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Abstract
Foundational work on the Lottery Ticket Hypoth-
esis has suggested an exciting corollary: winning
tickets found in the context of one task can be
transferred to similar tasks, possibly even across
different architectures. This has generated broad
interest, but methods to study this universality are
lacking. We make use of renormalization group
theory, a powerful tool from theoretical physics,
to address this need. We find that iterative mag-
nitude pruning, the principal algorithm used for
discovering winning tickets, is a renormalization
group scheme, and can be viewed as inducing a
flow in parameter space. We demonstrate that
ResNet-50 models with transferable winning tick-
ets have flows with common properties, as would
be expected from the theory. Similar observations
are made for BERT models, with evidence that
their flows are near fixed points. Additionally, we
leverage our framework to study winning tickets
transferred across ResNet architectures, observ-
ing that smaller models have flows with more uni-
form properties than larger models, complicating
transfer between them.

1. Introduction
The lottery ticket hypothesis (LTH) for deep neural networks
(DNNs) proposes that DNNs contain sparse subnetworks
that can be trained in isolation and reach performance that
is equal to, or better than, that of the full DNN in the same
number of training iterations (Frankle & Carbin, 2019; Fran-
kle et al., 2020a). These subnetworks are called winning
lottery tickets. The LTH has provided paradigm shifting
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insight into the success of dense DNNs, suggesting that
the emergence of winning tickets, with increasing DNN
size, plays a key role, reminiscent of the maxim “more is
different” (Anderson, 1972).

In recent years, researchers have found an intriguing corol-
lary: winning tickets found in the context of one task can
be transferred to related tasks (Desai et al., 2019; Mehta,
2019; Morcos et al., 2019; Soelen & Sheppard, 2019; Chen
et al., 2020; Gohil et al., 2020; Chen et al., 2021a; Sabatelli
et al., 2021), possibly even across architectures (Chen et al.,
2021c). Their existence has recently been proven (Burkholz
et al., 2022), further supporting the idea that they are a
general phenomenon. In addition to having applications of
practical interest, these results imply that winning tickets
can be used to study how tasks and architectures are “sim-
ilar”. However, there currently exist few tools with which
to study this universality, and there exists no way to know,
without directly performing transfer experiments, which
previously studied tasks a given winning ticket can be trans-
ferred to. These are, in part, due to the fact that there is a
general lack of theoretical work on iterative magnitude prun-
ing (IMP) [although see Tanaka et al. (2020) and Elesedy
et al. (2021)], the most commonly used method for finding
winning tickets.

This is in striking analogy to the state of statistical physics
in the early-to-mid–20th century. Empirical evidence sug-
gested that disparate systems, governed by seemingly dif-
ferent underlying physics, exhibited the same, universal
properties near their phase transitions. While heuristic meth-
ods provided insight (Kadanoff, 1966), a full theory from
first principles was not realized until the development of the
renormalization group (RG) (Wilson, 1971a;b; 1975).

RG theory has not only provided a framework for explaining
universal behavior near phase transitions, but also a scheme
for grouping systems by that behavior. This classification,
introduced via the notion of universality classes, has allowed
for a detailed understanding of materials (Tougaard, 1997;
Winter & Mours, 1997; Durin & Zapperi, 2000; Bonilla
et al., 2010). In addition, it provides knowledge as to what
previously classified materials a newly studied substance
behaves like (see Appendix A for additional background on
RG theory in physics).

The analogy between universality in RG and LTH theories
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again emerges when considering the recent work of Rosen-
feld et al. (2020). It was found that, when the density (i.e.
the percentage of parameters remaining) of a DNN being
pruned via IMP is within a certain range, dL < d < dC , the
DNN’s error scales according to a power-law,

e ∼ (dC − d)−γ = ∆d−γ . (1)

Power-law scaling is well known to emerge in critical phe-
nomena that the RG is used to study. For instance, when the
temperature of a classical spin system (e.g. two-dimensional
Ising model) is near, but below the critical temperature
(t < tC), many observables (e.g. magnetization) exhibit
power-law scaling,

m ∼ (tC − t)−β = ∆t−β . (2)

These similarities hint at a more fundamental connection
between the universality present in winning tickets and in
physical systems (see Fig. 1 and Table 1). Indeed, we
show that IMP is an RG scheme (i.e. IMP satisfies the
properties required to be considered an RG operator). By
analyzing large-scale winning ticket transfer experiments
(Chen et al., 2020; 2021a), we find that models which allow
for successful transfer have similar behavior in their IMP
flow (i.e. the way in which the parameters of the DNN
change after each round of IMP), in agreement with the
theory. In addition, we observe that the IMP flow is static for
tickets found on pre-trained transformers (BERT), whereas
it is dynamic for winning tickets found on pre-trained and
randomly initialized convolutional neural networks (ResNet-
50). We further leverage our RG framework to interpret
recent results on transferring winning tickets across differing
architectures (Chen et al., 2021c), finding that the residual
blocks of smaller ResNet architectures are more uniform
in their sensitivity to pruning than those of larger ResNet
architectures. This is consistent with the experimental result
that tickets found on smaller architectures did not transfer
as well to larger ones.

Taken together, we believe our work shows that RG theory
is not only an appropriate language with which to study
IMP (given that IMP is an RG scheme), but is also a useful
one that provides a new perspective on experimental results.
We hope that our work encourages further collaboration
between those studying machine learning and those studying
the RG and statistical physics.

Table 1. Analogous quantities in RG and IMP theory.

RG IMP

Spins (si) Unit activations (ai)
Coupling constants (ki) Parameters (θi)
Hamiltonian (H[s,k]) Loss function (L[a,θ])

2. Related Work
2.1. Transfer of Winning Tickets

The idea that winning tickets found on one task can be suc-
cessfully transferred to other tasks was first proposed by
Frankle & Carbin (2019) in their original description of the
LTH. Ensuing work confirmed this, showing that winning
tickets are able to perform well on a variety of tasks be-
yond the one that they were originally discovered on (Desai
et al., 2019; Mehta, 2019; Morcos et al., 2019; Soelen &
Sheppard, 2019; Gohil et al., 2020; Sabatelli et al., 2021).
This has suggested that such tasks share similar underlying
properties, in-line with intuition that they are “related”, and
that winning tickets are able to perform universal compu-
tations. Winning tickets from DNNs pre-trained on large,
complex data sets have shown transferability to a number
of “downstream” tasks (Chen et al., 2020; 2021a), further
supporting the idea that the solution to a challenging task
contains solutions to simpler tasks. Finally, a method for
transforming winning tickets to fit different architectures
has recently been developed (Chen et al., 2021c), highlight-
ing the existence of common structure in winning tickets
across families of DNN architectures.

