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Abstract

The ability to align points across two related yet
incomparable point clouds (e.g. living in different
spaces) plays an important role in machine learn-
ing. The Gromov-Wasserstein (GW) framework
provides an increasingly popular answer to such
problems, by seeking a low-distortion, geometry-
preserving assignment between these points. As
a non-convex, quadratic generalization of optimal
transport (OT), GW is NP-hard. While practi-
tioners often resort to solving GW approximately
as a nested sequence of entropy-regularized OT
problems, the cubic complexity (in the number n
of samples) of that approach is a roadblock. We
show in this work how a recent variant of the OT
problem that restricts the set of admissible cou-
plings to those having a low-rank factorization is
remarkably well suited to the resolution of GW:
when applied to GW, we show that this approach
is not only able to compute a stationary point of
the GW problem in time O(n2), but also uniquely
positioned to benefit from the knowledge that the
initial cost matrices are low-rank, to yield a lin-
ear time O(n) GW approximation. Our approach
yields similar results, yet orders of magnitude
faster computation than the SoTA entropic GW
approaches, on both simulated and real data.

1. Introduction
Increasing interest for Gromov-Wasserstein... Several
problems in machine learning require comparing datasets
that live in heterogeneous spaces. This situation arises typi-
cally when realigning two distinct views (or features) from
points sampled from similar sources. Recent applications
to single-cell genomics (Demetci et al., 2020; Blumberg
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Entropic GW loss: 0.28864 Low-Rank GW loss: 0.28823

Figure 1: Top row: Two curves in 2D and 3D, with n =
5000 points. Bottom row: coupling and GW loss obtained
with the SoTA O(n3) entropic approach (Peyré et al., 2016)
(left) and with our linear O(n) method (right) when using
the squared Euclidean distances as the ground costs.

et al., 2020) provide a case in point: Thousands of cells
taken from the same tissue are split in two groups, each pro-
cessed with a different experimental protocol, resulting in
two distinct sets of heterogeneous feature vectors; Despite
this heterogeneity, one expects to find a mapping registering
points from the first to the second set, since they contain
similar overall information. That realignment is usually
carried out using the Gromov-Wasserstein (GW) machinery
proposed by Mémoli (2011) and Sturm (2012). GW seeks a
relaxed assignment matrix that is as close to an isometry as
possible, as quantified by a quadratic score. GW has prac-
tical appeal: It has been used in supervised learning (Xu
et al., 2019b), generative modeling (Bunne et al., 2019), do-
main adaptation (Chapel et al., 2020), structured prediction
(Vayer et al., 2018), quantum chemistry (Peyré et al., 2016)
and alignment layers (Ezuz et al., 2017).

...despite being hard to solve. Since GW is an NP-hard
problem, all applications above rely on heuristics, the most
popular being the sequential resolution of nested entropy-
regularized OT problems. That approximation remains
costly, requiring O(n3) operations when dealing with two
datasets of n samples. Our goal is to reduce that complexity,
by exploiting and/or enforcing low-rank properties of matri-
ces arising both in data and variables of the GW problem.

OT: from cubic to linear complexity. Compared to GW,
aligning two populations embedded in the same space is
far simpler, and corresponds to the usual optimal transport
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Entropic GW loss: 0.35357 Low-Rank GW loss: 0.35389

Figure 2: Top row: Two curves in 2D and 3D, with n =
5000 points. Bottom row: coupling and GW loss obtained
with the SoTA O(n3) entropic approach (Peyré et al., 2016)
(left) and with our linear O(n) method (right) when using
the squared Euclidean distance as the ground cost for both
point clouds. See Appendix E.1 for more details.

(OT) problem (Peyré and Cuturi, 2019).Given a n×m cost
matrix C and two marginals, the OT problem minimizes
LC(P ) := 〈C,P 〉 w.r.t. a coupling matrix P satisfying
these marginal constraints. For computational and statistical
reasons, most practitioners rely on regularized approaches
LεC(P ) := 〈C,P 〉+ εreg(P ). When reg is the neg-entropy,
Sinkhorn’s algorithm can be efficiently employed (Cuturi,
2013; Altschuler et al., 2017; Lin et al., 2019). The Sinkhorn
iteration has O(nm) complexity, but this can be sped-up
using either a low-rank factorizations (or approximations)
of the kernel matrix K := e−C/ε (Solomon et al., 2015;
Altschuler et al., 2018a;b; Scetbon and Cuturi, 2020), or,
alternatively and as proposed by Scetbon et al. (2021); For-
row et al. (2019), by imposing a low-rank constraint on the
coupling P . A goal in this paper is to show that this latter
route is remarkably well suited to the GW problem.

GW: from NP-hard to cubic approximations. The GW
problem replaces the linear objective in OT by a non-convex,
quadratic, objective QA,B(P ) := cst − 2〈APB,P 〉 pa-
rameterized by two square cost matrices A and B. Much
like OT is a relaxation of the optimal assignment prob-
lem, GW is a relaxation of the quadratic assignment prob-
lem (QAP). Both GW and QAP are NP-hard (Burkard
et al., 1998). In practice, linearizing iteratively QA,B works
well (Gold and Rangarajan, 1996; Solomon et al., 2016):
recompute a synthetic cost Ct := APt−1B, use Sinkhorn to
get Pt := argminP 〈Ct, P 〉+ εreg(P ), repeat. This is akin
to a mirror-descent scheme (Peyré et al., 2016), interpreted
as a bi-linear relaxation in certain cases (Konno, 1976).

Challenges to speed up GW. Several obstacles stand
in the way of speeding up GW. The re-computation of
Ct = APt−1B at each outer iteration is an issue, since it
requires O(n3) operations (Peyré et al., 2016, Prop. 1). We
only know of two broad approaches that achieve tractable
running times: (i) Solve related, yet significantly different,
proxies of the GW energy, either by embedding points as

univariate measures (Mémoli, 2011; Sato et al., 2020), by
using a sliced mechanism when restricted to Euclidean set-
tings (Vayer et al., 2019) or by considering tree metrics for
supports of each probability measure (Le et al., 2021), (ii)
Reduce the size of the GW problem through quantization
of input measures (Chowdhury et al., 2021). or recursive
clustering approaches (Xu et al., 2019a; Blumberg et al.,
2020)). Interestingly, no work has, to our knowledge, tried
yet to accelerate Sinkhorn iterations withing GW.

Our contributions: a quadratic to linear GW approxi-
mation. Our method addresses the problem by taking the
GW as it is, overcoming limitations that may arise from
a changing cost matrix Ct. We show first that a low-rank
factorization (or approximation) of the two input cost matri-
ces that define GW, one for each measure, can be exploited
to lower the complexity of recomputing Ct from cubic to
quadratic. We show next, independently, that using the low-
rank approach for couplings advocated by Scetbon et al.
(2021) to solve OT can be inserted in the GW pipeline and
result in a O(n2) strategy for GW, with no prior assump-
tion on input cost matrices. We also briefly explain why
methods that exploit the geometrical properties of C (or its
kernel K = e−C) to obtain faster iterations are of little use
in a GW setup, because of the necessity to re-instantiate
a new cost Ct at each outer iteration. Finally, we show
that both low-rank assumptions (on costs and couplings)
can be combined to shave yet another factor and reach GW
approximation with linear complexity in time and memory.
We provide experiments, on simulated and real datasets,
which show that our approach has comparable performance
to entropic-regularized GW and its practical ability to reach
“good” local minima to GW, for a considerably cheaper
computational price, and with a conceptually different reg-
ularization path (see Fig. 1,2), yet can scale to millions of
points.

