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Abstract
We propose a new conditional dependence mea-
sure and a statistical test for conditional indepen-
dence. The measure is based on the difference
between analytic kernel embeddings of two well-
suited distributions evaluated at a finite set of loca-
tions. We obtain its asymptotic distribution under
the null hypothesis of conditional independence
and design a consistent statistical test from it.
We conduct a series of experiments showing that
our new test outperforms state-of-the-art methods
both in terms of type-I and type-II errors even in
the high dimensional setting.

1. Introduction
We consider the problem of testing whether two variablesX
and Y are independent given a set of confounding variables
Z, which can be formulated as a hypothesis testing problem
of the form:

H0 : X ⊥ Y |Z vs. H1 : X 6⊥ Y |Z.

Testing for conditional independence (CI) is central in a
wide variety of statistical learning problems. For example,
it is at the core of graphical modeling (Lauritzen, 1996;
Koller and Friedman, 2009), causal discovery (Pearl, 2009;
Glymour et al., 2019), variable selection (Candès et al.,
2018), dimensionality reduction (Li, 2018), and biomedical
studies (Richardson and Gilks, 1993; Dobra et al., 2004;
Markowetz and Spang, 2007).

Testing for H0 in such applications is known to be a highly
challenging task (Shah and Peters, 2020; Neykov et al.,
2021). A large line of work has focused on the design of
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measures for conditional dependence based for example on
kernel methods (Fukumizu et al., 2008; Sheng and Sripe-
rumbudur, 2019; Park and Muandet, 2020; Huang et al.,
2020) and rank statistics (Azadkia and Chatterjee, 2021;
Shi et al., 2021b). Testing for conditional independence
is even more difficult as it requires both designing a test
statistic which measures the conditional dependencies and
controlling its quantiles. Indeed, existing tests may fail
to control the type-I error, especially when the confound-
ing set of variables is high-dimensional with a complex
dependency structure (Bergsma, 2004). Furthermore, even
if the test is valid, the availability of limited data makes the
problem of discriminating between the null and alternative
hypotheses extremely difficult, resulting in a test of low
power. These challenges has motivated the development
of a series of practical methods attempting to reliably test
for conditional independence. These include tests based
on kernels (Zhang et al., 2012; Doran et al., 2014; Strobl
et al., 2019; Zhang et al., 2017), ranks (Runge, 2018; Mittag,
2018), models (Sen et al., 2017; 2018; Chalupka et al., 2018;
Shah and Peters, 2020), permutations and samplings (Berrett
et al., 2020; Candès et al., 2018; Bellot and van der Schaar,
2019; Shi et al., 2021a; Javanmard and Mehrabi, 2021), and
optimal transport (Warren, 2021).

Another line of work aims at building statistical tests for
different problems by computing difference of analytic ker-
nel embeddings evaluated at a finite set of locations. Two
main strategies are adopted in the literature: either the loca-
tions are chosen randomly or are learned in order to maxi-
mize the power of the test. In (Epps and Singleton, 1986;
Chwialkowski et al., 2015), the authors propose two-sample
tests where locations are chosen randomly. In (Zhang et al.,
2018), they adopt a similar method for independence testing.
In (Jitkrittum et al., 2016; Scetbon and Varoquaux, 2019),
the authors propose two-sample tests where the location are
leaned instead. Jitkrittum et al. (2017a) learned the loca-
tion for independence testing and (Jitkrittum et al., 2017b)
learned them also to test for goodness-of-fit.

In this paper, we propose a new kernel-based test for condi-
tional independence with asymptotic theoretical guarantees.
Taking inspiration from (Chwialkowski et al., 2015; Jitkrit-
tum et al., 2017a; Scetbon and Varoquaux, 2019), we use the
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`p distance between two well-chosen analytic kernel mean
embeddings evaluated at a finite set of locations. To the
best of our knowledge, it is the first time that this strategy is
employed for conditional independence testing. We show
that this measure encodes the conditional dependence rela-
tion of the random variables under study. Under common
assumptions on the richness of the RKHS, we derive the
asymptotic null distribution of our measure, and design a
simple nonparametric test that is distribution-free under the
null hypothesis. Furthermore, we show that our test is con-
sistent. Lastly, we validate our theoretical claims and study
the performance of the proposed approach using simulated
conditionally (in)dependent data and show that our testing
procedure outperforms state-of-the-art methods.

1.1. Related Work

Zhang et al. (2012) propose a kernel based-test (KCIT), by
leveraging the characterization of conditional independence
derived in (Daudin, 1980) to form a test statistic. The au-
thors of this work obtain the asymptotic null distribution of
the proposed statistic and derived a practical procedure from
it to test for H0. However, one main practical issue of the
proposed test is that the asymptotic null distribution of their
statistic cannot be computed directly as it involved unknown
quantities. To address this problem, the authors propose to
approximate it either with Monte Carlo simulations or by
fitting a Gamma distribution. In our work, we propose a new
kernel-based statistic to test for conditional independence
and show that its asymptotic null distribution is simply the
standard normal distribution. In addition Zhang et al. (2012)
extended the Gaussian process (GP) regression framework
to the multi-output case, which allowed them to find the hy-
perparameters involved in the test statistic, maximizing the
marginal likelihood. We also deploy a similar optimization
procedure to that of Zhang et al. (2012), however, in our case
the output of the GP regression is univariate and therefore
more computationally efficient. Note also that in (Strobl
et al., 2019), the authors propose a relaxed version of KCIT
which approximates it using random Fourier features and
offer a new method to deal with the tradeoff between the
computational cost and the power of the test.

Doran et al. (2014) propose an MMD-based test for condi-
tional independence using a well chosen permutation matrix.
The role of this permutation is to simulate samples from the
factorized distribution. Once such permutation is obtained,
the authors propose to apply an MMD-based two-sample
test (Gretton et al., 2012) to detect conditional dependencies
between the simulated distribution and the joint one. How-
ever the test proposed there can only be applied for small
sample sizes as it requires to solve a linear program using
the simplex algorithm to compute the permutation matrix.
Note also that the authors do not have access directly to the
quantiles of the asymptotic null distribution and therefore

a bootstrap procedure is required to compute them. In ad-
dition, the consistency of their test holds only under some
non-trivial conditions on the permutation matrix obtained.
In contrast, our test can be applied for large sample sizes,
admits a simple asymptotic null distributions from which
the quantiles can be directly obtained and is consistent under
some mild assumptions on the distributions.

Other CI tests proposed in the literature suggest testing re-
laxed forms of conditional independence. For instance, Shah
and Peters (2020) propose the generalised covariance mea-
sure (GCM) which only characterises weak conditional de-
pendence (Daudin, 1980) and Zhang et al. (2017) propose a
kernel-based test which focuses only on individual effects
of the conditioning variable Z on X and Y . Some other
tests are based on the knowledge of the conditional distri-
butions in order to measure conditional dependencies. For
example Candès et al. (2018) assume that one has access
to the exact conditional distributions, Bellot and van der
Schaar (2019); Shi et al. (2021a) approximate them using
generative models and Sen et al. (2017) consider model-
based methods to generate samples from the conditional
distributions. In our work, we design a test statistic which
characterizes the exact conditional independence of random
variables and obtain its asymptotic null distribution without
assuming any knowledge on the conditional distributions.
Under some mild assumptions on the RKHSs considered,
we also derive an approximate test statistic which admits
the same asymptotic distribution and obtain a simple testing
procedure from it.