To-date, the primary approach for studying winning ticket
transfer, on a fixed architecture, is to first find winning tick-
ets for tasks A and B. The winning ticket found on task A
is then applied to task B (and vice versa), and if the perfor-
mance is similar to the original winning ticket, then the two
tasks are said to admit transfer. While straightforward, such
an approach makes it computationally expensive to assess
the transferability of many tasks (e.g. tasks A,B,C, ...),
as each combination has to be assessed. Additionally, the
components of the winning tickets that are common across
tasks are not readily identified.

In this work, we develop an approach based on RG theory to
quantitatively characterize winning tickets found on differ-
ent tasks, and different architectures. This characterization
is succinct, and winning tickets with the same properties
are transferable. Additionally, it identifies some aspects of
transferable winning tickets that are common across tasks
and architectures.

2.2. Renormalization Group Theory and Machine
Learning

The success of RG theory in studying emergent phenom-
ena in physical systems has led to interest in applying it
to machine learning. For instance, Restricted Boltzmann
Machines (RBMs) have been proposed to have an exact
mapping to the RG (Mehta & Schwab, 2014) [although see
comments by Lin et al. (2017) and the response by Schwab
& Mehta (2016)]. RBMs trained on data generated from
Ising models having been found to perform RG-like coarse
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Figure 1. Summary of the similarities between the RG and IMP. Both the RG and IMP are applied iteratively to coarse-grain systems,
revealing “relevant” features. Certain observables are known to have regimes where they follow power-law scaling. In the case of the RG,
this scaling, and its universality, are associated with properties of the flow that the RG induces in the space of coupling constants (see Sec.
3.1). The nature of the flow that IMP induces has not been previously studied, but none-the-less exists (see Sec. 4). Table 1 outlines the
analogous quantities of each theory.

graining operations (Mehta & Schwab, 2014; Koch et al.,
2020) [although potentially with different properties from
the RG (Iso et al., 2018; Koch et al., 2020)]. Additionally,
an RG theory has recently been developed for studying and
classifying the output of trained DNNs (Roberts et al., 2021).
Lastly, theoretical work has been performed to bridge the
language of RG theory to perspectives that are more famil-
iar to machine learning practitioners, such as information
theory (Koch-Janusz & Ringel, 2018; Gordon et al., 2021)
and principal component analysis (Bradde & Bialek, 2017).

To our knowledge, RG theory has not yet been applied to
the study of sparse machine learning. As we show, there is
a direct connection between IMP and the RG (Fig. 1 and
Table 1), implying that RG theory is an appropriate language
with which to study IMP.

3. The Renormalization Group and Iterative
Magnitude Pruning

The RG operator, R, can be viewed as a method for “coarse-
graining”. That is, each application of R replaces local
degrees of freedom with a composite of their values1. An
example of this for the two-dimensional (2D) Ising model
is shown in the left-hand column of Fig. 1, where neighbor-
hoods of four spins are iteratively replaced by their mode.

1Note that here we consider the block spin, or real space, RG.
The momentum space RG has a different, but related, interpreta-
tion.

The formal way to study R is to consider its action on a
given Hamiltonian (i.e. energy function). For classical spin
systems (e.g. 2D Ising model), H has the general form

H(s,k) = −
∑
i

k1si −
∑
⟨i,j⟩

k2sisj − ..., (3)

where the si are the spins of the system (e.g. si ∈
{−1,+1}), ⟨·, ·⟩ represents sites on the lattice that are near-
est neighbors, and the ki are the strengths of the different
coupling constants (e.g. k2 is the strength of the nearest
neighbor coupling).

Due to the fact that coarse-graining amalgamates spins,
the spin system resulting from an application of R can
be viewed as equivalent to the original, but with a new set
of coupling constants. Therefore, the coarse-grained system
has a different Hamiltonian, which is given by

RH(s,k) = H(s′, T k) = H(s′,k′), (4)

where s′ is the new set of spins and k′ is the new set of
couplings determined by the operator T : RK → RK . Here
K is the maximum number of couplings considered, usually
introduced to keep the considered operators finite.

R can be applied iteratively, defining a flow through the
function space of Hamiltonians via Eq. 4, with an associ-
ated flow in the space of coupling constants. The latter is
commonly referred to as the RG flow. While T is often a
complicated, non-linear function, it can be linearized near
fixed points of the flow (Goldenfeld, 2005). The flow will
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grow in the direction of the eigenvectors vi with eigenvalues
λi > 1 and will shrink along the direction of the eigenvec-
tors vi with λi < 1. These eigenvectors are called relevant
and irrelevant, respectively, and are defined in relation to
a given fixed point. A schematic of these, and the general
RG flow, is presented in Fig. 1. By examining the effect of
applying R to a given system, and its flow in the space of
coupling constants, it is possible to find which components
of the system are necessary for certain macroscopic behav-
ior (i.e those that are relevant), and which are not. Systems
belonging to a particular universality class have the same
relevant directions.

Interestingly, many of the properties discussed above can
be analogously found in the context of IMP. To see this,
consider a DNN with loss function L(a,θ), where a is
the unit activations and θ is the DNN parameters. Let I
represent a single application of the IMP process. The DNN
pruned via I is given by the relation

IL(a,θ) = L(a′, T θ) = L(a′,θ′), (5)

where the new set of parameters, θ′, are given by an operator
T . This new set of parameters leads to a new, coarse-grained
set of activations, a′. The similarities between Eqs. 4 and 5
are striking.

We note here that, in the case of IMP, T is the composition
of a masking operator, M, and a refining operator F . That
is, T = F ◦ M : RN → RN , where N is the number of
parameters in the DNN. M is defined via the pruning pro-
cedure implemented (e.g. magnitude pruning). While we
are considering IMP here, because of its connection to the
LTH, there are many other pruning procedures [e.g. Hessian
based pruning (LeCun et al., 1989)], all of which have their
own M. Similarly, F is defined via the refinement proce-
dure used, making it dependent on the choice of optimizer
and whether or not the DNN parameters are left alone or
“rewound” to their value at a previous point during training
(Frankle et al., 2020a; Renda et al., 2020).

