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Abstract
While reinforcement learning (RL) provides a
framework for learning through trial and error,
translating RL algorithms into the real world has
remained challenging. A major hurdle to real-
world application arises from the development of
algorithms in an episodic setting where the envi-
ronment is reset after every trial, in contrast with
the continual and non-episodic nature of the real-
world encountered by embodied agents such as
humans and robots. Enabling agents to learn be-
haviors autonomously in such non-episodic envi-
ronments requires that the agent to be able to con-
duct its own trials. Prior works have considered
an alternating approach where a forward policy
learns to solve the task and the backward policy
learns to reset the environment, but what initial
state distribution should the backward policy reset
the agent to? Assuming access to a few demon-
strations, we propose a new method, MEDAL,
that trains the backward policy to match the state
distribution in the provided demonstrations. This
keeps the agent close to the task-relevant states,
allowing for a mix of easy and difficult starting
states for the forward policy. Our experiments
show that MEDAL matches or outperforms prior
methods on three sparse-reward continuous con-
trol tasks from the EARL benchmark, with 40%
gains on the hardest task, while making fewer as-
sumptions than prior works. Code and videos are
at: https://sites.google.com/view/medal-arl/home

1. Introduction
A cornerstone of human and animal intelligence is the ability
to learn autonomously through trial and error. To that extent,
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Figure 1. An overview of our proposed method MEDAL (right)
contrasting it with forward-backward RL (Han et al., 2015; Ey-
senbach et al., 2017) (left). MEDAL trains a backward policy
πb to pull the agent back to the state distribution defined by the
demonstrations, enabling the forward policy πf to the learn the
task efficiently in contrast to FBRL that retrieves the agent to the
initial state distribution before every trial of πf .

reinforcement learning (RL) presents a natural framework to
develop learning algorithms for embodied agents. Unfortu-
nately, the predominant emphasis on episodic learning rep-
resents a departure from the continual non-episodic nature
of the real-world, which presents multiple technical chal-
lenges. First, episodic training undermines the autonomy of
the learning agent by requiring repeated extrinsic interven-
tions to reset the environment after every trial, which can be
both time-consuming and expensive as these interventions
may have to be conducted by a human. Second, episodic
training from narrow initial state distributions can lead to
less robust policies that are reliant on environment resets to
recover; e.g. Sharma et al. (2022) show that policies learned
in episodic settings with narrow initial state distributions
are more sensitive to perturbations than those trained in
non-episodic settings.

Prior works have found that conventional RL algorithms
substantially depreciate in performance when applied in non-
episodic settings (Co-Reyes et al., 2020; Zhu et al., 2020a;
Sharma et al., 2022). Why do such algorithms struggle
to learn in non-episodic, autonomous RL (ARL) settings?
Resetting the environment after every single episode allows
for natural repetition: the agent can repeatedly practice the
task under a narrow set of initial conditions to incrementally
improve the policy. Critically, algorithms developed for
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episodic learning do not have to learn how to reach these
initial conditions in the first place. Thus, the main additional
challenge in non-episodic, autonomous RL settings is to
enable the repetitive practice that is necessary to learn an
adept policy. For example, an autonomous robot that is
practicing how to close a door will also need to learn how
to open a door.

Several recent works learn a backward policy to enable the
main forward policy to practice the task: for example, Han
et al. (2015); Eysenbach et al. (2017) propose a backward
policy that learns to match the initial state distribution. How-
ever, unlike the episodic setting, the agent can practice the
task from any initial state, and not just the narrow initial
state distribution that is usually provided by resets. Can the
backward policy create starting conditions that enable the
forward policy to improve efficiently? It could be useful
for the agent to try the task both from “easy” states that
are close to the goal and harder states that are represen-
tative of the starting conditions at evaluation. Easier and
harder initial conditions can be seen as a curriculum that
simplifies exploration. Kakade & Langford (2002) provide
a theoretical discussion on how the initial state distribution
affects the performance of the learned policy. One of the
results show that the closer the starting state distribution is
to the state distribution of the optimal policy ρ∗, the faster
the policy moves toward the optimal policy π∗. While an
oracle access to ρ∗ is rarely available, we often have access
to a modest set of demonstrations. In this work, we aim to
improve autonomous RL by learning a backward policy that
matches the starting state distribution to the state distribu-
tion observed in the demonstrations. This enables the agent
to practice the task from a variety of initial states, including
some that are possibly easier to explore from. An intuitive
representation of the algorithm is shown in Figure 1.

