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Abstract

Short-term plasticity (STP) is a mechanism that
stores decaying memories in synapses of the cere-
bral cortex. In computing practice, STP has been
used, but mostly in the niche of spiking neu-
rons, even though theory predicts that it is the
optimal solution to certain dynamic tasks. Here
we present a new type of recurrent neural unit,
the STP Neuron (STPN), which indeed turns out
strikingly powerful. Its key mechanism is that
synapses have a state, propagated through time
by a self-recurrent connection-within-the-synapse.
This formulation enables training the plasticity
with backpropagation through time, resulting in
a form of learning to learn and forget in the short
term. The STPN outperforms all tested alterna-
tives, i.e. RNNs, LSTMs, other models with fast
weights, and differentiable plasticity. We confirm
this in both supervised and reinforcement learning
(RL), and in tasks such as Associative Retrieval,
Maze Exploration, Atari video games, and Mu-
JoCo robotics. Moreover, we calculate that, in
neuromorphic or biological circuits, the STPN
minimizes energy consumption across models,
as it depresses individual synapses dynamically.
Based on these, biological STP may have been a
strong evolutionary attractor that maximizes both
efficiency and computational power. The STPN
now brings these neuromorphic advantages also
to a broad spectrum of machine learning practice.
Code is available at https://github.com/
NeuromorphicComputing/stpn.
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1. Introduction
1.1. Biological vs artificial neural networks

Biological neural networks are the source of inspiration for
some of the most successful machine learning (ML) models,
namely the artificial neural networks (ANNs) that underpin
Deep Learning. Despite the success of ANNs, artificial in-
telligence (AI) models still pale in comparison to animals
and humans in several respects. Widely acknowledged lim-
itations include (a) the vast number of training episodes
required before mastering a task, (b) difficulties in dynami-
cally changing tasks, (c) the ad hoc task-specificity of ANN
architectures, and (d) the high energy demands of running
the algorithms on computers. Similarly, despite their bi-
ological inspiration at an abstract level, ANNs lack many
of the computational operations that the known neuronal
biophysics implies. It is conceivable that this latter disparity
in implementation also underlies the former mismatch in
performance. In particular, much of the complexity within
biological neurons (a) is dedicated to synaptic plasticity for
learning, (b) is governed by dynamically changing chemi-
cal concentrations, (c) is maintained across brain areas and
species, and (d) accomplishes extreme energy efficiency. It
is hard to ignore that these four biological properties that
are largely missing from ANNs have a one-to-one corre-
spondence to the four aforementioned limitations of ANNs.
Based on this, our high-level ambition here is to explore
whether these biological properties and the associated advan-
tages can be brought to Deep Learning by a new rendition of
a particular neuromorphic mechanism, i.e. short-term plas-
ticity (STP) of synapses. Our approach is closely related
to concepts from multiple subfields (Fig. 1.A), which we
review in this section.

1.2. Neuromorphic Computing

Our goal here is aligned with the field of neuromorphic com-
puting, which has been porting biophysical mechanisms
from experimental neuroscience into models and emulating
them in electronic circuits to improve neural computation
(Indiveri & Horiuchi, 2011; Indiveri, 2021; Sarwat et al.,
2022a;b). However, the focus has been mostly on the spe-
cific property of spiking neuronal activations, in so-called
spiking neural networks (SNNs) (Maass, 1997; Ponulak &
Kasinski, 2011). In addition, the field’s aim has been over-
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Figure 1. (A) Our STPN model in the literature’s context. (B)
Simple connectionist neuron, with synaptic efficacies g. (C) The
STPN. Plasticity through recurrent parameters, e.g. λ.

whelmingly to increase energy efficiency of the state of the
art (SOTA), rather than its proficiency such as classification
accuracy or achieved reward in useful tasks. Nevertheless,
recent results show that advantages of neuromorphic mech-
anisms are not limited to efficiency. If other properties than
spikes are considered, such as STP, neuromorphic models
can in fact also lead to more proficient models (Moraitis
et al., 2020), while remaining compatible with efficient elec-
tronics (Sarwat et al., 2022a).

1.3. Plasticity and Short-Term Plasticity

The term “plasticity” refers to the rules that determine how
the efficacy, i.e. strength, of synaptic connections changes in
the brain or in model networks. The term is often reserved
for local rules, i.e. when the changes of a synapse depend on
signals from the pre-synaptic and/or the post-synaptic neu-
ron that the synapse connects, and potentially a third signal,
such as concentration of neuromodulators (Gerstner et al.,
2018; Pogodin & Latham, 2020; Sarwat et al., 2022b). Such
plasticity is generally considered the underlying principle
of learning in the brain, and a possible path to life-long ML.
One type of plasticity rule is STP (Zucker, 1989; Tsodyks &
Markram, 1997; Chamberlain et al., 2008; Mongillo et al.,
2008), i.e. a type of plasticity with strong biological evi-
dence, whose effect is constrained in time. On the other
hand, if each plastic change is persistent, the rule is a type
of long-term plasticity. For example, Hebb postulated that
biological weights are updated proportionally to pre- and
post-synaptic activations (Hebb, 1949). Despite its simplic-
ity, networks with Hebbian-like plasticity and without su-
pervision can be used to optimize models such as Bayesian

mixtures (Nessler et al., 2009) and to solve tasks such as
handwritten digit classification fast and with robustness to
adversarial attacks (Moraitis et al., 2021). Extensions of
such plasticity can be both insightful and powerful, playing
a key role in the ML SOTA (Nessler et al., 2009; Scellier &
Bengio, 2019; Löwe et al., 2019; Limbacher & Legenstein,
2020; Millidge et al., 2020; Illing et al., 2021). Particularly
relevant to the present manuscript are cases where a plastic-
ity rule causes synaptic changes at a different timescale with
respect to another learning rule. This concept of “subordi-
nate” or “interleaved” changes in synapses has been termed
dynamic weights (Feldman, 1982), fast weights (Hinton &
Plaut, 1987; Schmidhuber, 1992; 1993; Tieleman & Hinton,
2009; Ba et al., 2016; Schlag & Schmidhuber, 2017), or
simply plasticity or learning (Bengio et al., 1990; Moraitis
et al., 2018b; Miconi et al., 2018; 2020; Moraitis et al., 2020;
Miconi, 2021). Interestingly, some of these approaches that
use associative plastic updates have been shown to be equiv-
alent to attention mechanisms (Ba et al., 2016), and even to
models like linear transformers (Schlag et al., 2021).