For n rounds of I, the resulting DNN is given by

InL(a(0),θ(0)) = L(a(n−1), T nθ(0)) = L(a(n−1),θ(n−1)).
(6)

This defines a trajectory in parameter space, θ(0) → θ(1) →
... → θ(n−1), which we will refer to as the IMP flow. A
schematic illustration of what the IMP flow might look like
is given in Fig. 1 (the axes of which will be explained
in Sec. 4). Just as in the case of RG theory, the IMP
flow is determined by the eigenvectors of T , growing or
shrinking exponentially by the magnitude of the associated
eigenvalues along each direction.

3.1. Connection Between the RG and LTH Frameworks

Before we formally show that IMP is an RG scheme, we
discuss how the standard perspective that has emerged from
studying the LTH is related to RG theory.

In this picture, the success of winning tickets is attributed to
the surviving sparse DNN being able to find a “good” local
minimum in the loss landscape (Frankle & Carbin, 2019;
Frankle et al., 2020a). This may be possible because the
training of DNNs via stochastic gradient descent (SGD) is
rapidly confined to a low-dimensional subspace (Gur-Ari
et al., 2018; Li et al., 2022), implying that DNNs only “feel”
changes to a small number of parameters during much of
training. Parameters that are not in this low-dimensional sub-
space can, therefore, be removed with minimal impact. If a
sparse DNN is initialized in this subspace (as late rewinding
aims to do), then it may be possible for training to find the
same, or related, local minima as the full DNN (Evci et al.,
2020; Maene et al., 2021; Zhang et al., 2021).

In this way, the parameters that do not lie in the low-
dimensional subspace are irrelevant, and repeated appli-
cations of IMP are expected to remove them. On the other
hand, the relevant parameters are those that span this sub-
space, and their removal changes the local minimum that
the sparse DNN converges to. Therefore, certain observable
functions of the DNN, such as error, are expected to only be
sensitive to the relevant, but not irrelevant, parameters.

If two models share the same low-dimensional subspace,
then they should be able to transfer winning tickets. Note
that this transferability is highly non-trivial. Indeed, it was
only with the development of the LTH, and subsequent ex-
perimental work, that this was considered to be a possibility
(Frankle & Carbin, 2019; Mehta, 2019; Morcos et al., 2019).
It is, in general, difficult to find these subspaces and accu-
rately compare them across experiments.

RG theory provides us with tools for finding the relevant
and irrelevant directions, which can be compared across
models. In particular, RG theory says that if two models
have the same eigenvectors of T with eigenvalues > 1, then
they have the same relevant parameters. This means that,
once the eigenvectors and eigenvalues are computed, we can
potentially know whether winning tickets are transferable
between two models, without having to run any additional
experiments. Note that the converse, two models having
distinct relevant directions, does not directly imply that they
cannot transfer winning tickets. However, it does imply that
they are differently affected by IMP, suggesting different
underlying properties of the models.

We end by remarking that numerical algorithms for comput-
ing RG critical exponents, such as those that make use of
Monte Carlo methods (Ma, 1976; Swendsen, 1979; Shenker
& Tobochnik, 1980), are sensitive to the exact distribution
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of spins. Therefore, even though the RG theory outlined
in this section does not explicitly depend on the amount of
coarse-graining used at each application of the RG (although
see Eq. 14 for how this impacts the λ), in practice multiple
iterations of the RG with small amounts of coarse-graining
give the best results. This is similar in spirit to results show-
ing that winning tickets found using multiple rounds of IMP
with moderate sparsity outperform tickets found with a sin-
gle, large sparsity round of IMP (i.e. “one-shot” pruning)
(Frankle & Carbin, 2019).

3.2. IMP as an RG Scheme

To make the connection between IMP and RG more pre-
cise, we show that IMP fits the definition of an RG scheme.
To do this, we consider the projection operator, P , that is
associated with the RG operator. In the case of classical
spin systems, the projection operator maps the spins, si, to
a coarse-grained spin system, s′I , such that it satisfies

Tr{si}P(si, s
′
I) exp [H(si,k)] = exp

[
H(s′I ,k′)

]
, (7)

where Tr{si} is the trace operator over the values that the
si can take (e.g. ±1) (Goldenfeld, 2005). For the 2D Ising
model, it is standard to take

P(si, s
′
I) =

∏
I

δ

s′I − sign

∑
j∈I

sj

 , (8)

where δ is the Kronecker delta function and sign(·) is +1 if
the argument is positive and −1 if it is negative (Goldenfeld,
2005). Eq. 8 formally defines the mapping from si → s′I as

s′I = sign

∑
j∈I

sj

 . (9)

The projection operator is not unique, but must satisfy the
following three properties (Goldenfeld, 2005):

❶ P(si, s
′
I) ≥ 0;

❷ P(si, s
′
I) respects the symmetry of the system;

❸
∑
{s′I}

P(si, s
′
I) = 1.

To find a projection operator associated with I, we start by
finding a mapping between the activations of all the units,
a, before and after an application of IMP. This is because a,
and not θ, is the analogous quantity to s (Table 1). Without
loss of generality, we can consider the activation of unit j
in layer i as being defined by

a
(i)
j = h

[∑
k

gk(a,θ)

]
, (10)

where h is the activation function (e.g. ReLu, sigmoid) and
the gk are functions that determine how the different parame-
ters and activations of other units affect a(i)j . For instance, in
a feedforward DNN, the impact of the bias of unit j in layer
i is given by g0 = θ

(i)
j , and the weighted input from the

previous layer is given by g1 =
∑N(i−1)

k=1 θ
(i)
jk a

(i−1)
k . Here

N (i−1) is the number of units in layer i− 1.

As discussed above, IMP changes the parameters θ by the
operator T , which is defined by a composition of M and F .
Therefore, the activation of unit j in layer i, after applying
I, is given by

a′j
(i) = h

[∑
k

gk(a,F ◦Mθ)

]
, (11)

and thus, the projection operator associated with I is

P
(
a
(i)
j , a′j

(i)
)
=

N∏
j=1

δ

{
a′j

(i) − h

[∑
k

gk(a,F ◦Mθ)

]}
.