The primary contribution of our work is an autonomous RL
algorithm Matching Expert Distributions for Autonomous
Learning (MEDAL), which learns a backward policy that
matches the state distribution of a small set of demonstra-
tions, in conjunction with a forward policy that optimizes
the task reward. We use a classification based approach that
implicitly minimizes the distance between the state distribu-
tion of the backward policy and the state distribution in the
demonstrations without requiring the density under either
distribution. In Section 5, we empirically analyze the per-
formance of MEDAL on the Environments for Autonomous
RL (EARL) benchmark (Sharma et al., 2022). We find that
MEDAL matches or outperforms competitive baselines in
all of the sparse-reward environments, with a more than a
40% gain in success rate on the hardest task where all other
comparisons fail completely. Our ablations additionally indi-
cate the importance of matching the state distribution in the
demonstrations, providing additional empirical support for
the hypothesis that the expert state distribution constitutes a

good starting state distribution for learning a task.

2. Related Work
Autonomous RL. Using additional policies to enable au-
tonomous learning goes back to the works of (Rivest &
Schapire, 1993) in context of finite state automaton, also
referred to as “homing strategies” in (Even-Dar et al., 2005)
in context of POMDPs. More recently, in context of continu-
ous control, several works propose autonomous RL methods
targeting different starting distributions to learn from: Han
et al. (2015); Eysenbach et al. (2017) match the initial state
distribution, Zhu et al. (2020a) leverage state-novelty (Burda
et al., 2018) to create new starting conditions for every trial,
and Sharma et al. (2021) create a curriculum of starting
states based on the performance of the forward policy to
accelerate the learning. In addition, (Xu et al., 2020; Lu
et al., 2020) leverage ideas from unsupervised skill discov-
ery (Gregor et al., 2016; Eysenbach et al., 2018; Sharma
et al., 2019; Hazan et al., 2019; Campos et al., 2020), with
the former using it to create an adversarial initial state distri-
bution and the latter to tackle non-episodic lifelong learning
with a non-stationary task-distribution. Our work proposes
a novel algorithm MEDAL that, unlike these prior works,
opts to match the starting distribution to the state distri-
bution of demonstrations. Value-accelerated Persistent RL
(VaPRL) (Sharma et al., 2021) also considers the problem of
autonomous RL with a few initial demonstrations. Unlike
VaPRL, our algorithm does not rely on relabeling transi-
tions with new goals (Andrychowicz et al., 2017), and thus
does not require access to the functional form of the reward
function, eliminating the need for additional hyperparam-
eters that require task-specific tuning. A simple and task-
agnostic ARL method would accelerate the development of
autonomous robotic systems, the benefits of such autonomy
being demonstrated by several recent works (Chatzilyger-
oudis et al., 2018; Gupta et al., 2021; Smith et al., 2021; Ha
et al., 2020; Bloesch et al., 2022).

Distribution Matching in RL. Critical to our method is
matching the state distribution of the demonstrations. Such
a distribution matching perspective is often employed in
inverse RL (Ng et al., 2000; Ziebart et al., 2008; 2010; Finn
et al., 2016) and imitation learning (Ghasemipour et al.,
2020; Argall et al., 2009) or to encourage efficient explo-
ration (Lee et al., 2019). More recently, several works have
leveraged implicit distribution matching by posing a classi-
fication problem, pioneered in Goodfellow et al. (2014), to
imitate demonstrations (Ho & Ermon, 2016; Baram et al.,
2017; Kostrikov et al., 2018; Rafailov et al., 2021), to im-
itate sequences of observations (Torabi et al., 2019; Zhu
et al., 2020b), or to learn reward functions for goal-reaching
(Fu et al., 2018; Singh et al., 2019). Our work employs
a similar discriminator-based approach to encourage the



A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning

state distribution induced by the policy to match that of the
demonstrations. Importantly, our work focuses on creating
an initial state distribution that the forward policy can learn
efficiently from, as opposed to these prior works that are
designed for the episodic RL setting. As the experiments in
Section 5.2 and Section 5.3 show, naı̈ve extensions of these
methods to non-episodic settings don’t fare well.

Accelerating RL using Demonstrations. There is rich
literature on using demonstrations to speed up reinforce-
ment learning, especially for sparse reward problems. Prior
works have considering shaping rewards using demonstra-
tions (Brys et al., 2015), pre-training the policy (Rajeswaran
et al., 2017), using behavior cloning loss as a regular-
izer for policy gradients (Rajeswaran et al., 2017) and
Q-learning (Nair et al., 2018), and initializing the replay
buffer (Nair et al., 2018; Vecerik et al., 2017; Hester et al.,
2018). MEDAL leverages demonstrations to accelerate non-
episodic reinforcement learning by utilizing demo distribu-
tion to create initial conditions for the forward policy. The
techniques proposed in these prior works are complimentary
to our proposal, and can be leveraged for non-episodic RL in
general as well. Indeed, for all methods in our experiments,
the replay buffer is initialized with demonstrations.