2. Background on Gromov-Wasserstein
Comparing measured metric spaces. Let (X , dX ) and
(Y, dY) be two metric spaces, and µ :=

∑n
i=1 aiδxi and

ν :=
∑m
i=j bjδyj two discrete probability measures, where

n,m ≥ 1; a, b are probability vectors in the simplicies
∆n,∆m of size n and m; and (x1, . . . , xn), (y1, . . . , ym)
are families in X and Y . Given q ≥ 1, the following square
pairwise cost matrices encode the geometry within µ and ν,

A := [dqX (xi, xi′)]1≤i,i′≤n, B := [dqY(xj , xj′)]1≤i,i′≤m

The GW discrepancy between these two discrete metric
measure spaces (µ, dX ) and (ν, dY) is the solution of the
following non-convex quadratic problem, written for sim-
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plicity as a function of (a,A) and (b, B):

GW((a,A), (b, B)) = min
P∈Πa,b

QA,B(P ), (1)

where Πa,b := {P ∈ Rn×m+ |P1m = a, PT1n = b},

and the energy QA,B is a quadratic function of P designed
to measure the distortion of the assignment:

QA,B(P ) :=
∑

i,j,i′,j′

(Ai,i′ −Bj,j′)2Pi,jPi′,j′ . (2)

Mémoli (2011) proves that GW
1
2 defines a distance on the

space of metric measure spaces quotiented by measure-
preserving isometries. (2) can be evaluated in O(n2m +
nm2) operations, rather than using n2m2 terms:

QA,B(P ) = 〈A�2a, a〉+ 〈B�2b, b〉 − 2〈APB,P 〉 , (3)

where � is the Hadamard (elementwise) product or power.

Entropic Gromov-Wasserstein. The original GW prob-
lem (1) can be regularized using entropy (Gold and Ran-
garajan, 1996; Solomon et al., 2016), leading to problem:

GWε((a,A), (b, B)) = min
P∈Πa,b

QA,B(P )− εH(P ) , (4)

where H(P ) := −
∑
i,j Pi,j(log(Pi,j)− 1) is P ’s entropy.

Peyré et al. (2016) propose to solve that problem using mir-
ror descent (MD), w.r.t. the KL divergence. Their algorithm
boils down to solving a sequence of regularized OT prob-
lems, as in Algo. 1: Each KL projection in Line 5 is solved
efficiently with the Sinkhorn algorithm (Cuturi, 2013).

Algorithm 1: Entropic-GW
Input :a ∈ ∆n, A ∈ Rn×n, b ∈ ∆m, B ∈

Rm×m, ε > 0
1 P = abT nm
2 for t = 0, . . . do
3 C ← −4APB nm(n+m)
4 Kε ← exp(−C/ε) nm
5 P ← argmin

P∈Π(a,b)

KL(P,Kε) O(nm)

6 GW = QA,B(P ) nm(n+m)
Result: GW

Computational complexity. Given a cost matrix C, the
KL projection of Kε onto the polytope Π(a, b), where
KL(P,Q) = 〈P, log(P/Q) − 1〉, is carried out in Line
5 of the inner loop of Algo. 1 using the Sinkhorn algorithm,
through matrix-vector products. This quadratic complexity
(in red) is dominated by the cost of updating matrix C at
each iteration in Line 3, which requires O(n2m + nm2)
algebraic operations (cubic, in violet). As noted above,
evaluating the objective QA,B(P ) in Line 6 is also cubic.

Step-by-step guide to reaching linearity. We show next
in §3 that these iterations can be sped up when the distance
matrices are low-rank (or have low-rank approximations),
in which case the cubic updates in C and evaluation of
QA,B in Lines 3, 6 become quadratic. Independently, we
show in §4 that, with no assumption on these cost matrices,
replacing the Sinkhorn call in Line 5 with a low-rank ap-
proach (Scetbon et al., 2021) can lower the cost of Lines 3, 6
to quadratic (while also making Line 5 linear). Remarkably,
we show in §5 that these two approaches can be combined in
Lines 3, 6, to yield, to the best of our knowledge, the first lin-
ear time/memory algorithm able to match the performance
of the Entropic-GW approach.

3. Low-rank (Approximated) Costs
Exact factorization for distance matrices. consider

Assumption 1. A and B admit a low-rank factorization:
there exists A1, A2 ∈ Rn×d and B1, B2 ∈ Rm×d′ s.t. A =
A1A

T
2 and B = B1B

T
2 , where d� n, d′ � m.

A case in point is when both A and B are squared Eu-
clidean distance matrices, with a sample size that is much
larger than ambient dimension. This case is highly rele-
vant in practice, since it covers most applications of OT to
ML. Indeed, the d � n assumption usually holds, since
cases where d � n fall in the “curse of dimensional-
ity” regime where OT is less useful (Dudley et al., 1966;
Weed and Bach, 2019). Writing X = [x1, . . . , xn] ∈
Rd×n, if A =

[
‖xi − xj‖22

]
i,j

, then one has, writing
z = (X�2)T1d ∈ Rn that A = z1Tn + 1nz

T − 2XTX.
Therefore by denoting A1 = [z,1n,−

√
2XT ] ∈ Rn×(d+2)

and A2 = [1n, z,
√

2XT ] ∈ Rn×(d+2) we obtain the fac-
torization above. Under Assumption 1, the complexity of
Algo. 1 is reduced to O(n2): Line 3 reduces to:

C = −4A1A
T
2 PB1B

T
2 ,

in nm(d + d′) + dd′(n + m) algebraic operations, while
Line 6, using the reformulation of QA,B(P ) in (3), be-
comes quadratic as well. Indeed, writing G1 := AT1 PB2

and G2 := AT2 PB1, both in Rd×d′ , one has 〈APB,P 〉 =
1Td (G1�G2)1d′ . ComputingG1, G2 given P requires only
2(nmd+mdd′), and computing their dot product adds dd′

algebraic operations. The overall complexity to compute
QA,B(P ) is O(nmd+mdd′).

General distance matrices. When the original cost matri-
ces A,B are not low-rank but describe distances, we build
upon recent works that output their low-rank approximation
in linear time (Bakshi and Woodruff, 2018; Indyk et al.,
2019). These algorithms produce, for any distance matrix
A ∈ Rn×m and τ > 0, matrices A1 ∈ Rn×d, A2 ∈ Rm×d
inO((m+n)poly( dτ )) operations such that, with probability
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Algorithm 2: Quadratic Entropic-GW

1 Inputs: A1, A2 ∈ Rn×d, B1, B2,∈ Rm×d′a, b, ε
2 P = abT nm
3 for t = 0, . . . do
4 G2 ← AT2 PB1 nmd + mdd’
5 C ← −4A1G2B

T
2 nmd’ + ndd’

6 Kε ← exp(−C/ε) nm
7 P ← argmin

P∈Π(a,b)

KL(P,Kε) O(nm)

8 end
9 c1 ← aT (A1A

T
2 )�2a+ bT (B1B

T
2 )�2b

n²d’+m²d’
10 G2 ← AT2 PB1 nmd + mdd’
11 G1 ← AT1 PB2 nmd + mdd’
12 c2 ← −21Td (G1 �G2)1d′ dd’
13 QA,B(P )← c1 + c2
14 Return: QA,B(P )

at least 0.99,

‖A−A1A
T
2 ‖2F ≤ ‖A−Ad‖2F + τ‖A‖2F ,

where Ad denotes the best rank-d approximation to A in
the Frobenius sense. The rank d should be selected to trade
off approximation of A and speed-ups for the method, e.g.
such that d/τ � m+ n. We fall back on this approach to
obtain a low-rank factorization of a distance matrix in linear
time whenever needed, aware that this incurs an additional
approximation (see Appendix C).