(12)

We can easily verify that the projection operator defined
by Eq. 12 satisfies all three properties needed for an RG
projection operator. First, property #1 is satisfied, as Eq. 12
is a product of Kronecker delta functions. Property #2 is
satisfied, as IMP only removes parameters, so the form of
a
(i)
j given in Eq. 11 and, thus, the loss function, will remain

intact until layer collapse (i.e. when all the weights from one
layer to another are removed). Finally, for property #3 to be
satisfied, we can fix the test and training sample ordering
for each epoch (as is done when the random seed is fixed).
In such a case, both the mask and refining operators in Eq.
12 are deterministic and P

(
a
(i)
j , a′j

(i)
)

will be unique.

Having found that Eq. 12 satisfies the three properties nec-
essary for an RG projection operator, we have therefore
shown that I meets the criteria for being an RG operator.
To the best of our knowledge, this has not been previously
identified and provides new insight into why IMP has found
success in discovering winning tickets (Frankle & Carbin,
2019; Frankle et al., 2020a) and an uncovering more general
DNN phenomena (Frankle et al., 2020b).

4. IMP Eigenfunctions
In order to study the IMP flow, we need to find eigenfunc-
tions of T from Eq. 5. By looking at the eigenvalues
corresponding to those eigenfunctions, we can determine
the relevant and irrelevant directions.

For spin systems in statistical physics, the RG flow is studied
in the space of coupling constants (Fig. 1). Each coupling
constant is usually assumed to be the same for all spins,
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greatly reducing the dimensionality of the underlying space.
While most DNNs do not set all parameters of a given type
to the same value, we can none-the-less estimate the relative
“influence” the parameters of a given layer or residual block
have on the full DNN, by considering the functions

Mi(n) =

N(i)∑
j=1

|m(i)
j (n) · θ(i)j (n)|

/ N∑
k=1

|mk(n) · θk(n)|,

(13)
which describe the percentage of the total remaining param-
eter magnitude that remains in layer or residual block i after
n applications of IMP. For example, M1(2) = 0.25 implies
that, after 2 rounds of IMP, layer 1 has 25% of all the re-
maining weight of the DNN. The numerator in Eq. 13 sums
over all N (i) of the parameters restricted to layer or residual
block i, θ(i). Multiplying by the corresponding elements
of the pruning mask, m(i) ∈ {0, 1}N(i)

, makes sure that
only the non-pruned parameters are considered in the sum.
The denominator sums over all N parameters of the DNN,
multiplied again by the corresponding mask values, making
it equal to the total magnitude of all non-pruned parameters.

If the Mi are eigenfunctions of the IMP operator, then they
will scale exponentially with respect to the number of itera-
tions T has been applied. That is, Mi(n+1) = T Mi(n) =
λiMi(n) = λn+1

i M(0), where λi is the eigenvalue gov-
erning its exponential growth/decay. We can find λi by
the simple inversion, λi = Mi(n+ 1)/Mi(n). As long as
Mi(n) ̸= 0, this is well defined and we can approximate λi

by averaging over the computed values from each pair of
data points. When we compute the λi of the computer vision
models we study in Sec. 5, the standard error of the mean
(SEM) is < 5%, supporting the idea that it is appropriate to
consider the Mi as eigenfunctions.

Because the degree of coarse-graining at each step (i.e. the
amount the DNN gets sparsified, c ∈ [0, 1], with each round
of IMP) affects the magnitude of the eigenvalues, the RG
community often considers the quantity σ,

λi ∼ cσi , (14)

which is invariant to the choice of c (Goldenfeld, 2005).
Taking logc(λi) gives σi. Because we are interested in
comparing across models that prune using different, and
possibly even variable, c values, we will report σi (see
Appendix B for details on how we determined c). Note that,
relevant directions, which have λi > 1, have σi > 0, and
irrelevant directions, which have λi < 1, have σi < 0.

The Mi are not necessarily the only functions one could
consider. Given that the sparsity ratio in each layer or
residual block appears to play a crucial role in the suc-
cess of sparse models (Su et al., 2020; Tanaka et al.,
2020; Frankle et al., 2021), we also evaluated the functions
Pi(n) =

∑N(i)

j=1 m
(i)
j (n)/

∑N
k=1 mk(n), which correspond

to the percent of non-pruned parameters in each layer or
residual block. We found that these functions could also be
reasonably considered eigenfunctions of T , and the results
we got using them to study the IMP flow were consistent
with those we got when using the Mi

2. Future work will
have to determine what set of functions is best to consider.

5. Results
5.1. Computer Vision Transfer

We start by examining the IMP flow of computer vision
models, where the LTH and winning ticket transfer have
been most thoroughly characterized. The goal of this anal-
ysis is to examine models that are known to allow for the
successful transfer of winning tickets and determine whether
they have the same relevant and irrelevant directions. If they
do, this would support the idea that the theory developed
in Sec. 3 properly captures important aspects of sparse
machine learning and can be used to identify transferable
tickets, without additional experiments.

Because ResNet-50 has four residual blocks, IMP induces a
four-dimensional flow in the space of the Mi (Eq. 13). Ex-
ample 2D slices of these are plotted in Fig. 2 of Appendix C
for ResNet-50 trained on CIFAR-10, and CIFAR-100 from
random initialization, with 5% rewind. This data comes
from experiments performed by Chen et al. (2021a).

Computing the σi (using the procedure described in Sec.
4) for ResNet-50 trained on CIFAR-10 and CIFAR-100
from random initialization, with 5% rewind revealed that
CIFAR-10 and CIFAR-100 have similar distributions (Table
2, top row). In particular, both have the first three residual
blocks being relevant and the last block as being irrelevant.
From the theory discussed in Sec. 3, these results imply
that both models are in similar universality classes and that
winning tickets can be transferred between them. Morcos
et al. (2019) indeed confirmed this, finding that winning
tickets could be successfully transferred between CIFAR-10
and CIFAR-100 for ResNet-50s.

