
Direct Behavior Specification
via Constrained Reinforcement Learning

Julien Roy ‡ 1 2 Roger Girgis ‡ 1 2 Joshua Romoff 3 Pierre-Luc Bacon 1 4 5 Christopher Pal 1 2 4 6 7

Abstract

The standard formulation of Reinforcement
Learning lacks a practical way of specifying what
are admissible and forbidden behaviors. Most of-
ten, practitioners go about the task of behavior
specification by manually engineering the reward
function, a counter-intuitive process that requires
several iterations and is prone to reward hacking
by the agent. In this work, we argue that con-
strained RL, which has almost exclusively been
used for safe RL, also has the potential to signif-
icantly reduce the amount of work spent for re-
ward specification in applied RL projects. To this
end, we propose to specify behavioral preferences
in the CMDP framework and to use Lagrangian
methods to automatically weigh each of these be-
havioral constraints. Specifically, we investigate
how CMDPs can be adapted to solve goal-based
tasks while adhering to several constraints simul-
taneously. We evaluate this framework on a set of
continuous control tasks relevant to the applica-
tion of Reinforcement Learning for NPC design
in video games.

1. Introduction
Reinforcement Learning (RL) has shown rapid progress
and lead to many successful applications over the past few
years (Mnih et al., 2013; Silver et al., 2017; Andrychow-
icz et al., 2020). The RL framework is predicated on the
simple idea that all tasks could be defined as a single scalar
function to maximise, an idea generally referred to as the re-
ward hypothesis (Sutton & Barto, 2018; Silver et al., 2021;

‡Work conducted while interning at Ubisoft La Forge.
1Institut d’intelligence aritficielle du Québec (Mila). 2École
Polytechnique de Montréal. 3Ubisoft La Forge. 4Université
de Montréal. 5Facebook CIFAR AI Chair. 6ServiceNow.
7Canada CIFAR AI Chair.. Correspondence to: Julien Roy
<julien.roy@mila.quebec>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Abel et al., 2021). This idea has proven very useful to
develop the theory and concentrate research on a single
theoretical framework. However, it can be significantly
limiting when translating a real-life problem into an RL
problem, since the question of where the reward function
comes from is completely ignored (Singh et al., 2009). In
practice, human-designed reward functions often lead to
unforeseen behaviors and represent a serious obstacle to the
reliable application of RL in the industry (Amodei et al.,
2016).

Concretely, for an engineer working on applying RL meth-
ods to an industrial problem, the task of reward specification
implies to: (1) characterise the desired behavior that the
system should exhibit, (2) write in a computer program a
reward function for which the optimal policy corresponds
to that desired behavior, (3) train an RL agent on that task
using one of the methods available in the literature and (4)
evaluate whether the agent exhibits the expected behavior.
Multiple design iterations of that reward function are gener-
ally required, each time accompanied by costly trainings of
the policy (Hadfield-Menell et al., 2017; Dulac-Arnold et al.,
2019). This inefficient design loop is exacerbated by the
fact that current Deep RL algorithms cannot be guaranteed
to find the optimal policy (Sutton & Barto, 2018), meaning
that the reward function could be correctly specified but still
fail to lead to the desired behavior. The design problem thus
becomes “What reward function would lead SAC (Haarnoja
et al., 2018) or PPO (Schulman et al., 2017) to give me a
policy that I find satisfactory?”, a difficult puzzle that every
RL practitioner has had to deal with.

Most published work on Reinforcement Learning focuses
on point (3) i.e. improving the reliability and efficiency
with which these algorithms can yield a near-optimal policy
for a given reward function. This line of work is crucial to
allow RL to tackle difficult problems. However, as agents
become more and more capable of solving the tasks we
present them with, our ability to (2) correctly specify these
reward functions will only become more critical (Dewey,
2014).

Constrained Markov Decision Processes (Altman, 1999) of-
fer an alternative framework for sequential decision making.
The agent still seeks to maximise a single reward function,

Figure 1. Depictions of our setup to evaluate direct behavior specification using constrained RL; Arena environment (left); OpenWorld
environment (right). For videos see: https://sites.google.com/view/behaviorspecificationviacrl/home.

but must do so while respecting a set of constraints de-
fined by additional cost functions. While it is generally
recognised that this formulation has the potential to allow
for an easier task definition from the end user (Ray et al.,
2019), most work on CMDPs focuses on the safety aspect
of this framework i.e. that the constraint-satisfying behav-
ior be maintained throughout the entire exploration process
(Achiam et al., 2017; Zhang et al., 2020; Turchetta et al.,
2020; Marchesini et al., 2022). In this paper we specifi-
cally focus on the benefits of CMDPs relating to behavior
specification. We make the following contributions: (1) we
show experimentally that reward engineering poorly scales
with the complexity of the target behavior, (2) we propose a
solution where a designer can directly specify the desired
frequency of occurrence of some events, (3) we develop
a novel algorithmic approach capable of jointly satisfying
many more constraints and (4) we evaluate this framework
on a set of constrained tasks illustrative of the development
cycle required for deploying RL in video games.

2. The problem with reward engineering
In this section, we motivate the impracticality of using re-
ward engineering to shape behavior. We consider a nav-
igation task in which the agent has to reach a goal loca-
tion while being subject to additional behavioral constraints.
These constraints are (1) looking at a visible marker 90% of
the time, (2) avoiding forbidden terrain 99% of the time and
(3) avoiding to run out of energy also 99% of the time. The
environment is depicted in Figure 1 (left) and the details are
presented in Appendix B. The reward function for this task
is of the form:

R′(s, a) = R(s, a)−1∗wnot-looking−1∗win-lava−1∗wno-energy
(1)

where R(s, a) gives a small shaping reward for progressing
towards the goal and a terminal reward for reaching the goal,
and the 1’s are indicator functions which are only active if
their corresponding behavior is exhibited.

The main challenge for an RL practitioner is to determine
the correct values of the weights wnot-looking, win-lava and
wno-energy such that the agent maximises its performance on
the main task while respecting the behavioral requirements,
a problem often referred to as reward engineering. Setting
these weights too low results in an agent that ignores these
requirements while setting them too high distracts the agent
from completing the main task. In general, knowing how
to scale these components relatively to one another is not
intuitive and is often performed by trial and error across
the space of reward coefficients wk. To illustrate where the
desired solutions can be found for this particular problem,
we perform 3 grid searches on 7 different values for each of
these weights, ranging from 0.1 to 10 times the scale of the
main reward function, for the cases of 1, 2 and 3 behavioral
constraints. The searches thus respectively must go through
7, 49 and 343 training runs. Figure 2 (and Figure 7 in Ap-
pendix D) show the results of these experiments. We can see
that a smaller and smaller proportion of these trials lead to
successful policies as the number of behavioral constraints
grows. For an engineer searching to find the right trade-off,
they find themselves cornered between two undesirable solu-
tions: an ad-hoc manual approach guided by intuition or to
run a computationally demanding grid-search. While expert
knowledge or other search strategies can partially alleviate
this burden, the approach of reward engineering clearly does
not scale as the control problem grows in complexity.