3. Preliminaries
Autonomous Reinforcement Learning. We use the ARL
framework for non-episodic learning defined in Sharma
et al. (2022), which we briefly summarize here. Consider
a Markov decision process M≡ (S,A, p, r, ρ0), where
S denotes the state space, A denotes the action space,
p : S ×A× S 7→ R≥0 denotes the transition dynamics,
r : S ×A 7→ R denotes the reward function and ρ0 denotes
the initial state distribution. The learning algorithm A is de-
fined as A : {si, ai, si+1, ri}ti=0 7→ {at, πt}, which maps
the transitions collected in the environment until time t
to an action at and its best guess at the optimal policy
πt : S ×A 7→ R≥0. First, the initial state is sampled ex-
actly once (s0 ∼ ρ0) at the beginning of the interaction
and the learning algorithm interacts with the environment
through the actions at till t → ∞. This is the key distinc-
tion from an episodic RL setting where the environment
resets to a state from the initial state distribution after a few
steps. Second, the action taken in the environment does not
necessarily come from πt, for example, a backward policy
πb may generate the action taken in the environment.

ARL defines two metrics: Continuing Policy Evaluation
measures the reward accumulated by A over the course of
training, defined as C(A) = limh→∞

1
hE

[∑h
t=0 r(st, at)

]
and Deployed Policy Evaluation metric measures how
quickly an algorithm improves the output policy πt at the

task defined by the reward function r, defined as:

D(A) =
∞∑
t=0

J(π∗)− J(πt), (1)

where J(π) = E
[∑∞

j=0 γ
jr(sj , aj)

]
, s0 ∼ ρ0, at ∼ π(· | st),

st+1 ∼ p(· | st, at) and π∗ ∈ argmaxπ J(π). The goal for
an algorithm A is to minimize D(A), that is to bring J(πt)
close to J(π∗) in the least number of samples possible.
Intuitively, minimizing D(A) corresponds to maximizing
the area under the curve for J(πt) versus t.

C(A) corresponds to the more conventional average-reward
reinforcement learning. While algorithms are able to accu-
mulate large rewards during training, they do not necessarily
recover the optimal policy in non-episodic settings (Zhu
et al., 2020a; Co-Reyes et al., 2020; Sharma et al., 2022). In
response, Sharma et al. (2022) introduce D(A) to explicitly
encourage algorithms to learn task-solving behaviors and
not just accumulate reward through training.

Imitation Learning via Distribution Matching. Genera-
tive Adversarial Networks (Goodfellow, 2016) pioneered
implicit distribution matching for distributions where like-
lihood cannot be computed explicitly. Given a dataset of
samples {xi}Ni=1, where xi ∼ p∗(·) for some target distribu-
tion p∗ over the data space X , generative distribution pθ(·)
can be learned through the following minimax optimization:

min
pθ

max
D

Ex∼p∗ [logD(x)] +Ex∼pθ
[log(1−D(x))] (2)

where D : X 7→ [0, 1] is discriminator solving a binary
classification problem. This can be shown to minimize the
Jensen-Shannon divergence, that is DJS(pθ || p∗) (Goodfel-
low et al., 2014; Nowozin et al., 2016) by observing that
the Bayes-optimal classifier satisfies D∗(x) = p∗(x)

p∗(x)+pθ(x)

(assuming that prior probability of true data and fake data
is balanced). Because we do not require an explicit den-
sity under the generative distribution and only require the
ability to sample the distribution, this allows construction
of imitation learning methods such as GAIL (Ho & Ermon,
2016) which minimizes DJS(ρ

π(s, a) || ρ∗(s, a)), where
the policy π is rolled out in the environment starting from
initial state distribution ρ0 to generate samples from the
state-action distribution ρπ(s, a) and ρ∗(s, a) is the target
state-action distribution of the demonstrations.