This similar distribution of σi may be due to the fact that
the first few residual blocks learn low level statistics of
the data (Neyshabur et al., 2020), which scale in specific,
non-trivial ways for natural images (Ruderman & Bialek,
1994; Saremi & Sejnowski, 2013). The particular sensitivity
of the first two residual blocks (revealed by their large σi

magnitudes), which are the furthest from the output layer,
is in contrast to standard spin systems. In the case of the

2Note that this is for trivial reasons for the pre-trained computer
vision and natural language processing models we consider in Secs.
5.1 and 5.2, as the masks for all the downstream tasks come from
the same pre-trained model. However, even in cases when we did
not consider pre-trained models, Pi gave qualitatively similar σi

as Mi did.
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Table 2. Mean computed σi, corresponding to the eigenfunctions
Mi, for ResNet-50 trained from random initialization (top row)
and pre-trained (PT) on ImageNet. Results from one experiment
each.

TASK σ1 σ2 σ3 σ4

CIFAR-10 0.20 0.14 0.07 −0.68
CIFAR-100 0.14 0.20 0.04 −0.05

PT CIFAR-10 0.15 0.13 0.02 −0.10
PT CIFAR-100 0.15 0.22 0.10 −0.16

2D Ising model, the RG removes long-range interactions
(i.e. couplings between next next-nearest neighbors, etc.),
which are typically assumed, for physical reasons, to be
weak. Systems with relevant long-range interactions have
been found to have unique properties, such as the existence
of a phase transition in 1D (Dyson, 1969).

Recent work has found that using DNN parameters from
models that have been pre-trained on complex tasks allows
for substantial transfer (Chen et al., 2020; 2021a). We there-
fore examined the effect of pre-training using ImageNet
(Huh et al., 2016). We find that, while the winning tick-
ets found using the pre-trained parameter values identify
the same relevant and irrelevant residual blocks as with
the randomly initialized case, CIFAR-10’s σ4 is pushed
considerably closer to CIFAR-100’s σ4 (Table 2, bottom
row). This suggests that the success transferring winning
tickets has found after pre-training comes, in part, from con-
straining the IMP flow, making the σi more similar across
downstream tasks. Note that this is in agreement with in-
tuition that pre-training induces biases. We find similar
results when computing the σi of ResNet-50, pre-trained
on ImageNet, with no task specific refining (Table 5 of
Appendix D), although differences in experimental set-up
prevent direct comparisons between σi values.

5.2. Natural Language Processing Transfer

Winning tickets and their transfer have also been studied in
the context of natural language processing (NLP) models
(Yu et al., 2020; Chen et al., 2020; Prasanna et al., 2020).
We computed the σi on tickets that were found by applying
IMP to pre-trained BERT models on ten downstream NLP
tasks (Rajpurkar et al., 2016; Wang et al., 2018), which
were known to allow for ticket transfer. Data comes from
experiments performed by Chen et al. (2020).

Similar to the computer vision transfer results of Sec. 5.1,
we find that tasks that have transferable winning tickets have
very similar σi (Table 3). That the σi, for different tasks,
so nearly match each other provides further support for the
idea that pre-training confines the IMP flow.

However, there is an important difference between the
ResNet-50 and BERT results. Namely, all the BERT σi

(other than σ1) are closely clustered around 0, being one to
two orders of magnitude smaller than those of ResNet-50.
This suggests that, unlike pre-trained ResNet-50, pre-trained
BERT has a considerably more static IMP flow, possibly
being near a fixed point.

Previous work on transformers applied to computer vision
tasks have shown that self-attention heads in consecutive
layers can become extremely similar (Touvron et al., 2021;
Gong et al., 2021; Zhou et al., 2021). If BERT layers are
likewise learning highly overlapping features, then it would
be natural to find it at an IMP fixed point. Future work
should investigate how methods that have been developed to
break this self-similarity (Touvron et al., 2021; Gong et al.,
2021; Zhou et al., 2021) affect the IMP eigenvalues and the
transferability of tickets between tasks.

5.3. Elastic Lottery Ticket Hypothesis

Recent work on the “Elastic Lottery Ticket Hypothesis” (E-
LTH) has extended the notion of tranferability by finding it
possible to transform winning tickets found on one model
to another with a different architecture (Chen et al., 2021c).
In particular, it was found that, for architectures in the same
family (e.g. ResNets), trained on the same task, it was
possible to either squeeze (by removing residual blocks) or
stretch (by replicating residual blocks) winning tickets so
that they could be transferred.

Three results from this study are especially noteworthy
(Chen et al., 2021c):

❶ The smallest ResNets considered (ResNet-14 and
ResNet-20) had the weakest transferability properties;

❷ The more unique residual blocks replicated, the better
the performance;

❸ Removing the later residual blocks, in the case of
shrinking, or replicating the earlier residual blocks,
in the case of stretching, led to the best results.

While preliminary hypotheses on the origin of these results
were developed by Chen et al. (2021c), involving dynamical
systems and unrolled estimation, detailed understanding
was left to future work. We examined whether the RG
framework developed here could provide further insight
into these results.

We computed the σi for each “normal” residual block of
ResNet-14/20/32/44/56, trained on CIFAR-10 [data from
Chen et al. (2021c)]. As discussed in the original paper,
the down-sampling residual block in each stage was not
transformed between winning tickets, so they were not con-
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Table 3. Mean computed σi, corresponding to the eigenfunctions Mi, for pre-trained BERT on ten downstream tasks NLP tasks (Rajpurkar
et al., 2016; Wang et al., 2018). Results from one experiment each.

TASK σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12

MNLI −0.054 −0.005 −0.001 0.002 0.017 0.018 0.013 −0.010 −0.004 0.013 0.007 0.004
QQP −0.056 −0.004 −0.001 0.001 0.017 0.018 0.013 −0.010 −0.003 0.014 0.007 0.005

STS-B −0.058 −0.004 −0.002 0.001 0.016 0.018 0.013 −0.010 −0.003 0.014 0.008 0.006
WNLI −0.058 −0.004 −0.002 0.001 0.016 0.018 0.013 −0.010 −0.003 0.015 0.008 0.006
QNLI −0.057 −0.004 −0.001 0.001 0.017 0.018 0.013 −0.010 −0.003 0.014 0.007 0.005
MRPC −0.058 −0.004 −0.002 0.001 0.016 0.018 0.013 −0.010 −0.002 0.015 0.008 0.006
RTE −0.058 −0.004 −0.001 0.001 0.016 0.018 0.014 −0.010 −0.003 0.014 0.008 0.006

SST-2 −0.058 −0.004 −0.001 0.001 0.017 0.018 0.013 −0.010 −0.003 0.014 0.007 0.006
COLA −0.058 −0.004 −0.002 0.001 0.016 0.018 0.013 −0.010 −0.002 0.014 0.007 0.006

SQUAD V1.1 −0.052 −0.005 −0.001 0.002 0.017 0.018 0.014 −0.009 −0.003 0.012 0.005 0.004

Table 4. Mean computed σi, corresponding to the eigenfunctions
Mi, for the first stage of various ResNet architectures. Results are
mean across three experiments.