It is important to note that whether or not it is the case that
all tasks can in principle be defined as a single scalar func-
tion to maximise i.e. the reward hypothesis (Sutton & Barto,
2018), this notion should not be seen as a restrictive design
principle when translating a real-life problem into an RL
problem. That is because it does not guarantee that this re-
ward function admits a simple form. Rich and multi-faceted
behaviors may only be specifiable through a complex reward
function (Abel et al., 2021) beyond the reach of human intu-
ition. In the next sections we present a practical framework
in which CMDPs can be used to provide a more intuitive
and human-centric interface for behavioral specification.

https://sites.google.com/view/behaviorspecificationviacrl/home

a)
-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

wnot looking

Average Episodic Return

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

Not Looking at Marker < 0.10

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

Average Episodic Return
for feasible policies

b)
-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

Average Episodic Return

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

in Lava < 0.01

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

Not Looking at Marker < 0.10

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

Average Episodic Return
for feasible policies

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Enforcing behavioral constraints using reward engineering. Each grid represents a different metric. Within each grid, each
square represents the final performance (according to that metric) of an agent trained for 3M steps using the reward function in Equation 1
parameterised as given by the grid coordinates. Performance is obtained by evaluating the agent on 1000 episodes. The leftmost column
indicates the episodic return of the trained policies, the middle columns indicates whether or not the agent respects the behavioral
constraint(s) and the rightmost column indicates the average return for these feasible policies only. a) The “looking-at marker” behavior
does not affect too much the main task and, consequently, all chosen weights allow to satisfy the constraint (looking at marker 90% of the
time) and many of them also lead to good performance on the main navigation task (−0.1 ≥ w ≥ −2). b) When also enforcing the “Not
in Lava” behavior, which is much more in the way of the main task, most of the resulting policies do not respect the constraint or perform
poorly on the navigation task, highlighting the difficulty of choosing the correct penalty weights ahead of time. On 49 experiments, only
two yielded good performing feasible policies: (−0.10,−2.0) and (−0.25,−1.0). On the largest search with 3 behavioral constraints,
none of the 343 experiments found a good performing feasible policy (see Figure 7 in Appendix D).

3. Background
Markov Decision Processes (MDPs) (Sutton & Barto,
2018) are formally defined through the following four com-
ponents: (S,A, P,R). At timestep t, an agent finds itself in
state st ∈ S and picks an action at ∈ A(st). The transition
probability function P encodes the conditional probability
P (st+1|st, at) of transitioning to the next state st+1. Upon
entering the next state, an immediate reward is generated
through a reward function R : S × A → R. In this paper,
we restrict our attention to stationary randomized policies
of the form π(a|s) – which are sufficient for optimality
in both MDPs and CMDPs (Altman, 1999). The interac-
tion of a policy within an MDP gives rise to trajectories
(s0, a0, r0, . . . , sT , aT , RT) over which can be computed
the sum of rewards which we call the return. Under the
Markov assumption, the probability distribution over trajec-
tories is of the form:

pπ(τ) := P0(s0)

T∏
t=0

P (st+1|st, at)π(at|st) (2)

where P0 is some initial state distribution. Furthermore, any
such policy induces a marginal distribution over state-action
pairs referred to as the visitation distribution or state-action
occupation measure:

xπ(s, a) :=
1

Z(γ, T)

T∑
t=0

γtpπ,t(St = s,At = a) , (3)

where Z(γ, T) =
∑T

t=0 γ
t is a normalising constant.

In this paper, it is useful to extend the notion of return to
any function f : S ×A → R over states and actions other
than the reward function of the MDP itself. The expected
discounted sum of f then becomes:

Jf (π) := Eτ∼pπ

[
T∑

t=0

γtf(st, at)

]
(4)

where γ ∈ [0, 1] is a discount factor. While this idea is
the basis for much of the work on General Value Functions
(GVFs) (White, 2015) for predictive state representation
(Sutton et al., 2011), our focus here is on problem of behav-
ior specification and not that of prediction.

Finally, in the MDP setting, a policy is said to be op-
timal under the expected discounted return criterion if
π∗ = argmaxπ∈Π JR(π), where Π is the set of possible
policies.

Constrained MDPs (CMDPs) (Altman, 1999) is a frame-
work that extends the notion of optimality in MDPs to a sce-
nario where multiple cost constraints need to be satisfied in
addition to the main objective. We write Ck : S×A → R to
denote such a cost function whose expectation must remain
bounded below a specified threshold dk ∈ R. The set of

feasible policies is then:

ΠC = {π ∈ Π : JCk
(π) ≤ dk, k = 1, . . . ,K}. (5)

Optimal policies in the CMDP framework are those of max-
imal expected return among the set of feasible policies:

π∗ = argmax
π∈Π

JR(π), s.t. JCk
(π) ≤ dk , k = 1, . . . ,K

(6)
While it is sufficient to consider the space of stationary
deterministic policies in searching for optimal policies in the
MDP setting, this is no longer true in general with CMDPs
(Altman, 1999) and we must consider the larger space of
stationary randomized policies.

Lagrangian methods for CMPDs. Several recent works
have found that the class of Lagrangian methods for solv-
ing CMDPs is capable of finding good feasible solutions at
convergence (Achiam et al., 2017; Ray et al., 2019; Stooke
et al., 2020; Zhang et al., 2020). The basis for this line of
work stems from the saddle-point characterisation of the
optimal solutions in nonlinear programs with inequality con-
straints (Uzawa et al., 1958; Polyak, 1970; Korpelevich,
1976). Intuitively, these methods combine the main objec-
tive JR and the constraints into a single function L called
the Lagrangian. The relative weight of the constraints are
determined by additional variables λk called the Lagrange
multipliers. Applied in our context, this idea leads to the
following min-max formulation:

max
π

min
λ≥0

L(π, λ)

L(π, λ) = JR(π)−
K∑

k=1

λk(JCk
(π)− dk) (7)

where we denoted λ := {λk}Kk=1 for conciseness. Uzawa
et al. (1958) proposed to find a solution to this problem
iteratively by taking gradient ascent steps of the Lagrangian
L in the variable π and descent ones in λ. This is also
the same gradient ascent-descent (Lin et al., 2020) proce-
dure underpinning many learning algorithms for Generative
Adversarial Networks (Goodfellow et al., 2014).

The maximization of the Lagrangian over the policy vari-
ables can be carried out by applying any existing uncon-
strained policy optimization methods to the new reward
function L : S ×A → R where:

L(s, a) = R(s, a)−
K∑

k=1

λkCk(s, a). (8)

For the gradient w.r.t. the Lagrange multipliers λ, the
term depending on π cancels out and we are left with
∇λk

L(π, λ) = −(JCk
(π)−dk). The update is followed by

a projection onto λk ≥ 0 using the max-clipping operator.