4. Low-rank Constraints for Couplings
In this section, we shift our attention to a different oppor-
tunity for speed-ups, without Assumption 1: we consider
the GW problem on couplings that are low-rank, in the
sense that they are factorized using two low-rank couplings
linked by a common marginal g in ∆∗r , the interior of ∆r

(all entries positive). Writing the set of couplings with a
nonnegative rank smaller than r (Scetbon et al., 2021, §3.1):

Πa,b(r) :=
{
P ∈ Rn×m+ ,∃g ∈ ∆∗r s.t. P = Qdiag(1/g)RT ,

Q ∈ Πa,g, and R ∈ Πb,g

}
,

we can define the low-rank GW problem, written
GW-LR(r)((a,A), (b, B)) as the solution of

min
(Q,R,g)∈C(a,b,r)

QA,B(Qdiag(1/g)RT ) , (5)

where C(a, b, r) := C1(a, b, r) ∩ C2(r), with

C1(a, b, r) :=
{

(Q,R, g) ∈ Rn×r+ × Rm×r+ × (R∗+)r

s.t. Q1r = a,R1r = b
}
,

C2(r) :=
{

(Q,R, g) ∈ Rn×r+ × Rm×r+ × Rr+

s.t. QT1n = RT1m = g
}
.

Mirror Descent Scheme. We propose to use a MD scheme
with respect to the generalized KL divergence to solve (5).
If one chooses (Q0, R0, g0) ∈ C(a, b, r) an initial point
such that Q0 > 0 and R0 > 0, this results in,

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C(a,b,r)

KL(ζ,Kk) , (6)

where the three matrices Kk := (K
(1)
k ,K

(2)
k ,K

(3)
k ) are

K
(1)
k := exp(4γAPkBRk diag(1/gk) + log(Qk))

K
(2)
k := exp(4γBPTk AQk diag(1/gk) + log(Rk))

K
(3)
k := exp(−4γωk/g

2
k + log(gk))

with [ωk]i := [QTkAPkBRk]i,i for all i ∈ {1, . . . , r} and
γ > 0 is a step size. Solving (6) can be done efficiently
thanks to Dykstra’s Algorithm as proposed in (Scetbon et al.,
2021). See Algo. 3 and Appendix D.

Avoiding vanishing components. As in k-means opti-
mization, the algorithm above might run into cases in
which entries of the histogram g vanish to 0. Follow-
ing (Scetbon et al., 2021) we can avoid this by setting
a lower bound α on the weight vector g, such that g ≥ α
coordinate-wise. Practically, we introduce truncated fea-
sible sets C(a, b, r, α) := C1(a, b, r, α) ∩ C2(r) where
C1(a, b, r, α) := C1(a, b, r) ∩ {(Q,R, g) | g ≥ α}.

Initialization. To initialize our algorithm, we adapt the first
lower bound of (Mémoli, 2011) to the low-rank setting and
prove the following Proposition (see appendix A for proof).

Proposition 1. Let us denote x̃ = A�2a ∈ Rn, ỹ =
B�2b ∈ Rm and C̃ = (|

√
x̃i −

√
ỹj |2)i,j ∈ Rn×m. Then

for all r ≥ 1 we have,

GW-LR(r)
α ((a,A), (b, B)) ≥ LOT(r)

α (C̃, a, b),where

LOT(r)
α (C̃, a, b) := min

(Q,R,g)∈C(a,b,r,α)
〈C̃,Q diag(1/g)RT 〉 .

LOT(r)
α (C̃, a, b) can be solved with (Scetbon et al., 2021).

The cost C̃ is the squared Euclidean distance between two
families {x̃1, . . . , x̃n} and {ỹ1, . . . , ỹm} in 1-D, which ad-
mits a trivial rank 2 factorization. We can therefore apply
the linear-time version of their algorithm to compute the
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lower bound. Algo. 3 summarizes this, where D(·) denotes
the operator extracting the diagonal of a square matrix. In
practice we observe that such initialization outperforms triv-
ial or random initializations (see Section 6).

Computational Cost. Our initialization requires x̃ and ỹ,
obtained in O(n2 + m2) operations. Running (Scetbon
et al., 2021, Algo.3) with a squared Euclidean distances
between two families in 1-D has cost O((n+m)r). Solv-
ing the barycenter problem as defined in (6) can be done
efficiently thanks to Dykstra’s Algorithm. Indeed, each
iteration of (Scetbon et al., 2021, Algo. 2), assuming
(K

(1)
k ,K

(2)
k ,K

(3)
k ) is given, requires only O((n + m)r)

algebraic operations. However, computing kernel matrices
(K

(1)
k ,K

(2)
k ,K

(3)
k ) at each iteration of Algorithm 3 requires

a quadratic complexity with respect to the number of sam-
ples. Overall the proposed algorithm, while faster than the
cubic implementation proposed in (Peyré et al., 2016), still
needs O((n2 +m2)r) operations per iteration.

Dykstra Iterations. In our complexity analysis, we do not
take into account the number of iterations required to ter-
minate Dykstra’s Algorithm. We show experimentally (see
Fig. 3) that, as usually observed for Sinkhorn (Cuturi, 2013,
Fig. 5), this number does not depend on problem size n,m,
but rather on the geometric characteristics of A,B and γ.

Convergence of MD. Although objective (5) is not con-
vex in (Q,R, g), we obtain the non-asymptotic stationary
convergence of our proposed method. In (Scetbon et al.,
2021), the authors study the convergence of the MD scheme
when applied to the low-rank formulation of OT. In the GW
setting, such strategy makes even more sense as the GW
problem is a NP-hard non-convex problem and obtaining
global guarantees is out of reach in a general framework.
Therefore we follow the strategy proposed in (Scetbon et al.,
2021) and consider the following convergence criterion,

∆α(ξ, γ) :=
1

γ2
(KL(ξ,Gα(ξ, γ)) + KL(Gα(ξ, γ), ξ))

where Gα(ξ, γ) := argminζ∈C(a,b,r,α){〈∇QA,B(ξ), ζ〉 +
1
γKL(ζ, ξ)}. This convergence criterion is in fact stronger
than the one using the (generalized) projected gradient pre-
sented in (Ghadimi et al., 2013) to obtain non-asymptotic
stationary convergence of the MD scheme. Indeed the crite-
rion used there is defined as the square norm of the following
vector:

PC(a,b,r,α)(ξ, γ) :=
1

γ
(ξ − Gα(ξ, γ)) ,

which can be seen as a generalized projected gradient of
QA,B at ξ. By denoting X := Rd and by replacing the
Bregman Divergence KL(ζ, ξ) by 1

2‖ζ − ξ‖22 in the MD
scheme, we would have PX(ξ, γ) = ∇QA,B(ξ). Now

observe that we have

∆α(ξ, γ) =
1

γ2
(〈∇h(Gα(ξ, γ))−∇h(ξ),Gα(ξ, γ)− ξ〉

≥ 1

2γ2
‖Gα(ξ, γ)− ξ‖21

=
1

2
‖PC(a,b,r,α)(ξ, γ)‖21

where h denotes the minus entropy function and the
last inequality comes from the strong convexity of
h on C(a, b, r, α). Therefore ∆α(ξ, γ) dominates
‖PC(a,b,r,α)(ξ, γ)‖1 and characterizes a stronger conver-
gence.

For any 1/r ≥ α > 0, Proposition 2 shows the non-
asymptotic stationary convergence of the MD scheme for
Problem (5). See Appendix A for the proof.

Proposition 2. Let 1
r ≥ α > 0, N ≥ 1 and

Lα := 27(‖A‖2‖B‖2/α4). Consider a constant step-
size γ = 1

2Lα
in the MD scheme (6). Writing D0 :=

QA,B(Q0 diag(1/g0)RT0 )−GW-LR(r)
α ((a,A), (b, B)) the

gap between initial value and optimum, one has

min
1≤k≤N

∆α((Qk, Rk, gk), γ) ≤ 4LαD0

N
.