Architecture σi

ResNet-14 0.23

ResNet-20 0.23, 0.26
ResNet-32 −0.04, 0.19, 0.18, 0.26
ResNet-44 −0.03, −0.00, 0.20, 0.19, 0.19, 0.23
ResNet-56 0.06, −0.10, 0.25, 0.20, 0.18, 0.21, 0.11, 0.24

sidered. The σi for the residual blocks in the first stage, of
all the architectures considered, are presented in Table 4.

We find that, while the smaller ResNets (ResNet-14 and
ResNet-20) have only relevant residual blocks, the larger
ResNets have at least one non-relevant block, and have a
broader distribution of positive σi values. Therefore, using
ResNet-14 or ResNet-20 as the source ticket necessarily
leads to the transformed ticket having residual blocks with
larger relative weighting than the target ticket (because of
the larger σi). This is likely related to the idea that smaller
ResNet models are not sufficiently expressive. In addition,
we find that replicating few unique residual blocks (i.e. repli-
cating only block 1 or blocks 1 and 2) can lead to an over
representation of either relevant or irrelevant blocks. This
again leads to a mismatch in the relative weighting of each
residual block between the transformed and target tickets,
likely making transfer less effective.

Finally, we find that most of the residual blocks with σi < 0
are in the early part of the first stage. Therefore, removing
the first several blocks when shrinking a winning ticket
(e.g. dropping the first four blocks to go from ResNet-56
to ResNet-32), or replicating the last several blocks when
stretching a winning ticket (e.g. adding the last two blocks
to go from ResNet-32 to ResNet-44), will again result in the
transformed source ticket having a different structure than
the target ticket.

Note that for the third stage, the nature of the distribution of
σi is different (Table 7 of Appendix E). In particular, Stage
3 has only marginal and non-relevant blocks. However,
there is consistent evidence that the distributions of σi in
the second and third stages (Tables 6 and 7 of Appendix E)
are similarly related to the three results from the original
E-LTH paper (Chen et al., 2021c) we highlighted.

6. Discussion
Inspired by similarities between the current state of sparse
machine learning and the state of statistical physics in the
early-to-mid–20th century, we found that iterative magni-
tude pruning (IMP), the principal method used to discover
winning tickets, is a renormalization group (RG) scheme.
Given that the development of the RG led to a first principled
understanding of universal behavior near phase transitions,
as well as a way in which to characterize materials by such
behavior, we reasoned that viewing IMP from an RG per-
spective may prove useful when studying the universality of
winning tickets (Desai et al., 2019; Mehta, 2019; Morcos
et al., 2019; Soelen & Sheppard, 2019; Chen et al., 2020;
Gohil et al., 2020; Chen et al., 2021a; Sabatelli et al., 2021)
and interpreting the general success IMP has found as a tool
for interrogating DNNs (Frankle et al., 2020b).

By viewing IMP as inducing a flow in DNN parameter space
(Eq. 6 and Fig. 2 of Appendix C), we showed that ResNet-
50 models have trajectories with common properties across
different computer vision tasks (Table 2). Winning tickets
are known to be transferable between these models (Morcos
et al., 2019), suggesting that the theory developed in Sec.
3 captures important properties of sparse machine learning
models and may be useful in identifying transferability,
without requiring additional experiments.

Winning tickets found on ResNet-50 models pre-trained
on ImageNet led to similar identification of relevant and
irrelevant residual blocks. However, the values of σ4, which
had differed most significantly in the case of no pre-training,
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were substantially more alike across tasks (Table 2). This
suggests that pre-training constrains the IMP flow, enabling
better transfer. Studying winning tickets found on natural
language processing tasks, using pre-trained BERT models,
again identified σi distributions that were very similar across
downstream tasks (Table 3). Unlike the σi of the pre-trained
ResNet-50, the σi of the pre-trained BERT were tightly
clustered around 0, suggesting that the models are near a
fixed point of the IMP flow. This is consistent with work that
has found that vision transformers can develop self-attention
heads that are nearly identical across layers (Touvron et al.,
2021; Gong et al., 2021; Zhou et al., 2021).

Finally, we applied the RG framework to recent work that
extended the notion of winning ticket universality by trans-
forming tickets between different architectures (Chen et al.,
2021c). We found that the distributions of σi in the smallest
ResNet architectures were more uniform than the distribu-
tions of the largest ResNet architectures. Therefore, using
them as source tickets leads to a mismatch in structure with
target tickets. This is in-line with the observation that the
smallest ResNet architectures had the worst transfer prop-
erties. We additionally found that the σi values offered
interpretations of other experimental results found by Chen
et al. (2021c).

6.1. Future Directions

A wealth of literature has been developed around the RG,
including a number of numerical and theoretical tools that
go beyond what we have used here. Given the connection
between IMP and the RG, made explicit for the first time
in this work, we believe that there is considerable potential
for collaboration between the two fields. Beyond the ideas
already noted, possible directions of future study include:

• Bringing the RG framework to other, non-IMP sparsi-
ficiation methods;

• Computing the σi associated with models that are used
outside of computer vision and natural language pro-
cessing, such as in the context of reinforcement learn-
ing and lifelong learning, where the LTH has been
studied (Yu et al., 2020; Chen et al., 2021b);

• Computing and classifying systems by their critical
exponents (e.g. γ in Eq. 1). We attempted to do this,
but we were limited by having only a few independent
seeds and a scaling function with multiple free param-
eters (Rosenfeld et al., 2020) (see Appendix F). Using
more advanced methods, such as finite scaling (Golden-
feld, 2005), and increasing the number of independent
seeds may allow for better results;

• Developing novel pruning methods. The RG has a
complimentary, momentum space perspective, to the

real space perspective presented in this manuscript (Ap-
pendix A). This framework allows for coarse-graining
at continuous, instead of discrete, scale. Whether this
is possible in the context of DNN pruning is an exciting
question;

• Identifying, via the RG framework, the minimal density
a winning ticket can have and still be transferred to a
given task.
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A. Brief Background on Renormalization Group Theory in Physics
Phase transitions have long fascinated physicists. These transitions can be between phases of matter (e.g. liquid, solid, gas),
but more generally refer to regimes where a continuous, systematic change in one parameter (called the control parameter)
leads to a divergence in another parameter (called the order parameter), or its derivative. Examples of this include the
ferromagnetic phase transition, where a metal goes from being non-magnetic to magnetic as it is cooled (see Fig. 1).