4. Matching Expert Distributions for
Autonomous Learning (MEDAL)

Several prior works demonstrate the ineffectiveness of stan-
dard RL methods in non-episodic settings (Co-Reyes et al.,
2020; Zhu et al., 2020a; Sharma et al., 2022). Adding noise
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to actions, for example ϵ-greedy in DQN (Mnih et al., 2015)
or Gaussian noise in SAC (Haarnoja et al., 2018)), can be
sufficient for exploration in episodic setting where every trial
starts from a narrow initial state distribution. However, such
an approach becomes ineffective in non-episodic settings be-
cause the same policy is expected to both solve the task and
be sufficiently exploratory. As a result, a common solution
in non-episodic autonomous RL settings is to learn another
policy in addition to the forward policy πf that solves the
task (Han et al., 2015; Eysenbach et al., 2017; Zhu et al.,
2020a): a backward policy πb that targets a set of states to
explore solving the task from. More precisely, the forward
policy πf learns to solve the task from a state sampled from
ρb, the marginal state distribution of πb. An appropriate ρb

can improve the efficiency of learning πf by creating an
effective initial state distribution for it. What should the
πb optimize? We discuss this question in Section 4.1 and
a practical way to optimize the suggested objective in Sec-
tion 4.2. An overview of our proposed algorithm is given in
Section 4.3.

Figure 2. Comparison of sampling initial states s0 from the state
distribution of the optimal policy ρ∗, with sampling the initial
state from the default distribution ρ0 in the episodic setting. The
episodic return is computed by initializing the agent at s0 ∼ ρ0 in
both the cases. The former improves both the sample efficiency
and the performance of the final policy.

4.1. Finding Better Starting States

In episodic settings, πf always starts exploring from ρ0,
which is the same distribution from which it will be eval-
uated. A natural objective for πb then is to minimize the
distance between ρb and ρ0. And indeed, prior works have
proposed this approach (Han et al., 2015; Eysenbach et al.,
2017) by learning a backward controller to retrieve the ini-
tial state distribution ρ0. While the initial state distribution
cannot be changed in the episodic setting, πb does not have
any restriction to match ρ0 in the autonomous RL setting. Is
there a better initial state distribution to efficiently learn πf

from?

Interestingly, Kakade & Langford (2002) provide a theoret-

ical discussion on how the initial state distribution affects
the performance. The main idea is that learning an optimal
policy often requires policy improvement at states that are
unlikely to be visited. Creating a more uniform starting state
distribution can accelerate policy improvement by encourag-
ing policy improvement at those unlikely states. The formal
statement can be found in (Kakade & Langford, 2002, Corol-
lary 4.5). Informally, the result states that the upper bound
on the difference between the optimal performance and that
of policy π is proportional to ∥ρ

∗(s)
µ ∥∞, where ρ∗ is the

state distribution of the optimal policy and µ is the initial
state distribution. This suggests that an initial state distribu-
tion µ that is close to the optimal state distribution ρ∗ would
enable efficient learning. Intuitively, some initial states in
the optimal state distribution would simplify the exploration
by being closer to high reward states, which can be boot-
strapped upon to learn faster from the harder initial states.
To empirically verify the theoretical results, we compare
the learning speed of RL algorithm in the episodic setting
on tabletop organization (environment details in Section 5)
when starting from (a) the standard initial state distribution,
that is s0 ∼ ρ0, versus (b) states sampled from the stationary
distribution of the optimal policy, that is s0 ∼ ρ∗(s). We
find in Figure 2 that the latter not only improves the learning
speed, but also improves the performance by nearly 18%.

4.2. Resetting to Match the Expert State Distribution

The theoretical and empirical results in the previous section
suggest that πf should attempt to solve the task from an
initial state distribution that is close to ρ∗(s), thus implying
that πb should try to match ρ∗(s). How do we match ρb to
ρ∗? We will assume access to a small set of samples from
ρ∗(s) in the form of demonstrations Df . Because we are
limited to sampling ρb and only have a fixed set of samples
from ρ∗, we consider the following optimization problem:

min
πb

max
C

Es∼ρ∗
[
logC(s)

]
+Es∼ρb

[
log(1−C(s))

]
(3)

where C : S 7→ [0, 1] is a state-space classifier. This op-
timization is very much reminiscent of implicit distribu-
tion matching techniques used in (Goodfellow et al., 2014;
Nowozin et al., 2016; Ho & Ermon, 2016; Ghasemipour
et al., 2020) when only the samples are available and densi-
ties cannot be explicitly measured. This can be interpreted
as minimizing the Jensen-Shannon divergenceDJS(ρ

b || ρ∗).
Following these prior works, C(s) solves a binary classifi-
cation where s ∼ ρ∗ has a label 1 and s ∼ ρb has a label 0.
Further, πb solves a RL problem to maximize Es∼ρb [r(s, a)],
where the reward function r(s, a) = − log(1 − C(s)).
Assuming sufficiently expressive non-parametric function
classes, (ρ∗, 0.5) is a saddle point for Equation 3.