2. Background and Notations
We first recall some notions on kernels and mean embed-
dings which will be useful in the derivation of our condi-
tional independence test. Let (D,A) be a Borel measurable
space and denote M+

1 (D) the space of Borel probability
measures on D. Let also (H, k) be a measurable RKHS on
D, i.e. a functional Hilbert space satisfying the reproduc-
ing property: for all f ∈ H , x ∈ D, f(x) = 〈f, kx〉H .
Let ν ∈ M+

1 (D). If Ex∼ν [
√
k(x, x)] is finite, we de-

fine for all t ∈ D the mean embedding as µν,k(t) :=∫
x∈D k(x, t)dν(x). Note that µν,k is the unique element

in H satisfying for all f ∈ H , Ex∼ν(f(x)) = 〈µν,k, f〉H .
If ν 7→ µν,k is injective, then the kernel k is said to be
characteristic. This property is essential for the separation
property to be verified when defining a kernel metric be-
tween distributions, such as the MMD (Gretton et al., 2012),
or the `p distance (Scetbon and Varoquaux, 2019).

`p-distance between mean embeddings. Let k be a defi-
nite positive, characteristic, continuous, and bounded kernel
on Rd and p ≥ 1 an integer. Scetbon and Varoquaux (2019)
showed that given an absolutely continuous Borel probabil-
ity measure Γ on Rd, the following function defined for any
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(P,Q) ∈M+
1 (Rd)×M+

1 (Rd) as

dp(P,Q) :=

[∫
Rd
|µP,k(t)− µQ,k(t)|pdΓ(t)

] 1
p

(1)

is a metric on M+
1 (Rd). When the kernel k is analytic1,

Scetbon and Varoquaux (2019) also showed that for any
J ≥ 1,

dp,J(P,Q) :=

 1

J

J∑
j=1

|µP,k(tj)− µQ,k(tj)|p
 1
p

, (2)

where (tj)
J
j=1 are sampled independently from the Γ distri-

bution, is a random metric2 onM+
1 (Rd).

In what follows, we consider distributions on Euclidean
spaces. More precisely, let dx, dy, dz ≥ 1, X := Rdx ,
Y := Rdy , and Z := Rdz . Let (X,Z, Y ) be a random
vector on X × Z × Y with law PXZY . We denote by
PXY , PX , and PY the law of (X,Y ), X , and Y , respec-
tively. We also denote by Ẍ := X × Z , Ẍ := (X,Z),
and PẌ its law. Let PX ⊗ PY be the product of the two
measures PX and PY . Given (HẌ , kẌ ) and (HY , kY), two
measurable reproducing kernel Hilbert spaces (RKHS) on
Ẍ and Y , respectively, we define the tensor-product RKHS
H = HẌ ⊗HY associated with its tensor-product kernel
k = kẌ ⊗ kY , defined for all ẍ, ẍ′ ∈ Ẍ and y, y′ ∈ Y , as
k((ẍ, y), (ẍ′, y′)) = kẌ (ẍ, ẍ′)× kY(y, y′).

3. A new `p kernel-based testing procedure
In this section, we present our statistical procedure to test
for conditional independence. We begin by introducing a
general measure based on the `p distance dp between mean
embeddings which characterizes the conditional indepen-
dence. We derive an oracle test statistic for which we obtain
its asymptotic distribution under both the null and alterna-
tive hypothesis. Then, we provide an efficient procedure to
effectively compute an approximation of our oracle statistic
and show that it has the exact same asymptotic distribution.
To avoid any bootstrap or permutation procedures, we offer
a normalized version of our statistic and derive a simple and
consistent test from it.

3.1. Conditional Independence Criterion

Let us first introduce the criterion we use to define our
statistical test. We define a probability measure PẌ⊗Y |Z on

1An analytic kernel on Rd is a positive definite kernel such
that for all x ∈ Rd, k(x, ·) is an analytic function, i.e., a function
defined locally by a convergent power series.

2A random metric is a random process which satisfies all the
conditions for a metric almost-surely.

Ẍ × Y as

PẌ⊗Y |Z(A×B) := EZ [EẌ [1A|Z]EY [1B |Z]] ,

for any (A,B) ∈ B(Ẍ ) × B(Y), where 1A is the char-
acteristic function of a measurable set A and similarly
for B. One can now characterize the independence of
X and Y given Z as follows: X ⊥ Y |Z if and only
if PXZY = PẌ⊗Y |Z (Fukumizu et al., 2004, Theorem
8). Therefore, we have a first simple characterization of
the conditional independence: X ⊥ Y |Z if and only if
dp(PXZY , PẌ⊗Y |Z) = 0. With this in place, we now state
some assumptions on the kernel k considered in the rest of
this paper.
Assumption 3.1. The kernel k : (Ẍ ×Y)× (Ẍ ×Y)→ R
is positive definite, characteristic, bounded, continuous and
analytic. Moreover, the kernel k is a tensor product of
kernels kẌ and kY on Ẍ and Y , respectively.

It is worth noting that a sufficient condition for the kernel
k to be characteristic, bounded, continuous and analytic,
is that both kernels kẌ and kY are characteristic, bounded,
continuous and analytic (Szabó and Sriperumbudur, 2018).
For example, if the kernels kẌ and kY are Gaussian ker-
nels3 on Ẍ and Y respectively, then k = kẌ ⊗ kY satisfies
Assumption 3.1 (Jitkrittum et al., 2017a). Using the analyt-
icity of the kernel k, one can work with dp,J defined in (2)
instead of dp to characterize the conditional independence.
Proposition 3.2. Let p ≥ 1, J ≥ 1, k be a kernel
satisfying Assumption 3.1, Γ an absolutely continuous
Borel probability measure on Ẍ × Y , and {(t(1)j , t

(2)
j )}Jj=1

sampled independently from Γ. Then Γ-almost surely,
dp,J(PXZY , PẌ⊗Y |Z) = 0 if and only if X ⊥ Y |Z.

Proof. Recall that X ⊥ Y |Z if and only if PXZY =
PẌ⊗Y |Z (Fukumizu et al., 2008). If k is bounded, char-
acteristic, and analytic, then, by invoking (Scetbon and
Varoquaux, 2019, Theorem 2.1) we get that dpp,J is a ran-
dom metric on the space of Borel probability measures. This
concludes the proof.

The key advantage of using dp,J(PXZY , PẌ⊗Y |Z) to mea-
sure the conditional dependence is that it only requires to
compute the differences between the mean embeddings of
PXZY and PẌ⊗Y |Z at J locations. In what follows, we
derive from it a first oracle test statistic for conditional inde-
pendence.

3.2. A First Oracle Test Statistic

When the kernel k considered satisfies Assumption 3.1,
we can obtain a simple expression of our measure

3A gaussian kernel K onW ⊂ Rd satisfies for all w,w′ ∈ W ,
K(w,w′) := exp

(
− ‖w−w

′‖22
2σ2

)
for some σ > 0.
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dp,J(PXZY , PẌ⊗Y |Z). Indeed, the tensor formulation of
the kernel k allows us to write the mean embedding of
PẌ⊗Y |Z for any (t(1), t(2)) ∈ Ẍ × Y as:

µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) =

EZ
[
EẌ

[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
.

(3)

Then, by defining the witness function as

∆(t(1), t(2)) :=E
[(
kẌ (t(1), Ẍ)− EẌ

[
kẌ (t(1), Ẍ)|Z

])
×
(
kY(t(2), Y )− EY

[
kY(t(2), Y )|Z

])]
,

and by considering {(t(1)j , t
(2)
j )}Jj=1 sampled independently

according to Γ, we get that (see Appendix A.1 for more
details)

dp,J(PXZY , PẌ⊗Y |Z) =

 1

J

J∑
j=1

∣∣∣∆(t
(1)
j , t

(2)
j )
∣∣∣p
1/p

.

