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Abstract
Our theoretical understanding of deep learning
has not kept pace with its empirical success.
While network architecture is known to be criti-
cal, we do not yet understand its effect on learned
representations and network behavior, or how this
architecture should reflect task structure.In this
work, we begin to address this gap by introduc-
ing the Gated Deep Linear Network framework
that schematizes how pathways of information
flow impact learning dynamics within an architec-
ture. Crucially, because of the gating, these net-
works can compute nonlinear functions of their in-
put. We derive an exact reduction and, for certain
cases, exact solutions to the dynamics of learn-
ing. Our analysis demonstrates that the learning
dynamics in structured networks can be concep-
tualized as a neural race with an implicit bias to-
wards shared representations, which then govern
the model’s ability to systematically generalize,
multi-task, and transfer. We validate our key in-
sights on naturalistic datasets and with relaxed
assumptions. Taken together, our work gives rise
to general hypotheses relating neural architecture
to learning and provides a mathematical approach
towards understanding the design of more com-
plex architectures and the role of modularity and
compositionality in solving real-world problems.
The code and results are available at https:
//www.saxelab.org/gated-dln.

1. Introduction
While neural networks have led to numerous impressive
breakthroughs (He et al., 2016; Vaswani et al., 2017;
Amodei et al., 2016; Baevski et al., 2020; Mnih et al., 2015;
Silver et al., 2017), our theoretical understanding of these
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Figure 1. A multi-modal network composed of simple modules
shared across modalities and tasks. How do shared modules and
pathways impact representation learning and generalization?

models has not advanced at the same pace. Although we
have gained some insight into general principles of network
optimization (Patel et al., 2015; Carleo et al., 2019; Bahri
et al., 2020; Arora et al., 2020; Roberts et al., 2021), we
have a limited understanding of how the specific choice of
architecture—that is, the mesoscale pattern of connectivity
between hidden layers (Fig. 1)—affects a network’s behav-
ior (Zagoruyko & Komodakis, 2016; Raghu et al., 2017;
Chizat et al., 2019; Saxe et al., 2019; Tian et al., 2019). For
example, when training networks on the ImageNet dataset,
wide networks perform slightly better on classes reflecting
scenes, whereas deep networks are slightly more accurate on
classes related to consumer goods (Nguyen et al., 2020). Un-
derstanding the reasons behind these behaviors may lead to
more systematic techniques for designing neural networks.

Here, we address this gap by introducing and analyzing the
Gated Deep Linear Network (GDLN) framework, which
illuminates the interplay between data statistics, architec-
ture, and learning dynamics. We ground the framework in
the Deep Linear Network (DLN) setting as it is amenable
to mathematical analysis, and previous works (Saxe et al.,
2014; Lampinen & Ganguli, 2019; Arora et al., 2018; Saxe
et al., 2019) have observed that DLNs exhibit several non-
linear phenomena that are observed in deep neural networks.
Because of the gating mechanism, however, GDLNs can
compute nonlinear functions of their input, making them
more expressive than standard deep linear networks.

Our main contributions are: (i) We introduce the GDLN
framework (Section 2), which schematizes how pathways
of information flow impact learning dynamics within an
architecture. (ii) We derive an exact reduction and, for
certain cases, exact solutions to the dynamics of learning
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(Section 3). (iii) Our analyses reveal the dynamics of learn-
ing in structured networks can be conceptualized as a neural
race with an implicit bias towards shared representations
(Section 4.2). (iv) We validate our findings on naturalistic
datasets, with some relaxed assumptions (Section 5).

2. Gated Deep Linear Network Framework
A fundamental principle of neural network design is that
powerful networks can be composed out of simple mod-
ules (Salakhutdinov, 2014a;b), and a key intuition is that
a network’s compositional architecture should resonate in
some way with the task to be performed. For instance, a mul-
timodal network might process each modality independently
before merging these streams for further processing (Ngiam
et al., 2011; Girdhar et al., 2022), and a multi-tasking NLP
model might process its input through a shared encoder be-
fore it splits into task-specific pathways (Collobert et al.,
2011; Liu et al., 2019b; Standley et al., 2020). Frequently, a
network’s compositional structure can be conceptualized as
an “architecture graph” Γ, decorated by network modules,
additional interactions, and learning mechanisms.

Here we introduce a class of networks, Gated Deep Linear
Networks (GDLNs), depicted in Fig. 2a, for which we can
analytically study the effect of the architecture graph on
learning and generalization. A GDLN is defined as follows.
Let Γ denote a directed graph with nodes V and edges E,
with the structure of Γ encoded by functions s, t : E → V
mapping an edge to its source and target node, respectively.
For each v ∈ V, let |v| ∈ N denote the number of neu-
rons assign to that node, and let hv ∈ R|v| denote neural
activations for the corresponding network layer. For each
edge e ∈ E, let We denote a |t(e)| × |s(e)| weight ma-
trix assigned to e. An input node of Γ is a node with only
outgoing edges, and an output node is a node with only
incoming edges. Let In(Γ),Out(Γ) ⊂ V denote the sets of
input nodes and output nodes of Γ, respectively.

The GDLN associated with Γ computes a function as fol-
lows: An input example specifies values xv ∈ R|v| for
all input nodes v ∈ In(Γ), and the input nodes are fixed
to their values hv = xv for v ∈ In(Γ). Then, activa-
tion propagates to subsequent layers according to hv =
gv

∑
q∈E:t(q)=v gqWqhs(q) where gv is the node gate and

gq is the edge gate. That is, activity propagates through the
network as in standard neural networks, but modulated by
gating variables that can act at the node and edge level.

In essence, these gating variables enable nonlinear computa-
tion from input to output, and can be interpreted in several
ways: The node level gating can be viewed as an approx-
imate reduction of ReLU dynamics as a ReLU neuron’s
activity can be written as max(0, wx) = step(wx)wx. The
gating variables can also be viewed as context-dependent

We
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Figure 2. Formalism and notation. (a) The Gated Deep Linear Net-
work applies gating variables to nodes and edges in an otherwise
linear network. (b) The gradient for an edge (here using the orange
edge in Panel (a) as an example) can be written in terms of paths
through that edge (colored lines). Each path is broken into the
component antecedent s̄(p, e) and subsequent t̄(p, e) to the edge.

control signals that modulate processing in the network. We
discuss the extensive connections between the Gated Deep
Linear Network and other approaches in Appendix 6.

In order to keep the analysis mathematically tractable, we
assume that the gating variables are simply specified directly
for each input that will be processed and we consider them
to be a part of the dataset.

