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Abstract

Estimating counterfactual outcomes over time has
the potential to unlock personalized healthcare
by assisting decision-makers to answer “what-if”
questions. Existing causal inference approaches
typically consider regular, discrete-time intervals
between observations and treatment decisions and
hence are unable to naturally model irregularly
sampled data, which is the common setting in
practice. To handle arbitrary observation patterns,
we interpret the data as samples from an underly-
ing continuous-time process and propose to model
its latent trajectory explicitly using the mathemat-
ics of controlled differential equations. This leads
to a new approach, the Treatment Effect Neural
Controlled Differential Equation (TE-CDE), that
allows the potential outcomes to be evaluated at
any time point. In addition, adversarial training
is used to adjust for time-dependent confounding
which is critical in longitudinal settings and is an
added challenge not encountered in conventional
time-series. To assess solutions to this problem,
we propose a controllable simulation environment
based on a model of tumor growth for a range of
scenarios with irregular sampling reflective of a
variety of clinical scenarios. TE-CDE consistently
outperforms existing approaches in all simulated
scenarios with irregular sampling.

1. Introduction
Decision-makers must answer several critical questions be-
fore taking an action. In the clinical setting, before a treat-
ment is given, clinicians must evaluate whether a treatment
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should be given and, if so, both what treatment is best for
their patient and when the treatment should be administered.
Answering such questions requires reliably estimating the
effect of a treatment or sequence of treatments. While from
a causal inference perspective, clinical trials represent the
gold standard to answer these questions, it is highly desir-
able to estimate treatment effects from observational data.
This is due to the significant expense, relatively small sam-
ple sizes, and narrow inclusion criteria of clinical trials.

There are several causal inference methods proposed in the
static setting (e.g. Shalit et al., 2017; Alaa & van der Schaar,
2017; Yoon et al., 2018). However, estimating the effects
of treatments over time is of paramount importance for
real-world administration of complex treatment plans and
personalized healthcare. Only in the longitudinal setting can
we understand how diseases evolve under different treatment
plans, how individual patients respond to treatment over
time, or the optimal timing for treatment.

However, estimating counterfactual outcomes in the longi-
tudinal setting introduces additional challenges, the most
significant of which is that the observed treatment assign-
ment may depend on confounding variables that vary over
time (time-dependent confounding, Platt et al., 2009). For
example, not all cancer patients are equally likely to be of-
fered the same chemotherapy regimen. In particular, the
history of patients’ covariates and their response to past
treatments affects future treatments (Bica et al., 2021). This
can introduce bias in causal effects and variance in the esti-
mation of counterfactuals due to the systematic differences
in the distribution of confounding variables between any
two sets of treatments over time.

This issue of time-dependent confounding and distribution
shift is the primary challenge of causal inference over time,
not encountered in standard time-series. Hence, conven-
tional time-series models are not applicable to our setting
as they do not adjust for bias introduced by time-varying
confounders and hence are sensitive to the policy in the
observational data (Schulam & Saria, 2017).

While prior work in causal inference has sought to mitigate
such confounding bias (Robins et al., 2000; Lim et al., 2018;
Bica et al., 2020b), the setting considered is overly restric-
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Figure 1: Illustration of the different paradigms of longitudinal data processing. We contrast the regular sampled setting
(left) which RNN-based methods assume vs the irregularly sampled setting (right) which TE-CDE addresses, where data
can be observed and evaluations carried out at any time-step.

tive and does not reflect most real-world observation data.
In particular, previous work assumes that data is regular and
arrives at fixed, evenly spaced time intervals and that the
sampling times perfectly coincide between different indi-
viduals. However, neither is true in practice, significantly
limiting the practical use of such methods.

Discretizing the patient’s evolution over time, an inherently
continuous process, has significant limitations, both when
learning from historical data and for prospective clinical use.
From a learning perspective, observational data is typically
not sampled regularly. Indeed, irregularity in observational
data can manifest for simple reasons, such as scheduling, a
patient missing an appointment, or a healthcare practitioner
not capturing the observation, to more complex consider-
ations, for example more severe cases are often observed
more frequently while different treatments can require dif-
ferences in monitoring.

