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Abstract

The standard formulation of Reinforcement
Learning lacks a practical way of specifying what
are admissible and forbidden behaviors. Most of-
ten, practitioners go about the task of behavior
specification by manually engineering the reward
function, a counter-intuitive process that requires
several iterations and is prone to reward hacking
by the agent. In this work, we argue that con-
strained RL, which has almost exclusively been
used for safe RL, also has the potential to signif-
icantly reduce the amount of work spent for re-
ward specification in applied RL projects. To this
end, we propose to specify behavioral preferences
in the CMDP framework and to use Lagrangian
methods to automatically weigh each of these be-
havioral constraints. Specifically, we investigate
how CMDPs can be adapted to solve goal-based
tasks while adhering to several constraints simul-
taneously. We evaluate this framework on a set of
continuous control tasks relevant to the applica-
tion of Reinforcement Learning for NPC design
in video games.

1. Introduction

Reinforcement Learning (RL) has shown rapid progress
and lead to many successful applications over the past few
years (Mnih et al., 2013; Silver et al., 2017; Andrychow-
icz et al., 2020). The RL framework is predicated on the
simple idea that all tasks could be defined as a single scalar
function to maximise, an idea generally referred to as the re-
ward hypothesis (Sutton & Barto, 2018; Silver et al., 2021;
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Abel et al., 2021). This idea has proven very useful to
develop the theory and concentrate research on a single
theoretical framework. However, it can be significantly
limiting when translating a real-life problem into an RL
problem, since the question of where the reward function
comes from is completely ignored (Singh et al., 2009). In
practice, human-designed reward functions often lead to
unforeseen behaviors and represent a serious obstacle to the
reliable application of RL in the industry (Amodei et al.,
2016).

Concretely, for an engineer working on applying RL meth-
ods to an industrial problem, the task of reward specification
implies to: (1) characterise the desired behavior that the
system should exhibit, (2) write in a computer program a
reward function for which the optimal policy corresponds
to that desired behavior, (3) train an RL agent on that task
using one of the methods available in the literature and (4)
evaluate whether the agent exhibits the expected behavior.
Multiple design iterations of that reward function are gener-
ally required, each time accompanied by costly trainings of
the policy (Hadfield-Menell et al., 2017; Dulac-Arnold et al.,
2019). This inefficient design loop is exacerbated by the
fact that current Deep RL algorithms cannot be guaranteed
to find the optimal policy (Sutton & Barto, 2018), meaning
that the reward function could be correctly specified but still
fail to lead to the desired behavior. The design problem thus
becomes “What reward function would lead SAC (Haarnoja
et al., 2018) or PPO (Schulman et al., 2017) to give me a
policy that I find satisfactory?”, a difficult puzzle that every
RL practitioner has had to deal with.

Most published work on Reinforcement Learning focuses
on point (3) i.e. improving the reliability and efficiency
with which these algorithms can yield a near-optimal policy
for a given reward function. This line of work is crucial to
allow RL to tackle difficult problems. However, as agents
become more and more capable of solving the tasks we
present them with, our ability to (2) correctly specify these
reward functions will only become more critical (Dewey,
2014).

Constrained Markov Decision Processes (Altman, 1999) of-
fer an alternative framework for sequential decision making.
The agent still seeks to maximise a single reward function,
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