3. Gradient Flow Dynamics and Reduction
Having described the design of the network, we now exploit
its special properties to understand learning dynamics and
their relationship to network structure. In particular, we
consider training all weights in the network to minimize the
L2 loss averaged over a dataset,

L({W}) =
〈
1

2

∑
v∈Out(Γ)

||yv − hv||22

〉
x,y,g

(1)

where yv ∈ R|v| for v ∈ Out(Γ) are the target outputs
for the output layers in the network, and ⟨·⟩x,y,g denotes
the average over the training dataset and gating structures.
The weights in the network can be updated using gradient
descent. A key virtue of the GDLN formalism is that the
gradient flow equations can be compactly expressed in terms
of the paths through the network.

We first lay out our notation, as illustrated in Fig. 2b for
an example network. A path p is a sequence of edges that
joins a sequence of nodes in the network graph Γ. Let P(e)
be the set of all paths from any input node to any output
node that pass through edge e. Let T (v) be the set of all
paths terminating at node v. We denote the source and the
target node of the path p as s(p) and t(p), respectively. We
denote the component of path p that is subsequent to edge e
(i.e., the path whose source node is the target of e, and that
otherwise follows p) as t̄(p, e) (for the ‘target’ path of e).
Similarly, we denote the component of path p that precedes
edge e (i.e., the path whose target node is the source of e,
and that otherwise follows p) as s̄(p, e) (for the ‘source’ path
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of e). Overloading the notation, we will write Wp where p
is a path to indicate the ordered product of all weights along
the path p, with the target of p on the left and the source of
p on the right. Similarly, we write gp where p is a path to
denote the product of the (node and edge) gating variables
along the path.

With this notation, the gradient flow equations can be shown
to be (full derivation in Appendix B),

τ
d

dt
We = −∂L({W})

∂We
∀e ∈ E, (2)

=
∑

p∈P(e)

WT
t̄(p,e)E(p)WT

s̄(p,e) (3)

where the error term for path p is

E(p) = Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p). (4)

Here the dataset statistics which drive learning are collected
in the correlation matrices

Σyx(p) =
〈
gpyt(p)x

T
s(p)

〉
y,x,g

(5)

Σx(j, p) =
〈
gjxs(j)x

T
s(p)gp

〉
y,x,g

(6)

where j and p index two paths. Hence if there are N paths
through the graph from input nodes to output nodes, there
are potentially N distinct input-output correlation matrices
and N2 distinct input correlation matrices that are relevant
to the dynamics. Remarkably, no other statistics of the
dataset are considered by the gradient descent dynamics.

Notably, these correlation matrices depend not just on the
dataset statistics (x and y), but also on the gating structure g.
The possible gating structures are limited by the architecture.
In this way, the architecture of the network influences its
learning dynamics.

In essence, the core simplification enabled by the GDLN
formalism is that the gating variables g appear only in these
data correlation matrices. They do not appear elsewhere
in Eqns. (3)-(4), which otherwise resemble the gradient
flow for a deep linear network (Saxe et al., 2014; 2019).
The effect of the nonlinear gating can thus be viewed as
constructing pathway-dependent dataset statistics that are
fed to deep linear subnetworks (pathways).

As a simple example of the power of this framework relative
to deep linear networks, consider the XoR task (Fig. 3a),
a canonical nonlinear task that cannot be solved by linear
networks. By choosing the gating structures to activate a
different pathway on each example (Fig. 3b), the gated deep
linear network can solve this task (Fig. 3c blue). Crucially,
its dynamics (analytically obtained in Appendix A based
on the reduction in the following sections) closely approx-
imates the dynamics of a standard ReLU network trained
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Figure 3. XoR solution dynamics. (a) The XoR task with positive
(red) and negative (blue) examples. Input-to-hidden weights from
ReLU simulations (magenta) reveal four functional cell types. (b)
GDLN with four paths, each active on one example. (c) Sim-
ulations of ReLU dynamics from small weights (red, 10 repeti-
tions) closely track analytical solutions in the GDLN. Parameters:
Nh = 128, τ = 5/2, σ0 = .0002.

with backprop (Fig. 3c red). This result demonstrates that
the gated networks are more expressive than their non-gated
counterpart, and that gated networks can provide insight
into ReLU dynamics in certain settings. We note that so
far, our analysis does not provide a mechanism to select the
gating structure. We will return to this point in Section 4.2,
which provides a perspective on the gating structures likely
to emerge in large networks.

3.1. Exact reduction from decoupled initial conditions

Our fundamental goal is to understand the dynamics of learn-
ing as a function of architecture and dataset statistics. In this
section, we exploit the simplified form of the gradient flow
equations to obtain an exact reduction of the dynamics. Our
reduction builds on prior work in deep linear networks, and
intuitively, shows that the dynamics of gating networks can
be expressed succinctly in terms of effective independent
1D networks that govern the singular value dynamics of
each weight matrix in the network. The reduced dynamics
can be substantially more compact, as for instance, a weight
matrix of size N ×M has NM entries but only min(M,N)
singular values.

To accomplish this, we introduce a change of variables
based on the singular value decomposition of the relevant
dataset statistics. Suppose that the dataset correlation ma-
trices are mutually diagonalizable, such that their singular
value decompositions have the form

Σyx(p) = Ut(p)S(p)V
T
s(p) (7)

Σx(j, p) = Vs(j)D(j, p)V T
s(p) (8)

where the set of U and V matrices are orthogonal, and the
set of S and D matrices are diagonal. That is, there is a
distinct orthogonal matrix Ul for each output layer, a distinct
orthogonal matrix Vl for each input layer, and diagonal
matrices S(p), D(p) for each path through the network.

Then, following analyses in deep linear networks (Saxe
et al., 2014), we consider the following change of variables.
We rewrite the weight matrix on each edge as

We(t) = Rt(e)Be(t)R
T
s(e) ∀e, (9)
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Figure 4. Pathway network solution dynamics. (a) The network contains M different input domains (each consisting of a bank of neurons),
M different output domains, and two hidden layers. The task is to learn a mapping from each input domain to each output domain. The
gating structure gates on one input and one output pathway. The hidden pathway is always on. (b) Gated network formalism. There are
M2 pathways through the network from input to output. All M2 flow through the hidden weight matrix, while only M flow through each
input or output weight matrix. This fact causes the hidden layer to learn faster. (c) Small example dataset with hierarchical structure.
The task of the network is to produce the 7-dimensional output vector for each of four items. Inputs are random orthogonal vectors for
each item. (d) Each input domain is trained with K output domains (here K = 4), such that some input-output routes are never seen
in training. (e) Training loss dynamics for simulated networks from small random weights (red, 10 repetitions), simulated networks
from decoupled initial conditions (green), and theoretical prediction from Eqn. 15 (blue). The theory matches the decoupled simulations
exactly, and is a good approximation for small random weights. (f) The singular values of the hidden weight matrix (blue) are larger than
those in input or output matrices by a factor

√
M . Theoretical predictions match simulations well, particularly for larger singular values.

