rg

%. Hard Instance for One-Pass MAP Inference
of NDPPs

where (vi;b) 2 R RY 8t 2 [n], the worst case \We will now give a high-level description of a hard instance
update time of Algorithm 3 i©(Tuer (k; d) k2 log®()) for one-pass MAP inference of NDPPs with sub-linear mem-
where Tget (k; d) is the time taken to computg(S) = ory (inspired by (Anari & Vuong, 2022, Example 5)) on
det(Vg' V + B3 CB) for jSj = k. The amortized update which all of our algorithms output solutions with zero objec-
time isO Teer(K;d) K2+ K '°@r113() and the space tive value whereas the optimal solution has non-zero value.
Due to this, we believe it might be impossible to prove any
bounded approximation factor guarantees for our algorithms
without any strong additional assumptions.

used at any time step is at ma3(k? + d® + dlog ()) .

Proof. It takes at most  Tget (K; d) time
for lines 56 (same as in LSS). The
argmaxapzs (f (S[f tgnfag);f (S[f t 1;tgnfa;by))
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Sketch of the hard instance. Suppose we have a total of Algorithm 4 ONLINE-GREEDY: Online Greedy MAP In-
2d items consisting opairs of complementary items like ference for NDPPs

modem-router, printer-ink cartridge, pencil-eraser etc. Let 1: Input: A stream of data points
us use 1; 1¢; 2; 2% : : :; d; d°g to denote them. Any itern f(vi;b1); (vaib2);:i; (Vi bn)g

is independent of every item other than it's compleniént ~ 2: Output: A solution setS of cardinalityk at the end of
Individually, Pr[fig] = Pr[fi¢g] = 0 . And Pr[fi;i®g] = the stream.

x2 with x; > Ofor alli 2 [d]. Also, we havePr[fi;j g] =0 3:S
for anyi 6 j. Suppose any of our online algorithms are 4: while new datav¢; by) arrives in stream at timedo
given the sequenckl;2;3;:::;d;r°g wherer 2 [d] is 5: if jSj <k andf (S[f tg) 6 0 then

some arbitrary item and the algorithm needs to pick 2 items 6: S SJftg

i.,e. k = 2. Then,OPT > 0 whereas all of our online 7: else

algorithms (Online LSS, Online 2-neighbor, Online-Greedy) 8: i argmax.sf(S[f tgnfjg)
will fail to output a valid solution. We provide a more 9: if f (S[f tgnfig) >f (S) then
complete description with the instantiations of the matrices10: S S[f tgnfig

B;C;V in Appendix B. 11: return S

Comparison between MAP Inference for NDPPs and
symmetric DPPs. The hard instance described above nec-

essarily uses the skew-symmetric component of the kemejatasets, adjacent pairs of items have a very high likelihood

matrix to form suctcomplementarpairs and this illustrates of oceurring together when compared to pairs of items far
some of the divergence between NDPPs and symmetriﬁI g log P P

DPPs. NDPPs are signi cantly more general (and complex om each other. For example, white socks and grey socks

than DPPs and unlike the case for DPPs where the objective ight be adjacent to each othe.r in numbering. And cus-
function corresponds to a nice geometric notion i.e. vqumetome.rS ‘e*?d to buy bof[h of themin a baske_t. Our streaming
oo pon 9 algorithm is forced to ignore most such pairs.

the objective function for MAP Inference on NDPPs doesn't 9 9 P

have a corresponding clean notion. This is a core issue b&esults for a various datasets for our online algorithms are
cause of which it is unclear how the proofs of approximationprovided in Figure 1. Surprisingly, the solution quality of
factors for similar algorithms for DPPs would generalize toour online algorithms compare favorably with the of ine
NDPPs (the proof techniques for DPPs from Bhaskara et afjreedy algorithm while using only a single-pass over the
(2020) for Online-LS heavily use the fact that the objectivedata, and a tiny fraction of memory. In most cases, Online-

function is a volume and thus use properties of coresetg-neighbor (Algorithm 3) performs better than Online-LSS

lose to zero in most cases). This is because in real-world

developed for related geometric problems). (Algorithm 2) which in turn performs better than the online
greedy algorithm (Algorithm 4). Strikingly, our online-2-
7. Experiments neighbor algorithm performs even better than of ine greedy

in many cases.