Relationship to Prior Imitation Learning Methods.
GAIL (Ho & Ermon, 2016) proposes to match the state-
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action distribution ρπ(s, a) to that of the expert ρ∗(s, a),
that is minimize DJS(ρ

π(s, a) || ρ∗(s, a)). Prior works
have considered the problem of imitation learning when
state-only observations are available (Torabi et al., 2019;
Zhu et al., 2020b) by minimizing Df (ρ

π(s, s′) || ρ∗(s, s′)),
where f -divergence enables generalized treatment of dif-
ferent discrepancy measures such KL-divergence of JS-
divergence used in prior work (Nowozin et al., 2016). In
contrast to these works, our work proposes to minimize
DJS(ρ

π(s) || ρ∗(s)). Furthermore, state distribution match-
ing is only used for the backward policy in our algorithm,
whereas the forward policy is maximizing return, as we sum-
marize in the next section. Finally, unlike prior works, the
motivation for matching the state distributions is to create an
effective initial state distribution for the forward policy πf .
Our experimental results in Section 5.2 suggest that naively
extending GAIL to non-episodic settings is not effective,
validating the importance of these key differences.

Algorithm 1 Matching Expert Distributions for Au-
tonomous Learning (MEDAL)

require: forward demos Df ;
optional: backward demos Db;
initialize: Rf , πf (a | s), Qπf (s, a); // forward policy
initialize: Rb, πb(a | s), Qπb(s, a); // backward policy
initialize: C(s); // state-space discriminator
Rf ← Rf ∪ Df ,Rb ← Rb ∪ Db;
s ∼ ρ0; // sample initial state
while not done do

// run forward policy for a fixed number of steps or
until goal is reached, otherwise run backward policy
if forward then
a ∼ πf (· | s);
s′ ∼ p(· | s, a), r ← r(s, a);
Rf ← Rf ∪ {(s, a, s′, r)};
update πf , Q

πf ;
else
a ∼ πb(· | s);
s′ ∼ p(· | s, a), r ← − log(1− C(s′));
Rb ← Rb ∪ {(s, a, s′, r)};
update πb, Q

πb ;
end if
// train disriminator every K steps
if train-discriminator then

// sample a batch of positives Sp from the forward
demos Df , and a batch of negatives Sn from back-
ward replay bufferRb

Sp ∼ Df , Sn ∼ Rb;
update C on Sp ∪ Sn;

end if
s← s′;

end while

4.3. MEDAL Overview

With these components in place, we now summarize our
proposed algorithm, Matching Expert Distributions for Au-
tonomous Learning (MEDAL). We simultaneously learn
the following components: a forward policy that learns
to solve the task and will also be used for evaluation, a
backward policy that learns creates the initial state distri-
bution for the forward policy by matching the state dis-
tribution in the demonstrations, and finally a state-space
discriminator that learns to distinguish between the states
visited by the backward policy and the states visited in
the demonstrations. MEDAL assumes access to a set of
forward demonstrations Df , completing the task from the
initial state distribution, and optionally, a set of backward
demonstrations Db undoing the task back to the initial state
distribution. The forward policy πf is trained to maximize
E[
∑∞

t=0 γ
tr(st, at)] and the replay buffer for the forward

policy is initialized using Df . The backward policy πb

trains to minimize DJS(ρ
b(s) || ρ∗(s)) which translates into

maximizing−E[
∑∞

t=0 γ
t log(1− C(st+1))] and the replay

buffer for the backward policy is initialized using the back-
ward demonstrations Db, if available. Finally, the state-
space discriminator C(s) trains to classify states sampled
from the forward demonstrations Df with label 1 and states
visited by πb as label 0. Note, we are trying to match the
state marginal of policy πb (i.e. ρb(s)) to the optimal state
distribution ρ∗(s) (approximated via forward demonstra-
tionsDf , not backward demonstrations), thereby motivating
the classification problem for C(s).

When interacting with the environment during training, we
alternate between collecting samples using πf for a fixed
number of steps and collecting samples using πb for a fixed
number of steps. The policies can be updated using any RL
algorithm. The state-space discriminator C(s) is updated
every K steps collected in the environment, with the states
visited by πb being labeled as 0 and states in Df labeled
as 1. The minibatch for updating the parameters of C(s) is
balanced to ensure equal samples from ρ∗(s) and ρb(s). The
pseudocode for MEDAL is provided in Algorithm 1, and
further implementation details can be found in Appendix A.

5. Experiments
In this section, we empirically analyze the performance
of MEDAL to answer to following questions: (1) How
does MEDAL compare to other non-episodic, autonomous
RL methods? (2) Given the demonstrations, can existing
imitation learning methods suffice? (3) How important
is it for the backward controller to match the entire state
distribution, instead of just the initial state distribution?