(g) Representational similarity (or kernel) matrix at the first hidden layer. Inputs from different domains are mapped to similar internal
representations, revealing a shared representation even for input domains that are never trained with a common output. (h) Predicted
output at the end of training. The network generalizes perfectly to input-output routes that were never seen during training. Parameters:
M = 7,K = 4, λ = .02, σ0 = .2, Nh = 64.

where the matrices Be(t) are the new dynamical variables,
and the matrix Rv associated to each node v in the graph
satisfies RT

v Rv = I . Further, for output nodes v, we require
Rv = Uv, the output singular vectors in the diagonaliz-
ability assumption. Similarly, for input nodes, we require
Rv = Vv .

Inserting (7)-(9) into (3)-(4) shows that the dynamics for
Be decouple: if all Be(0) are initially diagonal, they will
remain so under the dynamics (full derivation in Appendix
B). For this decoupled initialization, the dynamics are

τ
d

dt
Be =

∑
p∈P(e)

Bp\e

S(p)− ∑
j∈T (t(p))

BjD(j, p)


(10)

where Bp\e = Bt̄(p,e)Bs̄(p,e) is the product of all B matri-
ces on path p after removing edge e (see Appendix B).

In essence, this reduction removes competitive interactions
between singular value modes, such that the dynamics of
the overall network can be described by summing together
several “1D networks,” one for each singular value. Intu-
itively, this reduction shows that learning dynamics depend
on several factors.

Input-output correlations Other things being equal, a
pathway learning from a dataset with larger input-
output singular values will learn faster. This fact is
well known from prior work on deep linear networks

(Saxe et al., 2014).
Pathway counting Other things being equal, a weight ma-

trix corresponding to an edge that participates in many
paths (such that the sum contains many terms) will
learn faster. This fact is less obvious, as it becomes
relevant only if one moves beyond simple feed-forward
chains to study complex architectures and gating.

We now turn to examples that verify and illustrate the rich
behavior and consequences of these dynamics.

4. Applications and consequences
To fix a specific scenario with rich opportunities for gen-
eralization, we consider a “routing” setting, as depicted in
Fig. 4a. In this setting, a network receives inputs from M
different input domains and produces outputs across M dif-
ferent output domains. The goal is to learn to map inputs
from a specific input domain to a specific output domain,
with no negative-interference from other input-output do-
main pairs. There are thus M2 possible tasks which can be
performed, each corresponding to mapping one of the M
input domains to one of the M output domains.

We assume that the target input-output mapping from the
active input domain to the active output domain is the same
for all pathways, and defined by a dataset with input cor-
relations ⟨xxT ⟩ = V DV T and input-output correlations
⟨yxT ⟩ = USV T . For the simulations in this section, we
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take the dataset to contain four examples, and the target out-
put to be a 7-dimensional feature vector with hierarchical
structure (Fig. 4c), but note that the theory is more general.

To investigate the possibility of structured generalization,
we consider a setting where only a subset of input-output
pathways are trained. That is, each input domain is trained
with only K ≤ M output domains, as depicted in Fig. 4d,
such that some input-output pathways are never observed
during training.

We consider solving this task with a two-hidden layer gated
deep linear network depicted in Fig. 4a. We emphasize that
this task is fundamentally nonlinear, because inputs on irrel-
evant input domains must be ignored. We take the gating
structure to gate off all first layer pathways except the rele-
vant input domain, and to gate off all third layer pathways
but the one to the relevant output domain. As shown in
Fig. 4b, this scheme results in M2 pathways through this
network that must be considered in the reduction. The result-
ing pathway correlations are simply given by the original
dataset, scaled be the probability that each path is active
(see Appendix C)

Σyx(p) =
1

KM
USV T (11)

Σx(j, p) =

{
1

KM V DV T if j = p

0 otherwise
. (12)

Crucially, we have a simple “pathway counting” logic be-
hind the reduction: the first and third layer weights are active
in K paths (all tasks originating from a given input domain
or terminating at a given output domain, respectively), while
second layer weights are active in KM trained paths. This
fact causes the second layer weights to learn more rapidly.

Assuming that weights start out roughly balanced in each
first layer and third layer weigh matrix (a reasonable as-
sumption when starting from small random weights), this
yields the reduced dynamics (Appendix C)

τ
d

dt
B1 =

1

M
B2B1

[
S −B2B

2
1D

]
(13)

τ
d

dt
B2 = B2

1

[
S −B2B

2
1D

]
(14)

where B1 describes the input and output pathway weights
singular values, and B2 describes the hidden layer weight
singular values.

We note that the quantity MB2
1 −B2

2 is conserved under the
dynamics. Defining the constant C =MB1(0)

2 −B2(0)
2,

we can therefore write the dynamics as

τ
d

dt
B2 =

1

M
(B2

2 + C)

[
S − 1

M
B2(B

2
2 + C)D

]
. (15)

Remarkably, this equation reveals that the dynamics of this

potentially large, gated, multilayer network with arbitrary
numbers of hidden neurons can be reduced to a single scalar
for each singular value in the dataset. Each diagonal element
of this equation provides a separable differential equation
that may be integrated to give an exact formal solution.

Figure 4e compares the training error dynamics predicted
by Eqn. 15 to full simulations starting from small random
weights (i.e. scaling Xavier initialiation weights by 0.2),
verifying that our reduction is a good description of dynam-
ics starting from small random weights. Furthermore, as
shown in Appendix C, the hidden layer weight singular val-
ues change by a factor of

√
M more than the input or output

weights, as verified in Fig 4f.

4.1. Shared representations and generalization

With this description of the training dynamics of the net-
work, we can then ask what representations emerge in the
network over training. One way of interrogating the nature
of representations in the network is to compute the represen-
tational similarity between different input examples from
the same input domain, and across different input domains.
Specifically, we compute the dot product between the neu-
ral activity in the first hidden layer in response to different
inputs. As shown in Fig. 4g, the pathway network learns
a shared representation, in which each individual example
maps to the same representation regardless of what input
domain it arrives on. That is, the gating and learning dy-
namics enable the network to learn a representation that
is invariant to input domain, and which is abstract in the
sense that the representation contains no information about
what input domain produced it. This shared representation
supports zero-shot generalization to untrained input-output
pathways, as shown in Fig. 4h.

The intuition behind obtaining zero-shot generalization is
as follows: Say that we are evaluating the network on a new
input-output pair of domains. As long as the network has
been trained on examples from the current input domain (in
conjunction with any output domain), the network will map
it to the shared representation. Similarly, as long as the net-
work has been trained on examples from the current output
domain, it will be able to map this shared representation to
the output. In this way, training on a subset of M2 tasks is
enough to obtain strong generalization to all M2 tasks.