We rstlearn all the matrices ; C ; andV' by applying the We also perform several experiments comparing the num-

learning algorithm of (Gartrell et al., 2021) on several real- . : .
. er of determinant computations (as a system-independent
world datasets. For example, some datasets consist of caris

: roxy for time) and the number of swaps (as a measure
of items bought by Amazon customers. Then, we run ou of solution consistency) of all our online algorithms. Re-
inference algorithms on the learn8d C; andV . More y 9 )

details about the experiments and the datasets used can ?#elts for determinant co_mputaﬂoqs (Figure 2) and_ swaps
. . igure 3) can be found in Appendix D. We summarize the
found in Appendix C.

main ndings here. The number of determinant computa-
As a point of comparison, we also use the of ine greedytions of Online-LSS is comparable to that of Online Greedy
algorithm from (Gartrell et al., 2021). This algorithm stores but the number of swaps performed is signi cantly smaller.
all data in memory and makédspasses over the dataset Online-2-neighbor is the most time-consuming but superior
and in each round, picks the data point which gives theerforming algorithm in terms of solution quality.
maximum marginal gain in solution value. Online-Greedy
(Algorithm 4) is a simple online variant of the greedy algo-
rithm which replaces a point in the current solution set with
the observed point if doing so increases the objective.

Our experimental results in Appendix D demonstrate that
our online algorithms use substantially lower memory than
any of ine algorithms. Note that the main memory bottle-
neck for of ine inference algorithms (Gartrell et al., 2021;
First, we want to mention that the performance of our streamAnari & Vuong, 2022) is the need to store the entire data-set
ing algorithm (Algorithm 1) on the datasets we consider isin memory. We can consider other factors (like the memory
(unfortunately) pretty bad (the objective function value isneeded for computindet(k; d) i.e. O(k? + d?) (which can
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Figure 1.Solution quality i.e. objective function value as a function of the number of data points analyzed for all our online algorithms
and also the of ine greedy algorithm. All our online algorithms give comparable (or even better) performance to of ine greedy using only
a single pass and a small fraction of the memory.

be re-used every-time) to be essentially free because theimber of determinant computations, and the number of
regime of interestim  d k. The memory usage by our swaps increase asdecreases (Figure 6). We also see that
online algorithms is also primarily dominated by the size ofask increases, the solution value decreases across all values
the stash, which is upper bounded by the number of swapsf (Figure 7. This is in accordance with our intuition that
for which we have plots in Appendix D.2. Similarly, the up- the probability of larger sets should be smaller.

date times also depend only on the size of the stash (which

are quite small and so we have very fast update times). 8. Conclusion & Future Directions

We also investigate the performance of our algorithms undefn this paper, we formulate and study the streaming and

the random stream paradigm, where we consider a random . : .
. ; nline MAP inference problems for Nonsymmetric Deter-
permutation of some of the datasets used earlier. Resulf)

for the solution quality (Figure 4), number of determinantmmantal Point Processes. To the best of our knowledge,

computations and swaps (Figure 5) can be found in A this is the rst work to study these problems in these practi-

pendix D.3. In this setting, we see that Online-LSS andpal settings. We design new one-pass algorithms for these

. . . . d)roblems, prove theoretical guarantees for them in terms
Online-2-neighbor have nearly identical performance an : : . ;
of space required, time taken, and solution quality for our

are always better than Online-Greedy in terms of solution . o

quality and number of swaps. algorithms, anc_j empirically show that they perform compa-
rably or sometimes even better than state-of-the-art of ine

We study the effect of varying in Online-LSS (Algo- algorithms while using substantially lower memory.

rithm 2) for various values of set sizé&sin Appendices

D.4 and D.5. We notice that, in general, the solution qualit As we have discussed in the experiments section, the em-

y’pirical performance of our partition greedy algorithm is
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quite bad. The main reason we have chosen to include it iBahmani, B., Moseley, B., Vattani, A., Kumar, R., and
this paper is because it is the only one for which we have Vassilvitskii, S. Scalabl&-means++Proceedings of the

a provable guarantee on the approximation quality (albeit VLDB Endowment(7):622-633, 2012.

with strong assumptions). This also leads us to an important , i )

open direction from our work, i.e. gaining a better theo-BNaskara, A., Karbasi, A., Lattanzi, S., and Zadimoghad-
retical understanding of our online algorithms, potentially dam. M. Online MAP Inference of Determinantal Point
by proving approximation bounds going beyond worst-case Processes. INeural Information Processing Systems
analysis (Roughgarden, 2021). For instance, by assuming (NeurlPS) 2020.