If the constraint is violated (JCk
(π) > dk), taking a step

in the opposite direction of the gradient will increase the
corresponding multiplier λk, thus increasing the relative
importance of this constraint in JL(π). Inversely, if the con-
straint is respected (JCk

(π) < dk), the update will decrease
λk, allowing the optimisation process to focus on the other
constraints and the main reward function R.

4. Proposed Framework
In Reinforcement Learning, the reward function is often
assumed to be provided apriori. For example, in most RL
benchmarking environments this is indeed the case and
researchers can focus on improving current algorithms at
finding better policies, faster and more reliably. In industrial
applications however, several desiderata are often required
for the agent’s behavior, and balancing these components
into a single reward function is highly non-trivial. In the
next sections, we describe a framework in which CMDPs
can be used for efficient behavior specification.

4.1. Indicator cost functions

The difficulty of specifying the desired behavior of an agent
using a single reward function stems from the need to tune
the relative scale of each reward component. Moreover,
finding the most appropriate ratio becomes more challeng-
ing as the number of reward components increases (see
Section 2). While the prioritisation and saturation character-
istics of CMDPs help factoring the behavioral specification
problem (Ray et al., 2019), there remains important design
challenges. First, the CMDP framework allows for arbi-
trary forms of cost functions, again potentially leading to
unforeseen behaviors. Second, specifying the appropriate
thresholds dk can be difficult to do solely based on intu-
ition. For example, in the mujoco experiments performed by
Zhang et al. (2020), the authors had to run an unconstrained
version of PPO (Schulman et al., 2017) to first estimate the
typical range of values for the cost infringements and then
run their constrained solver over the appropriately chosen
thresholds.

We show here that this separate phase of threshold estima-
tion can be avoided completely if we consider a subclass of
CMDPs that allows for a more intuitive connection between
the chosen cost functions Ck and their expected returns JCk

.
More specifically, we restrict our attention to CMDPs where
the cost functions are defined as indicators of the form:

Ck(s, a) = I(behavior k is met in (s, a)) (9)

which simply expresses whether an agent showcases some
particular behavior k when selecting action a in state s. An
interesting property of this design choice is that, by rewrit-
ing the expected discounted sum of these indicator cost
functions as an expectation over the visitation distribution

of the agent, we can interpret this quantity as a re-scaled
probability that the agent exhibits behavior k at any given
time during its interactions with the environment:

JCk
(π) = Eτ∼pπ

[
T∑

t=0

γtCk(st, at)

]
(10)

= Z(γ, T)E(s,a)∼xπ(s,a)[Ck(s, a)] (11)
= Z(γ, T)E(s,a)∼xπ(s,a)[I(behavior k met in (s, a))]

(12)

= Z(γ, T)Pr
(
behavior k met in (s, a)

)
, (s, a) ∼ xπ

(13)

Dividing each side of JCk
(π) ≤ dk by Z(γ, T), we are

left with d̃k, a normalized constraint threshold for the con-
straint k which represents the desired rate of encountering
the behavior designated by the indicator cost function Ck.
In practice, we simply compute the average cost function
across the batch to give equal weighting to all state-action
pairs regardless of their position t in the trajectory:

J̃Ck
(π) :=

1

N

N∑
i=1

Ck(si, ai) (14)

where i is the sample index from the batch. We also train
the corresponding critic Q(k) using a discount factor γk < 1
for numerical stability.

While the class of cost functions defined in Equation 9 still
allows for modelling a large variety of behavioral prefer-
ences, it has the benefit of informing the user on the range of
appropriate thresholds – a probability d̃k ∈ [0, 1] – and the
semantics is clear regarding its effect on the agent’s behavior
(assuming that the constraint is binding and that a feasible
policy is found). This effectively allows for minimal to
no tuning behavior specification (or “zero-shot” behavior
specification).

Finally, indicator cost functions also have the practical ad-
vantage of allowing to capture both desired and undesired
behaviors without affecting the termination tendencies of the
agent. Indeed, when using an arbitrary cost function, it could
be tempting to simply flip its sign to enforce the opposite be-
havior. However, as noted in previous work (Kostrikov et al.,
2018), the choice of whether to enforce behaviors through
bonuses or penalties should instead be thought about with
the termination conditions in mind. A positive bonus could
cause the agent to delay termination in order to accumulate
more bonuses while negative penalties could shape the agent
behavior such that it seeks to trigger the termination of the
episode as soon as possible. Indicator cost functions are
thus very handy in that they offer a straightforward way to
enforce the opposite behavior by simply inverting the indica-
tor function Not

(
I(s, a)

)
= 1− I(s, a) without affecting

the sign of the constraint (penalties v.s. bonuses).

4.2. Multiplier normalisation

When the constraint k is violated, the multiplier λk asso-
ciated with that constraint increases to put more emphasis
on that aspect of the overall behavior. While it is essential
for the multipliers to be able to grow sufficiently compared
to the main objective, a constraint that enforces a behavior
which is long to discover can end up reaching very large
multiplier values. It then leads to very large policy updates
and destabilizes the learning dynamics.

To maintain the ability of one constraint to dominate the pol-
icy updates when necessary while keeping the scale of the
updates bounded, we propose to normalize the multipliers.
This can be readily implemented by using a softmax layer:

λk =
exp(zk)

exp(a0) +
∑K

k′=1 exp(zk′)
, k = 1, . . . ,K

(15)
where zk are the base parameters for each one of the multipli-
ers and a0 is a dummy variable used to obtain a normalized
weight λ0 := 1 −

∑K
k=1 λk for the main objective JR(π).

The corresponding min-max problem becomes:

max
π

min
z1:K≥0

L(π, λ)

L(π, λ) = λ0JR(π)−
K∑

k=1

λk(JCk
(π)− dk) (16)

4.3. Bootstrap Constraint

In the presence of many constraints, one difficulty that
emerges with the above multiplier normalisation is that the
coefficient of the Lagrangian function that weighs the main
objective is constrained to be λ0 = 1 −

∑K
k=1 λk, which

leaves very little to no traction to improve on the main task
while the process is looking for a feasible policy. Further-
more, as more constraints are added, the optimisation path
becomes discontinuous between regions of feasible policies,
preventing learning progress on the main task objective.

A possible solution is to grant the main objective the same
powers as the behavioral constraints that we are trying to
enforce. This can be done by defining an additional function
SK+1(s, a) which captures some measure of success on the
main task. Indeed, many RL tasks are defined in terms of
such sparse, clearly defined success conditions, and then
often only augmented with a dense reward function to guide
the agent toward these conditions (Ng et al., 1999). A so-
called success constraint of the form JSK+1

(π) ≥ d̃K+1

can thus be implemented using an indicator cost function
as presented above and added to the existing constraint set
{JCk

(π) ≤ d̃k}Kk=1. While the use of a success constraint
alone can be expected to aid learning of the main task, it is
only a sparse signal and could be very difficult to discover
if the main task is itself challenging. Since the success

function SK+1 is meant to be highly correlated with the
reward function R, by going a step further and using the
success constraint multiplier λK+1 in place of the reward
multiplier λ0, we can take full advantage of the density of
the main reward function when enforcing that constraint.
However, to maintain a true maximisation objective over the
main reward function, we still need to keep using λ0 when
other constraints are satisfied, so that the most progress
can be made on JR(π). We thus take the largest of these
two coefficients for weighing the main objective λ̃0 :=
max

(
λ0, λK+1

)
and replace λ0 with λ̃0 in Equation 16.