In essence, this solution accomplishes a factorization of the
problem into two interacting but distinct components: the
gating variables represent what input domain links to what
output domain, providing information about “where” signals
should go; while the neural activity represents “what” task-
relevant input was presented, regardless of where it came
from or where it should be routed to. This factorization can
permit generalization to untrained pathways provided the
gating structure is configured appropriately.
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Figure 5. Pathway race dynamics. (a) The same routing task can be solved using a variety of gating schemes that differ in their use of
shared representations. Every input-output combination can be given a dedicated pathway such that P = 1 tasks flow through each (left),
groups of two input domains and two output domains can share a pathway such that P = 4 tasks flow through each (middle), or all
P = M2 tasks can run through a shared representation (right). (b) Singular value dynamics as a function of the number of pathways P
flowing through the hidden layers. Networks that share more structure learn faster. Consequently, in a single network where subparts
share structure to different degrees, the maximally shared dynamics dominate the race between pathways. (c) Error on trained (blue) and
untrained (red) pathways as a function of the fraction of output domains K trained with each input domain M . When few outputs are
trained per input domain, the race dynamics do not strongly favor shared structure and so error on untrained domains is large. When
∼ 40% of output domains are trained with each input, the shared structure solutions are sufficiently faster to reliably dominate the race
and yield generalization to untrained domains. Parameters: M = 10, λ = .05/K, σ0 = .2, Nh = 64.

4.2. Neural race dynamics: Implicit bias toward shared
representations

The reductions so far have assumed that the gating struc-
ture is specified a priori, and furthermore, that different
domains connect to the same singular value modes in the
hidden layer. That is, the gating structure provides the op-
portunity for learning a shared representation, but this is
not obligatory: different parts of the hidden representation
could learn distinct pathways, despite all being gated on.
Remarkably, the dynamics from small random weights track
the trajectory predicted for maximally shared representation,
suggesting that the full solution dynamics rapidly converge
to the submanifold of decoupled weights. Why are shared
representations favored under the dynamics?

To investigate this, we note that the same task and architec-
ture typically permit several gating schemes and singular
value mode connectivity patterns that each would obtain
zero training error. As shown in Fig. 5a (left), for instance,
the routing task could be solved with an alternative gating
structure in which each input-output route receives a ded-
icated pathway that is gated on only when the task is to
connect that specific input-output route. This gating scheme
would still obtain zero training error, but does not yield
any representation sharing. Other partial sharing schemes
are possible; for instance, representations could be shared
across groups of two input and two output domains (Fig. 5a,
middle). What is the impact of these choices on learning
dynamics and generalization?

Taking the case where all routes are trained (K = M ) for
simplicity, with no sharing, each pathway participates in
just one of the M2 total trained pathways, compared to
the fully shared solution where the input and output layers
participate in M pathways and the hidden layer participates

in M2. From this, we can see that greater sharing leads to
faster learning. In a combined network that produces its
output using both shared and non-shared representations,
the dynamics of each pathway will race each other to solve
the task; and hence the most-shared structure will dominate.

To see this quantitatively, we repeat a similar derivation to
the preceding section for networks with varying degrees of
pathway overlap. In particular, we parameterize the degree
of pathway overlap with the parameter P that counts the
number of pathways flowing through a given hidden layer.
The resulting reduction is

τ
d

dt
B1 =

√
P

M2
B2B1

[
S −B2B

2
1D

]
(16)

τ
d

dt
B2 =

P

M2
B2

1

[
S −B2B

2
1D

]
, (17)

which shows that the learning rate in all layers increases as
P increases. Solution dynamics for a range of degrees of
sharing P are plotted in Fig. 5b, which show that greater
degrees of sharing reliably leads to faster singular value
dynamics.

Hence, dynamics in GDLNs take the form of a pathway race:
when many gating schemes coexist in the same network,
the ones that share the most structure–and hence learn the
fastest–will come to dominate the solution. Therefore gradi-
ent flow dynamics in complex network architectures has an
implicit bias toward extracting shared representations where
possible. The strength of this bias increases as each input
domain is trained with more output domains. As shown
in Fig. 5c, shared representations begin to dominate reli-
ably when roughly 40% of input-output routes are trained,
enabling generalization to unseen input-output routes.
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Figure 6. Neural race vs. NTK regime: Initialization, shared representation formation, and zero-shot generalization. (a) Training loss
for pathway networks with different initialization scales σ0. Small σ0 yields pathway race dynamics with stage-like drops through
training. Large σ0 yields NTK-like dynamics with rapid, exponential learning curves. (b) Error for trained (blue) and untrained (red)
input-output domain combinations as a function of initialization scale. While performance on trained domains is excellent for all scales,
zero-shot generalization only emerges in the neural race regime. (c) Representational similarity between inputs presented to different
domains, for small (left column), medium (middle column) and large (right column) initialization scales. At small initialization scales,
internal representations in the first hidden layer are similar even across domains, indicating one common shared representation. Large
initialization scales place the network in the NTK regime where random initial connectivity persists throughout learning, yielding distinct
high-dimensional random representations for each domain. (d) Network output for all input-output combinations for three initialization
scales (labeled in panel c). Because networks in the NTK regime do not learn a shared representation for different input domains, they do
not generalize to untrained pathways.

4.3. Impact of initialization

The training and generalization dynamics of deep networks
are known to depend on the weight initialization. Here we
show that initial weight variance exerts a pronounced effect
on the emergence of shared representations, and hence gen-
eralization abilities. As observed in a number of theoretical
and empirical works, neural networks can operate in two
different initialization regimes (Chizat et al., 2019; Bahri
et al., 2020; Flesch et al., 2022). Sufficiently wide networks
initialized with large variance initializations enter the Neu-
ral Tangent Kernel regime, where training dynamics follow
a simple linear dynamical system and error trajectories ex-
hibit exponential approach to their asymptote (Jacot et al.,
2018; Lee et al., 2019; Arora et al., 2019c). Intuitively, in
this regime, the initial strong random connectivity in the
network provides sufficiently rich features to learn the task
without substantially changing internal representations. In
this setting, deep networks behave like kernel machines
with a fixed kernel (the neural tangent kernel). By con-
trast, networks initialized with sufficiently small variance
initializations learn rich task-specific representations, and
their dynamics as we have seen can be more complex (Mei
et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2020; Saxe et al., 2019).

To show the effect of this transition in our setting, we train
pathway networks starting from different random matrices
with singular value σ0. For a range of initialization scales,

all networks converge to zero training error (Fig. 6a). As
expected, large initialization scales lead to NTK-like ex-
ponential dynamics, while small initialization scales lead
to progressive stage-like drops in the error consistent with
prior analyses of deep linear networks in the rich regime.
Critically, initialization has a dramatic impact on generaliza-
tion (Fig. 6b), and only small initializations are capable of
zero-shot generalization to untrained routes. To understand
why, we visualize the representational similarity structure
for several networks in Fig. 6c, which shows a transition
from shared to independent representations as networks
move from the rich to the lazy regime. Finally, Fig. 6d
shows the breakdown in generalization in the NTK regime.
Hence our neural race reduction can describe learning in the
rich feature learning regime, with non-trivial generalization
behavior.