Since for α small enough, GW-LR(r)
α ((a,A), (b, B)) =

GW-LR(r)((a,A), (b, B)), Proposition 2 shows that our al-
gorithm reaches a stationary point of (5).

This Proposition claims that within at most N iterations the
minimum of the (∆α((Qt, Rt, gt), γ))1≤t≤N is of order
O(1/N). Note that this is a standard way to obtain the
stationary convergence (see e.g. (Ghadimi et al., 2013). In
practice, this is sufficient to define a stopping criteria, as
one could simply compute at each iteration the criterion and
keep only in memory the smallest value at each iteration.

5. Double Low-rank GW
Almost all operations in Algorithm 3 only require linear
memory storage and time, except for the computations of
x̃ = A�2a and ỹ = B�2b in Line 2, and the four updates
involving C1 and C2 in Lines 7,8,16,17 which all require
a quadratic number of algebraic operations. When adding
Assumption 1 from §3 to the rank constrained approach
from §4, we show that the strengths of both approaches
can work hand in hand, both in easier initial evaluations of
x̃, ỹ, but, most importantly, at each new recomputation of a
factorized linearization of the quadratic objective:

Linear-time Norms in Line 2 Because A admits a low-
rank factorization, one can obtain a low-rank factorization
for A�2 pending the condition d2 � n. Indeed, remark
that for u, v ∈ Rd, 〈u, v〉2 = 〈uuT , vvT 〉. Therefore, if
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Algorithm 3: Low-Rank GW

1 Inputs: A,B, a, b, r, α, γ
2 x̃← A�2a, ỹ ← B�2b m2 + n2

3 z1 ← x̃�2, z2 ← ỹ�2 m + n

4 C̃1 ← [z1,1n,−
√

2x̃], C̃2 ← [1m, z2,
√

2ỹ]T

n + m

5 (Q,R, g)← LOT(r)
α (C̃1C̃2, a, b) O((n + m)r)

6 for t = 1, . . . do
7 C1 ← −AQdiag(1/g) O(n2r)

8 C2 ← RTB O(m2r)

9 K(1) ← Q� e4γC1C2R diag(1/g) O((m + n)r2)

10 K(2) ← R�e4γCT2 C
T
1 Q diag(1/g) O((m + n)r2)

11 ω ← D(QTC1C2R) O(nr2)

12 K(3) ← g � e−4γω/g2 O(r)
13 Q,R, g ← argmin

ζ∈C(a,b,r,α)

KL(ζ,K) O((m + n)r)

14 end
15 c1 ← 〈x̃, a〉+ 〈ỹ, b〉 n + m

16 C1 ← −AQ diag(1/g) O(n2r)

17 C2 ← RTB O(m2r)
18 G← C2R, G← C1G O((m + n)r2)
19 c2 ← −2〈Q,Gdiag(1/g)〉 O(nr)
20 Q ← c1 + c2
21 Return: Q

one describes A1 := [u1; . . . ;un] and A2 := [v1; . . . ; vn]
row-wise, and one uses the flattened out-product operator
ψ(u) := vec(uuT ) ∈ Rd2 where vec(·) flattens a matrix,

A�2 = Ã1Ã2
T

where Ã1 = [ψ(u1; . . . ;ψ(un)],

Ã2 = [ψ(v1); . . . ;ψ(vn)] .

Line 2 in Algo. 3 can be replaced by x̃ ← Ã1Ã2
T
a and

ỹ ← B̃1B̃2
T
b. Pending the condition d2 � n, d′2 � m,

this results in nd2 +m(d′)2 operations. Note that Algo. 2
(line 9) can also benefit from this factorization, however as
its complexity is already quadratic, the linearization of this
operation has no effect on the global computational cost.

Linearization of Lines 7,8,16,17. The critical step in
Algo. 1 that requires updating C at each outer iteration
is cubic. As described earlier in Algo. 3 and Algo. 2, a low-
rank constraint on the coupling or a low-rank assumption
on costs A and B reduce this cost to quadratic. Remarkably,
both can be combined to yield linear time by replacing in
Algo. 3, Lines 7, 8, 16, 17 by

C1 ← −A1A
T
2 Qdiag(1/g) and C2 ← RTB2B

T
1 .

Note that this speed-up would not be achieved using other
approaches that output a low rank approximation of the
transport plan (Altschuler et al., 2018b;a; Scetbon and Cu-
turi, 2020). The crucial obstacle to using these methods

here is that the cost matrix C in GW changes throughout
iterations, and is synthetic–the output of a matrix product
APB involving the very last transport P . This stands in
stark contrast with the requirements in (Altschuler et al.,
2018b;a; Scetbon and Cuturi, 2020) that the kernel matrix
corresponding to Kε = e−C/ε admits favorable properties,
such as being p.s.d or admitting an explicit (random or not)
finite dimensional feature approximation.

Linear time GW. We have shown that (red) quadratic op-
erations appearing in Algo. (3) can be replaced by linear
alternatives. The iterations that have not been modified had
an overall complexity of O(mr(r + d′) + nr(r + d)). The
initialization and linearization steps can now be performed
in linear time and complexity, respectively inO(n(r+d2)+
m((d′)2 + r)) and O((nr(r + d) +mr(r + d′)).

6. Experiments
Our goal in this section is to provide practical guidance
on how to use our method (to set stepsize γ, lower bound
α on entries of g and rank r) and compare its practical
performance with other baselines, both in terms of run-
ning times and relevance, on 5 simulated datasets and 2
real world applications. We consider our quadratic ap-
proach LR (Algo. 3) and its linear time counterpart Lin
LR (§5). We compare them with Ent, the cubic implemen-
tation of (Peyré et al., 2016), and its improved quadratic
version Quad Ent introduced in this paper (Algo. 2). We
also use MREC as implemented in (Blumberg et al., 2020).
Because all these approaches admit different hyperparam-
eters, we evaluate them by stressing GW loss as a func-
tion of computational effort, as well as performance in
downstream metrics. Because the couplings obtained by
MREC do not satisfy marginal constraints, computing its
GW loss is irrelevant, but its matching can be used in the
single cell genomics experiments we consider. Experiments
were run on a MacBook Pro 2019 laptop, and data from
github.com/rsinghlab/SCOT. The code is avail-
able at https://github.com/meyerscetbon/LinearGromov.

Initialization. For a fair comparison with the entropic ap-
proach, we adapt the first lower bound of (Mémoli, 2011,
Def. 6.1) to the entropic case to initialize it. In all ex-
periments displaying time-accuracy tradeoffs, we report
computation budget as number of operations. Accuracy is
measured by evaluating the ground-truth energyQA,B (even
in scenarios when the method uses a low rank approximation
forA,B at optimization time). We repeat all experiments 10
times on random resampling of the measures in all synthetic
problems, to obtain error bars.

On the iterations of Dykstra’s Algorithm. In this exper-
iment, we show that the number of iterations involved in
the Dykstra’s Algorithm does not depends on n the number

https://github.com/meyerscetbon/LinearGromov
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Figure 3: We consider samples of a mixture of 10
anisotropic Gaussians in resp. 10 and 15-D endowed with
the squared Eucl. metric. The number of iterations of Dyk-
stra’s algorithm required to reach a precision of δ = 1e− 3
along the iterations of the Algo. 3 is not impacted signifi-
cantly by varying n, the sample size.

of samples when applying Algo. 3. In Fig. 3, we consider
samples of mixtures of (10 and 15) anisotropic Gaussians
in resp. 10 and 15-D and report the number of iterations
of the Dykstra’s Algorithm required to reach a precision
δ = 1e − 3 along the iterations of Algo. 3. We observe
that the number of iterations in Dykstra does not depend
on n the number of samples considered. Note that for all
the sample sizes considered, we need far fewer iterations
(usually≤ 25) for the outer loop to converge: the plots show
a larger x-axis than what is observed in practice.