The point at which the divergence occurs is called the critical point. Specific phenomena occur near critical points, such as
power-law scaling of certain observables. As discussed in the main text, m ∼ (tC − t)−β , where m is the magnetization, tC
is the critical temperature, and t is the temperature of the system (Eq. 2). The exponent present in the power-law scaling is
called a critical exponent. A major discovery of 20th century physics was that systems with seemingly different underlying
physics exhibited power-law scaling with the same critical exponents. For example, the liquid gas phase transition also
has an order parameter, the difference in density between gas and liquid, which scales as |ρ+ − ρ−| ∼ |tC − t|−β . The
experimentally measured values of β, in the case of the ferromagnetic transition, are nearly identical to experimental values
of β, in the case of the liquid gas transition (Goldenfeld, 2005).

Various methods were proposed to understand phases transitions, such as mean field theory and Landau theory, however
none could properly compute the critical exponents for two and three dimensional systems. The introduction of the
renormalization group (RG) (Wilson, 1971a;b; 1975) solved this problem by providing an explicit, albeit challenging, way
in which to compute critical exponents and understand their universality.

The formulation of the RG considered in the main text (i.e. the “block spin” or “real space” RG) considers iterative
transformations of physical space (i.e. “coarse-graining”) as a kind of dynamical system, whose linearization around fixed
points of the RG flow gives the associated critical exponents. Note that this is an approximation to the true nonlinear nature
of the RG operator R, and corrections to these computed critical exponents can be obtained. A general framework with
which to do this via normal form theory has recently been proposed (Raju et al., 2019). Beyond this, Redman (2020)
identified the RG as a Koopman operator (Mezić, 2005) (i.e. an infinite dimensional linear operator in function space,
directly associated with the nonlinear dynamics in state space). If a suitably invariant subspace could be found, then the
RG eigenvalues could in principle be computed as eigenvalues of the Koopman operator, without needing to perform any
linearization.

In addition to providing insight into the nature of critical exponents and universality classes, the real space RG has been
used to analytically and numerically compute them. For example, in the former case, RG methods have been used to study
many-body localization (Vosk & Altman, 2013), percolation (Reynolds et al., 1977), the “route to chaos” (Feigenbaum et al.,
1982), and small-world networks (Newman & Watts, 1999). In the latter case, Monte Carlo methods have been adapted to
the RG (Ma, 1976; Swendsen, 1979; Shenker & Tobochnik, 1980), making it possible to study complicated spin systems,
like the Ising spin glass (Wang & Swendsen, 1988; Katzgraber et al., 2006; Jörg & Katzgraber, 2008).

In addition to the real space RG, there is a related framework for using the RG, called the momentum space RG. As the
name suggests, instead of removing degrees of freedom in physical space, this approach removes Fourier modes of the
system with large momentum, and thus, high energy. Because of the relationship between energy and wavelength, this in
effect integrates out short wavelength (i.e. local) degrees of freedom, again coarse-graining the system in physical space.
While the end result is similar, the threshold for what constitutes as “large momentum” can be continuously varied. This
allows for a more refined coarse-graining that is done using the real space RG. The momentum space RG plays a major role
in quantum field theories, and has also been used to compute critical exponents in dimensions less than 4 (Wilson & Fisher,
1972) and extend principal component analysis (Bradde & Bialek, 2017).

We end by noting that the distinction between relevant and irrelevant interactions have been found in many systems, including
biological models and feedforward neural networks (Gutenkunst et al., 2007; Machta et al., 2013).

B. Determining c

In the standard RG theory, the amount of coarse-graining that occurs during each application of the RG operator is given by
b. This corresponds to the size, in each dimension, of the neighborhood over which the spins get amalgamated. For instance,
in the case of the two-dimensional (2D) Ising model example presented in the left most column of Fig. 1, b = 2. Note that
one way to interpret b is that it corresponds to how many of the spins in the original system get turned into one spin in the
coarse-grained system (for each dimension).
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Using this idea, we can compute the amount of coarse-graining that occurs after each round of IMP by considering how the
number of weights a given unit has (on average) changes. If a DNN is sparsefied by an amount x ∈ (0, 1) each round of
IMP, then, for every set of 1/(1− x) weights in the original DNN, there will be 1 weight in the sparsified DNN. Therefore,
we should define the amount of coarse-graining, c, to be c = 1/(1− x).

In the case of the computer vision experiments (Secs. 5.1 and 5.3), the models were sparsified 20% each round. Therefore,
x = 0.2 and c = 1/(1− 0.2) = 1/0.8 = 1.25. Intuitively, this corresponds to the fact that for every 10 weights in the model
that is to be pruned, only 8 would remain after a round of IMP.

In the case of the natural language processing experiments (Sec. 5.2), 10% of the original number of weights are pruned each
round. This means that, x changes as a function of the number of rounds the DNN has been pruned. Initially, x(0) = 0.1
and c = 1/(1− 0.1) = 1.1̄. As x(n) increases with increasing n, so too does c increase. To compute c at IMP round n, we
again use c(n) = 1/(1−x(n)), where x(n) = 1/(10−n). Thus, when n = 2, c(2) = 1/[1−1/(10−2)] = 8/7 = 1.14....

C. IMP Flow
As discussed in the main text, we chose to analyze the IMP flow by considering its action on the functions Mi(n) (Eq. 13).
These describe the proportion of parameter magnitude remaining in layer or residual block i after n rounds of IMP. We
found that these functions evolved in an exponential manner, described by the constant λi. This made us consider them to
be eigenfunctions of T (Eq. 5), with λi being eigenvalues that determine whether residual block is relevant, irrelevant, or
marginal (defined in the RG sense – see Sec. 3). In Fig. 2, we visualize the flow projected onto two of the eigenfunctions.
While the curves do not start from the same point (implying distinct distributions of weights for different tasks), they evolve
at a similar rate (determined by the λi – see Table 2 for the reported values of logc λi).

