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Abstract
The von Neumann-Morgenstern (VNM) utility
theorem shows that under certain axioms of ratio-
nality, decision-making is reduced to maximizing
the expectation of some utility function. We ex-
tend these axioms to increasingly structured se-
quential decision making settings and identify the
structure of the corresponding utility functions. In
particular, we show that memoryless preferences
lead to a utility in the form of a per transition re-
ward and multiplicative factor on the future return.
This result motivates a generalization of Markov
Decision Processes (MDPs) with this structure on
the agent’s returns, which we call Affine-Reward
MDPs. A stronger constraint on preferences is
needed to recover the commonly used cumulative
sum of scalar rewards in MDPs. A yet stronger
constraint simplifies the utility function for goal-
seeking agents in the form of a difference in some
function of states that we call potential functions.
Our necessary and sufficient conditions demystify
the reward hypothesis that underlies the design
of rational agents in reinforcement learning by
adding an axiom to the VNM rationality axioms
and motivates new directions for AI research in-
volving sequential decision making.

1. Introduction
Utility theory is a proposal for rational behavior when faced
with risky outcomes. Maximization of expected utility
was originally hypothesized by Bernoulli (Bernoulli, 1738;
1954) as a solution to the St. Petersburg paradox, in which
diminishing marginal utility explains human risk aversion
in a game of chance. This hypothesis was later grounded by
von Neumann and Morgenstern (VNM), such that as long as
one’s preferences satisfied certain rationality axioms, one’s
behavior could be explained as maximization of some util-
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Figure 1. We axiomatize preference relations in sequential deci-
sion making and identify the corresponding structure for the utility
function. The memorylessness, additivity, and path-obliviousness
axioms impose successively stronger constraints on preferences
over trajectories in sequential decision making. As a result, the cor-
responding utility functions become more structured. In particular,
the additivity axiom leads to the additive reward structure of the
MDP. Memoryless preferences lead to a more general AR-MDP,
while path-oblivious preferences that only consider start and end
states lead to a utility that is expressed as change in a potential
function of states.

ity function in expectation (von Neumann & Morgenstern,
1947). This paper aims to extend utility theory to sequential
decision making. Our primary motivation is to ground what
is known as the reward hypothesis in reinforcement learning
(RL): “That all of what we mean by goals and purposes can
be well thought of as maximization of the expected value
of the cumulative sum of a received scalar signal (called
reward).” (Sutton & Barto, 2018). While the connection
between the reward in RL and the concept of utility in game
theory has not gone unnoticed (e.g., Jaquette (1976)), the
adequacy of cumulative sum of scalar rewards still remains
a hypothesis (Sutton & Barto, 2018).

We identify necessary and sufficient conditions in sequential
decision making that guarantee the existence of scalar re-
ward signals, whose cumulative sum can represent any set of
preferences over trajectories. This condition is presented as
a single additional axiom to those of VNM, which itself jus-
tifies maximization of expected utility. Moreover, we place
this particular structure of the utility function, i.e., cumula-
tive sum of scalar rewards, among several other possibilities
that are based on more or less stringent assumptions. In par-
ticular, we show that applying a memorylessness property
to preference relations leads to a more general setup than
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Markov Decision Processes (MDPs) in which the utility
is not the cumulative sum of rewards, but rather each step
in addition to its additive contribution to the reward has a
multiplicative effect on future rewards. We call this general-
ization of an MDP, an Affine-Reward MDP (AR-MDP).

In the following, first, we review the foundations of utility
theory in Section 2. Then, in Section 3 through Section 6,
we consider a successively more structured setting for se-
quential decision making through additional axioms that
constrain preferences over trajectories. We identify a one-to-
one correspondence with an increasingly structured utility
function in each case. These utility functions include a util-
ity in which each state-transition has an associated additive
reward and a multiplicative factor on future rewards as a
result of a Markovian assumption (Section 4), commonly
used cumulative rewards (Section 5), and utilities that are
expressed as a difference of potentials in the case of goal-
seeking agents (Section 6). In Appendix B we consider
preference relations that have not been fully specified and
how, in some cases, it is possible to uniquely complete them.
Section 7 briefly reviews some of the relevant literature on
utility theory. Finally, Section 8 discusses some implications
of our results and considers possible extensions and exciting
future directions that are motivated by these findings.

2. Background
We are interested in studying “rational” decision-making. A
pre-requisite to decision-making is the ability to compare
outcomes through a preference relation. But what does
it mean for a preference relation to be rational? We will
specify the meaning of rationality by introducing axioms
that agree with our intuitive understanding of rationality.

Let O denote the set of possible outcomes1. We write x ≿ y
if we prefer outcome x to outcome y (denoted as x ≻ y) or
if we are indifferent between the two outcomes (denoted as
x ≈ y). When x ≈ y we say that x and y are equivalent.

Axiom 2.1 (Completeness). For all x, y ∈ O, x ≿ y or
y ≿ x, i.e., any pair of outcomes are comparable.

Axiom 2.2 (Transitivity). For all x, y, z ∈ O, if x ≿ y and
y ≿ z, then x ≿ z.