Sensitity to γ and α. We study how optimization param-
eters γ and α impact results. We consider n = m = 1000
samples drawn from two mixtures of (2 and 3) anisotropic
Gaussians in respectively 5-D and 10-D (details in Ap-
pendix E.2). Fig. 9, reports the time vs. GW loss trade-
off of our method when varying γ, both for r = n/100 or
n/10 illustrating its robustness to that choice. Fig. 12 in
Appendix E.2 shows similar conclusions with respect to α.
Recall that α was only used to lower bound the weights of
barycenter g, to ensure no collapse. In all other experiments,
we always set γ = 100 and α = 10−10 for our methods,
and only focus on rank r.
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Effect of the rank.
We study the impact of
rank r on our method.
We consider samples
from two Gaussian
mixtures, with respec-
tively 10 and 20 cen-
ters in 10-D and 15-D
and n = m = 5000.
We compute the GW
cost obtained by Lin
LR in the squared Euclidean setting as a function of r the

rank. We observe that the loss decreases as the rank in-
creases until the rank r reaches 20 (the largest number of
clusters in our mixtures). Therefore, our method is able to
capture the clustered structure of data (See Appendix E.3).
In practice r should be selected such that it corresponds to
the number of clusters in the data.

Synthetic low-rank problem. We consider two
anisotropic Gaussian blobs with the same number of
blobs in respectively 10-D and 15-D. We constrain the
distance between the centroids of the clusters to be larger
than the dimension (see Appendix E.4 for illustrations).
In Figures 5 and 6, when the underlying cost is the (not
squared) Euclidean distance, our methods manage to
consistently obtain similar GW loss that those obtained by
entropic methods, using very low rank r = n/100, while
being orders of magnitude faster. Fig. 7 explores the more
favorable case where the underlying cost is the squared
Euclidean distance, reaching similar conclusions.

Large scale experiment. In this experiment, we show
that our method is able to compute an approximation of the
GW cost in the large sample setting. In Fig. 8, we samples
n = m = 1e5 samples from the unit square in 2-D and we
compare the time/loss tradeoff when varying the rank r. We
show that our method is the only one able to approach the
GW cost in such regimes.

Experiments on Single Cell Genomics Data. We re-
produce the single-cell alignment experiments introduced
in (Demetci et al., 2020). The datasets consist in single-cell
multi-omics data generated by co-assays, provided with a
ground truth one–to-one correspondence, which can be used
to benchmark GW strategies. The SNAREseq dataset (Chen
et al., 2019), with n = m = 1047 points in R19, describes
a real-world experiment; the Splatter dataset (Zappia et al.,
2017) with n = m = 5000 points in R500 is synthetic. We
use the pre-processing from (Demetci et al., 2020) to prepare
intra-domain distance matricesA andB using a k-NN graph
based on correlations, to compute shortest path distances.
Note that in that case, one cannot obtain directly in linear
time a low-rank factorization of A and B using (Bakshi and
Woodruff, 2018; Indyk et al., 2019), since the shortest path
distances need to be computed first. Therefore, we only
use our quadratic approach LR and the cubic implemen-
tation of the entropic method Ent, along with MREC. In
Fig. 4 we compare both the time/GW loss tradeoffs and the
alignment performances through the “fraction of samples
closer than the true match” (FOSCTTM) error introduced
in (Liu et al., 2019). Note that we cannot compare the
time-accuracy tradeoff of MREC with our method as the
coupling obtained does not satisfy the marginal constraints.
LR reaches similar loss, while being orders of magnitude
faster than Ent, even for a very small rank r = n/100.
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Figure 4: We consider both the SNAREseq dataset (left, middle-right) which consists in two point clouds of n = m = 1047
samples in respectively 10-D and 19-D and the Splatter dataset (middle-left, right) composed of two point clouds of
n = m = 5000 samples in respectively 50-D and 500-D. The cost considered is the shortest-path distance of a k −NN
graph. We compare both the time-accuracy tradeoffs of our method with the Entropic-GW (left, middle-left) and the
FOSCTTMs ranked in the increasing order of LR, Ent and MREC when varying their hyperparameters (middle-right,
right). Because the coupling returned by MREC does not satisfy marginal constraints, we do not include it in left plots.
Our method reaches similar accuracy while being order of magnitude faster than Ent even for a small rank r = n/100. We
notice that the alignments obtained by our method are robust to the choice of r, with similar performance for all methods.
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Figure 5: We sample n = m = 5000 points from two
anisotropic Gaussian blobs, respectively in 10 and 15-D,
with either 10 or 30 clusters, endowed with the Euclidean
distance. We compare our quadratic method LR with the
cubic Entropic GW Ent, which requires instantiating matri-
ces A and B. We vary both r (our method) and ε (entropic).
Our method obtains similar GW loss, while being orders
of magnitude faster. Note the gap in performance between
r = 10 and r = 50 when the input measures have 30 clus-
ters: the GW loss decreases as the rank r increases until it
reaches the number of clusters in the data.

Experiment on BRAIN. We reproduce the experiment
proposed in (Blumberg et al., 2020). We consider the dataset
introduced in (Lake et al., 2018) of single cells sampled
from the human brain with eight different cell labels. The
dataset contains two groups with different representations:
one contains n = 34079 cells represented by their genes
expressions, while the second contains m = 27906 cells
represented by their DNA region accessibilities. We reuse
the preprocessing in (Blumberg et al., 2020), by applying
the method proposed in (Zheng et al., 2017) and available in
Scanpy (Wolf et al., 2018) to the first group and a TF-IDF
representation to the second one. A PCA is then performed
on each group to reduce dimensions to 50, endowed with
the squared Euclidean distance. These datasets are too large
to be handled with entropic approaches, and show the po-
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Figure 6: Same setting as Fig. 5, using a low-rank approxi-
mation of the Euclidean distance (see §3) to introduce our
linear method Lin LR and compare it with Quad Ent. The
rank of their factorizations is set to d = d′ = 100. We
vary ε and rank r to reach similar conclusions to those out-
lined in Fig. 5. Note also that both Lin LR and Quad Ent
reach similar GW loss as those obtained by their full-rank
counterparts, while being orders of magnitude faster.
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Figure 7: Setting as in Fig. 5, with n = m = 10000 sam-
ples from anisotropic Gaussian blobs of 5 or 20 clusters,
endowed with the squared Eucl. distance. We compare Lin
LR and Quad Ent using exact factorizations of A and B.

tential of our linear approach Lin LR to handle larger scale
problems. To compare Lin LR with MREC, we measure
the accuracy of their matchings, as proposed in (Blumberg
et al., 2020), by computing the fraction of points in the first
group whose associated points under the matching given
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Figure 8: We sample n = 1e5 points from the unit square
in 2-D. The underlying cost considered is the squared Eu-
clidean cost. In this regime, only Lin GW-LR can be com-
puted. We plot the time/loss tradeoff when varying r.
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Figure 9: We consider two n = m = 1000 samples of mix-
tures of (2 and 3) Gaussians in resp. 5 and 10-D, endowed
with the squared Euclidean metric, compared with Lin LR.
The time/loss tradeoff illustrated in these plots show that
our method is only mildly impacted by step size γ for both
ranks r = n/100 and n/10.

by the method share the same label in the second group.
In Figure 10, we plot the accuracy against the rank (or the
number of clusters in MREC) for both Lin LR and MREC.
We also consider multiple versions of MREC by varying
its entropic regularization parameter, ε, involved in the in-
ner matching of the recursive method. Our method obtains
consistently better accuracy than that obtained by MREC.