5. Experiments
So far, we have described mathematical principles relating
network architecture to learning dynamics and the nature
of learned representations in GDLNs. We demonstrated
how the network architecture affects generalization in path-
way networks when applied to a simple toy dataset. In
this section, we qualitatively validate our key findings on
naturalistic datasets. Specifically, we test if GDLNs can
exhibit strong zero-shot generalization performance on un-
trained input-output domain pairs (Section 4.1) and if the
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Figure 7. Experimental results. (a) Each input domain receives inputs that have been subjected to one of M input transformations. The
target output for each output domain is also transformed by one of M output transformations. Here the visualization uses rotations in the
input and permutations in the output. Only a subset of input-output transformation pairs are seen during training. (b) Error for trained
(blue) and untrained (orange) input-output domain pairs as a function of the percentage of trained pathways (K/M ) on the CIFAR dataset
with M2 = 1600 total tasks. (c) Error on MNIST with M2 = 104 total tasks. Training accuracy is always high while zero-shot transfer
to untrained pathways becomes as good as the training performance when ≈40% of pathways are trained. (d) Error as a function of
initialization scale. While performance on trained domains is good for all scales, zero-shot generalization only emerges at small inits.

link between initialization scale and zero-shot generalization
(Section 4.3) holds when training on naturalistic datasets.

Several datasets and benchmarks have been proposed to eval-
uate systematic generalization in neural networks (Johnson
et al., 2017; Bahdanau et al., 2019b; Sinha et al., 2019; Lake,
2019; Ruis et al., 2020; Sinha et al., 2020). However, these
naturalistic datasets generally require the network to learn
multiple capacities (like spatial reasoning, logical induc-
tion, etc.) and come with a fixed (and often unclear) extent
of training in different domains. To develop a setting that
remains close to the theory, we create new datasets by com-
posing transformations on popular vision datasets. Having
fine-grained control over the dataset generation mechanism
enables us to understand the effect of parameters like the
number of input/output domains.

Briefly, as depicted in Figure 7a, starting from a base dataset
with n inputs and outputs {(xµ, yµ)}, µ = 1, · · · , n, we
generate new tasks by applying one of M input transfor-
mations f in

i , i = 1, · · · ,M and one of M output trans-
formations f out

j , j = 1, · · · ,M (full details deferred to
Appendix D due to space constraints). The task from
input domain i to output domain j thus has samples
{(f in

i (x
µ), f out

j (yµ))}. We use the MNIST (Deng, 2012)
and CIFAR-10 datasets (Krizhevsky et al., 2009) as base
datasets, and rotations and permutations as transformations.
Relative to our previous experiments, these datasets add real
data correlations and distinct transformations on each do-
main that make finding a shared representation challenging.

5.1. Results

In Figure 7, we evaluate the zero-shot generalization perfor-
mance of gated deep linear networks on untrained pathways
and study the effect of initialization on their performance.
Full model and training details are given in Appendix D.
Fig. 7(b,c) shows mean accuracy, over trained and untrained
pathways, as a function of the fraction of datasets that the
model used for training, for CIFAR (M = 40) and MNIST

(M = 100) respectively. Training accuracy is always high
while the zero-shot transfer to untrained pathways becomes
near-perfect when ≈40% of pathways are trained. In Fig. 7d,
we report the error for trained (blue) and untrained (orange)
input-output domain combinations as a function of initial-
ization scale (gain ratio). While performance on trained
domains is good for all scales, zero-shot generalization only
emerges for smaller scales, as in the neural race regime.
These observations validate our findings (from Section 4)
on naturalistic datasets.

6. Related Work
Our work is closely related to several areas in machine
learning: Deep Linear Networks, the study of dynamics of
learning in neural networks, and modular neural networks.

Deep Linear Networks: Baldi & Hornik (1989); Fukumizu
(1998); Saxe et al. (2014); Arora et al. (2018); Lampinen
& Ganguli (2019); Saxe et al. (2019) showed that deep
linear networks exhibit several nonlinear phenomena that
are observed in deep neural networks and proposed studying
the dynamics of deep linear networks as a surrogate for
understanding the dynamics in the deep neural networks.
(Baldi & Hornik, 1989) described the loss landscape, while
(Saxe et al., 2014) developed the theory of gradient descent
learning in deep linear neural networks and provided exact
solutions to the nonlinear dynamics. Motivated by their
observation about the similarity in dynamics of linear and
non-linear networks and the feasibility of analyzing the
gradients in the linear network, we ground the proposed
framework in the deep linear network setting.

Many works have studied the dynamics of deep net-
works under specific assumptions like linear separability
of data (Combes et al., 2018), deep ReLU networks (Tian
et al., 2019; Straat & Biehl, 2019), Tensor Switching Net-
works (Tsai et al., 2016) (generalization of ReLU to tensor-
valued hidden units), the Neural Tanget Kernel limit (Jacot
et al., 2018; Fort et al., 2020), the Mean Field limit (Mei
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et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Sirignano
& Spiliopoulos, 2020) and Ensemble Networks (Fort et al.,
2019) to name a few (see (Carleo et al., 2019; Bahri et al.,
2020; Arora et al., 2020) for reviews). Similar to these
works, we also focus on a specific subset of deep networks,
gated deep linear networks, that captures a nonlinear re-
lationship between a network’s input-output maps and its
parameters, while being amenable to theoretical analysis.

Within the setup of deep linear networks, several works have
focused on the analysis of convergence rate (Saxe et al.,
2014; Arora et al., 2019a; 2018; Du & Hu, 2019), on under-
standing inductive biases like implicit regularization (Lau-
rent & von Brecht, 2018; Ji & Telgarsky, 2019; Gunasekar
et al., 2018; Saxe et al., 2019; Arora et al., 2019b) and un-
derstanding generalization dynamics (Lampinen & Ganguli,
2019; Poggio et al., 2018; Huh, 2020). Veness et al. (2021);
Budden et al. (2020) propose and study the Gated Linear
Networks (GLNs) as a class of backpropagation-free neural
architectures using geometric mixing. While GLNs appear
similar to GDLNs, there are several differences. GDLN is a
framework that schematizes how pathways of information
flow impact learning dynamics within architecture and stud-
ies networks trained using back-propagation. Additionally,
GLNs are good at online learning and continual learning,
while in this work, we use the GDLN framework for under-
standing zero-shot generalization capabilities. In the GLN
model, a neuron is defined as a gated geometric mixer of the
output of linear networks in the previous layer, while in the
GDLN model, the neurons are linear networks where the
input is the output of the linear network along the previous
path. In the GLN setup, multiple input-to-output connec-
tions (in successive layers) can be active for the same input,
while in the GDLN setup, only one input-output connection
(in successive layers) is active for one input.