Here we say that constraint K + 1 is used as a bootstrap
constraint.

Our method of encoding a success criterion in the constraint
set can be seen as a way of relaxing the behavioral con-
straints during the optimisation process without affecting
the convergence requirements. For exemple, in previous
work, Calian et al. (2020) tune the learning rate of the La-
grange multipliers to automatically turn some constraints
into soft-constraints when the agent is not able to satisfy
them after a given period of time. Instead, the bootstrap con-
straint allows to start making some progress on the main task
without turning our hard constraints into soft constraints.

5. Related Work
Constrained Reinforcement Learning. CMDPs (Alt-
man, 1999) have been the focus of several previous work
in Reinforcement Learning. Lagrangian methods (Borkar,
2005; Tessler et al., 2018; Stooke et al., 2020) combine the
constraints and the main objective into a single function
and seek to find a saddle point corresponding to feasible
solutions to the maximisation problem. Projection-based
methods (Achiam et al., 2017; Chow et al., 2019; Yang et al.,
2020; Zhang et al., 2020) instead use a projection step to
try to map the policy back into a feasible region after the
reward maximisation step. While most of these works focus
on the single-constraint case (Zhang et al., 2020; Dalal et al.,
2018; Calian et al., 2020; Stooke et al., 2020) and seek to
minimize the total regret over the cost functions throughout
training (Ray et al., 2019), we focus on the potential of
CMDPs for precise and intuitive behavior specification and
work on satisfying many constraints simultaneously.

Reward Specification. Imitation Learning (Zheng et al.,
2021) is largely motivated by the difficulty of designing
reward functions and instead seeks to use expert data to
define the task. Other approaches introduce a human in the
loop to either guide the agent towards the desired behav-
ior (Christiano et al., 2017) or to prevent it from making
catastrophic errors while exploring the environment (Saun-
ders et al., 2017). While our approach of using CMDPs
for behavior specification also seeks to make better use of

human knowledge, we focus on the idea of providing this
knowledge by simply specifying thresholds and indicator
functions rather than requiring expert demonstrations or con-
stant human feedback. Another line of work studies whether
natural language can be used as a more convenient interface
to specify the agent’s desired behavior (Goyal et al., 2019;
MacGlashan et al., 2015). While this idea presents interest-
ing perspectives, natural language is inherently ambiguous
and prone to reward hacking by the agent. Moreover such
approaches generally come with the added complexity of
having to learn a language-to-reward model. Finally, oth-
ers seek to solve reward mis-specification through Inverse
Reward Design (Hadfield-Menell et al., 2017; Mindermann
et al., 2018; Ratner et al., 2018) which treats the provided
reward function as a single observation of the true intent of
the designer and seeks to learn a probabilistic model that
explains it. While this approach is interesting for adapting to
environmental changes, we focus on behavior specification
in fixed-distribution environments.

RL in video games. Video games have been used as a
benchmark for Deep RL for several years (Shao et al., 2019;
Berner et al., 2019; Vinyals et al., 2019). However, examples
of RL being used in a video game production are limited due
to a variety of factors which include the difficulty of shaping
behavior, interpretability, and compute limitations at run-
time (Jacob et al., 2020; Alonso et al., 2020). Still, there
has been a recent push in the video game industry to build
NPCs (Non Player Characters) using RL, for applications
including navigation (Alonso et al., 2020; Devlin et al.,
2021), automated testing (Bergdahl et al., 2020; Gordillo
et al., 2021), play-style modeling (de Woillemont et al.,
2021) and content generation (Gisslén et al., 2021).

6. Experiments
To evaluate the proposed framework, we train SAC
agents (Haarnoja et al., 2018) to solve navigation tasks
with up to 5 constraints imposed on their behavior. Many
of these constraints interact with the main task and with
one another which significantly restricts the space of ad-
missible policies. We conduct most of our experiments
in the Arena environment (see Figure 1, left)1 where we
seek to verify the capacity of the proposed framework to
allow for easy specification of the desired behavior and the
ability of the algorithm to deal with a large number of con-
straints simultaneously. We also perform an experiment in
the OpenWorld environment (see Figure 1, right), a much
larger and richer map generated using the GameRLand map
generator (Beeching et al., 2021), where we seek to verify
the scalability of that approach and whether it fits the needs

1The algorithm is presented in Appendix A. The code for the
Arena environment experiments is available at:
https://github.com/ubisoft/DirectBehaviorSpecification

https://github.com/ubisoft/DirectBehaviorSpecification

0.00 0.25 0.50 0.75 1.00
Environment steps 1e7

0.00

0.25

0.50

0.75

1.00

on Ground
behavior rate

constraint threshold

0.00 0.25 0.50 0.75 1.00
Environment steps 1e7

0.0

0.8

1.6

2.4

Multipliers
unormalized multipliers
normalized multipliers

0.00 0.25 0.50 0.75 1.00
Environment steps 1e7

0

2500

5000

7500
Critic Loss

0.00 0.25 0.50 0.75 1.00
Environment steps 1e7

1

0

1

2

Average Return

Figure 3. The multiplier normalisation keeps the learning dynamics stable when discovering a constraint-satisfying behavior takes a large
amount of time. To simulate such a case, an impossible constraint is set for 7.5M steps and then replaced by a feasible one for the last
2.5M steps. The method using unormalized multipliers (red) keeps taking larger and larger steps in policy space leading to the divergence
of its learning dynamics and complete collapse of its performance.

0 1 2 30.0

0.5

1.0

1.5

2.0

Av
er

ag
e

Re
tu

rn

Not Looking at Marker

0 1 2 30.0

0.5

1.0

1.5

2.0 Not on Ground

0 1 2 30.0

0.5

1.0

1.5

2.0 in Lava

0 1 2 30.0

0.5

1.0

1.5

2.0 above Speed Limit

0 1 2 30.0

0.5

1.0

1.5

2.0 under Energy Limit

0 1 2 3
Environment Steps (M)

0.0

0.3

0.6

0.9

Av
er

ag
e

Be
ha

vi
or

 R
at

e

0 1 2 3
Environment Steps (M)

0.0

0.2

0.4

0.6

0 1 2 3
Environment Steps (M)

0.00

0.04

0.08

0.12

0 1 2 3
Environment Steps (M)

0.00

0.15

0.30

0.45

0 1 2 3
Environment Steps (M)

0.00

0.06

0.12

0.18

Figure 4. Each column presents the results for an experiment in which the agent is trained for 3M steps with a single constraint enforced
on its behavior. Training is halted after every 20, 000 environment steps and the agent is evaluated for 10 episodes. All curves show the
average over 5 seeds and envelopes show the standard error around that mean. The top row shows the average return, the bottom row
shows the average behavior rate on which the constraint is enforced. The black doted lines mark the constraint thresholds.