Note that completeness implies reflexivity (i.e., for all x ∈
O, x ≿ x). Such preference relations are also sometimes
known as a total preorder.

Let us now consider uncertain outcomes. When a choice
has an uncertain outcome, there will be a probability p(x)
of obtaining each outcome x. We will refer to such a choice
as a lottery2. We may also consider compound lotteries,

1We will assume that O is countable.
2A lottery is identified by a probability distribution p over the

outcome space O, so in this sense, lotteries can be thought of as

i.e., lotteries of lotteries. Such lotteries can always be sim-
plified into a single non-compound lottery. We will denote
a general lottery of n items as

∑n
i=1 p(xi)xi, where each

xi is an outcome or a lottery. You can avoid confusing this
notation with an expectation by noting that outcomes can’t
be multiplied and added.

Example 2.1. The lottery

L =
1

2
x+

1

3
y +

1

6
M

means there is a 1
2 chance of obtaining outcome x,

a 1
3 chance of obtaining outcome y, and a 1

6 chance
of obtaining an outcome according to another lottery
M .

The framework introduced thus far does not allow us to
make optimal decisions when faced with uncertain out-
comes. Suppose, for example, that there are three outcomes:
x ≻ y ≻ z. When faced with a choice between y and
1
2x+ 1

2z we are not able to say which choice is better. The
reason is that there is a fundamental issue with a preference
over outcomes: It does not specify how much we value
each outcome. For example, in this case, we know that x
is preferred to y, but how much more is it preferred? To
solve this issue, we must move to preferences over lotteries.
We will restate our current axioms to apply to lotteries and
add two more axioms. Let L be the set of all lotteries of
outcomes.

VNM axioms

Axiom 2.3 (Completeness). For all L,M ∈ L, L ≿ M
or M ≿ L, i.e., any pair of lotteries are comparable.

Axiom 2.4 (Transitivity). For all L,M,N ∈ L, if L ≿
M and M ≿ N , then L ≿ N .

Axiom 2.5 (Continuity). For all lotteries L ≿ M ≿ N ,
there exists p ∈ [0, 1] such that pL+ (1− p)N ≈ M .

Axiom 2.6 (Independence). For all L,M,N ∈ L and
for all p ∈ [0, 1],

L ≿ M ⇐⇒ (1− p)L+ pN ≿ (1− p)M + pN. (1)

The continuity axiom essentially states that, as the probabil-
ities of a lottery vary, our valuation of the lottery changes
smoothly.

The independence axiom can be understood by considering
each compound lottery as a two-stage process. In the first
stage, a coin with a probability p of landing heads is tossed
for picking a lottery, and in the second stage, an outcome is

probability distributions.
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sampled from that lottery. If the coin lands heads, we get
N in both cases, but if it lands tails, we can get either L or
M . We may imagine that the coin has already been tossed,
but the result has not yet been revealed to us. If the coin
landed heads, our decision will not matter, but if it landed
tails, we prefer to choose L. It seems reasonable, therefore,
that (1− p)L+ pN should be preferred to (1− p)M + pN .
The same reasoning also applies in the opposite direction.
A corollary of independence is that, in a compound lottery,
we can replace one lottery with another equivalent lottery,
and the compound lotteries will be equivalent.

These four axioms are known as the von Neumann-
Morgenstern (VNM) axioms and a preference relation over
lotteries that satisfies these axioms is called VNM-rational.

It would be convenient if we could assign a value to each
lottery such that comparing these values produces the same
result as the preference relation. Such a function, if it exists,
can be thought of as an encoding of its corresponding prefer-
ence relation. This concept is captured by utility functions.

Definition 2.2 (Utility function). A utility function is a
function u : L → R, such that for all L,M ∈ L,

L ≿ M ⇐⇒ u(L) ≥ u(M). (2)

Interestingly, VNM-rationality induces a utility function
that is unique up to positive affine transformation such that
the utility of any lottery is equal to the expected utility of its
outcomes. This fact is formalized below.

Theorem 2.3 (Von Neumann-Morgenstern utility theo-
rem). A preference relation satisfies the VNM axioms,
if and only if it can be represented by a utility function
such that for all lotteries with probability p,

u

(∑
x∈O

p(x)x

)
=
∑
x∈O

p(x)u(x). (3)

Furthermore, this utility function is unique up to positive
affine transformation.

Proof. See the appendix of von Neumann & Morgenstern
(1953) for the original proof or Maschler et al. (2013) for a
simplified proof.

Utility functions that satisfy Equation (3) are called linear
utility functions. A utility function that represents a VNM-
rational preference relation is called a VNM-utility. The
VNM utility theorem justifies the objective of maximizing
expected utility. However, one must make sure that the
utility that is being maximized is indeed a VNM-utility.

Example 2.4. Consider the set of outcomes O =
{□, ◦,△, ⋆} along with a VNM-rational preference
relation ≿ on its set of lotteries L. Suppose that
□ ≻ ◦ ≻ △ ≻ ⋆.