The short-term aspect of STP can be modelled by splitting
the synaptic efficacy G that weights a presynaptic input,
into a long-term weight W and an additive or multiplicative
short-term component F , e.g. G = W + F . Subsequently,
an update rule, which depends on local variables, incre-
ments F , which otherwise decays exponentially with time,
implying a type of learning followed by forgetting. The
literature has shown diverse functions emerging from the
various forms of STP. For example, STP can apply temporal
filtering on synaptic inputs (Rosenbaum et al., 2012), or
underpin biophysical models of working memory (Mongillo
et al., 2008; Szatmáry & Izhikevich, 2010; Fiebig & Lansner,
2017). If realized as the fast-weight counterpart to a concur-
rent slower plasticity, it can focus learning from sequences
on multiple timescales of the input (Moraitis et al., 2018a;b).
It also instils a long short-term memory to recurrently con-
nected neural networks (RNNs), resulting in properties and
performance similar to Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) units (Bellec & Salaj
et al., 2018). In all these cases, STP was studied in the
context of SNNs. The reason is that the increased biological
plausibility of the spiking activations is a more useful model
for many neuroscientists, and may bring energy efficiency
advantages to neuromorphic engineering. However, SNNs
are also harder to analyse mathematically or train practically,
which limits the potential improvements from STP in useful
ML tasks.

Nevertheless, two recent models with STP did outperform
others without in specific tasks, even though the STP-
equipped models were SNNs. Namely, first, STP led to
improved learning of restricted Boltzmann machines from
unbalanced data (Leng et al., 2018). Second, and in closer
relation to our present study, a very simple SNN learned
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without supervision from the standard static MNIST dataset
of handwritten digits (LeCun et al., 1998), but was tested
on the classification of frames of a video of digits with mov-
ing occlusions (Moraitis et al., 2020). Surprisingly, owing
to STP’s dynamics at the input synapses, the SNN outper-
formed simple supervised convolutional neural networks
and LSTMs, even trained on the video dataset with temporal
context. Moraitis et al. (2020) also included a mathematical
proof that neural networks with STP at their input synapses
are in fact the optimal model for certain dynamic data. The
key enabling principle is that input synapses with STP mem-
orize not only dataset-wide features in the long-term weights
W , but also recent features that are relevant to the immediate
future in the short-term component F . However, the practi-
cal demonstrations of STP’s advantages remain limited due
to the reliance on spiking neurons. It should be noted that
some of the non-spiking models with fast weights, particu-
larly those co-authored by Hinton (Hinton & Plaut, 1987;
Tieleman & Hinton, 2009; Ba et al., 2016). Hinton & Plaut
(1987); Tieleman & Hinton (2009) did include STP-like
decaying dynamics in the fast subordinate weight changes,
however training of the STP’s parameters was not reported.
In Ba et al. (2016), backpropagation trained an RNN’s con-
ventional slow weights end-to-end, while additional fast
weights were updated by a separate non-learnable rule, also
during inference. This system was able to solve tasks where
attention to the recent inputs is important. However, the
authors did not include STP in input synapses, but only
in recurrent connections between hidden units. Here, we
hypothesize that STP’s potential for Deep Learning can be
realized by enabling STP also at the input synapses, as in the
theoretically supported proposal of Moraitis et al. (2020).

In order to fulfil the promise of optimally adapting plastic-
ity, one important element is missing from those previous
studies. That is the optimization of the STP rule for each
synapse and through learning, as opposed to fixed STP based
on chosen hyper-parameters and uniform for all connections.
How to realize this last ingredient is not immediately obvi-
ous. One recent work (Tyulmankov et al., 2022) did train
a model equipped with the Hebbian STP mechanism of
Moraitis et al. (2020). However, that model does not sup-
port recurrent connections between neurons, uses uniform
plasticity parameters across all synapses, and focuses on
simple associative tasks of random binary inputs. Therefore,
the key advance was that the uniform hyperparameter in
the earlier work was hand-tuned as opposed to optimized
through backpropagation. Here we target advanced tasks,
through fully recurrent models, and through the training of
individual synapses’ STP. To achieve this, we implement
STP in a synapse as a sub-connection within that synapse,
thus resulting in a formulation of STP Neurons (STPNs) as
a novel type of recurrent unit (see Section 2). Through this
formulation, the learning-and-forgetting function of STP

becomes itself trainable, drawing links to the category of
algorithms that are meta-learning, i.e. learning to learn.

1.4. Learning to learn

Meta-learning is a paradigm that applies machine learning
to improve further learning in new domains. This has been
considered analogous to the nesting of biological timescales
of evolution, development, life-long skill learning, and learn-
ing for temporary objectives. In fact, direct empirical evi-
dence for meta-plasticity, i.e. changes in plasticity, in the
brain has been observed (Abraham & Bear, 1996). More
generally, a large body of ML literature on meta-learning ex-
ists, with various approaches and applications (Schmidhuber
et al., 1996; Thrun & Pratt, 1998; Bellec & Salaj et al., 2018;
Hospedales et al., 2020). For instance, it has been shown
that, through minimal modifications to how the training data
is provided, RNNs learn to learn, where the inner learn-
ing loop consists in changes of recurrent state rather than
changes of weights (Hochreiter et al., 2001; Wang et al.,
2016). Clearly, some of the most relevant meta-learning
methods with respect to our work here are those where
learning to learn consists in learning the parameters of a
plasticity rule that controls the changes of weights within the
inner loop. Both evolutionary (Soltoggio et al., 2018) and
gradient-based (Bengio et al., 1990) algorithms have long
been described for such plasticity-rule meta-learning pur-
pose. However, backpropagation-based end-to-end training
of the individual-synapse plasticity parameters along with
the other parameters of a neural network has only recently
been demonstrated (Miconi et al., 2018). The trainable plas-
ticity in that work outperformed non-plastic neural networks
and has been followed up with extensions that confirm its ad-
vantages (Miconi et al., 2019; Beaulieu et al., 2020; Miconi,
2021). However, thus far, none of these has incorporated
STP. It has not been obvious how to learn the spontaneous
temporal dynamics of synaptic efficacy decay, i.e. how to
learn the forgetting aspect of STP, for each synapse. As
a matter of fact, in models without STP, fast weights are
long-term, i.e. they persist through time, unless the fast-
weight-update mechanism applies a learning increment or
decrement. As a result, they lack a dedicated forgetting
mechanism, and forgetting must be handled by the mecha-
nism intended for learning. We believe that demonstrating
the importance of learning to forget would be an important
contribution to the meta-learning field, as it could possibly
relate to the challenge of catastrophic forgetting in continual
deep learning. Catastrophic forgetting refers to the phe-
nomenon of neglecting a previously learned task because of
learning a new one, and it is one of the important motiva-
tions for meta-learning research (Vuorio et al., 2018; Ren
et al., 2018; Flennerhag et al., 2019; Javed & White, 2019;
Hospedales et al., 2020; Sinitsin et al., 2020). It is plausible
that learning, not only to learn, but also to explicitly for-
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get would mitigate catastrophic forgetting. Here indeed we
present a procedure of learning to learn and forget, realized
as learning of STP parameters.