Discussion. While the factorization introduced in (Scetbon
et al., 2021) held the promise to speed up classic OT, we
show in this work that it delivers an even larger impact
when applied to GW: indeed, the combination of low-
rank Sinkhorn factorization with-low rank cost matrices
is the only one, to our knowledge, that achieves linear
time/memory complexity for the Gromov-Wasserstein prob-
lem. The GW problem is NP-hard, its optimal solution out
of reach and approximate solutions can only be reached
using an inductive bias. Here we propose to compute ef-
ficiently a coupling whose GW cost is low. By adding
low-rank constraints, our goal is no longer to approach
the optimal coupling, but rather to promote low-rank solu-
tions among many that have a low GW cost. Our low-rank
constraint obtains similar performance as the entropic regu-
larization, the current default approach, while being much
faster to compute. We show in experiments that low-rank
couplings can reach low GW costs, and that they are directly
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Figure 10: Using the BRAIN dataset (two point clouds of
n = 34079 and m = 27906 samples in 50-D, endowed
with squared Euclidean distance) we compare the GW loss
against the rank (or the number of clusters) for both Lin
LR and MREC for multiple choices of ε in MREC. We
show that our method is robust to the choice of the rank and
obtains consistently better accuracy than MREC.

useful in real-world tasks. Our approach has, however, a few
limitations compared to the entropic one: setting γ, while
not problematic in most of our experiments, could require
a bit of tuning in order to obtain faster runs in challenging
situations. Our assumptions to reach linearity, as discussed
in §4 and 5 mostly rests on two important assumptions: the
rank of distance matrices (the intrisic dimensionality of data
points) must be such that d, d′ are dominated by n,m and
that a small enough rank r be able to capture the config-
uration of the input measures. Pending these constraints,
which are valid in most relevant experimental setups we
know of, we have demonstrated that our approach is versa-
tile, remains faithful to the original GW formulation, and
scales to sizes that are out of reach for the SoTA entropic
solver.
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Supplementary material

A. Proofs
A.1. Proof of Proposition 1

Proof. Let (Q,R, g) ∈ C(a, b, r, α), P := Qdiag(1/g)RT . Remarks that for all i, j,

√∑
i′,j′

|Ai,i′ −Bj,j′ |2Pi′,j′ ≥

∣∣∣∣∣∣
√∑
i′,j′

|Ai,i′ |2Pi′,j′ −
√∑
i′,j′

|Bj,j′ |2Pi′,j′

∣∣∣∣∣∣
≥ |
√
x̃i −

√
ỹj |

Therefore we have √ ∑
i,i′,j,j′

|Ai,i′ −Bj,j′ |2Pi′,j′Pi,j =

√∑
i,j

∑
i′,j′

|Ai,i′ −Bj,j′ |2Pi′,j′Pi,j

≥
√∑

i,j

|
√
x̃i −

√
ỹj |2Pi,j

Finally we obtain that∑
i,i′,j,j′

|Ai,i′ −Bj,j′ |2Pi′,j′Pi,j − εH(Q,R, g) ≥
∑
i,j

|
√
x̃i −

√
ỹj |2Pi,j − εH(Q,R, g)

and by taking the infimum over all (Q,R, g) ∈ C(a, b, r, α), the results follows.

A.2. Proof of Proposition 2

To show the result, we first need to recall some notions linked to the relative smoothness. Let X a closed convex subset
in a Euclidean space Rq. Given a convex function H : X → R continuously differentiable, one can define the Bregman
divergence associated to H as

DH(x, z) := H(x)−H(z)− 〈∇H(z), x− z〉.

Let us now introduce the definition of the relative smoothness with respect the H .

Definition 1 (Relative smoothness.). Let L > 0 and f continuously differentiable on X . f is said to be L-smooth relatively
to H if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LDH(y, x)

In (Scetbon et al., 2021), the authors show the following general result on the non-asymptotic stationary convergence of the
mirror-descent scheme defined by the following recursion:

xk+1 = argmin
x∈X

〈∇f(xk), x〉+
1

γk
Dh(x, xk)

where (γk) a sequence of positive step-size.

Proposition 3 ((Scetbon et al., 2021)). Let N ≥ 1, f continuously differentiable on X which is L-smooth relatively to H .
By considering for all k = 1, . . . , N , γk = 1/2L, and by denoting D0 = f(x0)−minx∈X f(x), we have

min
0≤k≤N−1

∆k ≤
4LD0

N
.

where for all k = 1, . . . , N

∆k :=
1

γ2
k

(DH(xk, xk+1) +DH(xk+1, xk)).
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Let us now show that our objective function is relatively smooth with respect the the KL divergence (Lu et al., 2017; Zhang
et al., 2020). The result of Propostion 2 will then follow from Proposition 3. Here X = C(a, b, r, α), H is the negative
entropy defined as

H(Q,R, g) :=
∑
i,j

Qi,j(log(Qi,j)− 1) +
∑
i,j

Ri,j(log(Ri,j)− 1) +
∑
j

gj(log(gj)− 1),

and let us define for all (Q,R, g) ∈ C(a, b, r, α)

Fε(Q,R, g) := −2〈AQdiag(1/g)RTB,Qdiag(1/g)RT 〉+ εH(Q,R, g) .

Let us now show the following proposition.

Proposition 4. Let ε ≥ 0, 1
r ≥ α > 0 and let us denote Lε,α := 27(‖A‖2‖B‖2/α4 + ε). Then for all

(Q1, R1, g1), (Q2, R2, g2) ∈ C(a, b, r, α), we have

‖∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)‖2 ≤ Lε,α‖H(Q1, R1, g1)−H(Q2, R2, g2)‖2

Proof. Let (Q,R, g) ∈ C(a, b, r, α) and let us denote P = Qdiag(1/g)RT . We first have that

∇Fε(Q,R, g) = (∇QFε(Q,R, g),∇RFε(Q,R, g),∇gFε(Q,R, g))

where

∇QFε(Q,R, g) := −4APBR diag(1/g) + ε logQ

∇RFε(Q,R, g) := −4BPTAQdiag(1/g) + ε logR

∇gFε(Q,R, g) := −4D(QTAPBR)/g2 + ε log g

First remarks that

‖∇QFε(Q1, R1, g1)−∇QFε(Q2, R2, g2)‖2 ≤ 4‖AP1BR1 diag(1/g1)−AP2BR2 diag(1/g2)‖2
+ ε‖ logQ1 − logQ2‖2 .

Moreover we have

AP1BR1 diag(1/g1)−AP2BR2 diag(1/g2) = A((P1 − P2)BR1 diag(1/g1) + P2B(R1 diag(1/g1)−R2 diag(1/g2))

where

P1 − P2 = (Q1 −Q2) diag(1/g1)RT1 +Q2(diag(1/g1)RT1 − diag(1/g2)RT2 )

and

R1 diag(1/g1)−R2 diag(1/g2) = (R1 −R2) diag(1/g1) +R2(diag(1/g1)− diag(1/g2)) .