We aim to construct a linear utility function u on L.
We start by setting u(□) = 1 and u(⋆) = 0. By
continuity, there exists some p such that p □+ (1−
p) ⋆ ≈ ◦, so we set u(◦) = p. There also exists
some q < p such that q □ + (1 − q) ⋆ ≈ △, so
we set u(△) = q. Finally, we set the utility of any
lottery to the expected utility of its outcomes. The
constructed utility function is thus linear and one can
show that it matches our preferences. Freedom in
picking u(□) and u(⋆), as long as u(□) > u(⋆), is
what makes the utility function free up to positive
affine transformation.

Proofs of the VNM utility theorem show the existence
of a linear utility function by constructing it in the
same way as this example.

3. Extension to Sequential Decision Making
We will now extend classical utility theory to sequential
decision making. In this setting, an outcome will no longer
depend on a single decision but on a sequence of decisions.
Our model of sequential decision making consists of an
agent that is interacting with a world. The world is modeled
as a (countable) set of states S . At each time-step t ∈ N the
agent finds itself in state st ∈ S and must choose an action
at from a set A of actions; some of these actions may be
illegal in state st.

We will assume that the result of an action depends only on
the action and the current state (i.e., Markov property). The
result of an action, if legal, is to stochastically transition to
a state and possibly terminate the interaction. The transition
probabilities are given by P : S ×A → D(S)∪ {0}, where
D(S) is the space of probability distributions over S and 0
indicates that the state-action pair is illegal. The termination
probabilities are given by T : S×A×S → [0, 1]. The tuple
(S,A,P,T) will be called a Controlled Markov Process
(CMP).

We define a transition to be a triplet (s, a, s′) ∈ S ×A×S ,
with the interpretation that the agent chooses action a in
state s and transitions to state s′. A trajectory of length
n is a sequence of transitions ⟨(si, ai, s′i)⟩i∈{1,...,n} where
s′i = si+1 for all i ∈ {1, ..., n− 1}. For each state s, there
is an empty trajectory ϵs that starts and ends in state s. We
will refer to all of these empty trajectories collectively as
the empty trajectory and denote it with ϵ. The start and end
state of ϵ will be clear from context. We will use T as a
short-hand for the set of transitions S ×A× S and we will
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Figure 2. The CMP that we use as our running example. We ignore
actions and write trajectories as a sequence of visited states. We
also assume ⟨s0, ŝ1, s2⟩ ≿ ⟨s0, s1, s2⟩ and ⟨s2, ŝ3⟩ ≿ ⟨s2, s3⟩.

let T ∗ denote the set of finite trajectories.

In sequential decision making, the set of outcomes will be
the set of finite trajectories of a CMP3, i.e., O = T ∗, and
preferences will be defined over lotteries of trajectories.

The VNM utility theorem may be applied in this setting,
without any additional assumptions, to assign utilities to all
finite trajectories of a CMP. However, each trajectory would
then be considered as an entirely independent entity, and
none of the structure of the CMP would be incorporated
into the utility function. Furthermore, an optimal decision-
making function would, generally, have to be a function of
the agent’s entire past trajectory. We will refer to a decision-
making function of this general form as a policy. More
specifically, a policy is a function π : T ∗ → D(A).

Example 3.1. We will use the CMP seen in Figure 2
as our running example. For simplicity, we will as-
sume that preferences do not depend on the actions
in a trajectory, and thus, trajectories can be written
as a sequence of visited states. We also assume that
⟨s0, ŝ1, s2⟩ ≿ ⟨s0, s1, s2⟩ and ⟨s2, ŝ3⟩ ≿ ⟨s2, s3⟩.

With only the VNM axioms, all orderings of the tra-
jectories are possible. For example, we could have

⟨s0, ŝ1, s2, ŝ3⟩ ≿ ⟨s0, ŝ1, s2, s3⟩, and
⟨s0, s1, s2, s3⟩ ≿ ⟨s0, s1, s2, ŝ3⟩.

Then, an agent that started from state s0 and is now
in state s2 will have to consider its past trajectory to
decide if it prefers to go to state ŝ3 or state s3.

It seems reasonable to assume that in a Markovian world
(e.g., a CMP), where all the information relevant for pre-
dicting the future is contained in the present state, all the
information necessary to compare future events should also
be contained in the present state. To incorporate such a
Markovian assumption, we will need to constrain prefer-

3The only role of a CMP in the case of utility theory is to
specify which trajectories have a non-zero probability and get
included in the set of outcomes. The probabilities themselves and
the termination probabilities don’t matter.

ence relations through an additional axiom, introduced in
the next section.

4. Memoryless Sequential Decision Making
Before introducing the axiom, we need to define a concate-
nation operator “·” for trajectories. It has the property that
it distributes over the addition operation used to create lot-
teries, that is, for all states s, trajectories τ and τ ′ that end
in state s, and lotteries4 L that start from state s,

(pτ + (1− p)τ ′) · L = p(τ · L) + (1− p)(τ ′ · L). (4)

We are now ready to augment the VNM axioms with the
following axiom which asserts that one should be able to
ignore the past trajectory when comparing future lotteries.