1.5. Contribution to the field

We present STPN, a new recurrent type of unit that expands
the family of RNNs with the possibility of a recurrent state
within each input synapse. It extends other fast-weight mod-
els by adding STP to inputs, and by making STP trainable
per synapse. It builds on other models of differentiable
plasticity by including a short-term aspect. It complements
learning to learn with learning to forget. We will show that
it is a better RNN choice than LSTM, surpasses the most
recent fast-weight models, and outperforms other differ-
entiable plasticity mechanisms, in a variety of tasks, with
supervised and reinforcement learning, including examples
of meta-learning. STPN’s benefits comprise both improved
task proficiency and energy efficiency.

2. The STPN model
2.1. The model

We begin to construct the STPN model by defining initially
a simple feed-forward hidden unit with activation hj , that re-
ceives an input vector x from a preceding layer, and weights
it by a synaptic efficacy vector gj (Fig. 1B). Two realiza-
tions (Fig. 1C) serve as intuition for casting such a model as
a recurrent unit when STP is added. Firstly, the postsynaptic
activation hj may feed back to the input synapses as one
of the factors of the plasticity rule, e.g if STP is Hebbian.
Secondly, the short-term memory and decay of each efficacy
gij implies that the synapse contains a state variable that is
partly propagated to itself forward in time. Intuitively, these
are two self-recurrent loops.

The specific type of STP that we choose to base the STPN
model on is the one that was motivated theoretically in
Moraitis et al. (2020). According to this, a hidden neu-
ron j receiving an input vector x from a preceding layer,
weights it by a synaptic efficacy vector gj that consists of
two additive components: gj = wj + f j . STP acts on
f j . Meanwhile, component w may be fixed, or updated
by a different learning rule, either concurrently with STP,
or preceding it. In this work, w is updated via backprop-
agation in the outer loop between sequences. This STP
rule dictates that fij in a synapse j from neuron i, firstly
decays exponentially with time t, and secondly is subject to
Hebbian plasticity proportional to the pre- and post-synaptic
variables xi and hj .

Based on the intuition for the two self-recurrent loops we
construct STPN as a recurrent unit that aims to have anal-
ogous functionality to the latter Hebbian STP rule. We
introduce upper-case symbolsG = W + F to indicate the

matrices that connect the input vector to the hidden unit
vector, and two equally-sized matrices Λ and Γ that contain
elements λij and γij , which parameterize the STP. We will
symbolize the element-wise and outer products by � and ⊗
respectively.

One time-step’s pass through a layer of STPN units in this
basic version, and assuming fixed weights W and a non-
linearity σ(·), is described by the following set of equations,
where 1 indicates a matrix of ones:

G(t) = W + F (t) (1)

h(t) = σ(G(t)x(t)) (2)

F (t+1) = Γ� (x(t) ⊗ h(t)) + (1−Λ)� F (t) (3)

The activation h depends on the short-term component F
through G (Eqs. (1) and (2)). F , in turn, depends on the
activation and on itself (Eq. (3)), wherein lies the recurrency
of this model. Unlike in standard RNNs, this recurrency
does not necessitate recurrent connections between hidden
states hj , i.e. there are no synapses connecting units of the
same layer. The recurrency is mediated in this case through
the parameter matrices Γ and Λ that connect the synaptic
state to itself and to its postsynaptic neuron. Therefore, this
model realizes an uncommon type of recurrent connectivity,
characterized by meta-weights, i.e. connections (self-loop
from fij through λij in Fig. 1D) within each synaptic con-
nection (blue square gij in Fig. 1D).

In meta-learning terms, the Hebbian STP of Eqs. (1)-(3)
describes one iteration of an inner learning (and forgetting)
loop that is unsupervised (see Section 2.3).

2.2. Equivalence to STP

It can be shown rather simply that the STPN construct is
not merely analogous to a neuron with the Hebbian STP
rule that we focus on, but it is exactly this - however in
the discrete rather than the continuous time domain. The
original equations of the rule dictate firstly an exponential
decay over time with a rate 0 < λij < 1:

dfij
dt

(decay)

= −λijfij . (4)

Secondly, at any discrete time point that the synapse receives
an input X(t)

i , Hebbian plasticity with a learning rate γij
increments fij as well, by a ∆fij that also depends on the
post-synaptic output h(t)j :

dfij
dt

(Hebb)

= ∆f
(t)(Hebb)
ij = γijx

(t)
i h

(t)
j . (5)

The combined effect of Eqs. (4) and (5) describes the full
original STP rule. The continuous-time Eq. (4) can be
approximated arbitrarily closely by small discrete time-steps
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Figure 2. Proficiency during training of the STPN and other models across 4 tasks. Proficiency refers to: (A) Validation accuracy in ART
(Ba et al., 2016); (B) Accumulated reward in an episode of the Maze Exploration task (Miconi et al., 2018); (C) Net score in the Atari
game Pong (Bellemare et al., 2013) when one of the players reaches 21. (D) Number of timesteps in balance within an episode, capped at
1000, in Mujoco Inverted Pendulum (Todorov et al., 2012).

through the Euler method (Euler, 1794; Kendall et al., 1989):

δF (t+1)(decay) = −Λ� F (t). (6)

This method has long been used to simulate the continuous-
time evolution of neuromorphic models, such as spiking
neurons, including recently (Woźniak et al., 2020).

On the other hand, Eq. (5) is already only dependent on
discrete-time events, so in discrete time it remains the equiv-
alent: ∆F (t+1)(Hebb) = Γ� (x(t) ⊗ h(t)). STPN’s Eq. (3)
can therefore be written as

F (t+1) = F (t) + ∆F (t+1)(Hebb) + δF (t+1)(decay), (7)

which shows that the model indeed is equivalent to discrete-
time Hebbian STP.

2.3. Learning to learn and forget with STPN

STPN’s parameters γij and λij are interpretable quite con-
cretely in two ways. Firstly, as parameters of recurrent
connections, they have a clear role of short-term memory.
Secondly, γ is also the Hebbian learning rate of the synapse,
whereas λ is its forget rate. Further, by framing the model as
a network that is based on standard recurrent weighting op-
erations, STPN’s parameters are trainable. That is, not only
the standard between-neuron connectionsW , but also the

characteristic connections-within-synapses can be trained.
Notably, as these latter learned connections act as STP’s
rates of learning and forgetting, then training these param-
eters realizes a learning-to-learn scheme that also learns
to forget. In this realization of meta-learning, the inner
learning loop is the online unsupervised adaptation of the
network through STP (Eq. (3)) to a given input sequence,
whereas the outer learning loop consists in the optimiza-
tion of the network’s parameters, e.g. via backpropagation
through time (BPTT), for the inner online learning task, over
multiple examples of this inner task (see Algorithm 1 in the
Appendix).