Moreover we have

‖AP1BR1 diag(1/g1)−AP2BR2 diag(1/g2)‖ ≤ ‖A‖‖B‖‖P1 − P2‖/α+ ‖A‖‖B‖‖R1 diag(1/g1)−R2 diag(1/g2)‖

then remark that
‖P1 − P2‖ ≤ ‖Q1 −Q2‖/α+ ‖R1 diag(1/g1)−R2 diag(1/g2)‖

and
‖R1 diag(1/g1)−R2 diag(1/g2)‖ ≤ ‖R1 −R2‖/α+ ‖1/g1 − 1/g2‖

from which follows that

‖AP1BR1 diag(1/g1)−AP2BR2 diag(1/g2)‖ ≤‖A‖‖B‖
α

(
‖Q1 −Q2‖

α
+
‖R1 −R2‖

α
+ ‖1/g1 − 1/g2‖

)
+ ‖A‖‖B‖

(
‖R1 −R2‖

α
+ ‖1/g1 − 1/g2‖

)
.
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As Q→ H(Q) is 1-strongly convex w.r.t to the `2-norm on ∆n×r, we have

‖Q1 −Q2‖22 ≤ 〈logQ1 − logQ2, Q1 −Q2〉
≤ ‖ logQ1 − logQ2‖2‖Q1 −Q2‖2

from which follows that

‖Q1 −Q2‖2 ≤ ‖ logQ1 − logQ2‖2.

Moreover we have

‖1/g1 − 1/g2‖2 ≤
‖g1 − g2‖2

α2
≤ ‖ log g1 − log g2‖2

α2

Then we obtain that

‖∇QFε(Q1, R1, g1)−∇QFε(Q2, R2, g2)‖2 ≤
(

4‖A‖‖B‖
α2

+ ε

)
‖ logQ1 − logQ2‖2

+ (1 + 1/α)
4‖A‖‖B‖

α
‖ logR1 − logR2‖2

(1 + 1/α)
4‖A‖‖B‖

α2
‖ log g1 − log g2‖2

Similarly we obtain that Then we obtain that

‖∇RFε(Q1, R1, g1)−∇RFε(Q2, R2, g2)‖2 ≤
(

4‖A‖‖B‖
α2

+ ε

)
‖ logR1 − logR2‖2

+ (1 + 1/α)
4‖A‖‖B‖

α
‖ logQ1 − logQ2‖2

(1 + 1/α)
4‖A‖‖B‖

α2
‖ log g1 − log g2‖2

Moreover we have

‖∇gFε(Q1, R1, g1)−∇gFε(Q2, R2, g2)‖2 ≤4‖D(QT1 AP1BR1)/g2
1 −D(QT2 AP2BR2)/g2

2‖
+ ε‖ log g1 − log g2‖

and

D(QT1 AP1BR1)/g2
1 −D(QT2 AP2BR2)/g2

2 =(1/g2
1 − 1/g2

2)D(QT1 AP1BR1)

+
1

g2
2

(D(QT1 AP1BR1)−D(QT2 AP2BR2)); .

Note also that

‖(1/g2
1 − 1/g2

2)D(QT1 AP1BR1)‖ ≤ 2‖A‖‖B‖
α3

‖ log g1 − log g2‖

and

QT1 AP1BR1 −QT2 AP2BR2 = (QT1 −QT2 )AP1BR1 +QT2 A(P1BR1 − P2BR2)

= (QT1 −QT2 )AP1BR1 +QT2 A((P1 − P2)BR1 + P2B(R1 −R2))

from which follows that

‖ 1

g2
2

(D(QT1 AP1BR1)−D(QT2 AP2BR2))‖ ≤ ‖A‖‖B‖
α2

(‖ logQ1 − logQ2‖+ ‖ logR1 − logR2‖+ ‖P1 − P2‖)
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and we obtain that

‖∇gFε(Q1, R1, g1)−∇gFε(Q2, R2, g2)‖2 ≤
(

4‖A‖‖B‖
α2

+
1

α

)
‖ logQ1 − logQ2‖

+

(
4‖A‖‖B‖

α2
+

1

α

)
‖ logR1 − logR2‖

+

(
4‖A‖‖B‖

α4
+

8‖A‖‖B‖
α3

+ ε

)
‖ log g1 − log g2‖

Finally we have

‖∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)‖22 ≤ 3

[(
4‖A‖‖B‖

α2
+ ε

)2

+ (1 + 1/α)2 16‖A‖2‖B‖2

α2
+

(
4‖A‖‖B‖

α2
+

1

α

)2
]

(
‖ logQ1 − logQ2‖2 + ‖ logR1 − logR2‖2

)
+ 3

[
2(1 + 1/α)2 16‖A‖‖2B‖2

α4
+

(
4‖A‖‖B‖

α4
+

8‖A‖‖B‖
α3

+ ε

)2
]

‖ log g1 − log g2‖2

from which we obtain that

‖∇Fε(Q1, R1, g1)−∇Fε(Q2, R2, g2)‖22 ≤ L2
ε,α

(
‖ logQ1 − logQ2‖2 + ‖ logR1 − logR2‖2 + ‖ log g1 − log g2‖2

)
and the result follows.

B. Double Regularization Scheme
Another way to stabilize the method is by considering a double regularization scheme as proposed in (Scetbon et al., 2021)
where in addition of constraining the nonnegative rank of the coupling, we regularize the objective by adding an entropic
term in (Q,R, g), which is to be understood as that of the values of the three respective entropies evaluated for each term.

GW-LR(r)
ε,α((a,A), (b, B)) := min

(Q,R,g)∈C(a,b,r,α)
EA,B(Qdiag(1/g)RT )− εH((Q,R, g)) . (7)

Mirror Descent Scheme. We propose to use a MD scheme with respect to the KL divergence to approximate GW-LR(r)
ε,α

defined in (7). More precisely, for any ε ≥ 0, the MD scheme leads for all k ≥ 0 to the following updates which require
solving a convex barycenter problem per step:

(Qk+1, Rk+1, gk+1) := argmin
ζ∈C(a,b,r,α)

KL(ζ,Kk) (8)

where (Q0, R0, g0) ∈ C(a, b, r) is an initial point such that Q0 > 0 and R0 > 0, Pk := Qk diag(1/gk)RTk , Kk :=

(K
(1)
k ,K

(2)
k ,K

(3)
k ), K(1)

k := exp(4γAPkBRk diag(1/gk)− (γε−1) log(Qk)), K(2)
k := exp(4γBPTk DQk diag(1/gk)−

(γε− 1) log(Rk)), K(3)
k := exp(−4γωk/g

2
k − (γε− 1) log(gk)) with [ωk]i := [QTkAPkBRk]i,i for all i ∈ {1, . . . , r} and

γ is a positive step size. Solving (6) can be done efficiently thanks to the Dykstra’s Algorithm as showed in (Scetbon et al.,
2021). See Appendix D for more details.

Convergence of the mirror descent. Even if the objective (7) is not convex in (Q,R, g), we obtain the non-asymptotic
stationary convergence of the MD algorithm in this setting. For that purpose we consider the same convergence criterion as
the one proposed in (Scetbon et al., 2021) to obtain non-asymptotic stationary convergence of the MD scheme defined as

∆ε,α(ξ, γ) :=
1

γ2
(KL(ξ,Gε,α(ξ, γ)) + KL(Gε,α(ξ, γ), ξ))

where Gε,α(ξ, γ) := argminζ∈C(a,b,r,α){〈∇EA,B(ξ), ζ〉 + 1
γKL(ζ, ξ)}. For any 1/r ≥ α > 0, we show in the following

proposition the non-asymptotic stationary convergence of the MD scheme applied to the problem (7). See Appendix A for
the proof.
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Proposition 5. Let ε ≥ 0, 1
r ≥ α > 0 and N ≥ 1. By denoting Lε,α := 27(‖A‖2‖B‖2/α4 + ε) and by considering a

constant stepsize in the MD scheme (6) γ = 1
2Lε,α

, we obtain that

min
1≤k≤N

∆ε,α((Qk, Rk, gk), γ) ≤ 4Lε,αD0

N
.

where D0 := EA,B(Q0 diag(1/g0R
T
0 )− GW-LR(r)((a,A), (b, B)) is the distance of the initial value to the optimal one.