Axiom 4.1 (Memorylessness). For all states s, trajec-
tories τ that end in state s, and lotteries L and M that
start from state s,

τ · L ≿ τ ·M ⇐⇒ L ≿ M. (5)

We will use the shorthand, VNM⋆ axioms, for the VNM
axioms along with the memorylessness axiom, and similarly
for other terms that include VNM.

Example 4.1. Consider the running example of Fig-
ure 2 and the recall our preferences: ⟨s0, ŝ1, s2⟩ ≿
⟨s0, s1, s2⟩ and ⟨s2, ŝ3⟩ ≿ ⟨s2, s3⟩. Then, memory-
lessness implies

⟨s0, ŝ1, s2, ŝ3⟩ ≿ ⟨s0, ŝ1, s2, s3⟩, and
⟨s0, s1, s2, ŝ3⟩ ≿ ⟨s0, s1, s2, s3⟩,

however, it does not specify how ⟨s0, ŝ1, s2, ŝ3⟩ com-
pares to ⟨s0, s1, s2, s3⟩. Under the VNM⋆ axioms,
any preference is possible for these two trajectories.

As a result of the preferences implied by memoryless-
ness, an agent that started from state s0 and is now in
state s2, does not need to consider its past trajectory
to make an optimal decision.

With the addition of the memorylessness axiom, the utility
function is more structured, and we can encode the prefer-
ences much more succinctly by specifying only two numbers
per transition, instead of one number per trajectory. These
two numbers are the reward and reward multiplier. This fact
is formalized and proven below.

4By a lottery that starts from state s, we mean a lottery of
trajectories that start from state s.
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Theorem 4.2 (VNM⋆ utility theorem). A preference
relation over lotteries of finite trajectories of a CMP
satisfies the VNM⋆ axioms, if and only if there exists re-
wards r : T → R and reward multipliers m : T → R+,
such that for all transitions t and follow-up trajectories
τ ,

u(ϵ)
def
= 0 (6)

u(t · τ) def
= r(t) +m(t)u(τ), (7)

is a linear utility function representing the given pref-
erence relation. Moreover, r is unique up to positive
scaling and m is unique, except for transitions that can
only be followed by trajectories that are equivalent to ϵ.
For such transitions, m can be chosen arbitrarily.

Proof. We first assume that the VNM⋆ axioms hold and
show how to construct r and m. The VNM axioms tell
us that there exists a linear utility function that is unique
up to positive affine transformation. We pick one such
utility function u such that u(ϵ) = 0, where ϵ is the empty
trajectory. This u is unique up to positive scaling.

Let t = (s, a, s′) be an arbitrary transition and Let L and
M be any two lotteries that start from state s′. The memo-
rylessness axiom tells us that preferences over lotteries that
start from state s′ are the same as preferences over lotteries
of trajectories that start with transition t. We may conclude,
by the VNM utility theorem, that for all lotteries L that start
from state s′, u(t·L) must be a positive affine transformation
of u(L). The parameters of this positive affine transforma-
tion give us r(t) and m(t). If s′ can only be followed by
trajectories that are equivalent to ϵ, then u(L) = 0 and
m(t) can be chosen arbitrarily, otherwise, m(t) is unique
because scaling u does not change m. Scaling u, scales r
correspondingly.

We now show that u satisfies the VNM⋆ axioms. Because
u is a linear utility function, the VNM utility theorem tells
us that it satisfies the VNM axioms. The memorylessness
axiom is also satisfied because prepending a trajectory to a
lottery results in a positive affine transformation of its utility
according to repeated application of Equation (7) and this
transformation preserves ordering.

Theorem 4.2 motivates the definition of what we call Affine-
Reward MDP (AR-MDP). An AR-MDP is a CMP combined
with a reward function r : T → R that assigns a scalar to
each transition and a reward multiplier function m : T →
R+. The return or utility associated with a trajectory t · τ is
recursively defined as

u(t · τ) = r(t) +m(t)u(τ), (8)

where u(ϵ) = 0.

When given a CMP and a preference relation ≿, our ultimate
goal is to find an optimal policy, i.e., a policy that achieves
maximum expected utility. The memorylessness axiom,
along with the Markov property, guarantee that there exists
an optimal policy that depends only on the current state. We
will refer to such a policy as a memoryless policy. More
specifically, a memoryless policy is a function π : S →
D(A). Before formalizing this statement, we will need to
briefly discuss how to compare policies.

We first define the utility of an infinite trajectory τ to be
limT→∞ u(τ:T ), where τ:T is the trajectory consisting of
the first T transitions of τ . The value of a (general) policy π

in state s is then defined as vπ(s) def
= Eπ[u(τ ) | s], where τ

is a random variable denoting the infinite trajectory taken by
an agent starting from state s and following policy π. Policy
π1 is preferred to policy π2 in state s if vπ1(s) > vπ2(s).
A complication is that the limit might not exist and so, we
may not be able to compare some policies. To avoid this
problem, we assume in the following proposition that the
limit exists.

Proposition 4.3. Given a CMP W and a VNM⋆ preference
relation over lotteries of all finite trajectories of W such
that vπ(s) exists for all policies π and all states s, there
exists an optimal policy that is memoryless.