In this work, we propose modeling the model architecture as
a graph and study how pathways of information flow impact
learning dynamics within an architecture. Previous works
have also proposed analyzing neural networks as directed
graphs using the Complex Network Theory (Boccaletti et al.,
2006). Scabini & Bruno (2021) analyzed the structure and
performance of fully connected neural networks, Zambra
et al. (2020) focused on the emergence of motifs in fully
connected networks, Testolin et al. (2020) study deep belief
networks using techniques from Complex Network Theory
literature and La Malfa et al. (2021) focused on convolution
and fully connected networks, with ReLU non-linearity.

Our Gated Deep Linear Network framework is closely re-
lated to areas like modular networks (Happel & Murre, 1994;
Sharkey, 1997; Auda & Kamel, 1999; Johnson et al., 2017;
Santoro et al., 2017), routing networks (Rosenbaum et al.,
2019) and mixture of experts (Jacobs et al., 1991; Jordan
& Jacobs, 1994; Chen et al., 1999; Yuksel et al., 2012). In

these works, the common theme is to learn a set of modules
(or experts) that can be composed (or selected) using a con-
troller (or a router). The modules are generally instantiated
as neural networks, while the controller can either be a neu-
ral network or a hand-designed policy. These approaches
have been prominently used in natural language process-
ing (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2021; Lewis et al., 2021), computer vision (Ahmed et al.,
2016; Gross et al., 2017; Yang et al., 2019; Wang et al.,
2019) and reinforcement learning (Yang et al., 2020; Sod-
hani et al., 2021; Andreas et al., 2017; Goyal et al., 2020;
He & Boyd-Graber, 2016; Goyal et al., 2021).

Our work is also related to previous works in systematic
generalization (Bahdanau et al., 2019b;a; Lake, 2019; Ruis
et al., 2020; Gontier et al., 2020) and multi-task learn-
ing (Caruana, 1997; Zhang et al., 2014; Kokkinos, 2017;
Radford et al., 2019; Ruder, 2017; Liu et al., 2019a; Mott
et al., 2019; Vithayathil Varghese & Mahmoud, 2020).
Specifically, we explore the role of model architecture and
weight initialization on models’ ability to exhibit systematic
generalization and multi-task learning.

7. Conclusion
A key intuition in deep learning holds that a network’s archi-
tecture influences learned representations, and should relate
to task structure in order to achieve good performance and
generalization. Here, we have introduced the Gated Deep
Linear Network framework, which reveals how architecture–
reflected by a simple nonlinear gating scheme along the
edges of an architecture graph–controls pathways of infor-
mation flow that govern learning dynamics, representation
learning, and ultimately generalization. Our exact reduc-
tions and solutions show that learning dynamics take the
form of a race, with greater representational reuse causing
faster learning, imparting a bias toward shared representa-
tions. We validate our key insights on naturalistic datasets
and with relaxed assumptions. An interesting future re-
search direction will be to explore mechanisms for inferring
the optimal architecture and gating for a given setup.
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A. Simple Nonlinear Classification
A.1. The XoR task

We consider the XoR task with P = 4 data points that lie at [±1 ± 1]T as depicted in Fig. 3a. The task is exclusive-or on
the input bits, with a target output of y = 1 if true and y = −1 otherwise. We solve this with a GDLN containing four
pathways (Fig. 3b), with each pathway active on exactly one of the four examples. By symmetry, all pathways will have the
same loss dynamics and so we need only solve one. Consider the pathway active for the example x = [1 1]T , y = 1, that is,
whose gating variable g1 = 1 when this example is presented and g1 = 0 on the remaining three examples. The relevant
dataset correlations are

Σyx = ⟨g1yxT ⟩ = 1/P
[
1 1

]
(18)

Σx = ⟨g1xxT ⟩ = 1/P

[
1 1
1 1

]
(19)

Σy = ⟨g1yyT ⟩ = 1/P (20)

The singular value decomposition of the input-output correlations yields the nonlinear singular value s =
√
2/P and input

singular vector v = [1/
√
2 1/

√
2]T . Applying this singular vector to diagonalize the input correlations yields the associated

input variance d = vTΣxv = 2/P . The effective singular value dynamics of this pathway is given by the deep linear
network dynamics with these correlations (see Saxe et al. (2014; 2019)), yielding

a(t) =
s/d

1− (1− s
da0

)e−2st/τ
(21)

where a(t) is the singular value in the product of both weight matrices in the pathway, and a0 is the initial effective singular
value, related to the initialization variance. Finally the loss for this pathway is the loss trajectory l(t) of the associated deep
linear network. The total loss, by symmetry, is the loss from all four pathways L(t) = Pl(t),

L(t) =
1

2
− Psa(t) +

P

2
da(t)2 (22)

=
1

2
−
√
2a(t) + a(t)2. (23)

This analytical expression is exact for GDLNs initialized in the decoupled regime, and it agrees closely with the dynamics
of standard ReLU networks trained end-to-end on the task starting from small random weights (Fig. 3c). Hence GDLNs
can learn nonlinear input-output tasks, and in certain settings, describe the dynamics of standard ReLU networks when the
gating structure is chosen appropriately.

A.2. Nonlinear Contextual Classification

As another simple example, consider a nonlinear contextual classification problem that cannot be solved using deep
linear networks but can be solved using the gated deep linear network, again highlighting that the gated networks are more
expressive than their non-gated counterpart.

Consider receiving two-dimensional inputs x ∈ R2 where each component xi, i = 1, 2 is drawn from a uniform distribution
between -1 and 1. The task of the network is to classify stimuli based either on the first or second input component. That is,
the target output is y = xc in context c ∈ 1, 2, and each context appears with probability 1/2. In this simple scenario (a
variant of the XoR task), the same input must be treated in two different ways depending on context, and nonlinearity is
required for solving it correctly.

Now we must choose a gating structure. If we choose a single pathway that is always active (g = 1 for all samples), then we
recover a deep linear network. The resulting correlation matrices are

Σyx = ⟨yxT ⟩ = [1/6 1/6] (24)
Σx = ⟨xxT ⟩ = 1/3I (25)

where I is the 2× 2 identity matrix. Under the resulting dynamics, the total weights converge to the linear least squares
solution W tot = Σyx(Σx)−1 = [1/2 1/2], the best solution attainable by the linear network.
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Alternatively, we can set the gating variables such that a different pathway is active in each context. We then have the
collection of correlation matrices

Σyx(1) = [1/6 0] (26)
Σyx(2) = [0 1/6] (27)

Σx(1, 1) = Σx(2, 2) = 1/6I (28)
Σx(1, 2) = Σx(2, 1) = 0. (29)

We thus see that each pathway faces a subproblem defined by just one context. For this simple case, the pathways converge
to their respective linear least squares solutions. In particular, W tot(1) = [1 0] and W tot(2) = [0 1], such that each
pathway picks out the correct input coordinate. In combination with the gating scheme, these weights exactly solve this
nonlinear task, showing that gated linear networks are more expressive than linear networks. Interestingly, neuroimaging
and electrophysiological recordings from this paradigm suggest that this type of solution is observed in the human and
primate brain, as well as in standard ReLU networks trained in the “rich” feature learning regime (Flesch et al., 2022).