that the learned NDPP model satis es natural assumptiongian' A. A.. Buhmann, J. M., Krause, A., and Tschi-

like perturbation stability (Bilu & Linial, 2012; Makarychev  gicchek S. Guarantees for Greedy Maximization of Non-
etal., 2014; Angelidakis et al., 2017). For example, in the - g, modular Functions with Applications. Iimternational

line of prior work (Lang et al., 2018; 2019; 2021a;b) study-  ~gnference on Machine Learning (ICML2017.
ing MAP inference for Potts models. Another interesting

direction is in providing parallelizable algorithms which use Bilu, Y. and Linial, N. Are stable instances easy?om-
a smallnumber of passes (greater than one but less than binatorics, Probability and Computin@1(5):643—-660,
k) - similar to thek-meank (read as k-means parallel”) 2012.

algorithm (Bahmani et al., 2012; Makarychev et al., 2020) , ) )
Borodin, A. Determinantal point processes.Tine Oxford

We have only studied-neighbor and2-neighbor online Handbook of Random Matrix Theo@xford University
local search algorithms in our paper. Extending them to press, 20009.

arbitrary sizes of subset8-eighbor, etc.) is also another _ _ _ _
interesting open direction. Understanding at which pointBorodin, A. and El-Yaniv, R. Online Computation and
the degree of interactions cease to provide bene ts that are Competitive AnalysisCambridge University Press, 2005.

wo_rth the increase in memory/time cons.tralnts quld .beBruneI, V.-E. Learning Signed Determinantal Point Pro-
of interest to the DPP research community. Are pairwise N ; .
cesses through the Principal Minor Assignment Problem.

interactions, as i2-neighbor, suf qent to characterize most In Neural Information Processing Systems (NeurlPS)
of the necessary NDPP properties? 2018
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A. Streaming MAP Inference Details

Theorem 2. For a random-order arrival stream, i% is the solution output by Algorithm 1 at the end of the stream and

min > lwhere qin and nax denote the smallest and largest singular valuek gfamong allS  [n] andjSj 2k,
then I

E[log det(L )] 1 1
|Og(OPT) (1_ %) (2log max 109 min )
min
whereL s = VS Vs + BZCB s andOPT = < m]a?(Rj:k det(Vg Vg + BZCBR).
Proof. As described in Algorithm 1, we will us8y; S;;:::; Sk to denote the solution sets maintained by the algorithm,
whereS; represents the solution set of sizeén particular, we have th&@ = S; 1 [f sigwheres; = argmax;.g, f (S|
fjg) andB; denotes thé'th partitioni.e.B; = f 21 +1; L D0 4o 0ing

Fori 2 [k], letususeX; =[B;j\ (S nS; 1) 6 ;]to denote the event that there is at least one element of the optimal
solution which has not already been picked by the algorithm in the liteimd ;| = jS nS; 1j. Then,

PriXi]=1 Pr[X{]

=1 1 Ha Ly — 1
@ De P )
I%
1 1
n
1 e *
1
L1 =
k e

Here we use the facte¥ 1+ xforallx 2 R,1 e « isconcave as a function of and 2 [0; k].

For any elemers 2 [n]andselS [n],letususd (sjS) = f (S[f sg) f(S)todenote the marginal gain fnobtained
by adding the elememtto the setS. For any round 2 [Kk], we then have thdt(S;)) (S 1)=f(sijSi 1).
Note that

P .
120pTns, (TS 1)

E[f(sijS 1)iXi] jOPT NS 4]

This happens due to the fact that conditionedXgnevery element its nS; ; is equally likely to be present iB; and the
algorithm pickss; suchthaf (s; jS; 1) f(sjS; 1) foralls2 B;.
Eff(siiSi 1)iS 1= Ef(si]S 1)]Si 1;Xi]Pr{Xi]
+E[f(sijSi 1)iS 1 X{IPrX{]
E[f (sijSi 1) iDSi 1, Xi] Pr[Xi]

i 1 12S nS; 1f(! iSi 1)
k e IS nS 4j
) 1 1 X
:% 1 - — f(jS
iS nS 4j e k!ZSnS_l(J'l)
1 1 X .
= 1 s K fC]S 1)
125 nS; 1
1 1
1 s K (S 1[ S) (S 1)
1 1
1 s (OPT (S 1))
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For the las@ inequalities, we use the fact tHatS) = log det( L s) is monotone non-decreasing and has a submodularity
1

ratioof = 29 mx g when min > 1 (Gartrell et al., 2021)[Eqg. 45].