Proof. Let π⋆
s be an optimal policy starting from state s.

Consider an agent that has arrived in state s via trajectory τ .
The goal of the agent is to find argmaxπ Eπ[u(τ · τ ′) | τ ]
where τ ′ is a random variable representing the future tra-
jectory. Using the VNM⋆ Theorem one can see that the
objective is equivalent to

argmax
π

Eπ[u(τ) +m(τ)u(τ ′) | τ ]

= argmax
π

Eπ[u(τ
′) | τ ] (m(τ) > 0)

= argmax
π

Eπ[u(τ
′) | s] (Markov property)

= argmax
π

vπ(s)

=π⋆
s ,

where m(τ) =
∏

t∈τ m(t). Therefore, the optimal action
for the agent is given by π⋆

s (ϵs). This observation is true
for all states, therefore, π⋆(s)

def
= π⋆

s (ϵs) is a memoryless
policy that is simultaneously optimal for all states.

5. An Axiom for Markov Decision Processes
An MDP is a CMP combined with a reward function r :
T → R that assigns a scalar to each transition. In an
MDP, the utility of a trajectory τ is evaluated as u(τ) =
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t∈τ r(t).

5

Since the VNM⋆ axioms incorporate a Markovian property,
one might expect them to correspond to MDPs, but as we
saw, this is not the case, and instead, we arrived at AR-MDPs
which are more general than MDPs: If we set m(t) = 1
for all transitions t, then we arrive at MDPs. An important
question, therefore, arises: What additional assumptions
do MDPs make about preferences? The additional axiom
corresponding to an MDP is what we call additivity.

Axiom 5.1 (Additivity). For all states s, trajectories τ1
and τ2 that end in state s, lotteries L and M that start
from state s, lotteries N and K, and p ∈ [0, 1],

p(τ1 · L) + (1− p)N ≿ p(τ1 ·M) + (1− p)K

⇐⇒ p(τ2 · L) + (1− p)N ≿ p(τ2 ·M) + (1− p)K.
(9)

This axiom is similar to memorylessness in the sense that it
requires that changing the initial trajectory of two lotteries
should maintain preference relations. The difference with
memorylessness is that, here, we are allowed to change the
initial trajectory of equal-probability sub-lotteries, which
makes this axiom stronger than memorylessness. To ar-
rive at memorylessness, let τ2 = ϵs and N = K, and use
independence (Axiom 2.6) to remove N and K from the
comparison.

The additivity axiom is somewhat difficult to interpret. One
of the ways to better understand it is through its implica-
tions: if parts of a trajectory are known and fixed and some
parts are unknown and must be optimized, then additivity
says that each part can be optimized independently and the
known parts of the trajectory can be entirely ignored. It
might be easy to check if such an assumption holds for a
given task.6

We will use the shorthand, VNM+ axioms, for the VNM
axioms along with the additivity axiom, and similarly for
other terms that include VNM.

Theorem 5.1 (VNM+ utility theorem). A preference
relation over lotteries of finite trajectories of a CMP
satisfies the VNM+ axioms, if and only if there exists a
reward function r : T → R, such that for all transitions

5This definition of MDPs slightly differs from the usual defini-
tion which does not include termination probabilities T. We also
do not include a discount factor γ, but it is easy to simulate one by
modifying the termination probabilities as Tnew = 1−γ(1−Told).

6Note that this implication is not a sufficient condition for
additivity to hold.

t and follow-up trajectories τ ,

u(ϵ)
def
= 0 (10)

u(t · τ) def
= r(t) + u(τ), (11)

is a linear utility function representing the given pref-
erence relation. Moreover, r is unique up to positive
scaling.

Proof. We first assume that the VNM+ axioms hold and we
show that it is possible to obtain utilities as in Equation (11).
Since the VNM+ axioms imply the VNM⋆ axioms, the
VNM⋆ utility theorem lets us specify utilities as in Equa-
tion (7) via functions r and m. We will show that when
the additivity axiom holds, we can set m(t) = 1 for all
transitions t.

For transitions t that can only be followed by trajectories that
are equivalent to ϵ, m(t) can be chosen arbitrarily, so we can
set it to 1. Let t = (s, a, s′) be an arbitrary transition among
the remaining transitions. We will show that m(t) = 1. Let
τ be a trajectory following t which is not equivalent to ϵ.

1

2
τ +

1

2
ϵs′ ≈

1

2
ϵs′ +

1

2
τ

=⇒ 1

2
(t · τ) + 1

2
ϵs′ ≈

1

2
t+

1

2
τ (additivity)

=⇒ 1

2
(r(t) +m(t)u(τ)) =

1

2
u(τ) +

1

2
r(t)

=⇒ m(t)u(τ) = u(τ)

=⇒ m(t) = 1 (u(τ) ̸= 0)

We now show that u satisfies the VNM+ axioms. If we let
m(t) = 1 for all transitions t, we see that by the VNM⋆
utility theorem, u satisfies the VNM axioms. It remains to
show that u satisfies the additivity axiom. Because utilities
are additive (Equation (11)), changing an initial trajectory
adds the utility difference of the old and new trajectories to
the utility of the lottery, thus, ordering is preserved.