Prospective use cases raise similar issues surrounding mis-
matches between the discretization scheme and desired eval-
uation times that means the chosen discretization may not
be applicable. As a result, for real-world applications where
data is sampled irregularly, we believe that treatment effects
over time should be modeled in a continuous manner.

Contributions. In this paper, we address the realistic but
understudied problem of counterfactual estimation in the
irregularly sampled setting with time-dependent confound-
ing; a significantly more complex setting for counterfactual
estimation than the standard regular, discrete setting.

To do so, we depart from existing methods based on recur-
rent neural networks (RNNs) and propose a novel alterna-
tive inspired by recent breakthroughs in neural controlled
differential equations (CDEs) (Kidger et al., 2020), which
we call the Treatment Effect Neural Controlled Differential
Equation (TE-CDE).

To model the observation histories, we learn a continuous

latent representation of the patient state as the solution to a
CDE. To the best of our knowledge, this is the first work to
frame the evolution of a patient’s latent state as the solution
to a CDE. This framing enables TE-CDE to learn from
arbitrary historical observation patterns and allows potential
outcomes to be evaluated at any point in time.

In addition, we introduce a controllable simulation envi-
ronment based on a realistic model for tumor growth to
generate irregularly sampled observational data. We demon-
strate that the unrealistic assumptions imposed by existing
state-of-the-art models lead to reduced performance in a
range of irregularly sampled scenarios, and that TE-CDE
outperforms these methods across all scenarios with irregu-
larly sampled observation histories.

2. Related Work
This paper primarily engages with the literature on treatment
effect estimation with time-varying covariates, treatments,
and outcomes, but also draws on insights from causality in
dynamical systems and recent work on modeling controlled
differential equations. We explicitly note the difference
between causal inference over time and conventional time
series modeling as outlined in Section 1 and hence do not
focus on recent advances in time series models. An extended
discussion of related work can be found in Appendix B. In
Table 1, we contrast the problem setting and assumptions of
TE-CDE to other related work.

We argue for modeling the underlying continuous-time pro-
cesses that give rise to the discrete observational data, which
may itself be highly irregular. We contrast this approach
with discrete-time methods that use a common discretization
for all time series and are forced to interpolate and impute
before model fitting. These methods also differ by how they
adjust for confounding and for differences in covariate distri-
butions in different treatment regimes. Marginal Structural
Models (MSMs) are linear in treatment and covariate effect,
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Table 1: Comparison of problem setting and assumptions. TE-CDE allows irregularly observed data and treatment plans
defined in continuous time. Its assumptions are the continuous-time generalization of the standard assumptions in causal
inference. The notations are defined in Section 3.

Observation time Treatment Plan Overlap

Static setting 1 f0; 1g P (AjX) > 0
CRN/RMSN 1; 2; : : : ; t 2 N+ ft+ 1; : : : ; t+ kg ! f0; 1g P (At+1jFi;t) > 0
TE-CDE ti;0; : : : ; ti;mi 2 R+ [t; t0]! f0; 1g �(t;Fi;t) > 0

and create a pseudo-population using inverse probability of
treatment weighting, such that the probability of treatment
does not depend on the time-varying confounders and thus
effectively controlling for confounding bias (Robins et al.,
2000). Lim et al. (2018) proposed a semi-parametric alter-
native to MSMs using recurrent neural networks to estimate
propensity weights. The Counterfactual Recurrent Network
(CRN, Bica et al., 2020b) uses a similar architecture but
instead uses adversarial training to balance differences in
covariate distributions in different treatment regimes. How-
ever, both assume data to be regularly sampled and fully
observed at all time points, which is unrealistic in practice.