2.4. STPN variants

Even though thus far we have provided a description of
STPN based on a feed-forward base structure (Eq. (2)), the
same connection-within-a-synapse type of recurrency and
plasticity can also be added to models that have recurrency
between hidden units, like simple RNNs do. This simply
changes the unit to also receive inputs from the same hidden
layer, i.e. changes Eq. (2) into

h(t) = σ(G(t)[x(t);h(t−1)]), (8)

accompanied by the corresponding change in size of the
parameter matrices F and W . We refer to the networks
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of Eqs. (2) and (8) as the STPNf and STPNr variants, re-
spectively, of STPN connectivity (for their Feed-forward
and Fully connected, or RNN non-plastic skeleton). This
formulation is extensible to further variants, such as STPNl
for an STPN with the addition of LSTM’s gating, although
those are not explored in this work. The results in Section 4
are achieved using the STPNr in most tasks, except for a
fully-observable robotics environment where we tested the
STPNf.

3. Methods
3.1. Training methods

We found that, given the complexity of our model’s per-
synapse STP parameters, and especially for the more com-
plex STPN models that include recurrency both in the
synapse and between neurons such as the STPNr, train-
ing stability and robustness are not possible automatically.
We explored approaches for making the STPN’s training
robust, and arrived in a strategy that consists in an initializa-
tion method and a weight-normalization approach that we
introduced. See Appendix Algorithm 1 and Appendix A.4
for details.

3.2. Energy consumption measurement

Our approach focuses on the synaptic weighting mechanism,
and as such it could provide guidelines for future neuromor-
phic hardware. Its energy consumption is therefore a key
concern. Given that STP is a highly neuromorphic mech-
anism inspired by biophysics, it is probable that it is also
highly efficient. In principle, STP has the potential to de-
press synaptic currents flexibly and independently through
Hebbian decrements and short-term decay, which is a rea-
son to intuitively expect high energy-efficiency from STPN.
With this in mind, we measured the power consumption
that each model would incur through weighting operations
in hypothetical analog neuromorphic hardware. In such
hardware, presynaptic input x is provided as a voltage V ,
whereas the matrixG of synaptic efficacies g could be rep-
resented in an array of resistive devices with conductance
g, such as memristors (Sarwat et al., 2022a). This enables
weighting and summation through Ohm’s and Kirchhoff’s
laws, and incurs a power consumption by each synapse,
which is proportional to the conductance g and the square
of the applied input voltage V 2, as shown in Eq. (9)

P = V I = V

(
V

R

)
= V 2

(
1

R

)
= V 2g, (9)

where I is the electrical current, and R is the resistance. This
method allowed us to measure the hypothetical power con-
sumption of the various models using P = x2|g|. Notably,
analog signals underlie synaptic transmission also in biolog-
ical synapses, through ions. Fewer ions and smaller currents

are transmitted when the biological synapse is depressed.
Therefore, to the extent that STP is biologically plausible,
our measurements of the STPN’s power consumption pro-
vide some insight also into STP’s role in the brain’s energy
budget.

3.3. Tested baseline models

In our experiments, we compare the STPN with other widely
used networks with memory, like standard RNN and LSTM,
and others with different kinds of synaptic memories, like
RNN with Fast Weights (Ba et al., 2016) and Modulated
plasticity RNN (Miconi et al., 2019). Given the qualitative
architectural differences across the tested models, we make
them comparable by choosing hidden sizes that correspond
to equal number of parameters between models in each ex-
periment. Ba et al. (2016) augmented RNNs by adding
Fast Weights to some connections, specifically between
recurrent neurons, i.e. not in feedforward synapses such as
from the input layer. Also, the hyperparameters of plasticity
are uniform throughout all fast-weight synapses: Hebbian
update factor and decay of current memories. Additionally,
they describe the use of an inner loop where fast weights
can repeatedly act on an intermediate hidden state and be
updated, while the effect of slow weights acts as a sustained
boundary condition in each iteration. However, they found
no significant empirical benefit in performing multiple such
iterations; and neither do we when tuning this baseline.
Additionally, note that this same mechanism can also be
applied to any other network with synaptic memories, and
is conceptually closer to work on recurrent processing of
the same input as a form of adding computational resources
(Schwarzschild et al., 2021a;b; Banino et al., 2021). Fast
Weights RNN is a conceptually simpler version of STPN,
primarily due to its use of plasticity only on recurrent con-
nections, the plasticity rule being uniform across neurons
and synapses, and the fact that parameters modulating fast
learning and forgetting are not trained (but tuned using the
validation set). Other mechanisms implemented by the Fast
Weights network, like layer-normalization of the hidden ac-
tivations, and a repeated application of the plasticity through
multiple recurrent iterations on each time-step of the input
sequence. Our control experiments (not shown) showed
that this iterative aspect offers only a small improvement,
and could be equally applied to STPN. Therefore, the Fast
Weights model serves as a good baseline to the training of a
synapse-specific STP mechanism. Miconi et al. (2018) ex-
ploit the idea of optimizing plasticity by training parameters
that control each synapse’s memory via backpropagation,
hence Differentiable Plasticity. Miconi et al. (2019) fur-
ther add a modulating term to the plasticity, akin to a third
factor of three-factor plasticity rules, which is also trainable.
Unlike STPN, in that prior work no variant could evolve (e.g.
decay) its efficacies spontaneously with time, like STPN
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Figure 3. Power consumption of trained models during inference, evaluated at each timestep. Mean and standard deviation over multiple
random seeds are shown, averaged over multiple inference runs. Lower is better.

does through λ. We select the modulated plasticity variant
(“Modplast”) as a baseline due to its superior performance
among the variants tested in the Maze Exploration task in
(Miconi et al., 2019). The other two major differences in this
specific model with respect to STPN are: a) plasticity only in
recurrent synapses, b) a meta-trained parameter per synapse
that clips the plastic part of the efficacy. This model being
the best out of multiple variants of trainable plastic RNNs
serves as a good baseline for the STPN. HebbFF (Tyul-
mankov et al., 2022) is architecturally equivalent to STPNf
with uniform plasticity. However, it offers no option for
per-synapse plasticity parameters, recurrent between-neuron
connections, or mechanisms to stabilize plastic updates such
as the ones that we introduced Section 3. These become
necessary in tasks with higher complexity than those tested
in (Tyulmankov et al., 2022), which we tested and con-
firmed. Specifically, given that HebbFF could be described
superficially, as a highly-simplified version of the STPN,
we include comparisons to HebbFF alongside several other
simpler STPN versions in Appendix A.2. We also carry out
experiments using networks with non-synaptic memories,
but which are general purpose ANNs with memory, and
shown to perform meta-learning through the encoding of
their neuronal memories (Wang et al., 2016). We compare
the performance of RNN (a direct comparison to STPNr
but without synaptic STP, and a different type of memory to
STPNf) and LSTM (as a more complex non-plastic RNN

with gating and an additional memory mechanism).