Example 5.2. Consider the running example of
Figure 2 and recall our partial preference assump-
tions: ⟨s0, ŝ1, s2⟩ ≿ ⟨s0, s1, s2⟩ and ⟨s2, ŝ3⟩ ≿
⟨s2, s3⟩. With additivity axioms our preference be-
tween ⟨s0, ŝ1, s2, ŝ3⟩ and ⟨s0, s1, s2, s3⟩ is now con-
strained. In contrast, memorylessness does not con-
strain this preference. To see this, note that one of the
implications of Theorem 5.1 is that, for all trajecto-
ries τ1, τ2, τ̂1, and τ̂2, such that τ2 follows τ1 and τ̂2
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follows τ̂1,

τ̂1 ≿ τ1 and τ̂2 ≿ τ2 =⇒ τ̂1 · τ̂2 ≿ τ1 · τ2. (12)

Now, our preference assumptions along with Equa-
tion (12) imply that ⟨s0, ŝ1, s2, ŝ3⟩ ≿ ⟨s0, s1, s2, s3⟩.

6. Goal-Seeking Sequential Decision Making
In many settings the objective is to reach the best possible
state, i.e., the means of achieving something do not matter,
all that matters is the final result. Some examples are chess,
freestyle swimming, and tennis. Not all sports fall into this
category. In sports such as gymnastics, figure skating, and
diving, how the task is performed (i.e., the entire trajectory)
matters. We will introduce an axiom to account for such
settings.

Axiom 6.1 (Path-obliviousness). For all p ∈ [0, 1], states
s and s̃, lotteries L,M, L̃, M̃ ,N and K, such that L and
M start from state s, L̃ and M̃ start from state s̃, and the
final-state distribution of L̃ and M̃ is the same as that of
L and M , respectively,

pL+ (1− p)N ≿ pM + (1− p)K

⇐⇒ pL̃+ (1− p)N ≿ pM̃ + (1− p)K. (13)

This axiom resembles additivity in the sense that chang-
ing the initial trajectory of equal-probability sub-lotteries
preserves ordering. Here, however, we are allowed to
change the starting state and entire trajectories as long as the
final-state distribution stays the same. Path-obliviousness
is stronger than additivity. To see this, note that letting
L = τ1 · L̂, L̃ = τ2 · L̂, M = τ1 · M̂ , and M̃ = τ2 · M̂
recovers additivity.

Additionally, path-obliviousness implies that two trajecto-
ries that start from the same state and end in the same
state are equivalent. Let τ1 and τ2 be two such trajec-
tories. Then let L = M̃ = τ1, M = L̃ = τ2, and
N = K, and use independence to remove N and K to
obtain τ1 ≿ τ2 ⇐⇒ τ2 ≿ τ1, which implies τ1 ≈ τ2.

We will use the shorthand, VNM† axioms, for the VNM ax-
ioms along with the path-obliviousness axiom, and similarly
for other terms that include VNM.

Example 6.1. Consider the running example of
Figure 2. The inclusion of the path-obliviousness
axiom will constrain the preferences even further,
e.g., ⟨s0, ŝ1, s2⟩ ≈ ⟨s0, s1, s2⟩ and ⟨s0, ŝ1, s2, s3⟩ ≈
⟨s0, s1, s2, s3⟩. As a result, assuming that the CMP
does not terminate after one step, the action of the

agent in state s0 does not matter because the agent
will eventually end up in s2 and all trajectories that
go from s0 to s2 have the same utilities and utilities
are additive.

For the theorem that we are about to introduce, we will
make the simplifying assumption that there exists a state s0
from which all of the states of the CMP are reachable.

Theorem 6.2 (VNM† utility theorem). A preference
relations over lotteries of finite trajectories of a CMP
W , in which all states are reachable from some state s0,
satisfies the VNM† axioms, if and only if there exists a
function ϕ : S → R such that for all states s and s′, and
trajectories τ starting from state s and ending in state
s′,

u(ϵ)
def
= 0 (14)

u(τ)
def
= ϕ(s′)− ϕ(s), (15)

is a linear utility function representing the given prefer-
ence relation. Moreover, ϕ, called the potential function,
is unique up to positive affine transformation.

Proof. We first assume that the VNM† axioms hold. Since
path-obliviousness implies additivity, we may invoke the
VNM+ utility theorem to obtain additive utilities that are
unique up to positive scaling. We will now construct the
function ϕ. We set ϕ(s0) to an arbitrary value and for any
other state s, we pick an arbitrary trajectory τ that goes
from state s0 to state s and set ϕ(s) = ϕ(s0) + u(τ). The
choice of trajectory does not matter because of the path-
obliviousness axiom; thus, ϕ(s) is well-defined. In this way,
we have constructed the potential function ϕ. Because we
are free in choosing ϕ(s0) and the positive scaling of the
utilities, ϕ is unique up to positive affine transformation.

Next, we show that utilities can be obtained from this poten-
tial function ϕ. Let τ be an arbitrary trajectory starting from
state s and ending in state s′ and let τ0 be any trajectory that
goes from state s0 to state s.