Gaussian process-based approaches such as Schulam &
Saria (2017) are applicable to longitudinal data and take
a continuous-time approach but in contrast, make strong
assumptions about the model structure that is dependent on
a particular application and prior knowledge of the form of
the processes involved. Closer to the proposed approach,
neural ordinary differential equations (ODE, Chen et al.,
2018; Rubanova et al., 2019) and extensions (Kidger et al.,
2020; Morrill et al., 2021) have been considered for model-
ing irregular time series data. However, neural ODE type
methods are conventional time series models, which do not
account for issues such as time-dependent confounding. In
the context of intervention modeling, Gwak et al. (2020) pro-
posed to use separate ODEs for interventions and outcome
processes. However, they did so for systems with determin-
istic dynamics without integrating time-varying covariates
and without addressing confounding. As a result, their ap-
proach is not applicable to treatment effect estimation in
healthcare. Related is also Bellot & van der Schaar (2021)
that proposed to model treatment effects in continuous time
in the context of synthetic controls; however, contrasting
our setting where there could be interventions over time,
they only consider a single intervention at a particular time
point and the approach is not applicable more generally to
address multiple treatments.

3. Problem Formulation
We consider n i.i.d. individuals over a study period [0; T ].
Each individual is represented by a d-dimensional path

X : [0; T ]! Rd, that defines the trajectory of patient covari-
ates over time (and can include static covariates defined to be
constant over time), a treatment processA : [0; T ]! f0; 1g
is a discrete path indicating treatment at each time t 2 [0; T ],
i.e. At = a, where a 2 f0; 1g and a counting process
N : [0; T ]! N to denote the treatment assignment pattern
of a single treatment over time, e.g. the number of treat-
ments administered up to a given time1. These processes
are assumed to control or modulate an outcome of interest
Y : [0; T ]! R, e.g. the tumor size of cancer patients over
time, and we will distinguish between potential outcomes of
Y , denoted Y (A = a) or Y (a) for simplicity, to define the
potential outcome trajectory of patient i had it been given a
treatment path defined by A = a.

In the context of electronic health records (EHRs) and
most practical applications, the latent paths X are
only partially-observed through m irregular observations,
f(t0;Xt0); (t1;Xt1); : : : ; (tm;Xtm)g, with each tj 2 R
the timestamp of the observation Xtj 2 Rd.

To avoid notation clutter, we use the time subscript to re-
fer to function evaluation. The same observations apply
to paths A and Y . The case where each i-th patient ob-
servation sequence has its own mi irregular time stamps
ti;0; : : : ; ti;mi

, thus differences in sampling intensity within
a patient’s trajectory and between different patients can be
considered without modification of any part of the exposi-
tion. Indeed, analyzing time series data with such a complex
pattern of observation is the central motivation of this work.
Let Ft denote the filtration that is generated by all the ob-
servable events for a given individual up to time t, including
observations of Xs; As and Ys for s � t.

Our goal is to derive unbiased estimates of the potential out-
comes at a given time t0: E[Yt0(A = a)jFt], for any value
of time in the future t0 > t, hypothesized discrete treatment
path A : [t; t0]! f0; 1g with values a, given past observa-
tions up to time t, Ft. However, with observational data only

1The definition can be generalized if multiple treatment types
are considered, where N (and A) can be a multivariate process,
each element of N counts a type of treatment assignment and
would have a corresponding multivariate intensity process. For
simplicity, our exposition considers a single treatment only.
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one of these potential outcomes trajectories is observed for
each unit depending on the treatment assignment. We refer
to the unobserved potential outcomes as counterfactuals.

Potential outcomes processes are identifiable with respect
to the filtration generated by the observed data under the
following three assumptions. These three assumptions are
the standard causal inference assumptions.

Assumption 1 (Consistency). For an observed treatment
process A = a, the potential outcome under this treatment
trajectory is the same as the factual outcome Y (a) = Y .

Assumption 2 (Overlap). The intensity process �(tjFt) is
not deterministic given any filtration Ft and time point t 2
[0; T ], i.e.

0 < �(tjFt) = lim
�t!0

P (At+�t �At = 1jFt)
�t

< 1: (1)

Overlap means that there is some positive probability of
treatment assignment at any point along a patient’s trajectory
over the time interval. It can be understood as a direct
extension to the more familiar overlap assumption in the
static context, 0 < P (Treatment = 1jx) < 1.

The last assumption extends unconfoundedness, or strong
ignorability given a patient’s trajectory, to ensure that it is
sufficient to condition on the observed trajectory up to time
t to block all backdoor paths, i.e. spurious correlation not
part of the direct causal effect of interest, to the potential
outcome at any time in the future. Similar to Assumption
2, unconfoundedness has previously been extended to the
continuous-time domain for stochastic processes by Lok
(2008); Saarela & Liu (2016); Ryalen et al. (2019).