3.4. Tested tasks

Associative Retrieval Task (ART) (Ba et al., 2016) tests the
capabilities of a network to successfully store associations
between pairs of elements seen in a sequence, and retrieve
one of the elements of the pair (the value) when queried
with the other (the key) at the end of the sequence. This
task and other variants (Schlag & Schmidhuber, 2017; Le
et al., 2020) are therefore commonly used to compare the
abilities of networks with memories of different nature. For
the setup of this task, we mostly follow the experimental de-
tails provided in Ba et al. (2016), besides the modifications
described in Appendix A.5.1. Maze Exporation: Maze or
grid-like tasks have been commonly used in RL as a data ef-
ficient and interpretable task to test RL algorithms. (Miconi
et al., 2018) instantiates a specific form of such maze, in
which an agent has an egocentric view of its surroundings
and whose goal is to navigate towards a reward, which it can-
not see and whose position is randomized across episodes.
Furthermore, the agent is randomly relocated to another
position in the grid upon reward-finding and at the start of
an episode. Given this environment design, we can think
of the Maze Exploration task as a test to the meta-learning
capabilities of the agents. Firstly, each maze instantiation
(with a fixed reward position) represents the inner loop of
learning, as the agent needs to learn how to effectively navi-
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Figure 4. Energy efficiency as a function of task-specific proficiency, measured at regular intervals during training. Each scattered point is
one instance of the model at a specific point of learning. All seeds for a model shown with the same color.

gate towards this new reward position, and do so from each
initial random position after relocation when the reward is
found. Secondly, across different episodes, parameters need
to be optimized as to help within the inner loop and through
different instantiations of the maze, hence they are learned
to learn. Additionally, even within an episode, we can dis-
tinguish two qualitatively different phases: in the first steps,
the agent needs to explore this instantiation of the maze
in order to find the reward location. Upon learning of the
positioning of the goal, it changes to an exploitation phase
in which the key is to quickly reach the already seen reward.
These two task distributions (the distribution of all possible
mazes and the binary exploration-exploitation phases) posi-
tions this task as a good benchmark for the meta-learning
and sequence adaptiveness capabilities of non-plastic and
plastic networks with memory. Atari games and MuJoco
simulated robotics: The previous two experimental se-
tups, namely ART and Maze Exploration, were presented in
plasticity related articles and have some characteristics that
might favor models with plastic connections. RL is an area
of research where the use of RNNs and its variants is still
widespread in SOTA algorithms, more so in comparison
to supervised learning domains regarding language, video
or audio. In order to go beyond simple tasks to which the
plastic networks literature has been limited, in the interest
of exploring a domain in which RNNs are a component of
SOTA approaches, and with the additional intent to examine
the use of STPN as a general-purpose network with memory,
we present some preliminary experiments with two tasks
from two common Deep RL benchmarks: Atari Pong and
MuJoCo Inverted Pendulum. Pong is an Atari 2600 game
implemented in the Arcade Learning Environment (ALE)
(Bellemare et al., 2013) in which the player faces an op-
ponent, each player controls a bar that they can move up
and down in order to hit a ball and therefore score a goal or
stop the opponent from doing so. The game stops when a
player reaches a score of 21. The reward obtained by the

agent is the net score of the finished game, and the obser-
vations are the game frames. For our experiments in Pong,
we use A2C, the synchronous version of A3C (Mnih et al.,
2016) as the learning algorithm. The agent’s network uses
convolutional layers such as those in Mnih et al. (2016),
a recurrent policy (shared by value and action branches)
and non-plastic, feed-forward value and action branches.
A simple algorithm such as A2C allows to better explore
the real impact of the recurrent unit, and its previous use
in the Maze task provides us with some assurances of its
compatibility with plastic networks. Beyond the shift of do-
main from toy, plastic-network favoring tasks, Pong offers
the first situation in which STPN is embedded in a larger
network, and whose input is not sparse and directly from
the environment, but dense and the result of the processing
of multiple layers. Note because we do not perform frame
stacking, the environment is a partial observable Markov
decision process (POMDP), given that velocity of the ball
cannot be inferred from a single frame (Hausknecht & Stone,
2015). This need for agents with memory justifies the use
of recurrent policies and lack of comparison with a feed
forward policy. MuJoCo (Todorov et al., 2012) is a physics
engine widely used for research in robotics and reinforce-
ment learning. Inverted Pendulum is one of the simplest
tasks within MuJoCo, where the agent aims to balance an
inverted pendulum which sits on a cart, by moving the cart
forward and backward in one dimension with continuous
valued controls. Our experiment with MuJoCo’s inverted
pendulum represents a preliminary step in the direction of
using STPN in more complex problems in robotics and con-
tinuous control like those in the MuJoCo environment, and
in combination more advanced RL algorithms, like Proxi-
mal Policy Optimization (PPO) algorithm (Schulman et al.,
2017) in this case. Unlike Pong without frame stacking,
InvertedPendulum is a fully observable Markov decision
process (MDP), so memory of the past is not needed to as-
sess the present or predict the future. Therefore, training the
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parameters that process hidden memories could represent an
unnecessary effort in terms of credit assignment, aggravated
by hidden states being of much greater dimensional that
environmental observations. Therefore, we use the STPNf
in this case, and MLP as a baseline; in addition to RNN and
LSTM. For the terminology we use for different timescales
(e.g. episodes, epochs, timesteps), see Appendix A.6.

4. Results
4.1. Accuracy & reward

Fig. 2 shows that the STPN is more proficient, i.e. obtains
larger validation accuracy and reward, than all other base-
lines. These plots report the mean and standard deviation
over multiple seeds, except in Fig. 2.C , where we follow
recommendations given in Agarwal et al. (2021) and report
within 0.25 inter-quantile ranges, due the known propen-
sity to certain catastrophic and non-representative runs of
brittle algorithms like A2C in ALE. Furthermore, we find
the unsupervised adaptability of STPN’s plastic weights of-
fers greater performance at inference time, as detailed in
Table 3. Appendix A.2 presents the empirical advantages
of including recurrent connections and learning per-synapse
plasticity for STPN, with respect to non-recurrent or uni-
form plasticity versions of STPN. Additionally, we present
benefits over HebbFF (Tyulmankov et al., 2022), a simpler
feed-forward STPN with uniform plasticity.

Across all tasks, we observe STPN show noticeable stability
in the learning process while achieving higher proficiency
earlier in training. This is particularly clear in the Inverted
Pendulum task, where the mid-training instability of MLP,
also reported by Schulman et al. (2017), is counteracted by
the addition of STP to the synapses. We hypothesize that
compared to other plastic models, explicitly learning decay-
ing dynamics of synaptic memories helps adding stability to
processing of the same inputs across time, as less relevant
synapses will be closer to their long-term value wij .

STPN seems to be more robust to hyperparameter choice
than other tested baselines. Three examples are: a) the fact
that it outperforms modulated plasticity, a similarly complex
plastic model, with the same parameters that are tuned for
that specific network; b) in Pong, STPN can tolerate a larger
learning rate than LSTM, as the latter was unable to learn
with high learning rate for most random seeds, such that it
needed a lower learning rate for its best mean final reward;
and c) like in Maze Exploration, STPN outperforms the
model for which the experiment hyperparameters are tuned
in Inverted Pendulum.