B. Gradient flow dynamics
The gradient flow equations are

τ
d

dt
We = −∂L({W})

∂We
∀e ∈ E (30)

=

〈 ∑
p∈P(e)

gpW
T
t̄(p,e)

[
yt(p)x

T
s(p) − ht(p)x

T
s(p)

]
WT

s̄(p,e)

〉
y,x,g

(31)

=

〈 ∑
p∈P(e)

gpW
T
t̄(p,e)

yt(p)xTs(p) − ∑
j∈T (t(p))

gjWjxs(j)x
T
s(p)

WT
s̄(p,e)

〉
y,x,g

(32)

=
∑

p∈P(e)

WT
t̄(p,e)

〈gpyt(p)xTs(p)〉
y,x,g

−
∑

j∈T (t(p))

Wj

〈
gjxs(j)x

T
s(p)gp

〉
y,x,g

WT
s̄(p,e) (33)

=
∑

p∈P(e)

WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e), (34)

where we have simply rearranged terms and used the linearity of expectation.

The dynamics reduction can then be obtained by applying the change of variables,

τ
d

dt
We =

∑
p∈P(e)

WT
t̄(p,e)

Σyx(p)−
∑

j∈T (t(p))

WjΣ
x(j, p)

WT
s̄(p,e) (35)

τ
d

dt

(
Rt(e)BeR

T
s(e)

)
=

∑
p∈P(e)

(
Ut(p)Bt̄(p,e)R

T
t(e)

)T [
Ut(p)S(p)V

T
s(p)− (36)

∑
j∈T (t(p))

Ut(j)BjV
T
s(j)Vs(j)D(j, p)V T

s(p)

(
Rs(e)Bs̄(p,e)V

T
s(p)

)T

(37)

τ
d

dt
Be =

∑
p∈P(e)

Bt̄(p,e)

S(p)− ∑
j∈T (t(p))

BjD(j, p)

Bs̄(p,e) (38)

where we have used the fact that RT
v Rv = I for all nodes, and the fact that Ut(j) = Ut(p) by definition of the set T (t(p)).

From this we see that if the B variables are initially diagonal they remain so under the dynamics. In this case, the dynamics
decouple and each element along the diagonal of the B matrices evolves independently of the rest.
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C. Routing task and network reduction
To understand the dynamics in the pathway network, we first collect the relevant input statistics. We have

Σyx(p) =
〈
gpyt(p)x

T
s(p)

〉
(39)

= Pr(gp = 1)USV T (40)

=
1

KM
USV T (41)

Σx(j, p) =
〈
gjxs(j)x

T
s(p)gp

〉
(42)

=

{
1

KM V DV T if j = p

0 otherwise
(43)

because there are KM total trained paths from input to output and all pathways are gated off except for the active pathway.

Inserting these data statistics into (10), and assuming that initial singular values are equal for all input domains and all
output domains (a reasonable approximation when starting from small random weights), we can track only the variables
B1, B2, and B3 encoding the singular values in the input, hidden, and output weights respectively.

Next, we note that the first and third layer weights are active inK tasks (all tasks originating from a given input or terminating
at a given output, respectively), while second layer weights are active in all KM tasks. This yields the reduced dynamics

τ
d

dt
B1 =

1

M
B3B2 [S −B3B2B1D] (44)

τ
d

dt
B2 = B3B1 [S −B3B2B1D] (45)

τ
d

dt
B3 =

1

M
B2B1 [S −B3B2B1D] . (46)

If we consider ‘balanced’ initial conditions where B1(0) = B3(0), we have

τ
d

dt
B1 =

1

M
B2B1

[
S −B2B

2
1D

]
(47)

τ
d

dt
B2 = B2

1

[
S −B2B

2
1D

]
, (48)

recovering Eqns. (13)-(14) of the main text.

To estimate the ratio of singular values in the first layer to that in the second, we consider its time derivative and calculate
the steady state. We have

d

dt
B2/B1 = B1

[
S −B2B

2
1D

]
− 1

M
B2

2/B1

[
S −B2B

2
1D

]
(49)

0 = B1 −
1

M
B2

2/B1 (50)

B2 =
√
MB1. (51)

Hence if training continues for long times (such that the error term does not become zero), the shared portion of the pathway
changes more by a factor

√
M (and this ratio does not depend on K).

We can extend this analysis to the case where all input-output routes are trained but the gating structure sends only P paths
through each hidden weight matrix, as considered in Section 4.2. With this gating scheme, the reduction is

τ
d

dt
B1 =

√
P

M2
B2B1

[
S −B2B

2
1D

]
(52)

τ
d

dt
B2 =

P

M2
B2

1

[
S −B2B

2
1D

]
, (53)
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and the singular value ratio is

d

dt
B2/B1 =

P

M2
B1

[
S −B2B

2
1D

]
−

√
P

M2
B2

2/B1

[
S −B2B

2
1D

]
(54)

0 = PB1 −
√
PB2

2/B1 (55)

B2 = P
1
4B1. (56)

This ratio scales from 1 to
√
M as the number of shared paths goes from P = 1 (no sharing) to P = M2 (full sharing).

Hence for this architecture, greater sharing causes larger weight changes in the hidden pathway.

D. Experimental details and further results
This section contains details and hyperparameter settings for the simulations reported in Section 5, as well as additional
visualization of results in Figures 9 and E.1.

We start by explaining the general procedure for transforming the existing datasets and then describe the new dataset
instances that we create.

Consider a dataset D = (X,Y ), defined as a tuple of inputs X and targets Y . The dataset D has n datapoints, that
is, X ∈ Rn×ndim , where ndim is the dimensionality of each input1. The dataset has nclass unique classes, referred
by their indices {0, 1, · · · , nclass − 1}. We want to create new datasets by transforming the given dataset D. We
assume that we have a list of M input transformations f inputi : Rndim → Rndim∀i ∈ {0, · · · ,M − 1} and M output
transformations foutputj : Rnclass → Rnclass∀j ∈ {0, · · · ,M − 1}. Now, we can define a new dataset, Di,j , as (Xi, Yj),
where Xi = f inputi (X), Yj = foutputj (Y ) i.e any transformation of the given dataset is a new dataset. We can apply M
transformations on the input and M transformations on the output to obtain M2 datasets.