Environments. To analyze these questions, we consider
three sparse-reward continuous-control environments from
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Figure 3. Continuous-control environments from the EARL benchmark: (left) Table-top organization (TO) where a gripper is tasked with
moving a mug to one of the four goal locations, (center) sawyer door closing (SD) where the sawyer robot is tasked with closing the door,
(right) sawyer peg insertion (SP) where the robot is tasked with picking up the peg and inserting into the goal location.

the EARL benchmark (Sharma et al., 2022). The table-
top organization is a simplified manipulation environment
where a gripper is tasked to move the mug to one of four
coasters. The sawyer door closing environment requires
a sawyer robot arm to learn how to close a door starting
from various initial positions. The challenge in the ARL
setting arises from the fact that the agent has to open the
door to practice closing it again. Finally, the sawyer peg
insertion environment requires the sawyer robot arm to pick
up a peg and insert it into a designated goal location. This is
a particularly challenging environment as the autonomously
operating robot can push the peg into places where it can be
hard to retrieve it back, a problem that is not encountered in
the episodic setting as the environment is reset to the initial
state distribution every few hundred steps.

Evaluation. We follow the evaluation protocol laid down
in the EARL benchmark. All algorithms are reset to a
state s0 ∼ ρ0 and interact with their environments almost
fully autonomously thereon, only being reset to an initial
state intermittently after several hundreds of thousands of
steps of interaction. Since our objective is to acquire task
policies in a sample efficient way, we will focus on de-
ployed policy evaluation. Specifically, we approximate
J(πt) = E[

∑∞
t=0 γ

tr(st, at)] by averaging the return of
the policy over 10 episodes starting from s0 ∼ ρ0, every
10, 000 steps collected in the training environment. Note,
the trajectories collected for evaluation are not provided to
the learning algorithm A. For all considered environments,
the reward functions are sparse in nature and correspond-
ingly, EARL provides a small set of demonstrations to the
algorithms, that correspond to doing and undoing the task
(a total of 10-30 demonstrations depending on the environ-
ment). Environment specific details such as reward func-
tions and intermittent resets can be found in Appendix B.

5.1. Benchmarking MEDAL on EARL

First, we benchmark our proposed method MEDAL on the
aforementioned EARL environments against state-of-the-art
non-episodic ARL methods.

Method Tabletop Sawyer Sawyer
Organization Door Peg

naı̈ve RL 0.32 (0.17) 0.00 (0.00) 0.00 (0.00)
FBRL 0.94 (0.04) 1.00 (0.00) 0.00 (0.00)
R3L 0.96 (0.04) 0.54 (0.18) 0.00 (0.00)

VaPRL 0.98 (0.02) 0.94 (0.05) 0.00 (0.00)
MEDAL 0.98 (0.02) 1.00 (0.00) 0.40 (0.16)

oracle RL 0.80 (0.11) 1.00 (0.00) 1.00 (0.00)

Table 1. Average return of the final learned policy. Performance
is averaged over 5 random seeds. The mean and and the standard
error are reported, with the best performing entry in bold. For
all domains, 1.0 indicates the maximum performance and 0.0
indicates minimum performance.

Comparisons. We briefly review the methods benchmarked
on EARL, which MEDAL will be compared against: (1)
forward-backward RL (FBRL) (Han et al., 2015; Eysen-
bach et al., 2017), where the backward policy recovers the
initial state distribution; (2) value-accelerated persistent RL
(VaPRL) (Sharma et al., 2021), where the backward policy
creates a curriculum based on the forward policy’s perfor-
mance; (3) R3L (Zhu et al., 2020a) has a backward policy
that optimizes a state-novelty reward (Burda et al., 2018) to
encourage the forward policy to solve the tasks from new
states in every trial; (4) naı̈ve RL represents the episodic RL
approach where only a forward policy optimizes the task-
reward throughout training; and finally (5) oracle RL is
the same episodic RL baseline but operating in the episodic
setting. For a fair comparison, the forward policy for all
baselines use SAC (Haarnoja et al., 2018), and the replay
buffer is always initialized with the forward demonstrations.
Further, the replay buffers for backward policies in FBRL,
VaPRL is also initialized with the backward demos. The
replay buffer of the backward policy in R3L is not initialized
with backward demos as it will reduce the novelty of the
states in the backward demos for the RND reward without
the backward policy ever visiting those states.

It’s important to note that some of these comparisons make
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Figure 4. Performance of each method on (left) the table-top organization environment, (center) the sawyer door closing environment, and
(right) the sawyer peg environment. Plots show learning curves with mean and standard error over 5 random seeds.

additional assumptions compared to MEDAL:

• oracle RL operates in the episodic setting, that is the
environment is reset to a state from the initial state
distribution every few hundred steps. The baseline
is included as a reference to compare performance
of baselines in ARL versus the conventional episodic
setting. It also enables us to compare the performance
of conventional RL algorithms when moving from the
episodic setting to the ARL setting, by comparing the
performance of oracle RL and naı̈ve RL.