|Og min

Taking expectation over all random draws3f 1, we get
. 1
Elf (sijSi 1)] 1 o E(OPT E[f (Si 1))

Combining the above equation witl{s;jS; 1) = f(S;) f(Si 1), we have

Ef(S) EN(S ) 1 . . (OPT EN(S 1)
Next we have

(OPT E[f(S)D+(OPT Ef(S 1)) 1 %

- OPT E[f(S 1)

Re-organizing the above equation, we obtain

OPT E[f (S)] 1 1 % K (OPT E[f(Si 1))
Applying the above equation recursivédytimes,
1 k
OPT  E[f (Sk)] 1 1 e K (OPT  EI[f (So)])
= 1 1 % " kOPT
where the last step follows frofn(Sp) = 0.
Re-organized the terms again, we have
1 3
E[f (S«)] 1 1 1 % o OpT

1 e @2 OPT

1

When we substitute = Zﬁggiz 1 ,wegetour nalinequality:

1
E[f (Sk)] 1 (1 %)(@log max 109 min) OPT
min
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B. Hard instance for One-Pass MAP Inference of NDPPs

Outline: We will now give a high-level description of a hard instance for online MAP inference of NDPPs (this is inspired
by (Anari & Vuong, 2022, Example 5)) . Suppose we have a tot&bdafems consisting opairs of complementary items

like modem-router, printer-ink cartridge, pencil-eraser etc. Let us uis¥; 2; 2¢;: : :; d; d°g to denote them. Any itern

is independent of every item other than it's compleniéntndividually, Pr[fig] = Pr[fi°g] = 0 . And Pr[fi;i°g] = x?

with x; > Ofor alli 2 [d]. Also, we havePr[fi;j g] = 0 for anyi 6 j. Suppose any of our online algorithms are given the
sequencél; 2;3;:::;d;r°gwherer 2 [d] is some arbitrary item and the algorithm needs to pick 2 item&i=2. Then,

OPT > 0Owhereas all of our online algorithms (Online LSS, Online 2-neighbor, Online-Greedy) will fail to output a valid
solution.

Details: Let0<x 1 <X, < < X ¢. Suppose

0 X1
X1 0

C = Xo O

0 Xd
Xd 0

C 2 R 2d j5 g skew-symmetric (i.eC = C?>) block diagonal matrix where the blocks are of the form?(. )8 .
1

Suppose we have a total 24l items consisting ofl pairs of complementary items. We usk 1°; 2; 2¢;: . :; d; d°g to denote

iNnR2dj.e.B = | 4.

For a pair of complementary iten®= fi;icg;f (S) = x2. Without loss of generality, consid&r= f 1; 1°g. Then we can
computeB Z CB s as follows:

BCBs= & & C e &

0 x 00 0
= x, 0 00 0o & %
_ 0 xg
_X]_O

In this case, we havie(S) = x2.

For any pair of non-complementary itel8s= fij;i,gwhere the indices are distinét(S) = 0. Without loss of generality,
we can conside® = f1;2g. Then,

BCBs= e e C e €
0 x 0 0 0
=0 0 0 % o & S
0 0
=00

And so, we have thdt(S) = 0.



One-Pass Algorithms for MAP Inference of NDPPs

C. Experiments and Datasets details

All experiments were performed using a standard desktop computer (Quad-Core Intel Core i7, 16 GB RAM) using many
real-world datasets composed of sets (or baskets) of items from some ground set of items:

« UK Retail: This is an online retail dataset consisting of sets of items all purchased together by users (in a single
transaction) (Chen et al., 2012). There are 19,762 transactions (sets of items purchased together) that consist of 3,941
items. Transactions with more than 100 items are discarded.

« MovielLens: This dataset contains sets of movies that users watched (Sharma et al., 2019). There are 29,516 sets
consisting of 12,549 movies.

« Amazon Apparel: This dataset consists of 14,970 registries (sets) from the apparel category of the Amazon Baby
Registries dataset, which is a public dataset that has been used in prior work on NDPPs (Gartrell et al., 2021; 2019).
These apparel registries are drawn from 100 items in the apparel category.