Estimation. Given n observations {(xi, zi, yi)}ni=1 that are
drawn independently from PXZY , we aim at obtaining an
estimator of dpp,J(PXZY , PẌ⊗Y |Z). To do so, we introduce
the following estimate of ∆(t(1), t(2)), defined as

∆n(t(1), t(2)) =
1

n

n∑
i=1

(
kẌ (t(1), ẍi)− EẌ

[
kẌ (t(1), Ẍ)|zi

])
×
(
kY(t(2), yi)− EY

[
kY(t(2), Y )|zi

])
.

With this in place, a natural candidate to estimate
dpp,J(PXZY , PẌ⊗Y |Z) (up to the constant J) can be ex-
pressed as

CIn,p :=

J∑
j=1

∣∣∣∆n(t
(1)
j , t

(2)
j )
∣∣∣p ,

where (t
(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J ) ∈ Ẍ × Y are sampled

independently from Γ.

We now turn to derive the asymptotic distribution of this
statistic. For that purpose, define, for all j ∈ {1, . . . , J}
and i ∈ {1, . . . , n},

ui(j) :=
(
kẌ (t

(1)
j , ẍi)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

])
×
(
kY(t

(2)
j , yi)− EY

[
kY(t

(2)
j , Y )|Z = zi

])
,

ui := (ui(1), . . . , ui(J))T and Σ := E(u1u
T
1 ). We also

denote by Sn := 1
n

∑n
i=1 ui. Observe that CIn,p = ‖Sn‖pp.

In the following proposition we obtain the asymptotic distri-
bution of our statistic CIn,p.

Proposition 3.3. Suppose that Assumption 3.1 is verified.
Let p ≥ 1, J ≥ 1 and ((t

(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ × Y). Then, under H0, we have:
√
nSn → N (0,Σ).

Moreover, under H1, if ((t
(1)
j , t

(2)
j ))Jj=1 are sampled inde-

pendently according to Γ, then Γ-almost surely, for any
q ∈ R, limn→∞ P (np/2CIn,p ≥ q) = 1.

Proof. Recall that Sn = 1
n

∑n
i=1 ui where ui are i.i.d. sam-

ples. Under H0, E [ui] = 0. Using the Central Limit The-
orem, we get:

√
nSn → N (0,Σ). Using the analyticity

of the kernel k, under H1, Γ-almost surely, there exists a
j ∈ {1, . . . , J} such that E [u1(j)] 6= 0. Therefore, we
can deduce that Γ-almost surely, S := E [u1] 6= 0. Now,
for all q > 0, we get: P (np/2CIn,p > q) → 1 because
CIn,p → ‖S‖pp when n→∞.

From the above proposition, we can define a consistent
statistical test at level 0 < α < 1, by rejecting the null
hypothesis if np/2CIn,p is larger than the (1 − α) quan-
tile of the asymptotic null distribution, which is the law
associated with ‖X‖pp, where X follows the multivari-
ate normal distribution N (0,Σ). However, in practice,
CIn,p cannot be computed as it requires the access to sam-
ples from the conditional means involved in the statistic,
namely EẌ

[
kẌ (t

(1)
j , Ẍ)|Z

]
and EY

[
kY(t

(2)
j , Y )|Z

]
for

all j ∈ {1, . . . , J}, which are unknown. Below, we show
how to estimate these conditional means by using Regular-
ized Least-Squares (RLS) estimators.

3.3. Approximation of the Test Statistic

The oracle statistic defined above involves conditional
means that are unknown and cannot be used directly in
practice. To alleviate this issue, we provide here a practi-
cal test statistic which approximates the oracle one while
conserving its asymptotic behavior.

Our goal here is to estimate EẌ
[
kẌ (t

(1)
j , Ẍ)|Z = ·

]
and

EY
[
kY(t

(2)
j , Y )|Z = ·

]
for all j ∈ {1, . . . , J} in order

to effectively approximate of our statistic. To do so, we
consider kernel-based regularized least squares (RLS) es-
timators. Let 1 ≤ r ≤ n and {(xi, zi, yi)}ri=1 be a subset
of r samples. Let also j ∈ {1, . . . , J}, and denote by H1,j

Z
and H2,j

Z two separable RKHSs on Z . Denote also by k1,jZ
and k2,jZ their associated kernels and λ(1)j,r , λ

(2)
j,r > 0 the

regularization parameters involved in the RLS regressions.
Then, the RLS estimators are the unique solutions of the
following problems:

min
h∈H2,j

Z

1

r

r∑
i=1

(
h(zi)− kY(t

(2)
j , yi)

)2
+ λ

(2)
j,r‖h‖

2
H2,j
Z

and

min
h∈H1,j

Z

1

r

r∑
i=1

(
h(zi)− kẌ (t

(1)
j , (xi, zi))

)2
+ λ

(1)
j,r‖h‖

2
H1,j
Z
,
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which we denote by h
(2)
j,r and h

(1)
j,r , respectively. These

estimators have simple expressions in terms of the
kernels involved. For example, let kẌ (t

(1)
j , Ẍr) :=

[kẌ (t
(1)
j , (x1, z1)), . . . , kẌ (t

(1)
j , (xr, zr))]

T , then for any

z ∈ Z , the estimator h(1)j,r can be expressed as

h
(1)
j,r (z) =

r∑
i=1

[α
(1)
j,r ]ik

1,j
Z (zi, z) , with

α
(1)
j,r := (K1,j

r,Z + rλ
(1)
j,r Idr)−1kẌ (t

(1)
j , Ẍr) ∈ Rr,

where K1,j
r,Z := (k1,jZ (zi, zj))1≤i,j≤r. Similarly, we obtain

simple expressions of h(2)j,r . We can now introduce our new

estimator of the witness function at each location (t
(1)
j , t

(2)
j )

as follows:

∆̃n,r(t
(1)
j , t

(2)
j ) :=

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− h(1)j,r (zi)

)
×
(
kY(t

(2)
j , yi)− h(2)j,r (zi)

)
,

and the proposed test statistic becomes

C̃In,r,p :=

J∑
j=1

∣∣∣∆̃n,r(t
(1)
j , t

(2)
j )
∣∣∣p .

Asymptotic Distribution. To get the asymptotic distribu-
tion, we need to make two extra assumptions. Let us define,
for m ∈ {1, 2} and j ∈ {1, . . . , J}, Lm,jZ —the operator on
L2(Z, PZ) as Lm,jZ (g)(·) =

∫
Z k

m,j
Z (·, z)g(z)dPZ(z).

Assumption 3.4. There exists Q > 0, and γ ∈ [0, 1] such
that for all λ > 0, m ∈ {1, 2} and j ∈ {1, . . . , J}:

Tr((Lm,jZ + λI)−1Lm,jZ ) ≤ Qλ−γ .

Assumption 3.5. There exists 2 ≥ β > 1 such that for any
j ∈ {1, . . . , J}, (t(1), t(2)) ∈ Ẍ × Y ,

EẌ
[
kẌ (t

(1), Ẍ)|Z = ·
]
∈ R

([
L1,j
Z

]β/2)
,

EY
[
kY(t

(2), Y )|Z = ·
]
∈ R

([
L2,j
Z

]β/2)
,

where R
([
Lm,jZ

]β/2)
is the image space of

[
Lm,jZ

]β/2
.