• VaPRL relies on relabeling goals which requires the
ability to query the reward function for any arbitrary
state and goal (as the VaPRL curriculum can task the
agent to reach arbitrary goals from the demonstrations).
Additionally, VaPRL has a task specific hyperparam-
eter that controls how quickly the curriculum moves
towards the initial state distribution.

In a real-world settings, where the reward function often
needs to be learned as well (for example from images), these
assumptions can be detrimental to their practical application.
While FBRL also requires an additional reward function to
reach the initial state distribution, the requirement is not as
steep. Additionally, we consider a version of FBRL that
learns this reward function in Section 5.3. However, the
ability to query the reward function for arbitrary states and
goals, as is required by VaPRL, can be infeasible in practice.
The impact of these additional assumptions cannot be over-
stated, as the primary motivation for the autonomous RL
framework is to be representative of real-world RL training.

Results. Table 5.1 shows the performance of the final for-
ward policy, and Figure 4 shows the deployed performance
of the forward policy versus the training time for different
methods. MEDAL consistently outputs the best performing
final policy, as can be seen in Table 5.1. Particularly notable
is the performance on sawyer peg insertion, where the final
policy learned by MEDAL gets 40% success rate on average,
while all other methods fail completely. With the exception

of VaPRL on tabletop organization, MEDAL also learns
more efficiently compared to any of the prior methods. No-
tably, MEDAL substantially reduces the sample efficiency
gap between ARL methods and episodic methods on sawyer
door closing.

We posit two reasons for the success of MEDAL: (a) Learn-
ing a backward policy that retrieves the agent close to the
task distribution enables efficient exploration, producing the
speedup in performance. (b) Bringing the agent closer to the
state distribution implicit in the demonstrations may be eas-
ier to maximize compared to other objectives, for example,
retrieving the agent to the initial state distribution.

5.2. Imitation Learning

Given that MEDAL assumes access to a set of demonstra-
tions, a natural alternative to consider is imitation learning.
In this section, we focus our experiments on the tabletop
organization environment. We first test how a behavior
cloning fares (BC). Results in Figure 5 suggest that be-
havior cloning does not do well on tabletop organization,
completely failing to solve the task and leaves substantial
room for improvement on sawyer door. This is to be ex-
pected as EARL provides only a small number of demon-
strations, and errors compounding over time from imperfect
policies generally leads to poor performance. How do im-
itation learning methods with online data collection fare?
We consider an off-policy version of GAIL, Discriminator
Actor-Critic (DAC) (Kostrikov et al., 2018), which matches
ρπ(s, a) to ρ∗(s, a) with an implicit distribution matching
approach similar to ours. Assuming that ρπ(s, a) can match
ρ∗(s, a), the method should in principle recover the optimal
policy – there is nothing specific about GAIL that restricts
it to the episodic setting. However, as the results in Figure 5
suggest, there is a substantial drop in performance when
running GAIL in episodic setting (oracle GAIL) versus
the non-episodic ARL setting (naı̈ve GAIL). While such a
distribution matching could succeed, naı̈vely extending the
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Figure 5. MEDAL in comparison to imitation learning methods on
tabletop organization and sawyer door closing. Behavior cloning
(BC) does not fare well, suggesting the importance of online data
collection. The success of online imitation learning methods such
as GAIL in episodic settings does not translate to the non-episodic
ARL setting, as indicated by the substantial drop in performance
of naı̈ve GAIL compared to oracle GAIL.

methods to the ARL setting is not as successful, suggest-
ing that it may require an additional policy (similar to the
backward policy) to be more effective.

5.3. The Choice of State Distribution

The key element in MEDAL is matching the state distri-
bution of the backward policy to the states in the demon-
strations. To isolate the role of our proposed scheme of
minimizing DJS(ρ

b || ρ∗), we compare it to an alternate
method that minimizes DJS(ρ

b || ρ0), i.e., matching the
initial state distribution ρ0 instead of ρ∗. This makes exactly
one change to MEDAL: instead of sampling positives for
the discriminator C(s) from forward demonstrations Df ,
the positives are sampled from ρ0. Interestingly, this also
provides a practically realizable implementation of FBRL,
as it removes the requirement of the additional reward func-
tion required for the learning a backward policy to reach
the initial state distribution. We call this method FBRL +
VICE as VICE (Singh et al., 2019) enables learning a goal
reaching reward function using a few samples of the goal
distribution, in this case the goal distribution for πb being ρ0.
As can be seen in Figure 6, the FBRL + VICE learns slower

than MEDAL, highlighting the importance of matching the
entire state distribution as done in MEDAL.