Figure 5. Each row presents the results of an experiment in which an agent is trained for 10M steps. Training is halted after every 20, 000
environment steps and the agent is evaluated for 10 episodes. All curves show the average over 5 seeds and envelopes show the standard
error around that mean. (a) Unconstrained SAC agent; none of the behavioral preferences are enforced and consequently improvement on
performance is very fast but none of the constraints are satisfied. (b) SAC-Lagrangian with the 5 behavioral constraints enforced. While
each constraint was successfully dealt with when imposed one by one (see Figure 4), maximising the main objective when subject to all
the constraints simultaneously proves to be much harder. The agent does not find a policy that improves on the main task while keeping
the constraints in check. (c) By using an additional success constraint (that the agent should reach its goal in 99% of episodes), the agent
can cut through infeasible policy space to start improving on the main task and optimise the remaining constraints later on. (d) By using
the success constraint as a bootstrap constraint (bound to the main reward function) improvement on the main task is much faster as the
agent benefits from the dense reward function to improve on the goal-reaching task.

0 10 20 30 40 50
Environment steps (M)

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Not Looking At Marker
 Behavior Rate

0 10 20 30 40 50
Environment steps (M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Not on Ground
 Behavior Rate

0 10 20 30 40 50
Environment steps (M)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

In Lava
 Behavior Rate

0 10 20 30 40 50
Environment steps (M)

0.00

0.02

0.04

0.06

0.08

0.10

Under Energy Limit
 Behavior Rate

0 10 20 30 40 50
Environment steps (M)

0.0

0.2

0.4

0.6

0.8

1.0

Has Reached Goal
 Behavior Rate

0 10 20 30 40 50
Environment steps (M)

0.0

0.2

0.4

0.6

0.8

1.0
Multipliers

0 10 20 30 40 50
Environment steps (M)

1

0

1

2

3
Average Return

Figure 6. A SAC-Lagrangian agent trained to solve the navigation problem in the OpenWorld environment while respecting four constraints
and imposing the bootstrap constraint. Results suggest that our SAC-Lagrangian method using indicator cost functions, normalised
multipliers and bootstrap constraint scales well to larger and more complex environments.

of agent behavior specification for the video game industry.
See Appendices B and C for a detailed description of both
experimental setups.

6.1. Experiment in the Arena environment

Multiplier Normalization Our first set of experiments
showcases the effect of normalizing the Lagrange multipli-
ers. For illustrative purposes, we designed a simple scenario
where one of the constraints is not satisfied for a long period
of time. Specifically, the agent is attempting to satisfy an im-
possible constraint of never touching the ground. Figure 3
(in red) shows that the multiplier on the unsatisfied con-
straint endlessly increases in magnitude, eventually harming
the entire learning system; the loss on the critic diverges and
the performance collapses. When using our normalization
technique, Figure 3 (in blue) shows that the multiplier and
critic losses remain bounded, avoiding such instabilities.

Single Constraint satisfaction We use our framework to
encode the different behavioral preferences into indicator
functions and specify their respective thresholds. Figure
4 shows that our SAC-Lagrangian with multiplier normal-
isation can solve the task while respecting the behavioral
requirements when imposed with constraints individually.
We note that the different constraints do not affect the main
task to the same extent; while some still allow to quickly
solve the navigation task, like the behavioral requirement to
avoid jumping, others make the navigation task significantly
more difficult to solve, like the requirement to avoid certain
types of terrain (lava).

Multiple Constraints Satisfaction In Figure 5 we see
that when imposed with all of the constraints simultane-
ously, the agent learns a feasible policy but fails at solving
the main task entirely. The agent effectively settles on a
trivial behavior in which it only focuses on satisfying the
constraints, but from which it is very hard to move away
without breaking the constraints. By introducing a success
constraint, the agent at convergence is able to satisfy all of
the constraints as well as succeeding in the navigation task.
This additional incentive to traverse infeasible regions of the

policy space allows to find feasible but better performing
solutions. Our best results are obtained when using the suc-
cess constraint as a bootstrap constraint, effectively lending
λK+1 to the main reward while the agent is still looking for
a feasible policy.

6.2. Experiment in the OpenWorld environment

In the OpenWorld environment, we seek to verify that the
proposed solution scales well to more challenging and re-
alistic tasks. Contrarily to the Arena environment, the
OpenWorld contains uneven terrain, buildings, and inter-
actable objects like jump-pads, which brings this evalua-
tion setting much closer to an actual RL application in the
video game industry. For this experiment, we trained a
SAC-Lagrangian agent to solve the navigation problem with
four constraints on its behavior: On-Ground, Not-In-Lava,
Looking-At-Marker and Above-Energy-Limit. The SAC
component uses the same hyper-parameters as in Alonso
et al. (2020). The results are shown in Figure 6. While
training the agent in this larger and more complex envi-
ronment now requires up to 50M environment steps, the
agent still succeeds at completing the task and respecting
the constraints, favourably supporting the scalability of the
proposed framework for direct behavior specification.

7. Discussion
Our work showed that CMDPs offer compelling properties
when it comes to task specification in RL. More specifically,
we developed an approach where the agent’s desired be-
havior is defined by the frequency of occurrence for given
indicator events, which we view as constraints in a CMDP
formulation. We showed through experiments that this
methodology is preferable over the reward engineering al-
ternative where we have to do an extensive hyper-parameter
search over possible reward functions. We evaluated this
framework on the many constraints case in two different
environments. Our experiments showed that simultaneously
satisfying a large number of constraints is difficult and can
systematically prevent the agent from improving on the
main task. We addressed this problem by normalizing the

constraint multipliers, which resulted in improved stability
during training and proposed to bootstrap the learning on
the main objective to avoid getting trapped by the compos-
ing constraint set. This bootstrap constraint becomes a way
for practitioners to incorporate prior knowledge about the
task and desired result – if the threshold is strenuous, a high
success is prioritized – if the threshold is lax, it will simply
be used to exit the initialisation point and the other con-
straints will quickly takeover. Our overall method is easy to
implement over existing policy gradient code bases and can
scale across domains easily.

We hope that these insights can contribute to a wider use of
Constrained RL methods in industrial application projects,
and that such adoption can be mutually beneficial to the
industrial and research RL communities.