Moreover, there exists L, σ > 0 such that for all l ≥ 2 and
PZ-almost all z ∈ Z

EẌ|Z=z

[∣∣∣kẌ (t(1), Ẍ)− EẌ
[
kẌ (t

(1), Ẍ) | Z
] ∣∣∣l] ≤ l!σ2Ll−2

2
,

EY |Z=z

[∣∣∣kY(t(2), Y )− EY
[
kY(t

(2), Y )|Z
] ∣∣∣l] ≤ l!σ2Ll−2

2
.

These assumptions are central in our proofs and are common
in kernel statistic studies (Caponnetto and De Vito, 2007;
Fischer and Steinwart, 2020; Rudi and Rosasco, 2017). Un-
der these assumptions, (Fischer and Steinwart, 2020) proved
optimal learning rates for RLS in RKHS norm, which is es-
sential to guarantee that our new statistic C̃In,r,p, estimated
with RLS, has the same asymptotic law as our oracle esti-
mator CIn,p.

To derive the asymptotic distribution of our new
test statistic, we also need to define for all
j ∈ {1, . . . , J} and i ∈ {1, . . . , n}, ũi,r(j) :=

(kẌ (t
(1)
j , ẍi) − h

(1)
j,r (zi))(kY(t

(2)
j , yi) − h

(2)
j,r (zi)),

ũi,r := (ũi,r(1), . . . , ũi,r(J))T , and S̃n,r := 1
n

∑n
i=1 ũi,r.

Note that C̃In,r,p = ‖S̃n,r‖pp. In the following proposition,
we show the asymptotic behavior of the statistic of interest.
The proof of this proposition is given in Appendix A.2.

Proposition 3.6. Suppose that Assumptions 3.1-3.4-3.5 are
verified. Let p ≥ 1, J ≥ 1, ((t

(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ × Y)J , rn such that n
β+γ
2β ∈ o(rn) and λrn = r

− 1
1+γ

n .
Then, under H0, we have

√
nS̃n,rn → N (0,Σ). More-

over, under H1, if the ((t
(1)
j , t

(2)
j ))Jj=1 are sampled indepen-

dently according to Γ, then Γ-almost surely, for any q ∈ R,
limn→∞ P (np/2C̃In,rn,p ≥ q) = 1.

From the above proposition, we can derive a consistent test
at level α for 0 < α < 1. Indeed, we obtain the asymptotic
null distribution of np/2C̃In,rn,p and we show that under the
alternative hypothesis H1, Γ-almost surely, np/2C̃In,rn,p
is arbitrarily large as n goes to infinity. For a fixed level
α, the test rejects H0 if np/2C̃In,rn,p exceeds the (1 − α)-
quantile of its asymptotic null distribution and this test is
therefore consistent. For example, when p ∈ {1, 2}, the
asymptotic null distribution of np/2C̃In,rn,p is either a sum
of correlated Nakagami variables4 (p = 1) or a sum of
correlated chi square variables (p = 2). However, com-
puting the quantiles of these asymptotic null distributions
can be computationally expensive as it requires a bootstrap
or permutation procedure. In the following, we consider a
different approach in which we normalize the statistic to
obtain a simple asymptotic null distribution.

3.4. Normalization of the Test Statistic

Herein, we consider a normalized variant of our statistic
C̃In,r,p in order to obtain a tractable asymptotic null distri-
bution. Denote Σn,r := 1

n

∑n
i=1 ũi,rũ

T
i,r and let δn > 0,

4the probability density function of a Nakagami distribution of
parameters m ≥ 1

2
and ω > 0 is for all x ≥ 0,

f(x,m, ω) = 2mm

G(m)ωm
x2m−1 exp(−m

ω
x2) where G is the Euler

Gamma function.
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then the normalized statistic considered is given by

ÑCIn,r,p := ‖(Σn,r + δnIdJ)−1/2S̃n,r‖pp.

In the next proposition, we show that our normalized approx-
imate statistic converges in law to the standard multivariate
normal distribution. The proof is given in Appendix A.3.

Proposition 3.7. Suppose that Assumptions 3.1-3.4-3.5 are
verified. Let p ≥ 1, J ≥ 1, ((t

(1)
1 , t

(2)
1 ), . . . , (t

(1)
J , t

(2)
J )) ∈

(Ẍ × Y)J , rn such that n
β+γ
2β ∈ o(rn), λn = r

− 1
1+γ

n

and (δn)n≥0 a sequence of positive real numbers such
that limn→∞ δn = 0. Then, under H0, we have√
n(Σn,r + δnIdJ)−1/2Sn,rn → N (0, IdJ). Moreover, un-

der H1, if the ((t
(1)
j , t

(2)
j ))Jj=1 are sampled independently

according to Γ, then Γ-almost surely, for any q ∈ R,
limn→∞ P (np/2ÑCIn,rn,p ≥ q) = 1.

Remark 3.8. We emphasize that J need not increase with
n for test consistency. Note also that the regularization
parameter δn allows to ensure that (Σn,r + δnIdJ)−1/2 can
be stably computed. In practice, δn requires no tuning, and
can be set to be a very small constant.

Our normalization procedure allows us to derive a simple
statistical test, which is distribution-free under the null hy-
pothesis.

Statistical test at level α: Compute np/2ÑCIn,r,p,
choose the threshold τ corresponding to the (1− α) quan-
tile of the asymptotic null distribution, and reject the null
hypothesis whenever np/2ÑCIn,r,p is larger than τ . For ex-
ample, if p = 2, the threshold τ is the (1− α)-quantile of
χ2(J), i.e., a sum of J independent standard χ2 variables.

Total Complexity: Our normalized statistic ÑCIn,r,p re-
quires first to compute α(1)

j,r and α(2)
j,r . These quantities can

be evaluated in at most O(r2d + r3) algebraic operations
where d corresponds to the computational cost of evaluating
the kernels involved in the RLS regressions. We will use the
above for the complexity analysis of our method, although
one can consider the theoretical estimation given by the Cop-
persmith–Winograd algorithm (Coppersmith and Winograd,
1987) that reduces the computational cost toO(r2d+r2.376).
Once α(1)

j,r and α(2)
j,r are available, evaluating the RLS esti-

mators h(1)j,r and h(2)j,r requires only O(rd) operations. Then
∆̃n,r can be evaluated in O(nrd + r2d + r3) operations
and C̃In,r,p has therefore a computational complexity of
O(J(nrd + r2d + r3)). The computation of ÑCIn,r,p re-
quires inverting a J×J matrix Σn,r+δnIdJ , but this is fast
and numerically stable: we empirically observe that only a
small value of J is required (see Section 4), e.g. less than 10.
Finally the total computational cost to evaluate ÑCIn,r,p is
O(J(nrd+ r2d+ r3) + nJ2 + J3).

3.5. Hyperparameters

The hyperparameters of our statistics ÑCIn,r,p fall into two
categories: those directly involved with the test and those of
the regression. We assume from now on that all the kernels
involved in the computation of our statistics are Gaussian
kernels, and consider n i.i.d. observations {(xi, zi, yi)}ni=1.

The first category includes both the choice of the loca-
tions ((tx, tz)j , (ty)j))

J
j=1 on which differences between

the mean embeddings are computed and the choice of the
kernels kẌ and kY . Each location tx, ty, tz is randomly
chosen according to a Gaussian variable with mean and co-
variance of {xi}ni=1, {yi}ni=1, and {zi}ni=1, respectively. As
we consider Gaussian kernels, we should also choose the
bandwidths. Here, we restrict ourselves to one-dimensional
kernel bandwidths σX , σY , and σZ for the kernels kX , kY ,
and kZ , respectively. More precisely, we select the me-
dian of {‖xi − xj‖2}1≤i<j≤n, {‖yi − yj‖2}1≤i<j≤n, and
{‖zi − zj‖2}1≤i<j≤n for σX , σY , and σZ , respectively.