Assumption 3 (Continuous-time sequential randomization).
The intensity process �(tjFt) with respect to the filtration Ft
is equal to the intensity process generated by the filtration
Ft[f�(Ys) : s > tg that includes the �-algebras generated
by future outcomes f�(Ys) : s > tg.

It is worth mentioning that the intensity process plays the
same role as propensity scores in discrete-time models
(Robins, 1997), modeling the switching of the treatment
process. Assumption 3 can thus be thought of as formaliz-
ing sequential randomization in the continuous-time model
by stating that the intensity process does not depend on
future potential outcomes, i.e. the current information is
enough to estimate counterfactuals in the future without
bias.

4. Treatment Effect Controlled Differential
Equation

TE-CDE frames the latent trajectory of a patient’s state, as a
response to a controlled differential equation (CDE), driven

by covariate, treatment, and outcome processes (Fig. 2),
which to the best of our knowledge is the first to do so.

This formulation using a CDE permits to account for in-
formation available at t > 0 (rather than just initial value
t = 0). In particular, neural controlled differential equations
(Kidger et al., 2020; Morrill et al., 2021) allow incoming
information to modulate the dynamics. This ability is nat-
ural in a clinical setting, as not only can we model the
continuous-time latent state evolution of a patient trajec-
tory, but also we account for incoming data (e.g. treatment
changes) that modulate the dynamics of the system.

We now present key components needed to facilitate the
modeling of counterfactual outcomes in continuous time.
Additional properties of TE-CDE are discussed in Appendix
D. The key components are as follows:
(1) TE-CDE’s encoder learns a representation that is defined
continuously in time (i.e. a continuous latent path), rather
than only at discrete time steps.
(2) The latent path trajectory evolves as a response of a
Neural Controlled Differential Equation (CDE).
(3) Decoding and prediction are in continuous-time.
(4) TE-CDE uses domain adversarial training to learn a
representation that adjusts for time-dependent confounding
and hence is suitable for causal estimation.

Encoding the latent path Z. TE-CDE’s encoder ingests
historical observations Ft up to time t and learns a latent
path Z : [t0; t] ! Rl continuously over time that will be
designed to be both predictive of the factual outcomes and
agnostic of the observed assigned treatment. An explicit
continuous-time representation allows us to process mea-
surements with arbitrary observation patterns. We assume
the initial state of the path Zt0 to be parameterized by a neu-
ral network g� : Rd+1+1 ! Rl embeds the initial outcome,
covariate and treatment observations into a l-dimensional
latent state which can be expressed as the solution to a CDE,

Zt0 = g�(Xt0 ; At0 ; Yt0); (2)

Zt = Zt0 +

Z t

t0

f�(Zs)
d[Xs; As; Ys]

ds
ds; (3)

for t 2 (t0; T ] which denotes the present time, up to which
observations of all processes are available. The dynamics
of potential outcomes when controlled by the covariate and
treatment process take the form of a CDE (Lyons et al.,
2007). Hence, the solution Z is said to be the response of a
Neural CDE (Kidger et al., 2020) driven or controlled by the
covariate, treatment and outcome processes (concatenated
into a vector [Xt; At; Yt] 2 Rd+1+1). In this sense, Neural
CDEs are a family of continuous-time models that explicitly
define the latent vector field f� : Rl ! R(d+1+1)�l by a
neural network parameterized by �, and the dynamics are
modulated by the values of an auxiliary path over time.

We computationally obtain the latent path up to t from Ft by
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Figure 2: An illustration of TE-CDE. We learn a continuous latent pathZ t as the solution to a CDE by encoding historical
observations. At future time points, we decode (hypothetical) future treatments to determine the latent state and use this to
predict counterfactual outcomes.

solving the above initial value problem (IVP):8s 2 [t0; t],

zs = ODESolve(f � ; Z t 0 ; X � t ; A � t ; Y� t ); (4)

where ODESolve denotes a numerical ODE solver as pro-
posed by Kidger et al. (2020).