C. Low-rank Approximation of Distance Matrices
Here we recall the algorithm used to perform a low-rank approximation of a distance matrix (Bak-
shi and Woodruff, 2018; Indyk et al., 2019). We use the implementation of (Scetbon et al., 2021).

Algorithm 4: LR-Distance(X,Y, r, γ) (Bakshi and Woodruff, 2018; Indyk et al., 2019)

1 Inputs: X,Y, r, γ
2 Choose i∗ ∈ {1, . . . , n}, and j∗{1, . . . ,m} uniformly at random.
3 For i = 1, . . . , n, pi ← d(xi, y

∗
j )2 + d(x∗i , y

∗
j )2 + 1

m

∑m
j=1 d(x∗i , yj)

2.
4 Independently choose i(1), . . . , i(t) according (p1, . . . , pn).
5 X(t) ← [xi(1) , . . . , xi(t) ], P

(t) ← [
√
tpi(1) , . . . ,

√
tpi(t) ], S ← d(X(t), Y )/P (t)

6 Denote S = [S(1), . . . , S(m)],
7 For j = 1, . . . ,m, qj ← ‖S(j)‖22/‖S‖2F
8 Independently choose j(1), . . . , j(t) according (q1, . . . , qm).
9 S(t) ← [Sj

(1)

, . . . , Sj
(t)

], Q(t) ← [
√
tqj(1) , . . . ,

√
tqj(t) ], W ← S(t)/Q(t)

10 U1, D1, V1 ← SVD(W ) (decreasing order of singular values).
11 N ← [U1(1), . . . , U

(r)
1 ], N ← STN/‖WTN‖F

12 Choose j(1), . . . , j(t) uniformly at random in {1, . . . ,m}.
13 Y (t) ← [yj(1) , . . . , yj(t) ], D

(t) ← d(X,Y (t))/
√
t.

14 U2, D2, V2 = SVD(NTN), U2 ← U2/D2, N
(t) ← [(NT )(j(1)), . . . , (NT )(j(t))], B ← UT2 N

(t)/
√
t, A←

(BBT )−1.
15 Z ← AB(D(t))T , M ← ZTUT2
16 Result: M,N

D. Nonnegative Low-rank Factorization of the Couplings
In this section, we recall the algorithm presented in (Scetbon et al., 2021) to solve problem (6) where we denote p1 := a and
p2 := b.

Algorithm 5: LR-Dykstra((K(i))1≤i≤3, p1, p2, α, δ) (Scetbon et al., 2021)

1 Inputs: K(1),K(2), g̃ := K(3), p1, p2, α, δ, q
(3)
1 = q

(3)
2 = 1r,∀i ∈ {1, 2}, ṽ(i) = 1r, q

(i) = 1r
2 repeat
3 u(i) ← pi/K

(i)ṽ(i) ∀i ∈ {1, 2},
4 g← max(α, g̃ � q(3)

1 ), q
(3)
1 ← (g̃ � q(3)

1 )/g, g̃ ← g,

5 g← (g̃ � q(3)
2 )1/3

∏2
i=1(v(i) � q(i) � (K(i))Tu(i))1/3,

6 v(i) ← g/(K(i))Tu(i) ∀i ∈ {1, 2},
7 q(i) ← (ṽ(i) � q(i))/v(i) ∀i ∈ {1, 2}, q(3)

2 ← (g̃ � q(3)
2 )/g,

8 (i) ← v(i) ∀i ∈ {1, 2}, g̃ ← g

9 until
∑2
i=1 ‖u(i) �K(i)v(i) − pi‖1 < δ;

10 Q← diag(u(1))K(1) diag(v(1))

11 R← diag(u(2))K(2) diag(v(2))
12 Result: Q,R, g
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E. Additional Experiements
E.1. Illustration

In Fig. 11, we show the time-accuracy tradeoffs of the two methods presented in Figure 2 on the same example. We see that
our method, Lin GW-LR, manages to obtain similar accuracy as the one obtained by Quad Entropic-GW even when the
rank r = n/1000 while being much faster with order of magnitude.

Figure 11: Here n = m = 10000, and the ground cost considered is the squared Euclidean distance. Note that for in
that case we have an exact low-rank factorization of the cost. Therefore we compare only Quad Entropic-GW and Lin
GW-LR. We plot the time-accuracy tradeoff when varying γ for multiple ranks r. ε = 1/γ for Quad Entropic-GW and
ε = 0 for Lin GW-LR.

E.2. Effect of γ and α

In Fig. 9 and 12, we consider two Gaussian mixture densities in respectively 5-D and 10-D where we generate randomly the
mean and covariance matrice of each Gaussian density using the wishart distribution.
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Figure 12: We consider n = m = 5000 samples of mixtures of (2 and 3) Gaussians in resp. 5 and 10-D, endowed with the
squared Euclidean metric, compared with Lin LR. The time/loss tradeoff illustrated in these plots show that our method is
not impacted by step size α for both ranks r = n/100 and n/10.

E.3. Effect of the Rank

In this experiment we compare two isotropic Gaussian blobs with respectively 10 and 20 centers in 10-D and 15-D and
n = m = 5000 samples. In Fig. 13, we show the two first coordinates of the dataset considered.

E.4. Low-rank Problem

In Fig. 5, 6 and 7, we consider two distributions in respectively 10-D and 15-D where the support is a concatenation of
clusters of points. In Fig. 14, we show an illustration of the distributions considered in smaller dimensions.

E.5. Ground Truth Experiment

In this experiment we aim at comparing the different methods when the optimal coupling solving the GW problem has a full
rank. For that purpose we consider a certain shape in 2-D which corresponds to the support of the source distribution and we



Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs

200 150 100 50 0 50 100
200

150

100

50

0

50

100

150

Figure 13: We consider two isotropic Gaussian blobs with respectively 10 and 20 centers in 10-D and 15-D and n = m =
5000 samples and we plot their 2 first coordinates.
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Figure 14: The source distribution and the target distribution live respectively in R2 and R3. Both distributions have the
same number of samples n = m = 10000, the same number of clusters which is set to be 10 here, the same number of points
in each cluster, and we force the distance between the centroids of the cluster to be larger than β = 10 in each distribution.

Figure 15: We compare the couplings obtained when the ground truth is the identity matrix in the same setting as in
Figure 11. Here the comparison is done when γ = 250. Left: illustration of the dataset considered. Middle left: we show the
coupling as well as the GW loss obtained by Quad Entropic-GW. Middle right, right: we show the couplings and the GW
losses obtained by Lin GW-LR when the rank is respectively r = 10 and r = 100.

apply two isometric transformations to it, which are a rotation and a translation to obtain the support the target distribution.
See Figure 15 (left) for an illustration of the dataset. Here we set a and b to be uniform distributions and the underlying
cost is the squared Euclidean distance. Therefore the optimal coupling solution of the GW problem is the identity matrix
and the GW loss must be 0. In Figure 16, we compare the time-accuracy tradeoffs, and we show that even in that case, our
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methods obtain a better time-accuracy tradeoffs for all γ. See also Figure 15 for a comparison of the couplings obtained by
the different methods.

Figure 16: The ground truth here is the identity matrix and the true GW loss to achieve is 0. We set the number of samples
to be n = m = 10000. As we consider the squared Euclidean distance, only Quad Entropic-GW and Lin GW-LR
are compared. We plot the time-accuracy tradeoff when varying γ for multiple choices of rank r. ε = 1/γ for Quad
Entropic-GW and ε = 0 for Lin GW-LR.