The other category contains all the kernels km,j and the reg-
ularization parameters λ(m)

j,r involved in the RLS problems.
These parameters should be selected carefully to avoid ei-
ther underfitting of the regressions, which may increase the
type-I error, or overfitting, which may result in a large type-
II error. To optimize these, similarly to (Zhang et al., 2012),
we consider a GP regression that maximizes the likelihood
of the observations. While carrying out a precise GP regres-
sion can be prohibitive, in practice, we run this method only
on a batch of size 200 observations randomly selected and
we perform only 10 iterations for choosing the hyperparame-
ters involved in the RLS problems. Hence, our optimization
procedure does not affect the total computational cost as it
is independent of the number of observations n.

Remark 3.9. Note that here we select the locations
((tx, tz)j , (ty)j))

J
j=1 randomly. If one wants to choose the

locations by maximizing the power the test, then a bi-level
optimization problem appears as the RLS estimators depend
on the locations chosen and we believe that it is out of the
scope of this paper.

4. Experiments
The goal of this section is three fold: (i) to investigate
the effects of the parameters J and p on the performances
of our method, (ii) to validate our theoretical results de-
picted in Propositions 3.3 and 3.7, and (iii) to compare
our method with those proposed in the literature. In more
detail, we first compare the performance of our method,
both in terms of both power and type-I error, by varying
the hyperparameters J and p. We show that our method
is robust to the choice of p, and also show that the power
increases as J increases. Then, we explore synthetic toy
problems where one can derive an explicit formulation of



An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings

2 4 6 8 10
dz

0.00

0.05

0.10

0.15

0.20

0.25

KS
1000 samples

2 4 6 8 10
dz

0.75

0.80

0.85

0.90

0.95

1.00

AU
PC

1000 samples
J=1, p=1
J=1, p=2
J=3, p=1
J=3, p=2
J=5, p=1
J=5, p=2
J=10, p=1
J=10, p=2
J=15, p=1
J=15, p=2

Figure 1. Comparison of the KS statistic (left) and the AUPC
(right) of our test statistic ÑCIn,r,p when the data is generated
respectively from the models defined in (4) and (5) with Gaussian
noises for multiple p and J . For each problem, we draw n = 1000
samples and repeat the experiment 100 times. We set r = 1000
and report the results obtained when varying the dimension dz
of each problem from 1 to 10. Observe that when J = 1, for all
p ≥ 1 ÑCIn,r,1 = ÑCIn,r,p, therefore there is only one common
black curve.

the conditional means involved in our test statistic. In these
cases, we can compute our proposed oracle statistic ĈIn,p
and its normalized version, allowing us to show that under
the null hypothesis we recover the theoretical asymptotic
null distribution obtained in Proposition 3.3. We also reach
similar conclusions regarding our approximate normalized
test statistic, ÑCIn,r,p. In addition, in this experiment, we
investigate the effect of the proposed optimization proce-
dure for choosing the hyperparameters involved in the RLS
estimators of ÑCIn,r,p, and show its benefits. Finally, we
demonstrate on several synthetic experiments that our pro-
posed testing procedure outperforms state-of-the-art (SoTA)
methods both in terms of statistical power and type-I error,
even in the high dimensional setting. The code is available
at https://github.com/meyerscetbon/lp-ci-test5.

Benchmarks. We consider 6 synthetic data sets and com-
pare the power and type-I error of our test ÑCIn,r,p to
the following 6 existing CI methods: KCIT (Zhang et al.,
2012), RCIT (Strobl et al., 2019), CCIT (Sen et al., 2017),
CRT (Candès et al., 2018) using correlation statistic from
(Bellot and van der Schaar, 2019), FCIT (Chalupka et al.,
2018) and GCM (Shah and Peters, 2020). Software pack-
ages of all the above tests are freely available online and
each experiment was run on a single CPU.

Evaluation. To evaluate the performance of the tests, we
consider four metrics. Under H0, we report either the
Kolmogorov-Smirnov (KS) test statistic between the dis-
tribution of p-values returned by the tests and the uniform
distribution on [0, 1], or the type-I errors at level α = 0.05.
Note that a valid conditional independence test should con-
trol the type-I error rate at any level α. Here, a test that
generates a p-value that follows the uniform distribution
over [0, 1] will achieve this requirement. The latter property

5Our code requires a slight modification of the Gaussian Pro-
cess Regression implemented in scikit-learn (Pedregosa et al.,
2011) to limit the number of iterations involved in the optimization
procedure.
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Figure 2. Comparisons between the empirical distributions of the
normalized version of the oracle statistic ĈIn,p and the approxi-
mate normalized statistic ÑCIn,r,p, with the theoretical asymptotic
null distribution when the data is generated either from the model
defined in (6) (left) or the one defined in (7) (right). We set the
dimension of Z to be either dz = 5 (top row) or dz = 20 (bottom
row). For each problem, we draw n = 1000 samples and repeat
the experiment 1000 times. In all the experiments, we set J = 5
and p = 2, thus the asymptotic null distribution follows a χ2(5).
Observe that both the oracle statistic and the approximated one
recover the true asymptotic distribution under the null hypothesis.
When H1 holds, we can see that the two statistics manage to re-
ject the null hypothesis. This figure also illustrates the empirical
distribution of our approximate statistic when we do not optimize
the hyperparameters involved in the RLS estimators: in this case
we do not control the type-I error in the high dimensional setting.

of the p-values translates to a small KS statistic value. Un-
der H1, we compute either the area under the power curve
(AUPC) of the empirical cumulative density function of the
p-values returned by the tests, or the resulting type-II error.
A conditional test has higher power when its AUPC is closer
to one. Alternatively, the smaller the type-II error is, the
more powerful the test is.

Effects of p and J . Our first experiment studies the effects
of p and J on our proposed method. To do so, we follow
the synthetic experiment proposed in (Strobl et al., 2019).
To evaluate the type-I error, we generate data that follows
the model:

X = f1(εx), Y = f2(εy), and Z ∼ N (0d, Idz ), (4)

where Z, εx, and εy are samples from jointly indepen-
dent standard Gaussian or Laplace distributions, and f1
and f2 are smooth functions chosen uniformly from the set
{(·), (·)2, (·)3, tanh(·), exp(−| · |)}. To compare the power
of the tests, we also consider the model:

X = f1(εx + 0.8εb), Y = f2(εy + 0.8εb), (5)

where εb is sampled from a standard Gaussian or Laplace
distribution. In Figure 1, we compare the KS statistic and

https://github.com/meyerscetbon/lptest
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Figure 3. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with
other SoTA tests on the two problems presented in (4) and (5) with Gaussian noises. Each point in the figures is obtained by repeating the
experiment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension dz
from 1 to 10; here, the number of samples n is fixed and equals 1000. (Middle-right, right): type-I and type-II errors obtained by each test
when varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals 10.
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Figure 4. Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in
Eq. (8) and Eq. (9) with Laplace noises. Each point in the figures is obtained by repeating the experiment for 100 independent trials.
(Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension dz from 1 to 10; here,
the number of samples n is fixed and equals 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when
varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals 10.

the AUPC of our method when varying p and J . That figure
shows that (i) our method is robust to the choice of p, and
(ii) the performances of the test do not necessarily increase
as J increases. Armed with theses observations, in the
following experiments, we always set p = 2 and J = 5 for
our method.