Figure 2. IMP flow. Two-dimensional projections of the IMP flow for ResNet-50 trained from random initialization, with 5% rewind,
applied to two different tasks: CIFAR-10 (circles), and CIFAR-100 (squares). Blue corresponds to a single application of IMP (density
equal to 80%) and red corresponds to 17 applications of IMP (density equal to 1.44%).

D. Additional Computer Vision Transfer Results
In addition to the computer vision transfer results that we present in the main text (Table 2), we also computed the σi

for a ResNet-50 pre-trained on ImageNet with no fine-tuning (Table 5). The exact way in which IMP was applied was
slightly different from the experiments presented in the main text (namely, all layers of each residual block could be pruned,
including the first one). Given these differences, we decided to report the results separately from those of the main text.
However, we reach a similar conclusion as we did for the other ResNet-50 experiments (Table 2). Namely that the first three
residual blocks are relevant, and the last one is irrelevant.

E. Additional E-LTH Results
In the main text on the experimental results surrounding the “Elastic Lottery Ticket Hypothesis” (E-LTH), we reported the
σi corresponding to the eigenfunctions of the residual blocks in the first stage. The models considered by Chen et al. (2021c)
had two other stages, whose σi we report here in Tables 6 and 7.

While the distributions of σi are different than that of Stage 1, we again find that ResNet-14 and ResNet-20 have residual
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Table 5. Mean computed σi, corresponding to the eigenfunctions Mi, for ResNet-50 pre-trained on ImageNet with no fine-tuning. Results
from one experiment.

NETWORK σ1 σ2 σ3 σ4

PRE-TRAINED IMAGENET 0.45 0.30 0.08 −0.24

blocks that are more uniform in their sensitivity to pruning (i.e. have σi with more similar values) than the larger models.

Table 6. Computed σi, corresponding to the eigenfunctions Mi, for the second stage of various ResNet architectures. Results are mean
across three experiments.

ResNet architecture σi

ResNet-14 0.10
ResNet-20 0.08, 0.07
ResNet-32 0.11, 0.11, 0.04, −0.01
ResNet-44 0.15, 0.11, 0.10, 0.09, 0.02, 0.04
ResNet-56 0.10, 0.06, 0.06, 0.06, 0.02, −0.01, −0.06, 0.03

Table 7. Computed σi, corresponding to the eigenfunctions Mi, for the third stage of various ResNet architectures. Results are mean
across three experiments.

ResNet architecture σi

ResNet-14 −0.21
ResNet-20 −0.16, −0.20
ResNet-32 −0.06, −0.09, −0.13, −0.16
ResNet-44 −0.09, −0.13, −0.16, −0.20, −0.15, −0.08
ResNet-56 −0.11, −0.12, −0.13, −0.15, −0.18, −0.12, −0.04, −0.03

F. Critical Exponents
Following the recent work on scaling laws for IMP developed by Rosenfeld et al. (2020), we fit the error, ϵ, defined as 100%
minus the top-1 accuracy, as a function of density, d, defined as percent of weights remaining, via the functional form

ϵ̂(d, ϵnp, ϵ
↑, γ, p) = ϵnp

∣∣∣∣∣∣∣
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) 1
γ

d− ip
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(
d2 + p2( ϵ↑

ϵnp
)2/γ

)
(d2 + p2)

γ/2

,

(15)

where i =
√
−1. Here ϵnp is interpreted as the error associated with not pruning, ϵ↑ as the asymptotic error upon maximal

pruning, γ as the sensitivity of the combination of network architecture, task, activation function, and optimizer to pruning,
and p as controlling how the transition from no change in error to power-law scaling takes place. Importantly, γ can be
viewed as a critical exponent under the RG framework (Eq. 1). Because systems in the same universality class have the
same critical exponents, we examined whether we could find evidence of universality in the computed value of γ for various
different computer vision models.

We found the fits to be sensitive to ϵnp and, in some cases, there was not a clear single value for ϵnp. Therefore, we
included ϵnp as a free parameter (which Rosenfeld et al. (2020) did not do), but we tightly bounded the value so as to
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Table 8. Critical exponent, γ, for ResNet-50 with either no pre-training and 5% rewinding, or pre-training using ImageNet or simCLR.
Data from Chen et al. (2021a). Results are from fitting Eq. 15 to mean of two or three seeds.

Data-set No pre-train ImageNet simCLR MoCo
CIFAR-10 γ = -0.14 γ = -0.10 γ = -0.16 γ = -0.21

CIFAR-100 γ = -0.11 γ = -0.15 γ = -0.06 γ = -0.24
SVHN γ = -0.07 γ = -0.06 γ = -0.03 γ = -0.29

ImageNet – γ = -0.42 – –
simCLR – – γ = -1.01 –

Figure 3. Error, as a function of density, scaling of CIFAR-10/100 and SVHN. Overlaying the error, as a function of density, curves for
ResNet-50, trained from random initialization, on CIFAR-10/100 or SVHN, with 5% rewind. The overlaid curves shows similar, albeit
noisy, behavior.

minimize instability in adding another free parameter. To numerically compute the fits, we used scipy’s curve fitting function:
scipy.optimize.curve fit (Jones et al., 2001–).

The computed values of γ for ResNet-50 evaluated on CIFAR-10, CIFAR-100, and SVHN are presented in Table 8. The
effect of pre-training using various methods is also given. The γ values vary, sometimes considerably, across tasks and
method of pre-training (e.g. CIFAR-10 and SVHN pre-trained via simCLR). However, we note that the data came from only
two or three seeds, making the fits susceptible to noise and making the quantification of error in the computed γ difficult. In
addition, the fitting function of Eq. 15 has multiple free parameters (including an additional one we added), again making
the fit susceptible to noise.

Taking these possible complications into account, we overlaid the different error as a function of density scaling curves (an
example of which is given in Fig. 3). We found that they qualitatively matched each other more than the computed γ may
have made it seem. We imagine that trying different fitting procedures [especially making use of methods developed in the
context of statistical physics, such as finite scaling (Goldenfeld, 2005)], as well as using more independent random seeds,
will enable more accurate and robust approximations of γ.