Acknowledgments
We wish to thank Philippe Marcotte, Maxim Peter, Rémi
Labory, Pierre Le Pelletier De Woillemont, Julien Varnier,
Pierre Falticska, Gabriel Robert, Vincent Martineau, Olivier
Pomarez, Tristan Deleu and Paul Barde as well as the entire
research team at Ubisoft La Forge for providing technical
support and insightful comments on this work. We also
acknowledge funding in support of this work from Fonds
de Recherche Nature et Technologies (FRQNT), Mitacs
Accelerate Program, Institut de valorisation des données
(IVADO) and Ubisoft La Forge.

References
Abel, D., Dabney, W., Harutyunyan, A., Ho, M. K., Littman,

M., Precup, D., and Singh, S. On the expressivity of
markov reward. Advances in Neural Information Process-
ing Systems, 34, 2021.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International Conference on Ma-
chine Learning, pp. 22–31. PMLR, 2017.

Alonso, E., Peter, M., Goumard, D., and Romoff, J. Deep
reinforcement learning for navigation in aaa video games.
arXiv preprint arXiv:2011.04764, 2020.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Beeching, E., Peter, M., Marcotte, P., Debangoye, J., Si-
monin, O., Romoff, J., and Wolf, C. Graph augmented
deep reinforcement learning in the gamerland3d environ-
ment. arXiv preprint arXiv:2112.11731, 2021.

Bergdahl, J., Gordillo, C., Tollmar, K., and Gisslén, L. Aug-
menting automated game testing with deep reinforcement
learning. In 2020 IEEE Conference on Games (CoG), pp.
600–603. IEEE, 2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Borkar, V. S. An actor-critic algorithm for constrained
markov decision processes. Systems & control letters, 54
(3):207–213, 2005.

Calian, D. A., Mankowitz, D. J., Zahavy, T., Xu, Z., Oh,
J., Levine, N., and Mann, T. Balancing constraints
and rewards with meta-gradient d4pg. arXiv preprint
arXiv:2010.06324, 2020.

Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E.,
and Ghavamzadeh, M. Lyapunov-based safe policy
optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Christiano, P., Leike, J., Brown, T. B., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. arXiv preprint arXiv:1706.03741,
2017.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,
C., and Tassa, Y. Safe exploration in continuous action
spaces. arXiv preprint arXiv:1801.08757, 2018.

de Woillemont, P. L. P., Labory, R., and Corruble, V. Config-
urable agent with reward as input: A play-style continuum
generation. In 2021 IEEE Conference on Games (CoG),
pp. 1–8. IEEE, 2021.

Devlin, S., Georgescu, R., Momennejad, I., Rzepecki, J., Zu-
niga, E., Costello, G., Leroy, G., Shaw, A., and Hofmann,
K. Navigation turing test (ntt): Learning to evaluate
human-like navigation. arXiv preprint arXiv:2105.09637,
2021.

Dewey, D. Reinforcement learning and the reward engineer-
ing principle. In 2014 AAAI Spring Symposium Series,
2014.

Dulac-Arnold, G., Mankowitz, D., and Hester, T. Chal-
lenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901, 2019.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Gisslén, L., Eakins, A., Gordillo, C., Bergdahl, J., and Toll-
mar, K. Adversarial reinforcement learning for procedu-
ral content generation. arXiv preprint arXiv:2103.04847,
2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Gordillo, C., Bergdahl, J., Tollmar, K., and Gisslén,
L. Improving playtesting coverage via curiosity
driven reinforcement learning agents. arXiv preprint
arXiv:2103.13798, 2021.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning.
arXiv preprint arXiv:1903.02020, 2019.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S.,
and Dragan, A. Inverse reward design. arXiv preprint
arXiv:1711.02827, 2017.

Jacob, M., Devlin, S., and Hofmann, K. “it’s unwieldy and
it takes a lot of time”—challenges and opportunities for
creating agents in commercial games. In Proceedings
of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 16, pp. 88–94,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Korpelevich, G. An extragradient method for finding saddle
points and for other problems. 1976.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925, 2018.

Lin, T., Jin, C., and Jordan, M. On gradient descent ascent
for nonconvex-concave minimax problems. In Interna-
tional Conference on Machine Learning, pp. 6083–6093.
PMLR, 2020.

MacGlashan, J., Babes-Vroman, M., desJardins, M.,
Littman, M. L., Muresan, S., Squire, S., Tellex, S., Aru-
mugam, D., and Yang, L. Grounding english commands

to reward functions. In Robotics: Science and Systems,
2015.

Marchesini, E., Corsi, D., and Farinelli, A. Exploring safer
behaviors for deep reinforcement learning. AAAI, 2022.

Mindermann, S., Shah, R., Gleave, A., and Hadfield-
Menell, D. Active inverse reward design. arXiv preprint
arXiv:1809.03060, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In Icml, volume 99, pp. 278–287, 1999.

Polyak, B. Iterative methods using lagrange multipliers
for solving extremal problems with constraints of the
equation type. USSR Computational Mathematics and
Mathematical Physics, 10(5):42–52, 1970.

Ratner, E., Hadfield-Menell, D., and Dragan, A. D. Simpli-
fying reward design through divide-and-conquer. arXiv
preprint arXiv:1806.02501, 2018.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7, 2019.

Saunders, W., Sastry, G., Stuhlmueller, A., and Evans, O.
Trial without error: Towards safe reinforcement learning
via human intervention. arXiv preprint arXiv:1707.05173,
2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, K., Tang, Z., Zhu, Y., Li, N., and Zhao, D. A survey
of deep reinforcement learning in video games. arXiv
preprint arXiv:1912.10944, 2019.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward
is enough. Artificial Intelligence, pp. 103535, 2021.

Singh, S., Lewis, R. L., and Barto, A. G. Where do rewards
come from. In Proceedings of the annual conference of
the cognitive science society, pp. 2601–2606. Cognitive
Science Society, 2009.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by pid lagrangian methods. In
International Conference on Machine Learning, pp. 9133–
9143. PMLR, 2020.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., and Precup, D. Horde: a scalable
real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In 10th International
Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 761–768, 2011.

Tessler, C., Mankowitz, D. J., and Mannor, S. Re-
ward constrained policy optimization. arXiv preprint
arXiv:1805.11074, 2018.

Turchetta, M., Kolobov, A., Shah, S., Krause, A., and Agar-
wal, A. Safe reinforcement learning via curriculum in-
duction. arXiv preprint arXiv:2006.12136, 2020.

Uzawa, H., Anow, K., and Hurwicz, L. Studies in linear and
nonlinear programming, 1958.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

White, A. Developing a predictive approach to knowledge.
PhD thesis, University of Alberta, 2015.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J.
Projection-based constrained policy optimization. arXiv
preprint arXiv:2010.03152, 2020.

Zhang, Y., Vuong, Q., and Ross, K. W. First order con-
strained optimization in policy space. arXiv preprint
arXiv:2002.06506, 2020.

Zheng, B., Verma, S., Zhou, J., Tsang, I., and Chen, F. Imi-
tation learning: Progress, taxonomies and opportunities.
arXiv preprint arXiv:2106.12177, 2021.