Effect of the rank r. In this experiment, we investigate
the effect of the rank regression r on our proposed method
both in terms of performance and time. For that purpose,
in Figure 5, we consider the two problems presented in (4)
and (5) with Gaussian noises and show the type-I and type-
II when varying the ratio r/n for multiple sample size n.
We observe that the rank r does not affect the power of the
method, however we observe that the type-I error decreases
as the ratio increases. Therefore the rank r allows in practice
to deal with the tradeoff between the computational time and
the control of the type-I error. In the following experiment
we always set r = n for simplicity.

Illustrations of our theoretical findings. The following
experiment confirms that validity of our theoretical results
from Propositions 3.3 and 3.7. For that purpose, we generate
two synthetic data sets for which either H0 or H1 holds.
Concretely, we define a first triplet (X,Y, Z) as follows:

X = P1(Z) + εx, Y = P1(Z) + εy. (6)

Above, εx and εy follow two independent standard nor-

mal distributions, Z ∼ N (0dz ,Σ) with Σ ∈ Rdz×dz . The
covariance matrix Σ is obtained by multiplying a random
matrix whose entries are independent and follow standard
normal distribution, by its transpose, and P1 is a projection
onto the first coordinate. As a result, in this case, we have
that X ⊥ Y | Z. We also consider a modification of the
above data generating function for which H1 holds. This is
done by adding a noise component εb that is shared across
X and Y as follows:

X = P1(Z) + εx + εb, Y = P1(Z) + εy + εb, (7)

where εb follows the standard normal distribution.
Since we consider Gaussian kernels, we can obtain
an explicit formulation of EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = ·

]
and

EY
[
kY(t

(2)
j , Y )|Z = ·

]
for both data generation functions.

See Appendix B for more details. Consequently, we are
able to compute both the normalized version of our ora-
cle statistic ĈIn,p and our approximate normalized statistic
ÑCIn,r,p. In Figure 2, we show that both statistics manage
to recover the asymptotic distribution under H0, and reject
the null hypothesis under H1. In addition, we show that in
the high dimensional setting, only our optimized version
of ÑCIn,r,p—obtained by optimizing the hyperparameters
involved in the RLS estimators of our statistic—manages to
recover the asymptotic distribution under H0.

Comparisons with existing tests. In our next experiments,
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Figure 5. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure on the
two problems presented in (4) and (5) with Gaussian noises. Each point in the figures is obtained by repeating the experiment for 100
independent trials. (Left, Middle): type-I and type-II errors obtained by each test when varying the ratio regression rank/total numbers of
samples for different numbers of samples. (Right): time in seconds (log-scale) to compute the statistic when varying the ratio regression
rank/total number of samples for different number of samples.

we compare the performance of our method (implemented
with the optimized version of our statistic) with state-of-the-
art techniques for conditional independence testing. We first
study the two data generating functions from (4) and (5).
For each of these problems, we consider two settings. In
the first, we fix the dimension dz while varying the number
of samples n. In the second, we fix the number of samples
while varying the dimension of the problem. To evaluate the
performance of the tests, we compare the type-I errors at
level α = 0.05 under the first model (4), and, for the second
model (5), we evaluate the power of the test by presenting
the type-II error. Figures 3 (Gaussian case) and 10 (Laplace
case) demonstrate that our method consistently controls the
type-I error and obtains a power similar to the best SoTA
tests. In Figures 8 and 11, we compare the KS statistic
and the AUPC of the different tests, and obtain similar
conclusions. In addition, in Figure 6, we consider the same
setting as in Figure 8 where we samples noises randomly
according to a non-symmetric mixture of Gaussians and
obtain the same results. In Figure 9 and 12, we investigate
the high dimensional regime and show that our test is the
only one which manages to control the type-I error while
being competitive in term of power with other methods. See
Appendix B.1 for more details.
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Figure 6. In this experiment we compare the KS statistic and the
AUPC of our test procedure with other SoTA tests on the two
problems presented in (4) and (5) where noises are randomly sam-
pled according to a non-symmetric mixture of Gaussians. Each
point in the figures is obtained by repeating the experiment for 100
independent trials. Here we fix the dimension to be d = 5 and we
vary the number of samples n.

We now conduct another series of experiments that build
upon the synthetic data sets presented in (Zhang et al., 2012;
Li and Fan, 2020; Doran et al., 2014; Bellot and van der
Schaar, 2019). To compare type-I error rates, we generate
simulated data for which H0 is true:

X = f1
(
Z̄ + εx

)
, Y = f2

(
Z̄ + εy

)
. (8)

Above, Z̄ is the average of Z = (Z1, · · · , Zdz ),
εx and εy are sampled independently from a stan-
dard Gaussian or Laplace distribution, and f1 and f2
are smooth functions chosen uniformly from the set
{(·), (·)2, (·)3, tanh(·), exp(−| · |)}. To evaluate the power,
we consider the following data generating function:

X = f1
(
Z̄ + εx

)
+ εb, Y = f2

(
Z̄ + εy

)
+ εb, (9)

where εb is a standard Gaussian or Laplace distribution.

As in the previous experiment, for each model, we study
two settings by either fixing the dimension dz , or the sample
size n. In Figure 4 (Laplace case) and 14 (Gaussian case),
we compare the KS and the AUPC of our method with the
SoTA tests and demonstrate that our procedure manages to
be powerful while controlling the type-I error. In Figures 13
and 16, we also compare the type-I and type-II errors of the
different tests, and obtain similar conclusions. In addition,
we investigate the high dimensional regime and show in
Figure 15 and 18 that our test outperforms all the other
proposed methods in most of the settings. See Appendix B.2
for more details.
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adaptive test of independence with analytic kernel embed-
dings. JMLR, 2017a.

Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fuku-
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Supplementary Material

A. Proofs
A.1. On the Formulation of the Witness Function

Let (tj)
J
j=1 sampled independently from the Γ distribution, then by definition of dp,J(·, ·), we have that

dp,J(PXZY , PẌ⊗Y |Z) :=

 1

J

J∑
j=1

∣∣∣µPXZY ,kẌ ·kY (tj)− µPẌ⊗Y |Z ,kẌ ·kY (tj)
∣∣∣p
 1
p

,

Moreover thanks to Assumption 3.1, we have that for any (t(1), t(2)) ∈ Ẍ × Y

µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) = EZ
[
EẌ

[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
, and

µPXZY ,kẌ ·kY (t(1), t(2)) = E
[
kẌ (t(1), Ẍ)kY(t(2), Y )

]
.

Let us now introduce the following witness function

∆(t(1), t(2)) := E
[(
kẌ (t(1), Ẍ)− EẌ

[
kẌ (t(1), Ẍ)|Z

])
×
(
kY(t(2), Y )− EY

[
kY(t(2), Y )|Z

])]
.

Therefore we obtain that

∆(t(1), t(2)) = E
[
kẌ (t(1), Ẍ)(kY(t(2), Y )

]
− E

[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

]]
+ E

[
EẌ

[
kẌ (t(1), Ẍ)|Z

]
EY
[
kY(t(2), Y )|Z

]]
− E

[
EẌ

[
kẌ (t(1), Ẍ)|Z

]
kY(t(2), Y )

]
.

Now remark that

E
[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

]]
= E

[
E
[
kẌ (t(1), Ẍ)EY

[
kY(t(2), Y )|Z

] ∣∣Z]]
= E

[
EY
[
kY(t(2), Y )|Z

]
EẌ

[
kẌ (t(1), Ẍ)|Z

]]
.