Figure 6. Isolating the effect of matching demonstration data. The
speed up of MEDAL compared to FBRL + VICE, which matches
the initial state distribution, suggests that the performance gains
of MEDAL can be attributed to the better initial state distribution
created by the backward controller.

6. Conclusion
We propose MEDAL, an autonomous RL algorithm that
learns a backward policy to match the expert state distri-
bution using an implicit distribution matching approach.
Our empirical analysis indicates that this approach creates
an effective initial state distribution for the forward policy,
improving both the performance and the efficiency. The
simplicity of MEDAL also makes it more amenable for
the real-world, not requiring access to additional reward
functions.

MEDAL assumes access to a (small) set of demonstrations,
which may not be feasible in several real-world scenarios.
Identifying good initial state distributions without relying on
a set of demonstrations would increase the applicability of
MEDAL. Similarly, in applications where safe exploration
is a requirement, MEDAL can be adapted to constrain the
forward policy such that it stays close to the task-distribution
defined by the demonstrations. While MEDAL pushes fur-
ther the improvements in ARL, as exemplified by the reduc-
tion of sample efficiency gap on sawyer door closing results,
there is still a substantial gap in performance between ARL
methods and oracle RL on sawyer peg.
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Figure 7. Performance comparison of r(s, a) = log(C(s)) and r(s, a) = − log(1− C(s)) on (left) the table-top organization environ-
ment, (center) the sawyer door closing environment, and (right) the sawyer peg environment. Plots show learning curves with mean and
standard error over 5 random seeds.

A. MEDAL Implementation
MEDAL is implemented with TF-Agents, built on SAC as the base RL algorithm. Hyperparameters follow the default values:
initial collect steps: 10,000, batch size sampled from replay buffer for updating policy and critic: 256,
steps collected per iteration: 1, trained per iteration: 1, discount factor: 0.99, learning
rate: 3e− 4 (for critics, actors, and discriminator). The actor and critic network were parameterized as neural networks
with two hidden layers each of size 256. For the discriminator, it was parameterized as a neural network with one hidden
layer of size 128. This discriminator is updated once every 10 collection steps for all environments. Due to a small
positive dataset, mixup (Zhang et al., 2017) is used as a regularization technique on the discriminator for all environments.
Additionally, the batch size for the discriminator is set to 800 for all environments as this significantly larger value was
found to stabilize training.

Another choice that improved the stability was the choice of reward function for the backward controller: both r(s, a) =
− log(1− C(s)) and r(s, a) = log(C(s)) preserve the saddle point (ρ∗, 0.5) for the optimization in Equation 3. However,
as can be seen in Figure 7, r(s, a) = − log(1− C(s)) leads to both better and stable performance. We hypothesize that this
is due to smaller gradients of the − log(1− C(s)) when C(s) ≤ 0.5, which is where the discriminator is expected to be for
most of the training as the discriminator can easily distinguish between expert states and those of the backward policy to
begin with.

B. Environments
The environment details can be found in (Sharma et al., 2022). We briefly describe environments for completeness. For
every environment, HT defines the number of steps after which the environment is reset to a state s0 ∼ ρ0, and HE defines
the evaluation horizon over which the return is computed for deployed policy evaluation:
table-top organization: Table-top organization is run with a training horizon of HT = 200, 000 and HE = 200.
The sparse reward function is given by:

r(s, g) = I(∥s− g∥2 ≤ 0.2),

where I denotes the indicator function. The environment has 4 possible goal locations for the mug, and goal location for the
gripper is in the center. EARL provides a total of 12 forward demonstrations and 12 backward demonstrations (3 per goal).

sawyer door closing: Sawyer door closing is run with a training horizon of HT = 200, 000 and an episode horizon
of HE = 300. The sparse reward function is:

r(s, g) = I(∥s− g∥2 ≤ 0.02),

where I again denotes the indicator function. The goal for the door and the robot arm is the closed door position. EARL
provides 5 forward demonstrations and 5 backward demonstrations.

sawyer peg: Sawyer peg is run with a training horizon of HT = 100, 000 and an episode horizon of HE = 200. The
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sparse reward function is:
r(s, g) = I(∥s− g∥2 ≤ 0.05),

where I again denotes the indicator function. The goal for the peg is to be placed in the goal slot. EARL provides 10 forward
demonstrations and 20 backward demonstrations.