A. Algorithm
Our implementation of the SAC-Lagrangian algorithm is presented below. The exact values of each hyper-parameter for all
of our experiments are listed in Tables 1 and 2. One notable difference between an unconstrained Soft-Actor Critic (Haarnoja
et al., 2018) and our constrained version is that SAC is typically updated after every environment step to maximise the
sample efficiency of the algorithm. In the constrained case however, since the constraints are optimized on-policy, updating
the SAC agent at every environment step would only allow for one-sample estimates of the multiplier’s objective. On the
other hand, freezing the SAC-agent for as many environment steps as the Lagrange multiplier batch-size Nλ makes the
overall algorithm significantly less sample efficient. One could disregard the “on-policyness” of the multiplier’s objective
but in preliminary experiments we found that, unsurprisingly, updating the Lagrange multipliers very frequently while using
a large set of samples (many of which were collected using previous versions of the policy) lead to significant overshoot
and harms the ability of the multipliers to converge to a stable behavior. There is thus a tradeoff to make between the
variance of the multiplier’s objective estimate, the degree to which the multipliers are updated on-policy and the sample
efficiency of the overall algorithm. In practice we found that the values for Mθ and Mλ presented in Tables 1 and 2
represented good compromises between these different characteristics. Another important detail is that we use K + 1
separate critics to model the discounted expected sum of reward and costs. Q(0) is the critic that models the main objective
and Q(k), k = 1, . . . ,K + 1 are the critics that model the constraint components of the Lagrangian. Using separate critics
allows to avoid fast changes in the scale of the objective, as seen by the critics, when the multipliers λk get adjusted; they
can solely focus on modeling the agent’s changing behavior with respect to their respective function (reward or costs).

Algorithm 1 SAC-Lagrangian with Bootstrap Constraint
Require: learning rate β, replay buffer B, entropy coefficient α and minibatch sizes Nθ and Nλ

Require: Initialise the policy πθ and value-functions Q(k)
ϕ randomly, k = 0, . . . ,K + 1

Require: Initialise the Lagrange multiplier parameters zk
Require: Collect enough transitions to fill B with max(Nθ, Nλ) samples

for updates u = 1, ... (until convergence) do
Data collection
Sample from the current policy: a ∼ πθ(·|s)
Query next state, reward and indicators (s′, r, {e}K+1

k=1) by interacting with the environment
Append transition (s, a, r, s′, {e}Kk=1 + 1) to the replay buffer B
Policy Gradient update
if u%Mθ == 0 then

Sample a minibatch of Nθ transitions uniformly from the replay buffer
Sample next actions: a′

i ∼ πθ(·|s′i) i = 1, ..., Nθ

for k = 0, . . . ,K + 1 do
Set the “rewards” to their corresponding values: r

(0)
i = ri and r

(k)
i = e

(k)
i

Compute the Q-targets: y
(k)
i = −α log πθ(a

′
i|s′i) + minj∈{1,2} Q

(k)
ϕj

(s′i, a
′
i)

Adam descent on Q-nets with: ∇ϕj
1

Nθ

∑Nθ
i=1 ||Q

(k)
ϕj

(si, ai)−
(
r
(k)
i + (1− done)γy

(k)
i

)
||2

end for
Re-sample the current actions: ai ∼ πθ(·|si) i = 1, ..., Nθ

Adam ascent on policy with:

∇θ
1

Nθ

Nθ∑
i=1

−α log πθ(ai|si)+max(λ0, λK+1)min
j

Q
(0)
ϕj

(si, ai)+λK+1 min
j

Q
(K+1)
ϕj

(si, ai)−
K∑

k=1

λk min
j

Q
(k)
ϕj

(si, ai)

end if
Multipliers update
if u%Mλ == 0 then

Draw from the replay buffer a minibatch composed of the last Nλ transitions
for k = 0, . . . ,K + 1 do

Compute average costs: J̃Ck (π) =
1

Nλ

∑Nλ
i=1 e

(k)
i

Adam descent on multipliers with: ∇zkλk(J̃Ck (π)− d̃k) if k = K + 1 else ∇zkλk(d̃k − J̃Ck (π))
end for

end if
end for

B. Details for experiments in the Arena environment
B.1. Environment details

In the Arena Environment, the agent’s main goal is to navigate to the green tile (see Figure 1, left). The constraints that
we explore in this environment are {On-Ground, Not-in-Lava, Looking-At-Marker, Under-Speed-Limit and Above-Energy-
Limit}. It receives as observations its XYZ position, direction and velocity, the relative XZ position of the goal, its distance
to the goal, as well as an indicator for whether it is on the ground. For the looking-at constraint, it also receives the XZ
vector for the direction it is looking at, its Y-angular velocity, the marker’s relative XZ position and distance, the normalised
angle between the agent’s looking direction and the marker as well as an indicator for whether the marker is within its field
of view (a fixed-angle cone in front of the agent). For the energy constraint, the agent receives the normalised value of
its energy bar and an indicator for whether it is currently recharging. Finally for the lava constraint, the agent receives an
indicator of whether it currently stands in lava as well as an indicator for 25 vertical raycast of its surrounding (0 indicating
safe ground and 1 indicating lava). We also add to the agent’s observations the per-episode rates of indicator cost functions
to the agent observation for each of the constraint as well a normalised representation of the remaining time-steps before
reaching the time limit condition, leading to a total dimensionality of 53 for the observation vector. The action space is
composed of 5 continuous actions (clamped between -1 and 1) which represent its XZ velocity and Y-angular velocity, a
jump action (jump is triggered when the agent outputs a value above 0 for that dimensionality) and a recharge action (also
with threshold of 0). The reward function is simply 1 when the agent reaches the goal (causing termination), 0 otherwise,
and augmented with a small shaping reward function (Ng et al., 1999) based on whether the agent got closer or further away
from the goal location.

B.2. Hyper-parameters

Most of the hyper-parameters are the same as in the original unconstrained Soft Actor-Critic (SAC) (Haarnoja et al., 2018).
Some additional hyper-parameters emerge from the constraint enforcement aspect of our version of SAC-Lagrangian
and are described in the Algorithm section above. We use the Adam optimizer (Kingma & Ba, 2014) for all parameter
updates (policy, critics and Lagrange multipliers). For all experiments taking place in the Arena Environment, the policy
is parameterized as a a two layer neural networks that outputs the parameters of a Gaussian distribution with a diagonal
covariance matrix. The hidden layers are composed of 256 units and followed by a tanh activation function. The first
hidden layer also uses layer-normalisation before the application of the tanh function. We use K + 1 fully independent
critic models to estimate the expected discount sum of each of the constraint and of the main reward function. The critic
models are also parameterized with two-hidden-layers neural networks with the same size for the hidden layers as the policy
but instead followed by relu activation functions. Table 1 shows the hyper-parameters used in our experiments conducted in
the Arena environment.

Table 1. HYPER-PARAMETERS FOR EXPERIMENTS IN THE ARENA ENVIRONMENT.