Similarly, we have that

E
[
EẌ

[
kẌ (t(1), Ẍ)|Z

]
kY(t(2), Y )

]
= E

[
EY
[
kY(t(2), Y )|Z

]
EẌ

[
kẌ (t(1), Ẍ)|Z

]]
from which follows that

∆(t(1), t(2)) = E
[
kẌ (t(1), Ẍ)(kY(t(2), Y )

]
− E

[
EY
[
kY(t(2), Y )|Z

]
EẌ

[
kẌ (t(1), Ẍ)|Z

]]
= µPXZY ,kẌ ·kY (t(1), t(2))− µPẌ⊗Y |Z ,kẌ ·kY (t(1), t(2)) .

A.2. Proof of Proposition 3.6

Proof. For all j ∈ [J ]:
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√
n∆̃n,r(t

(1)
j , t

(2)
j ) =

√
n

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− h(1)j,r (zi)

)(
kY(t

(2)
j , yi)− h(2)j,r (zi)

)
=
√
n∆n(t

(1)
j , t

(2)
j ) (10)

+
√
n

1

n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

])(
EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)j,r (zi)

)
(11)

+
√
n

1

n

n∑
i=1

(
EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)j,r (zi)

)(
kY(t

(2)
j , yi)− EY

[
kY(t

(2)
j , Y )|Z = zi

])
(12)

+
√
n

1

n

n∑
i=1

(
EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)j,r (zi)

)(
EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)j,r (zi)

)
(13)

Let us treat the four terms of this decomposition. The term (10) has been treated by Propostion 3.3, and satisfies, under the
null hypothesis H0

√
n∆n(t

(1)
j , t

(2)
j )→n→∞ N

(
0,E

[(
kẌ (t

(1)
j , Ẍ)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z

])(
kY(t

(2)
j , Y )− EY

[
kY(t

(2)
j , Y )|Z

])])
.

Let us now show that the last term (13) converges towards 0 in probability. Let us denote for all j, e(1)j : z →
EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = z

]
and e(2)j : z → EY

[
kẌ (t

(2)
j , Y )|Z = z

]
, both elements of HZ by Assumption 3.5. Then

we have, for all i ∈ [n]:

(
e
(1)
j (zi)− h(1)j,r (zi)

)(
e
(2)
j (zi)− h(2)j,r (zi)

)
= 〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, kZ(zi, ·)⊗ kZ(zi, ·)〉.

Then we deduce, by denoting: µZZ := E [kZ(Z, ·)kZ(Z, ·)] and µ̂ZZ := 1
n

∑n
i=1 kZ(zi, ·)kZ(zi, ·), that

1

n

n∑
i=1

(
EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

]
− h(1)j,r (zi)

)(
EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)j,r (zi)

)
= 〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
,

1

n

n∑
i=1

kZ(zi, ·)⊗ kZ(zi, ·)〉

= 〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µZZ〉+ 〈

(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µ̂ZZ − µZZ〉 .

Then remark that:

|〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µZZ〉| = |EZ

[(
e
(1)
j (Z)− h(1)j,r (Z)

)(
e
(2)
j (Z)− h(2)j,r (Z)

)]
|

≤ ‖e(1)j − h
(1)
j,r‖L2(PZ)‖e

(2)
j − h

(2)
j,r‖L2(PZ) .

Under the Assumptions 3.4-3.5, for λr = 1
rβ+γ

, we have, using the results from (Fischer and Steinwart, 2020, Theorem 1):
‖e(1)j − h

(1)
j,r‖2L2(PZ) ≤

Cτ2

r
β
β+γ

with probability 1− 4e−τ and ‖e(2)j − h
(2)
j,r‖2L2(PZ) ≤

Cτ2

r
β
β+γ

with probability 1− 4e−τ , for

some constant C independent from n and τ . then by union bound, we deduce with probability 1− 8e−τ we have:

√
n|〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µZZ〉| ≤

√
n
C2τ4

r
β
β+γ

.
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Then, if
√
n ∈ o(r

β
β+γ ), we have:

√
n|〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µZZ〉| → 0 in probability when n→∞. Moreover:

|
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µ̂ZZ − µZZ〉| ≤ ‖e(1)j − h

(1)
j,r‖HZ‖e

(2)
j − h

(2)
j,r‖HZ‖µ̂ZZ − µZZ‖HZ⊗HZ ,

and by Markov inequality, ‖µ̂ZZ − µZZ‖HZ⊗HZ ≤
√

C′

nδ with probability 1− δ for some constant C ′. Moreover, under

Assumption 3.4-3.5, we have ‖e(1)j − h
(1)
j,r‖HZ → 0 and ‖e(2)j − h

(2)
j,r‖HZ → 0 in probability. Then, we deduce that

√
n|〈
(
e
(1)
j − h

(1)
j,r

)
⊗
(
e
(2)
j − h

(2)
j,r

)
, µ̂ZZ − µZZ〉| → 0 in probability. Finally, the term (13) goes to 0 in probability.

The terms (11) and (12) are similar and can be treated the same way. We only focus on the term (11). For all i ∈ [n]:

| 1
n

n∑
i=1

(
kẌ (t

(1)
j , ẍi)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z = zi

])(
EY
[
kY(t

(2)
j , Y )|Z = zi

]
− h(2)j,r (zi)

)
|

= | 1
n

n∑
i=1

〈kẌ (t
(1)
j , ·), kẌ (ẍi, ·)− EẌ

[
kẌ (Ẍ, ·)|Z = zi

]
〉HẌ 〈e

(2)
j − h

(2)
j,r , kZ(zi, ·)〉HZ |

= | 1
n

n∑
i=1

〈kẌ (t(1), ·)⊗
(
e
(2)
j − h

(2)
j,r

)
,
(
kẌ (ẍi, ·)− EẌ

[
kẌ (Ẍ, ·)|Z = zi

])
⊗ kZ(zi, ·)〉HẌ⊗HZ |

= |〈kẌ (t(1), ·)⊗
(
e
(2)
j − h

(2)
j,r

)
,

1

n

n∑
i=1

(
kẌ (ẍi, ·)− EẌ

[
kẌ (Ẍ, ·)|Z = zi

])
⊗ kZ(zi, ·)〉HẌ⊗HZ |

≤ ‖kẌ (t(1), ·)‖HẌ ‖e
(2)
j − h

(2)
j,r‖HZ

(
‖µ̂1

ẌZ
− µẌZ‖HẌ⊗HZ + ‖µ̂2

Ẍ
− µẌZ‖HẌ⊗HZ

)
where: µ̂1

ẌZ
:= 1

n

∑n
i=1 kẌ (ẍi, ·) ⊗ kZ(zi, ·), µ̂2

ẌZ
:= 1

n

∑n
i=1 EẌ

[
kẌ (Ẍ, ·)|Z = zi

]
⊗ kZ(zi, ·), and µẌZ :=

E [kY(y, ·)kZ(z, ·)].

By the law of large numbers, we have: µ̂1
ẌZ

and µ̂2
ẌZ

converge almost surely towards µẌZ . Moreover by Markov

inequality, ‖µ̂1
ẌZ
− µẌZ‖HẌ⊗HZ ≤

√
C
nδ with probability 1 − δ, and ‖µ̂2

ẌZ
− µẌZ‖HẌ⊗HZ ≤

√
C
nδ with probability

1− δ. Then with probability 1− 2δ,
√
n
(
‖µ̂1

ẌZ
− µẌZ‖HẌ⊗HZ + ‖µ̂2

ẌZ
− µẌZ‖HẌ⊗HZ

)
≤ 2
√

C
δ . Moreover, under

Assumption 3.4-3.5, using the results from (Fischer and Steinwart, 2020), we have that ‖e(2)j − h
(2)
j,r‖HZ converges towards

0 in probability. Then the term (11) converges in probability towards 0. The same reasoning holds for (12).