ϕ(s)− ϕ(s0) + u(τ) = u(τ0) + u(τ)

= u(τ0 · τ)
= ϕ(s′)− ϕ(s0)

=⇒ u(τ) = ϕ(s′)− ϕ(s)

We now assume that utilities can be obtained from a poten-
tial function ϕ. It is easy to see that utilities are additive in
this case. Therefore, the VNM+ axioms must hold. Also,
path-obliviousness holds, since changing the starting state
of a trajectory from state s to state s′ changes the utility by
ϕ(s′)− ϕ(s) which preserves ordering.
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7. Related Works
Until the mid-twentieth century, utility theory relied on
preference structures that did not explicitly incorporate un-
certainty or probability. Specifying assumptions for char-
acterizing rational behavior under uncertainty began, in a
sense, with the classical paper of Bernoulli (1738) and was
later developed and formalized in large part due to Ramsey
(1926), De Finetti (1937), von Neumann & Morgenstern
(1947) and Savage (1954). These works sparked renewed
interest in the role of uncertainty in preference structures.

We have focused on the utility theory developed in (von
Neumann & Morgenstern, 1947) as the basis for our work.
Their work focuses mainly on a game-theoretical setting,
as opposed to a general sequential decision making setting,
and preferences were applied to entire plays of a game to
show that it is possible to assign utilities such that opti-
mal behavior corresponds to maximizing expected utility.
Such an approach has become standard in game theory; see,
for example (Maschler et al., 2013). In games that have a
sequential nature, it is common to assume that the game
eventually terminates and that the final state determines the
outcome of the game. In such cases, preferences are ap-
plied to the terminal states. Expected utility theory would
then, for example, justify the use of an algorithm such as
Expectiminimax (Michie, 1966; Russell & Norvig, 1995)
in a non-deterministic two-player zero-sum game. Such an
approach does not apply to a general sequential decision
making setting because, in many scenarios, the entire tra-
jectory should be evaluated, not only the final state, and in
some scenarios, the interaction might never terminate.

There are many works that have considered extensions of
utility theory to the setting where the set of outcomes has
the structure of a product space (Debreu, 1959; Fishburn,
1970; Keeney & Raiffa, 1976). They show that under certain
conditions, there exists an additive utility function. Note
that the set of trajectories is not a product space because
many combinations of transitions are invalid. That is why
we needed stronger axioms than those introduced in these
earlier works.

Also, a condition called stationarity has been proposed,
which is somewhat similar to our memorylessness ax-
iom (Koopmans, 1960). In the product space setting, one
can view the product space as a time series, then stationarity
states that changing the initial segment of two outcomes
should not affect their comparison.

To our knowledge, there is only one work that focuses on
extending utility theory to a general sequential decision
making setting, namely (Pitis, 2019). They add two ax-
ioms and one assumption to the VNM axioms to obtain the
equivalent of our VNM⋆ Theorem, whereas we only add a
single axiom. They also consider the outcome space to be

the set of state and policy pairs which is a large continuous
high-dimensional space whereas we use the set of finite
trajectories which is a countable space. In these regards, we
believe that our approach is simpler. We also go beyond
Affine-Reward MDPs and provide theorems for (additive)
MDPs and goal-directed agents.

Another relevant attempt at a generalization of MDPs is
through Constrained MDPs, which maximize a certain util-
ity while satisfying constraints on other utilities (Altman,
1999). See Szepesvári (2020) for implications for the reward
hypothesis.

8. Discussion
The reward hypothesis refers to “goals and purposes”, but
what exactly does that mean? If the goal is to achieve
some desired behavior, specifically, a desired deterministic
memoryless policy π⋆, then the hypothesis is true, because
we can define the reward function as r(s, a, s′) = +1 if
a = π⋆(s) and −1 otherwise. In this work, we view rational
preferences as a very precise specification of goals and
purposes. Not only do they specify what behavior is optimal
and what behavior is sub-optimal (in a 0-1 fashion), but they
also allow us to compare any two behaviors, i.e., we can say
how good a behavior is.

We have shown that, in this interpretation of the reward
hypothesis, in the case of Markovian preferences, expected
cumulative reward may not be enough to encode preferences
and that an additional reward multiplier signal is also re-
quired. Only when our preferences satisfy the additivity
axiom, in addition to being VNM-rational, does the additive
reward suffice. This result can also be of importance to
practitioners of inverse reinforcement learning as capturing
an agent’s preferences by a reward function may not pro-
duce adequate results unless we are sure that the agent’s
preferences adhere to the VNM+ axioms.

We may also think of alternative ways of defining goals
and purposes; see, for example, Abel et al. (2021). These
alternatives can usually be converted into preferences in a
non-unique way because they are, essentially, incomplete
preference specifications. If we can convert a set of goals
into preference relations that satisfy the VNM+ axioms,
then we can successfully express those goals via reward
functions. Sometimes, a goal might not even be convertible
to a Markovian preference relation. In this case, rewards and
reward multipliers are not enough, and a memoryless policy
may not be able to produce optimal behavior. One solution
to consider, in this case, is modifying the state-space to
include more information from the past.