GENERAL DISCOUNT FACTOR γ 0.9
NUMBER OF RANDOM EXPLORATION STEPS 10000
NUMBER OF BUFFER WARMUP STEPS 2560

SAC AGENT LEARNING RATE β 0.0003
TRANSITIONS BETWEEN UPDATES Mθ 200
BATCH SIZE Nθ 256
REPLAY BUFFER SIZE 1,000,000
INITIAL ENTROPY COEFFICIENT α 0.02
TARGET NETWORKS SOFT-UPDATE COEFFICIENT τ 0.005

LAGRANGE MULTIPLIERS LEARNING RATE β 0.03
INITIAL MULTIPLIER PARAMETERS VALUE zk 0.02
TRANSITIONS BETWEEN UPDATES Mλ 2000
BATCH SIZE Nλ 2000

CONSTRAINT THRESHOLDS HAS REACHED GOAL (LOWER-BOUND) 0.99
NOT LOOKING AT MARKER 0.10
NOT ON GROUND 0.40
IN LAVA 0.01
ABOVE SPEED LIMIT 0.01
IS UNDER THE MINIMUM ENERGY LEVEL 0.01

C. Details for experiments in the OpenWorld environment
C.1. Environment details

The OpenWorld environment is a large environment (approximately 30, 000 times larger than the agent) that includes
multiple multi-storey buildings with staircases, mountains, tunnels, natural bridges and lava. In addition, the environment
includes 50 jump-pads that propel the agent into the air when it steps on one of them. The agent is tasked with navigating
towards a goal randomly placed in the environment at the beginning of every episode. The agent controls include translation
in the XY frame (2 inputs), a jumping action (1 input), a rotation action controlling where the agent is looking independent
of its direction of travel (1 input), and a recharging action which allows the agent to recharge its energy level (1 input). The
recharging action immobilizes the agent, i.e., it does not allow the agent to progress towards its goal. The environment also
includes a look-at marker which we would like the agent to look at while it accomplishes its main navigation task.

At every timestep, the agent receives as observations its XYZ position relative to the goal as well as its normalized velocity
and acceleration in the environment. In addition, it receives its relative position to the nearest jump-pad in the environment.
For looking at the marker, as in the Arena environment, the agent receives the marker’s relative XZ position and distance,
the normalised angle between the agent’s looking direction and the marker, as well as an indicator for whether the marker is
within its field of view (a fixed-angle cone in front of the agent). For the energy-limit constraint, the agent obtains the value
of its energy level, a boolean describing if it is currently recharging and a Boolean indicating if it was recharging in the
previous timestep. The agent also receives a series of indicators denoting whether it is currently standing in lava, if it is
touching the ground, and if the agent is currently below the minimum energy level. In order for the agent to observe lava
and other elements it can collide with in the environment (e.g., buildings, doors, mountains), the agent receives 2 channels
of 8× 8 raycasts around the agent.

C.2. Hyper-parameters

The SAC agent in the OpenWorld environment uses the same architecture and similar hyper-parameters as in (Alonso
et al., 2020). The raycasts and raw state described above are processed using two separate embedding models. For the
raycasts, we employ a CNN with 3 convolutional layers, each with a corresponding ReLU layer. The raw state is processed
using a separate 3-layer MLP with 1024 hidden units at each layer. The two representations are concatenated into a single
vector representing the current state. The policy is parameterized by a 3-layer MLP that receives as input the concatenated
representation and outputs the parameters of a Gaussian distribution with a diagonal covariance matrix. Each hidden layer is
composed of 1024 hidden units and is followed by a ReLU activation function. The critic models are also parameterized
by 3-layer MLP, are composed of 1024 hidden units and use ReLU activation functions. Table 2 shows some of these
hyper-parameters with a focus on the constrained enforcement aspect of our version of SAC-Lagrangian.

Table 2. HYPER-PARAMETERS FOR EXPERIMENTS IN THE OPENWORLD ENVIRONMENT.

GENERAL DISCOUNT FACTOR γ 0.99
NUMBER OF RANDOM EXPLORATION STEPS β 200
NUMBER OF BUFFER WARMUP STEPS β 2560

SAC AGENT LEARNING RATE β 0.0001
BATCH SIZE Nθ 2560
REPLAY BUFFER SIZE 4,000,000
INITIAL ENTROPY COEFFICIENT α 0.005
TARGET NETWORKS SOFT-UPDATE COEFFICIENT τ 0.005

LAGRANGE MULTIPLIERS LEARNING RATE β 0.00005
INITIAL MULTIPLIER PARAMETERS VALUE zk 0.02
TRANSITIONS BETWEEN UPDATES EVERY TIMESTEP
BATCH SIZE Nλ 5000

CONSTRAINT THRESHOLDS HAS REACHED GOAL (LOWER-BOUND) 0.80
NOT LOOKING AT MARKER 0.10
NOT ON GROUND 0.40
IN LAVA 0.001
IS UNDER THE MINIMUM ENERGY LEVEL 0.01

D. Additional experiments on reward engineering
See Section 2 for the description of our experiments motivating against the use of reward engineering for behavior
specification. Figure 7 below shows the results for the biggest of the 3 grid searches performed to showcase the difficulty of
finding a reward function that fits the behavioral requirements when the number of requirements grows.

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-0.1

wno energy

Average Episodic Return

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

Not above Energy Limit < 0.01

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

in Lava < 0.01

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

Not Looking at Marker < 0.10

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

Average Episodic Return
for feasible policies

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-0.25

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-0.5

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-2.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-4.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

w
in

la
va

-10.0

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

-0.1 -0.25 -0.5 -1.0 -2.0 -4.0 -10.0
wnot looking

-10.0

-4.0

-2.0

-1.0

-0.5

-0.25

-0.1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Also see Figure 2. When enforcing 3 behavioral requirements with reward engineering, an ever larger proportion of the
experiments are wasted finding either low-performing policies or policies that do not satisfy the behavioral constraints. In this case, none
of the 343 experiments yielded a feasible policy that also solves the task (success rate near 1.0), showcasing that reward engineering
scales poorly with the number of constraints due to the curse of dimensionality and to the composing effect of the multiple constraints in
narrowing the space of feasible policies.

E. Additional experiments on TD3
We validate that our framework can be combined with any policy optimisation algorithm by applying it to the TD3
algorithm (Fujimoto et al., 2018). This leads to a TD3-Lagrangian formulation using our indicator cost functions, normalized
multipliers and bootstrap constraint. As for our experiments with SAC (Figure 5-d), our TD3-Lagrangian agent performs
well and all constraints are satisfied. The results are presented in Figure 8.

Figure 8. TD3-Lagrangian agent in the Arena environment using normalised multipliers, indicator cost functions and using the success
constraint as a bootstrap constraint. Training is halted after every 20, 000 environment steps and the agent is evaluated for 10 episodes.
All curves show the average over 5 seeds and envelopes show the standard error around that mean.