Finally, by Slutsky’s Lemma:
√
n∆̃n,r(t

(1)
j , t

(2)
j )→n→∞ N

(
0,E

[(
kẌ (t

(1)
j , Ẍ)− EẌ

[
kẌ (t

(1)
j , Ẍ)|Z

])(
kY(t

(2)
j , Y )− EY

[
kY(t

(2)
j , Y )|Z

])])
.

Now we have S̃n,r =
(

∆̃n,r(t
(1)
j , t

(2)
j )
)
j∈[J]

=
(

∆n(t
(1)
j , t

(2)
j )
)
j∈[J]

+
(

∆̃n,r(t
(1)
j , t

(2)
j )−∆n(t

(1)
j , t

(2)
j )
)
j∈[J]

and we

have shown that
√
n
(

∆̃n,rn(t
(1)
j , t

(2)
j )−∆n(t

(1)
j , t

(2)
j )
)
j∈[J]

goes to 0 in probability. Then by Slutsky’s Lemma and

Proposition 3.3, we get: S̃n,rn → N (0,Σ).

Let r > 0. Under H1, Sn,rn → S 6= 0. Let us consider a realization of (t
(1)
j , t

(2)
j )j∈[J] such that ‖S‖p 6= 0. So

P (np/2‖Sn,rn‖p ≥ r)→ 1 as n→∞ because ‖S‖p 6= 0.

A.3. Proof of Proposition 3.7

Proof. First notice that:

Σ̃n,r :=
1

n

n∑
i=1

ũi,rũ
T
i,r + δnIdJ

= Σ̂n +
1

n

n∑
i=1

ûi (ũi,r − ûr)
T

+
1

n

n∑
i=1

(ũi,r − ûr) ûTi +
1

n

n∑
i=1

(ũi,r − ûr) (ũi,r − ûr)
T

+ δnIdJ .
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By the law of large numbers, we get that under H0: Σ̂n → Σ. Moreover:[
1

n

n∑
i=1

ûi (ũi,r − ûr)
T

]
kl

=
1

n

n∑
i=1

(
kY(t

(2)
k , yi)− EY

[
kY(t

(2)
k , Y )|Z = zi

])(
EẌ

[
kẌ (t

(1)
l , Ẍ)|Z = zi

]
− h(1)l,r (zi)

)
which has been proven to converge in probability to 0 in the proof of Proposition 3.6. Then 1

n

∑n
i=1 ûi (ũi,r − ûr)

T

converges in probability to 0. Similarly 1
n

∑n
i=1 (ũi,r − ûr) ûTi and 1

n

∑n
i=1 (ũi,r − ûr) (ũi,r − ûr)

T also converge in
probability to 0. Then by Slutsky’s Lemma, Σ̃n,r converges in probability to Σ. By Slutsky’s Lemma (again) and by
Propostion 3.6, we have that: Σ̃−1n,rS̃n,r converges to a standard gaussian distribution N (0, Id). The second part of the
proposition is the same as the proof of Proposition 3.6.

B. On the computation of Oracle statistic in Figure 2
To compute the oracle statistic we needed to compute exactly the conditional expectation implied in our statistic. In the case
of gaussian kernels and gaussian distributed data for Z, the computation of this conditional expectation is reduced to the
computation of moment-generating function of a non-centered χ2 distribution.
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B.1. Additional experiments on Problems (4) and (5)

B.1.1. GAUSSIAN CASE
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Figure 7. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with
other SoTA tests on the two problems presented in (4) and (5) with Gaussian noises. Each point in the figures is obtained by repeating the
experiment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension dz
from 1 to 10; here, the number of samples n is fixed and equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each
test when varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 8. Comparison of the KS statistic (lower is better) and the AUPC (higher is better) of our testing procedure with other SoTA tests
on the two problems presented in (4) and (5) with Gaussian noises. Each point in the figures is obtained by repeating the experiment for
100 independent trials. (Left, middle-left): the KS and AUPC obtained by each test when varying the dimension dz from 1 to 10, while
fixing the number of samples n to 1000. (Middle-right, right): the KS and AUPC obtained by each test when varying the number of
samples n from 100 to 1000, while fixing the dimension dz to 10.
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Figure 9. Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our
testing procedure with other SoTA tests on the two problems presented in Eq. (4) and Eq. (5) with Gaussian noises. Each point in the
figures is obtained by repeating the experiment for 100 independent trials. In each plot the dimension dz is varying from 10 to 50; here,
the number of samples n is fixed and equals to 1000.
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B.1.2. LAPLACE CASE
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Figure 10. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with
other SoTA tests on the two problems presented in (4) and (5) with Laplace noises. Each point in the figures is obtained by repeating the
experiment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension dz
from 1 to 10; here, the number of samples n is fixed and equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each
test when varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 11. Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in
Eq. (4) and Eq. (5) with Laplace noises. Each point in the figures is obtained by repeating the experiment for 100 independent trials.
(Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension dz from 1 to 10; here, the
number of samples n is fixed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when
varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 12. Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our
testing procedure with other SoTA tests on the two problems presented in Eq. (4) and Eq. (5) with Laplace noises. Each point in the
figures is obtained by repeating the experiment for 100 independent trials. In each plot the dimension dz is varying from 10 to 50; here,
the number of samples n is fixed and equals to 1000.
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B.2. Additional experiments on Problems (8) and (9)

B.2.1. GAUSSIAN CASE
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Figure 13. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with
other SoTA tests on the two problems presented in (8) and (9) with Gaussian noises. Each point in the figures is obtained by repeating the
experiment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension dz
from 1 to 10; here, the number of samples n is fixed and equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each
test when varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 14. Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in
Eq. (8) and Eq. (9) with Gaussian noises. Each point in the figures is obtained by repeating the experiment for 100 independent trials.
(Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension dz from 1 to 10; here, the
number of samples n is fixed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when
varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 15. Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our
testing procedure with other SoTA tests on the two problems presented in Eq. (8) and Eq. (9) with Gaussian noises. Each point in the
figures is obtained by repeating the experiment for 100 independent trials. In each plot the dimension dz is varying from 10 to 50; here,
the number of samples n is fixed and equals to 1000.
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B.2.2. LAPLACE CASE
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Figure 16. Comparison of the type-I error at level α = 0.05 (dashed line) and the type-II error (lower is better) of our test procedure with
other SoTA tests on the two problems presented in (8) and (9) with Laplace noises. Each point in the figures is obtained by repeating the
experiment for 100 independent trials. (Left, middle-left): type-I and type-II errors obtained by each test when varying the dimension dz
from 1 to 10; here, the number of samples n is fixed and equals to 1000. (Middle-right, right): type-I and type-II errors obtained by each
test when varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 17. Comparison of the KS statistic and the AUPC of our testing procedure with other SoTA tests on the two problems presented in
Eq. (8) and Eq. (9) with Laplace noises. Each point in the figures is obtained by repeating the experiment for 100 independent trials.
(Left, middle-left): the KS statistic and AUPC (respectively) obtained by each test when varying the dimension dz from 1 to 10; here, the
number of samples n is fixed and equals to 1000. (Middle-right, right): the KS and AUPC (respectively), obtained by each test when
varying the number of samples n from 100 to 1000; here, the dimension dz is fixed and equals to 10.
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Figure 18. Comparison of the type-I error at level α = 0.05 (dashed line), type-II error (lower is better), KS statistic and the AUPC of our
testing procedure with other SoTA tests on the two problems presented in Eq. (8) and Eq. (9) with Laplace noises. Each point in the
figures is obtained by repeating the experiment for 100 independent trials. In each plot the dimension dz is varying from 10 to 50; here,
the number of samples n is fixed and equals to 1000.