We will now briefly mention some exciting avenues for fu-
ture work. It would be interesting to study the possibility
of extending these theorems to the setting of continuous
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state/action-space or continuous time (see Appendix A for
a proposal). Another implication of our findings is the
potential importance of AR-MDPs. Identification of impor-
tant real-world scenarios where the VNM⋆ axioms hold but
VNM+ may not hold, and the design of efficient learning
algorithms for AR-MDPs merits investigation.
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ume 7, pp. 1–68, 1937.

Debreu, G. Topological methods in cardinal utility the-
ory. Technical report, Cowles Foundation for Research
in Economics, Yale University, 1959.

Fishburn, P. C. Utility theory for decision making. Op-
erations Research Society of America. Publications in
operations research. Wiley, New York, 1970.

Jaquette, S. C. A utility criterion for markov decision pro-
cesses. Management Science, 23(1):43–49, 1976.

Keeney, R. L. and Raiffa, H. Decisions with multiple ob-
jectives: preferences and value tradeoffs. Wiley series in
probability and mathematical statistics. Wiley, New York,
1976.

Koopmans, T. C. Stationary ordinal utility and impatience.
Econometrica: Journal of the Econometric Society, pp.
287–309, 1960.

Maschler, M., Solan, E., and Zamir, S. Game Theory. Cam-
bridge University Press, 2013.

Meyer, R. F. Preferences over time. Decisions with multiple
objectives, pp. 473–497, 1976.

Michie, D. Game-playing and game-learning automata. In
Advances in programming and non-numerical computa-
tion, pp. 183–200. Elsevier, 1966.

Pitis, S. Rethinking the discount factor in reinforcement
learning: A decision theoretic approach. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 7949–7956, 2019.

Ramsey, F. P. Truth and probability. In The Foundations
of Mathematics and other Logical Essays, pp. 156–198,
1926.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

Savage, L. J. The foundations of statistics. John Wiley and
Sons, New York, and Chapman and Hall, London, 1954.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.
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A. Countability of the Set of Outcomes
The VNM utility theorem, in its original form, is only applicable when the set of outcomes is countable. We explain here
why the set of finite trajectories is countable.

Proposition A.1. The set of finite trajectories of a CMP, whose states and actions are countable, is countable.

Proof. Because the set of states and actions of the CMP are countable, they are isomorphic to Z≥1. Consequently, there is
a one-to-one mapping of non-empty finite trajectories to non-empty finite sequences of positive integers. If we consider
the continued fraction representation of real numbers, there is a bijection between Q≥1 and non-empty finite sequences of
positive integers. Therefore, the set of finite trajectories fits inside Q≥1, which is a countable set.

To apply the VNM utility theorem to uncountable sets of outcomes, an additional axiom, known as the sure-thing princi-
ple (Savage, 1954, p. 77), is required.

Axiom A.1 (Sure-thing principle). For all lotteries L with probability measure p, lotteries M , and sets X such that
p(X ) = 1,

∀x ∈ X : x ≿ M =⇒ L ≿ M and ∀x ∈ X : x ≾ M =⇒ L ≾ M. (16)

Incorporating this axiom is one way that would allow us to include infinite trajectories as part of the set of outcomes or
consider an uncountable set of states/actions or continuous time.

B. Partially Specified Preferences
Since preference relations are constrained, a subset of them may be enough to recover all preference relations. We identify
one such interesting subset in this section. In particular, we will assume that only preferences over lotteries that start from a
fixed initial state s0 are known. Note that we are not assuming that the preference relation is incomplete, only that some of
the preferences are not revealed to us.

Proposition B.1. If a preference relation over lotteries of finite trajectories of a CMP satisfies the VNM+ axioms, knowing
only preferences over lotteries that start from a fixed initial state s0 uniquely determines all preferences over lotteries of
trajectories reachable from state s0.

Proof. From the known preferences, we can construct a utility function for trajectories starting from state s0. Now, consider
an arbitrary trajectory τ that starts in state s (which is reachable from s0) and ends in state s′. Let τ ′ be a trajectory starting
from state s0 and ending in state s. Then, because VNM+-utilities are additive, the utility of trajectory τ can be obtained as
u(τ ′ · τ)− u(τ ′). These utilities let us compare all lotteries of trajectories that are reachable from state s0, and thus, all
preferences are now determined.

C. Alternative Axioms
In this section, we will explore a few alternative axioms.

Instead of the additivity axiom, one may employ memorylessness along with the following axiom.

Axiom C.1. For all τ1, τ2 that end in state s, and all τ3, τ4 that start from state s,

1

2
τ1 · τ3 +

1

2
τ2 · τ4 ≈ 1

2
τ1 · τ4 +

1

2
τ2 · τ3.

It is easy to see that this axiom can replace additivity in the proof of the VNM+ theorem. This axiom has been mentioned in
Meyer (1976) in the context of extending utility theory to real-valued time series.

It is possible to replace the path-obliviousness axiom with the additivity axiom and an axiom that says any two trajectories
with the same start and end states are equivalent.