In practice, we have access to observations at certain (irreg-
ular) time points. Thus, we de�ne an interpolation of the
data with piece-wise continuous derivatives that serves as
an approximation of the underlying paths2.

Decoding and prediction.After the encoder processes all
the observations up to the present timet, TE-CDE starts to
decode and predict the potential outcomes up to some time
t0 > t in the future for a hypothetical treatment schedule
de�ned by the user. At this point, the latent pathZ poten-
tially changes as a result of the chosen treatment schedule,
which can similarly be formalized using a second controlled
differential equation such that,

Z t 0 = Z t +
Z t 0

t
f � (Zs)

dAs

ds
ds; (5)

wheret0 denotes a desired time horizon,Z t is the latent
state ofZ at time t which encodes the patient's history,
andAs represents the hypothetical treatment schedule for
t < s < t 0. f � : Rl +1 ! Rl is a feed-forward neural
network with trainable weights� . As before, the decoded
path can be obtained by solving the IVP:

Zs = ODESolve(f � ; Z t ; A t � t 0): (6)

Domain adversarial training for counterfactual estima-
tion. The covariatesX are time-dependent confounders,

2We note that since there may be discontinuities inA � t (e.g.
treatment is applied in discrete stages) we can inform the solver
about the jumps between pieces so that its integration steps may
align with them. This can be achieved using thejumpt argument
in the ODE solver (Chen et al., 2018; Kidger et al., 2020).

which can increase variance in the estimation of counterfac-
tuals if the treatment distribution is not properly balanced
given a patient's trajectory (Mansournia et al., 2017). While
unbiased by Assumption 3, counterfactual estimates may
have lower variance given patient trajectories frequently
observed in the data but higher variance for infrequently
observed patient trajectories with consequences for perfor-
mance generalization of the treatment effect as demonstrated
by Shalit et al. (2017). To mitigate this confounding bias, we
ensure the latent representationZ t is not predictive of the
observed treatment assignment pattern (Shalit et al., 2017;
Bica et al., 2020b) which effectively induces representa-
tions that are balanced with respect to treatment assignment
over time. The treatment invariance breaks the association
between time-dependent confoundersX t and current treat-
mentA t .

At each timet, thej different treatmentsA 2 f A1; : : : ; A j g
represent our domains. We then require at each timestep
t, that the latent pathZ t be invariant across treatments op-
tions: P(Z t jA t = 0) = P(Z t jA t = 1) and more generally
equal across any two values in the domain of treatment op-
tions. In this context, distributions of the latent state differ
across treatment groups if a classi�er trained as a function
Z t to predict treatment assignment accurately separates the
two groups. Such representations are calledbalancing rep-
resentationas it balances the probability of the predicted
treatment processp(A t = 1 jZ t ) = 0 :5, i.e. minimizing
the distributional variance between treatment groups in the
representation space (Johansson et al., 2020).

We use two neural networksh� : Rl ! Rd andha : Rl !
[0; 1] to predict the outcome and treatment:8s 2 [t; t 0]

ŷs = h� (zs); (7)

p̂s := p̂(as = 1) = h� (zs): (8)

Suppose there arek � 1 observations in the time window
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[t; t 0] with observation times(t1; : : : ; tk ). The mean square
error (MSE) of outcome prediction is de�ned asL (y ) =
1
k

P k
j =1

�
yt j � ŷt j

� 2
. The cross entropy loss of treatment

prediction is de�ned as:L (a) = � 1
k

P k
j =1 at j log

�
p̂t j

�
+

(1 � at j ) log
�
1 � p̂t j

�
.

We minimize the following loss function, enforcing simulta-
neous outcome prediction and balanced representations:

L =
1
n

nX

i =1

L (y )
i � � L (a)

i ; (9)

where� > 0 is a hyper-parameter controlling the trade-off
between treatment and outcome prediction. Note that the
minus sign beforeL (a) would effectivelymaximizethe treat-
ment prediction loss and ensure thatzt is not predictive of
treatment assignmentA t . This leads to balancing represen-
tations, which remove bias introduced by time-dependent
confounders and allow for reliable counterfactual estimates.