4.2. Energy consumption

The initial hypothesis regarding the trainable dynamical sup-
pression of synapses, specially to input synapses, improving

the energy efficiency of backpropagated-trained models is
unequivocally confirmed in our experiments, as shown in
Figs. 3 and 4. See also Appendix Table 4. Unlike for profi-
ciency metrics like accuracy or reward, the networks are not
given any explicit signal or instruction to be more energeti-
cally efficient, making these results even more remarkable.
However, in some cases a common goal can improve both
proficiency and efficiency in the STPN: suppress unimpor-
tant synapses. We believe these results show such a goal
is met. This is particularly clear in Fig. 4. (A) As the net-
work optimizes proficiency, its energy consumption decays.
Similarly, in Fig. 4. (B) The growth of energy with respect
to reward is minimal relative to other models, and largely
attributable to past reward being part of the agent’s observa-
tion in this experiment (hence a higher reward leading to a
higher norm in the input and higher energy consumption).

4.3. Learning to learn and forget

Standard RNNs are seen as being able to meta-learn the en-
coding of a learning algorithm within its neuronal memories
(Wang et al., 2016). STPN adds a synaptic state, which is
updated by three meta-learned parameters (the long term
synaptic efficacy, and the two STP parameters λ, γ), and
has the potential of a higher influence in the output of the
unit as compared to neuronal memories. The higher profi-
ciency achieved by STPN on meta-learning tasks shows a
learning-to-learn process is improving the predictive perfor-
mance of the network. Further evidence for learning to learn
and forget in the STPN is the following. Firstly, high profi-
ciency is reached early in training, without incurring in too
many instabilities or preventing further optimization at later
stages of training, as can be seen in Fig. 2. Secondly, the
negative slope of the efficiency vs proficiency curve of the
STPN scatter points (Fig. 4) indicates a learning-to-forget
mechanism, that improves both aspects.

5. Discussion
STPN is founded on prior theoretical optimality proofs and
biological evidence. As a result, STPN is more performant,
efficient and learns to better learn and forget than a vari-
ety of other models, and in a broad range of difficult tasks,
by introducing individually trainable short-term plasticity
to all synapses. The model also offers a new method to
increase the efficiency of neuromorphic platforms. In com-
bination with the prior experimental evidence that supports
the biological plausibility of our plasticity, our results also
raise STP’s significance for animal behaviour and for the
brain’s energy budget. This outcome paves new and in-
terdisciplinary research avenues, in RNNs, meta-learning,
neuromorphic computing, and neuroscience, which we hope
to see explored.
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A. Appendix
A.1. The meta-learning algorithm

Algorithm 1 STPN learning to learn and forget in a supervised meta-learning setting
Initialize weights and meta-parameters Θ = [W ;λ;γ]
. Outer-loop learning. E.g. BPTT.
while training do
. Sample input sequence.
S = [x(0), . . . ,x(T )] ∼ D
. Initialize short-term component.
F (0) = 0
. Inner-loop learning via Hebbian STP ≡ Recurrent model receiving an input sequence.
for t = 1 to T do
. Obtain total efficacies.
G(t) = W + F (t)

. Normalize total efficacies and their short-term components (optional but practically impactful).

Ĝ
(t)

= G(t)/‖G(t)‖
F̂

(t)
= F (t)/‖G(t)‖

. Forward pass.

h(t) = σ(Ĝ
(t)
x(t))

. Hebbian STP update ≡ Synaptic-recurrent-state update.

F (t+1) = γ � (x(t) ⊗ h(t)) + λ� F̂
(t)

end for
. Meta-learn via gradient update, e.g. BPTT.
Θ← Θ−∇L

end while

A.2. Importance of learning per-synapse STP parameters

Table 1 shows that learning per-synapse STP parameters achieves greater proficiency and efficiency. This happens for both
STPNf and STPNr, respectively without and with recurrent connections. Note energy efficiency being lower for purely
feed-forward models, as happens for ART, can be expected. This is because recurrent activations are dense, whereas input
for these problems is more sparse and lower magnitude on average, which we do not correct for in these measurements. All
models had their hidden size chosen to have similar number of parameters.

Table 1. Inference-time proficiency and energy efficiency of per-synapse and uniform STP models on ART and Maze Exploration

ART Maze

Model Test accuracy Power consumption Reward Power consumption

STPNr per-synapse STP (Ours) 99.99 ± 0.01 3.4 ± 0.4 115.7 ± 1.6 80.2 ± 2.4
STPNf per-synapse STP (Ours) 89.40 ± 5.14 1.2 ± 0.1 112.9 ± 1.5 154.8 ± 6.3
STPNr uniform STP (Ours) 96.89 ± 6.21 4.0 ± 0.3 74.0 ± 1.4 150.2 ± 5.5
STPNf uniform STP (Ours) 60.21 ± 0.52 2.6 ± 0.1 85.2 ± 1.6 355.6 ± 12.9
HebbFF (Tyulmankov et al., 2022) 10.62 ± 0.02 7.9 ± 1.8 39.9 ± 1.3 385.9 ± 8.9

ART and Maze Exploration tasks were presented in other works presenting different networks with plasticity, so they serve
as solid baselines for STPN without an explicit task bias introduced by our work. Nonetheless, HebbFF’s performance on
these two tasks is far below the structurally equivalent STPNf. Therefore, we decide to test the importance of recurrence and
per-synapse STP in the Continual Familiarity Detection Task presented in (Tyulmankov et al., 2022). In this task, at each
timestep the network is presented with a binary vector whose elements are 1 or −1. With probability 1− p , this vector is
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randomly sampled. Otherwise, with probability p, the vector provided to the network R timesteps ago is used as input again.
One exception is that, if an already repeated input was sampled to be repeated again, a new vector is generated instead. The
network outputs a single bit at every timestep, representing whether it predicts the vector presented is repeated or not.

We report results on the same three variations of this task presented in Tyulmankov et al. (2022), running 5 seeds for each
variation of the task. In the first variation, a single dataset of random vectors is used for all iterations of training (’dataset’
mode). In the following two, a new set of vectors is generated at each training iteration (’infinite’ mode). The distance
between repeated vectors (R) is also varied from 3 to 6 in the last two experiments. We use T=5000 vectors per iteration (as
the experiment logs in the public repository for Tyulmankov et al. (2022)), and train for the same number of epochs as the
released models (Tyulmankov et al., 2022) (although it is not clear whether these were originally trained until convergence).
All other training configurations are exactly the same as found in their publicly available code. We choose the hidden
size of all other variants as to have similar number of parameters to HebbFF. Given HebbFF has a much higher memory
consumption for the same number of trainable parameters than per-synapse STPNr, the STPNr has nearly half the number
of hidden units in the Maze exploration for these comparison results as compared to those shown in Figs. 2 and 3, which
explains the lower performance.