We consider the following two operations for input transformations: rotation of the input image and permutation of pixels.
For the ith rotation transformation, we rotate the input images by an angle θ = 180i/M degrees. For the ith permutation
transformation, we apply a random permutation matrix to the flattened input. Each of these transformations provides
input to one input domain. We use the permutation operation as the output transformation, implying that each new output
transformation corresponds to a nclass-way classification task.

We use the MNIST (Deng, 2012) and CIFAR-10 datasets (Krizhevsky et al., 2009) to create three datasets:

MNIST-Permuted-Input-Permuted-Output-40: 40 transformations on both the input and the output, leading to a total of
1600 datasets. The input transformation is permutation of pixels and the output transformation is permutation of the
targets.

MNIST-Permuted-Input-Permuted-Output-100: 100 permutation transformations on both the input and the output, leading
to a total of 104 datasets.

MNIST-Rotated-Input-Permuted-Output-40 40 rotation transformations on the input and 40 permutation transformations
on the output.

CIFAR-Rotated-Input-Permuted-Output-40 40 rotation transformations on the input and 40 permutation transformations
on the output.

In the case of CIFAR-Rotated-Input-Permuted-Output-40 dataset, use a pre-trained ResNet18 (He et al., 2016) model2

to map the images into 512 dimensional vectors. We pretrain the ResNet18 model on full CIFAR-10 dataset, freeze the
pre-trained model and use the first two residual blocks to encode the images from the transformed datasets. The output of
the (frozen) ResNet encoder is used as input to the gated network.

D.1. Model and training

The model consists ofM encoders, denoted as ({ϕi∀i ∈ {1, · · · ,M}}) andM decoders, denoted as ({ψi∀i ∈ {1, · · · ,M}})
and a shared hidden layer θ. In the GDLN framework, the encoders correspond to the input nodes, the decoders correspond
to the output nodes and the connection from an encoder, to the hidden layer, to the decoder corresponds to a path. The

1While images are multi-dimensional arrays, they can be represented as flattened 1-d arrays.
2We use the following code for pre-training the models: https://github.com/akamaster/pytorch_resnet_cifar10

https://github.com/akamaster/pytorch_resnet_cifar10
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Figure 8. Experimental results. Error for trained (blue) and untrained (orange) input-output domain pairs as a function of the percentage of
trained pathways (K/M ) on: (i) CIFAR dataset, where input is rotated and output is permuted, with M2 = 1600 total tasks, (ii) MNIST
dataset, where input and output, both are permuted, with M2 = 104 total tasks, (iii) MNIST dataset, where input and output, both are
permuted, with M2 = 1600 total tasks, and (iv) MNIST dataset, where input is rotated and output is permuted, with M2 = 1600 total
tasks. (in the order of left to right). Training accuracy is always high while zero-shot transfer to untrained pathways becomes as good as
the training performance when ≈40% of pathways are trained.
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Figure 9. Experimental results. Error for trained (blue) and untrained (orange) input-output domain pairs as a function of the percentage
of trained pathways (K/M ) on: (i) MNIST dataset, where input and output, both are permuted, with M2 = 1600 total tasks, and (ii)
MNIST dataset, where input is rotated and output is permuted, with M2 = 1600 total tasks (in the order of left to right). These models
are trained with the leaky-ReLU non-linearity with the negative slope parameter set to be 0.01, thus making the model non-linear. The
training accuracy is always high while zero-shot transfer to untrained pathways becomes as good as the training performance when ≈25%
of pathways are trained.

encoders, decoders and the shared hidden layer are all instantiated as linear networks. Given a dataset, Di,j , or (xi, yj), we
compute the prediction using the following function: ψj(θ(ϕi(xi)))

3

D.2. Training and Evaluation Setup

Following the setup in Section 4, we train a subset of input-output domains such that each input domain is trained with only
K ≤M output domains, resulting in M ×K trained pathways and M × (M −K) untrained pathways. During evaluation,
we report the performance on both the trained pathways and the untrained pathways.

3Note that we overload the notation to represent the components and the computation using the same symbol.
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Figure 10. Experimental results. Error as a function of initialization scale for trained (blue) and untrained (orange) input-output domain
pairs when training on K/M fraction of pathways, where K = 10 on (i) MNIST dataset, where input and output, both are permuted, with
M2 = 104 total tasks, (i) MNIST dataset, where input and output, both are permuted, with M2 = 1600 total tasks, and (iii) MNIST
dataset, where input is rotated and output is permuted, with M2 = 1600 total tasks. (in the order of left to right). While performance on
trained domains is reasonably good for all scales, zero-shot generalization only emerges at small inits.

E. Additional Implementation Details
E.1. Libraries
We use the following open-source libraries:

1. PyTorch (Paszke et al., 2019)4

2. Hydra (Yadan, 2019)5

3. Numpy (Harris et al., 2020)6

4. Pandas (Team, 2020)7

5. ResNet Implementation for CIFAR10/CIFAR100 in PyTorch (Idelbayev, 2020)8

6. Xplogger (Sodhani, 2022)9

We ran all the experiments with 10 seeds and report the mean as well as the standard error across the seeds.
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Table 1. Hyperparameter values common across all the task distributions

Hyperparameter Hyperparameter values

Batch size (per task) 8
Number of epochs 1000
Number of classes 10
Dimensionality of the hid-
den layer

128

Gain Ratio for weights 10.0, 1.0, 0.1, 0.01, 0.001, 0.0001
Initial value for bias 0.0
Optimizer SGD
Learning Rate 0.0001
Momentum 0.9

Table 2. Hyperparameter values for MNIST-Permuted-Input-Permuted-Output-40 (different from the values described in Table 1

Hyperparameter Hyperparameter values

Number of input transfor-
mations

40

Number of output transfor-
mations

40

Number of encoders 40
Number of decoders 40

Table 3. Hyperparameter values for MNIST-Permuted-Input-Permuted-Output-100 (different from the values described in Table 1

Hyperparameter Hyperparameter values

Number of input transfor-
mations

100

Number of output transfor-
mations

100

Number of encoders 100
Number of decoders 100

Table 4. Hyperparameter values for MNIST-Rotated-Input-Permuted-Output-100 (different from the values described in Table 1

Hyperparameter Hyperparameter values

Number of input transfor-
mations

100

Number of output transfor-
mations

100

Number of encoders 100
Number of decoders 100

Table 5. Hyperparameter values for CIFAR-Rotated-Input-Permuted-Output-40 (different from the values described in Table 1

Hyperparameter Hyperparameter values

Number of input transformations 40
Number of output transformations 40
Number of encoders 40
Number of decoders 40
Dimensionality of the hidden layer 1024