Remarks on invariant representations. As shown by Jo-
hansson et al. (2019), invertible transformations (� ) are nec-
essary for consistency of domain invariant representations
(Z). We include for completeness that if� is non-invertible
there is information loss, which leads to unobservable error
(� ). Thus, we desire an invertible� , which ensures� = 0 .
This highlights an importantstrength of TE-CDE, where by
properties of ODEs/CDEs (Zhang et al., 2020), the represen-
tations from TE-CDE haveguaranteed invertibility, since
integration backward in time is always possible or we can
alternatively integrate:� f � (Zs) .

Intensity of sampling. It is well-known for EHR data that
sampling frequency and observations (or lack thereof) carry
information about the patient's health status (Alaa et al.,
2017). In such cases, we can replace each observed tuple
(x t j ; at j ; yt j ) with (x t j ; at j ; yt j ; ct j ) wherect j 2 Rd+1+1

counts the number of times each one of the dimensions of
X , A andY have been observed up to timet j . The extended
tuple is fed into the encoder to inform it about the sampling.

5. Experiments

In this section, we validate the ability of TE-CDE to estimate
counterfactual outcomes from irregularly sampled observa-
tional data. Since counterfactual outcomes are not known
for real-world data, it is necessary to use synthetic or semi-
synthetic data for empirical evaluation. First, we describe
a simulation environment based on a Pharmacokinetic-
Pharmacodynamic (PK-PD) model of lung cancer tumor
growth (Geng et al., 2017), which allows counterfactuals to
be calculated at any time point for arbitrary treatment plans.
Furthermore, we introduce a continuous-time observation
process based on Hawkes processes. The controllable nature
of the observation process allows us to simulate irregularly

sampled observational data for a range of different obser-
vation process parameterizations, which are motivated by
common healthcare scenarios.

5.1. Modeling tumor growth under general observation
patterns

Tumor growth dynamics. We use a well-established bio-
mathematical PK-PD model for tumor growth in lung can-
cer patients that includes the effects of chemotherapy and
radiotherapy (Geng et al., 2017). The PK-PD model is rep-
resentative of the true underlying physiological process with
responses to interventions. Hence, results using the model
should be closely representative of reality. Additionally, the
same underlying model was also used by Lim et al. (2018)
and Bica et al. (2020b). We brie�y describe it below and
refer the reader to Appendix C for more details. The tumor
volume at timet after diagnosis is modeled as follows:

dV(t)
dt

=
�

� log
�

K
V(t)

�

| {z }
Tumor growth

� � cC(t)
| {z }

Chemotherapy

�
�
� r d(t) + � r d(t)2�

| {z }
Radiotherapy

+ et|{z}
Noise

�
V (t);

(10)

where chemotherapy concentrationC(t) and radiotherapy
dosed(t) are de�ned by their own equations (see Appendix
C.1),K; � c; � r ; � r are effect parameters, andet accounts
for randomness in tumor growth (Geng et al., 2017).

We consider four treatment options: no treatment,
chemotherapy, radiotherapy, and combined chemotherapy
and radiotherapy. The assignment of chemotherapy and
radiotherapy are modeled as Bernoulli random variables
with probabilitiespc andpr , respectively, that depend on tu-

mor diameter3 as follows:pc(t) = �
�


 c
D max

� �D (t) � � c
� �

,

pr (t) = �
�


 r
D max

� �D (t) � � r
� �

, whereDmax = 13cm is

the maximum tumor diameter,� c = � r = Dmax =2 and
�D(t) is the average tumor diameter.

The degree oftime-dependent confoundingis controlled by

 c and
 r , where increasing
 f c;r g increases the probability
that observational treatment assignment is based on tumor
diameter (For more details see Appendix C.1).

Observation process.As discussed in Section 1, in real-
world clinical settings, patients are rarely observed at �xed,
regular time intervals. Instead, they are observedirregularly,
with observations often a consequence of clinical factors,
e.g. severity of illness, treatment regimen, or medical policy.

To simulate such nuances, we augment the simulation envi-

3Note we assume tumors are perfectly spherical to enable con-
version between tumor volume and diameter.
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