Table 2 shows the generalization accuracy for the three tasks we described. For the ’dataset’ mode, this means accuracy on
a validation set. For the ’infinite’ mode, accuracy is measured on a newly generated dataset at each iteration, which we
label as ’train accuracy’ although the network hasn’t seen these specific examples before (hence generalization). The results
confirm that STPN, especially in its per-synapse variants, performs competitively with HebbFF. Note that we did not tune
any of the STPN variants for this task at all, whereas we can HebbFF to be well tuned. STPN is clearly stronger in the
infinite mode with R=3, which happens to be the one with the shortest training iterations (1600, vs 3000 for ’dataset’ mode
and 3500 for the other ’infinite’ mode task). Possibly training STPN until convergence would have led to more competitive
results, in addition to tuning. Another reason for which HebbFF is better suited for this task is the domain restriction of
STP parameters for HebbFF (e.g. only anti-Hebbian and short-term behavior) can be specially suited to this task but not
generalize to more complex problems. Furthermore, the plastic update stabilization and initialization we use for STPN
might be better suited for more complex problems. This results confirm the use of recurrence and per-synapse STP as a
better general approach to configuring STPN.

Table 2. Generalization proficiency of per-synapse and uniform STP models and LSTM in three variants of the Continual Familiarity
Detection Task (Tyulmankov et al., 2022)

Model Dataset mode (R=3) Infinite mode (R=3) Infinite mode (R=6)

STPNr per-synapse STP (Ours) 97.53 ± 0.31 99.99 ± 0.02 98.98 ± 0.28
STPNf per-synapse STP (Ours) 98.16 ± 0.91 99.92 ± 0.04 98.72 ± 0.19
STPNr uniform STP (Ours) 78.52 ± 12.82 94.13 ± 7.59 90.88 ± 3.00
STPNf uniform STP (Ours) 81.08 ± 14.27 91.95 ± 9.45 91.50 ± 11.67
HebbFF (Tyulmankov et al., 2022) 98.47 ± 0.87 99.68 ± 0.09 99.71 ± 0.12
LSTM 66.75 ± 0.39 78.52 ± 2.07 74.37 ± 2.90

A.3. Further results

For completeness, we present the inference-time equivalents of Figs. 2 and 3 in tabular form, which can be found in Tables 3
and 4. STPN has the added benefit of being able to adapt its synapses after training and hence having a better adaptation
during inference, which clearly provides an added extra performance at test time.

A.4. Training methods

Stabilization through a type of weight normalization. Plastic weights can significantly impact the predictions of
a network based on recent experience. Although significant changes to the effective weights can increase predictive
performance, fast changes of connectionist parameters have the potential to cause a variety of issues during training and
evaluation. For instance, Ba et al. (2016) found that large or small norms in hidden vectors can cause the fast weights
derived from them to grow or shrink excessively, leading to exploding or vanishing gradients. In their case, using layer
normalization of hidden states, and performing a decay of fast weights, successfully controls such instabilities. Miconi et al.
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Figure 5. Generalization proficiency curves during training of per-synapse and uniform STP models and LSTM, in ART, Maze Exploration
and three variants of the Continual Familiarity Detection Task (Tyulmankov et al., 2022)

Table 3. Accuracy and reward of trained models during inference. Averaged over multiple evaluating runs, reported mean and standard
deviation of different random seeds.

Model Associative Retrieval Maze Exploration Pong Inverted Pendulum

STPN (Ours) 98.55 ± 2.76 132.7 ± 1.4 20.7 ± 0.5 985.0 ± 15.0
LSTM 47.28 ± 3.16 119.8 ± 2.1 18.0 ± 4.6 23.2 ± 10.1
RNN 46.83 ± 5.56 97.9 ± 1.9 - 143.0 ± 22.4
Modulated Plasticity 61.49 ± 15.79 112.2 ± 2.0 - -
Fast Weights 80.87 ± 1.67 - - -
MLP - - - 701.8 ± 98.9

Table 4. Power consumption of trained models during inference. Average over multiple inference runs and timesteps within a run, reported
mean and standard deviation over seeds.

Model Associative Retrieval Maze Exploration Pong Inverted Pendulum

STPN (Ours) 10.9 ± 3.8 181.1 ± 2.9 52.7 ± 6.4 7.9 ± 2.5
LSTM 65.6 ± 3.4 649.1 ± 15.3 576.8 ± 33.5 758.8 ± 81.7
RNN 43.0 ± 4.9 330.6 ± 24.3 - 143.0 ± 22.4
Modulated plasticity 32.0 ± 7.4 231.6 ± 23.9 - -
Fast Weights 80.6 ± 69.4 - - -
MLP - - - 115.8 ± 33.9

(2019) cites the inherent instability of Hebbian updates as the reason for inclusion of a clipping mechanism for synaptic
memories. Alternatively, it also experiments with an implicit normalization (by using Oja’s rule instead of Hebb’s rule
for the plastic weight updates), or a decay term (not-trained, a function of the ’fast learning rate’ which is uniform for all
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synapses); ultimately choosing the clipping due to superior empirical results.

In our case, layer normalization of hidden inputs alone is not enough to counteract hidden states of varying norm, as input
also forms part of the Hebbian update. Additionally, the gradients of STP parameters λ and γ, which are trainable in the
STPN, suffer from further instability as these parameters are connected to the computational graph only through the updating
of F . Relying on decaying F is also not an option, given we do not to restrict λ to cause a decay of synaptic memories (as
we found restricting it to hinder proficiency). In fact, in some cases, some synapses learn to potentiate their current memories.
This adds to the issue of growing memories, especially if the updates to synaptic memories happen to also be purely additive.
We experiment with multiple of these techniques, on top of explicit normalization of weights; which ultimately turns out to
be the best option in most cases. This weight normalization is performed on the effective weights for each batch element at
each timestep, which also normalizes the synaptic memories. Note however we store the un-normalized long-term weights,
as these are common to all batch elements and an average norm across the batch defeats the purpose of sequence specific
weight adaptation. Additionally, this allows to implicitly learn the relative norm between long-term and short-term weights,
given no scaling of the normalized weights is learned as in standard weight normalization (Salimans & Kingma, 2016). We
performed normalization per neuron, although similar performance was observed for global normalization and could be
further explored. Additional learnable norm scaling is left for future work. To confirm weight normalization did not provide
an inherent training improvement for all models (but only for STPN due to the previously cited reasons), we trained all
baselines in ART and Maze with equivalent non-parametric weight normalization schemes, and find neither proficiency or
efficiency are improved for other baselines.