« Amazon 3-category We also use a dataset composed of the apparel, diaper, and feeding categories from Amazon
Baby Registries, which are the most popular categories, giving us 31,218 registries made up of 300 items (Gartrell
etal., 2019).

« Instacart: This dataset represents sets of items purchased by users on Instacart (Instacart, 2017). Sets with more than
100 items are ignored. This gives 3.2 million total item-sets from 49,677 unique items.

¢ Million Song: This is a dataset of song playlists put together by users where every playlist is a set (basket) of songs
played by Echo Nest users (McFee et al., 2012). Playlists with more than 150 songs are discarded. This gives 968,674
playlists from 371,410 songs.

¢ Customer Dashboards:This dataset consists of dashboards or baskets of visualizations created by users (Qian et al.,
2021). Each dashboard represents a set of visualizations selected by a user. There are 63436 dashboards (baskets/sets)
consisting ofL206visualizations.

« Web Logs: This dataset consists of sets of webpages (baskets) that were all visited in the same session. There are 2.8
million baskets (sets of webpages) drawn from 2 million webpages.

« Company Retail: This dataset contains the set of items viewed (or purchased) by a user in a given session. Sets
(baskets) with more than 100 items are discarded. This results in 2.5 million baskets consit0@@4®items.

The last two datasets are proprietary Adobe data. The learning algorithm of (Gartrell et al., 2021) takes as input a parameter
d, which is the embedding size fof, B, C. We used = 10 for all datasets other than Instacart, Customer Dashboards,
Company Retail wherd = 50 is used and Million Song, whek= 100 is used. For all of our results in 7, we et 8

and choose =1:1.

D. Additional Experimental Results
D.1. Number of Determinant Computations

We perform several experiments comparing the number of determinant computations (as a system-independent proxy for
time) of all our online algorithms. We do not compare with of ine greedy here because that algorithm doesn't explicitly
compute all the determinants. Results comparing the number of determinant computations as a function of the number of
data points analyzed for a variety of datasets are provided in Figure 2. Online-2-neighbor requires the most number of
determinant computations but also gives the best results in terms of solution value. Online-LSS and Online-Greedy use very
similar number of determinant computations.
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Figure 2. Results comparing the number of determinant computations as a function of the number of data points analyzed for all our
online algorithms. Online-2-neighbor requires the most number of determinant computations but also gives the best results in terms of
solution value. Online-LSS and Online-Greedy use very similar number of determinant computations.
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D.2. Number of Swaps

Results comparing the number of swaps (as a measure of solution consistency) of all our online algorithms can be found in
Figure 3. Online-Greedy has the most number of swaps and therefore the least consistent solution set. On most datasets, the
number of swaps by Online-2-neighbor is very similar to Online-LSS.

Figure 3. Results comparing the number of swaps of all our online algorithms. Online-Greedy does the most number of swaps and
therefore has the least consistent solution set. On most datasets, the number of swaps by Online-2-neighbor is very similar to Online-LSS.

D.3. Random Streams

We also investigate our algorithms under the random stream paradigm. For this setting, we use some of the previous
real-world datasets, and randomly permute the order in which the data appears in the stream. We do this 100 times and
report the average of solution values in Figure 4 and the average of number of determinant computations and swaps in
Figure 5. We observe that Online-2-neighbor and Online-LSS give very similar performance in this regime and they are
always better than Online-Greedy.

D.4. Ablation study varying

To study the effect of in Online-LSS (Algorithm 2), we vary 2 f 0:05; 0:1; 0:3; 0:5g and analyze the value of the obtained
solutions, number of determinant computations, and number of swaps. We notice that, in general, the solution quality,
number of determinant computations, and the number of swaps increade@gases. Results are provided in Figure 6.
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Figure 4. Solution quality as a function of the number of data points analyzed in the random stream paradigm. Online-2-neighbor and
Online-LSS give very similar performance in this setting and they are always better than Online-Greedy.

Figure 5. Number of determinant computations and swaps as a function of the number of data points analyzed in the random stream
setting. Online-2-Neighbor needs more determinant computations than Online-LSS but has very similar number of swaps in this setting.
Note that = 1
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Figure 6.Performance of Online-LSS varyindgor k = 8. Solution quality, number of determinant computations, and number of swaps
seem to increase with decreasing