Initialization strategy of STP parameters. Initialization of STP parameters λ and γ can also have a significant impact
on convergence speed. We tested different random initialization distributions in ART, where we find the best scheme that we
use in all other experiments. We find initializing γij ∼ U(− 0.001√

h
, 0.001√

h
) is better over purely positive, centered away from

zero, or more largely spread values. We hypothesize small initial values of γ allow long-term weights to have a greater
impact on very early training as short-term weights are very weakly updated. Surprisingly, a much wider and purely positive
initialization λij ∼ U(0, 1) is empirically better. Presumably, decay doesn’t play a major role at very early stages of training
when γ is very close to zero, and in later stages of learning when plastic weights start playing a role, having large variety of
dynamics across synapses and neurons allows for richer evolution of synaptic memories.

A.5. Experimental details

We run a different number of seeds across experiments, running more when either or both experiment was not highly
computationally expensive or more instances were necessary to make clearer conclusions. Specifically, we used 5 (ART and
Pong), 3 (Maze) and 2 (Pendulum) seeds respectively.

A.5.1. ASSOCIATIVE RETRIEVAL

Compared to the described setup in Ba et al. (2016), a modification in the experiments carried out is we do not include an
embedding or (post-RNN, ) pre-SoftMax fully connected layer, of size 100 each. The motivation behind such a choice is
three fold: a) Reducing the network to only a RNN and a SoftMax layer makes the predictive capacity of the Network rely
maximally on the RNN, which is the true subject of study b) the second author admits to the lack of need for such embedding
(Hinton, 2017), and attributes its inclusion to reasons beyond the scope of such paper, and c) when tuning the learning rate
we find all models (including non-plastic baselines with small hidden units) easily solve the task if an embedding layer is
included, which we hypothesize is caused by such layer taking a major role in prediction.

We tune the learning rate (to 0.001), which is not provided in Ba et al. (2016). The number of training epochs for the results
reported in (Ba et al., 2016) is not provided either. We experiment with some values and report results on networks trained
for 200 epochs, after which we find networks generally do not improve. Hidden sizes of networks are chosen so that a
similar number of parameters are trained, with a focus on low-parameter regime as larger networks all solve the problem
(also reported in Ba et al. (2016)). Therefore we choose a hidden size of 20 (the smallest tested size in Ba et al. (2016)) for
the Fast weights RNN, and calculate the hidden size of other models as to obtain a similar number of parameters of the
entire network. For RNN with fast weights, we use layer normalization, only one iteration of the inner loop, and λ and
η, all as indicated in the Appendix A.1 in Ba et al. (2016). Although the network structure is different, we don’t change
the STP parameters (λ and η) as they the same values are used throughout the different tasks in the paper due to alleged
robustness provided by layer normalization. Our experiments tuning fast weights RNN confirms this, as they show little
difference when exploring other values. Additionally, we use hyperbolic tangent as activation function, for fairer comparison
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to other networks and as our experiments show a better performance than with ReLU (which only provides purely additive
Hebbian factors). Initialization of recurrent (slow) weights as an identity matrix is know to favor longer (orthogonal) storing
of hidden states in RNNs (Hinton, 2017) and hence don’t offer a specific advantage to RNN with fast weights vs other
RNNs, so the results shown in this paper don’t follow such specific initialization for recurrent connections.

A.5.2. MAZE EXPLORATION

We use the same parameters provided in (Miconi et al., 2019), and we run the experiments by adapting the open source
repository (hence also using the parameters not explicitly mentioned in the article but introduced in the code). We only
increase the batch size (number of agents ’acting in parallel’) from 16 (in the code, not mentioned in the article) to 512 to
maximize computational efficiency of gradient updates. Besides faster learning in a shorter amount of iterations due to more
experience per gradient update, we find it can reduce variance of the update as in some episodes initial exploration for the
reward fails or comes too late in the episode, hence the agent not being able to exploit learning the location of the reward.
Regarding the hidden sizes of the RNNs, we choose a hidden size of 100 for the standard RNN (as provided in the standard
Miconi et al. (2019) parameters), and calculate the hidden size of other models as to obtain a similar number of parameters
for the entire network. Additionally, following Miconi et al. (2019), value and action branches are non plastic for all models,
only fixed and feed forward.

A.5.3. ATARI PONG

We use RLLib (Liang et al., 2018) to train and evaluate agents in PongNoFrameskip-v4. Besides the experimental choices
described in Section 3.4, it should be noted that we use STPNr with 64 hidden units, and adjust the size of the LSTM to 48
hidden units in order to have a similar number of trainable parameters. We also follow Mnih et al. (2016) in the preprocessing
(dimensionality and color scale) for the game frames, besides frame stacking. We tune rollout length (50), gradient clipping
(40), discount factor (0.99) in shorter runs (which both models share in the displayed results); and additionally tune initial
learning rate for the final longer runs (0.0007 and 0.0001 respectively), using a linear decay learning rate schedule finishing
at 10−11 at 200 million iterations. Models are trained from the experienced collected by 64 parallel agents.

A.5.4. MUJOCO INVERTED PENDULUM

We use RLLib to train and evaluate agents in InvertedPendulum-v2. We mostly do so with the same parameters reported in
(Schulman et al., 2017), and for any other parameters not specified there we use the default options provided by RLLib.
The only differences are: a) the use of a linearly decaying learning rate schedule, starting from the same original learning
rate and finishing at 4 million timesteps at 10−11; b) since it’s not specified in (Schulman et al., 2017), we employ a single
parallel worker collecting experience in one environment c) the choice of a single layer policy network (besides de action
and value branch) of size 64 (this is the only case where models’ hidden sizes were not adjusted to obtain a similar number
of parameters, as it didn’t prove relevant in our experiments).

A.6. Terminology on timescales

An explicit note about the different timescales across experiments might ease the interpretation of the reported results by the
reader, and hence we now provide it. In the supervised learning task, namely ART, an epoch represents a training iteration in
which the entire training dataset is seen, and sequence elements describe each of the characters presented to the network
in a sequential manner. In reinforcement learning, where an agent interacts with an environment via actions, and receives
rewards and observations; we refer to each of these interactions as an episode step or timestep. An episode encompasses a
variable (Pong, Inverted Pendulum) or fixed (Maze) number of episode steps or timesteps. Finally, although iteration could
also refer to a single timestep, we use such term to indicate one period between gradient updates, which can enclose multiple
episodes experienced by multiple agents, depending on the learning algorithm.
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A.7. STPN mechanics

Figure 6. Evolution of effective weights through processing of a sequence in ART. Each separate plot represents a neuron, where the y
axis are the input synapses for such neuron, and the x axis represents time, i.e. sequence elements. Color represents the magnitude of Gij

for each synapse. We can observe the effect of training λij as different synapses increase or decrease in value at different rates

Figure 7. Learnt STP parameters for STPN in ART. Each dot represents one synapse, each color represents the synapses of a single neuron.
There is clearly some clustering of the parameters for each neuron at a specific sign for γ, but with different learning rates for different
synapses.


