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Abstract
While reinforcement learning (RL) provides a
framework for learning through trial and error,
translating RL algorithms into the real world has
remained challenging. A major hurdle to real-
world application arises from the development of
algorithms in an episodic setting where the envi-
ronment is reset after every trial, in contrast with
the continual and non-episodic nature of the real-
world encountered by embodied agents such as
humans and robots. Enabling agents to learn be-
haviors autonomously in such non-episodic envi-
ronments requires that the agent to be able to con-
duct its own trials. Prior works have considered
an alternating approach where a forward policy
learns to solve the task and the backward policy
learns to reset the environment, but what initial
state distribution should the backward policy reset
the agent to? Assuming access to a few demon-
strations, we propose a new method, MEDAL,
that trains the backward policy to match the state
distribution in the provided demonstrations. This
keeps the agent close to the task-relevant states,
allowing for a mix of easy and difficult starting
states for the forward policy. Our experiments
show that MEDAL matches or outperforms prior
methods on three sparse-reward continuous con-
trol tasks from the EARL benchmark, with 40%
gains on the hardest task, while making fewer as-
sumptions than prior works. Code and videos are
at: https://sites.google.com/view/medal-arl/home

1. Introduction
A cornerstone of human and animal intelligence is the ability
to learn autonomously through trial and error. To that extent,
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Figure 1. An overview of our proposed method MEDAL (right)
contrasting it with forward-backward RL (Han et al., 2015; Ey-
senbach et al., 2017) (left). MEDAL trains a backward policy
πb to pull the agent back to the state distribution defined by the
demonstrations, enabling the forward policy πf to the learn the
task efficiently in contrast to FBRL that retrieves the agent to the
initial state distribution before every trial of πf .

reinforcement learning (RL) presents a natural framework to
develop learning algorithms for embodied agents. Unfortu-
nately, the predominant emphasis on episodic learning rep-
resents a departure from the continual non-episodic nature
of the real-world, which presents multiple technical chal-
lenges. First, episodic training undermines the autonomy of
the learning agent by requiring repeated extrinsic interven-
tions to reset the environment after every trial, which can be
both time-consuming and expensive as these interventions
may have to be conducted by a human. Second, episodic
training from narrow initial state distributions can lead to
less robust policies that are reliant on environment resets to
recover; e.g. Sharma et al. (2022) show that policies learned
in episodic settings with narrow initial state distributions
are more sensitive to perturbations than those trained in
non-episodic settings.

Prior works have found that conventional RL algorithms
substantially depreciate in performance when applied in non-
episodic settings (Co-Reyes et al., 2020; Zhu et al., 2020a;
Sharma et al., 2022). Why do such algorithms struggle
to learn in non-episodic, autonomous RL (ARL) settings?
Resetting the environment after every single episode allows
for natural repetition: the agent can repeatedly practice the
task under a narrow set of initial conditions to incrementally
improve the policy. Critically, algorithms developed for
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episodic learning do not have to learn how to reach these
initial conditions in the �rst place. Thus, the main additional
challenge in non-episodic, autonomous RL settings is to
enable the repetitive practice that is necessary to learn an
adept policy. For example, an autonomous robot that is
practicing how to close a door will also need to learn how
to open a door.

Several recent works learn a backward policy to enable the
main forward policy to practice the task: for example, Han
et al. (2015); Eysenbach et al. (2017) propose a backward
policy that learns to match the initial state distribution. How-
ever, unlike the episodic setting, the agent can practice the
task from any initial state, and not just the narrow initial
state distribution that is usually provided by resets. Can the
backward policy create starting conditions that enable the
forward policy to improve ef�ciently? It could be useful
for the agent to try the task both from “easy” states that
are close to the goal and harder states that are represen-
tative of the starting conditions at evaluation. Easier and
harder initial conditions can be seen as a curriculum that
simpli�es exploration. Kakade & Langford (2002) provide
a theoretical discussion on how the initial state distribution
affects the performance of the learned policy. One of the
results show that the closer the starting state distribution is
to thestate distribution of the optimal policy� � , the faster
the policy moves toward the optimal policy� � . While an
oracle access to� � is rarely available, we often have access
to a modest set of demonstrations. In this work, we aim to
improve autonomous RL by learning a backward policy that
matches the starting state distribution to the state distribu-
tion observed in the demonstrations. This enables the agent
to practice the task from a variety of initial states, including
some that are possibly easier to explore from. An intuitive
representation of the algorithm is shown in Figure 1.

The primary contribution of our work is an autonomous RL
algorithmMatching Expert Distributions for Autonomous
Learning(MEDAL), which learns a backward policy that
matches the state distribution of a small set of demonstra-
tions, in conjunction with a forward policy that optimizes
the task reward. We use a classi�cation based approach that
implicitly minimizes the distance between the state distribu-
tion of the backward policy and the state distribution in the
demonstrations without requiring the density under either
distribution. In Section 5, we empirically analyze the per-
formance of MEDAL on the Environments for Autonomous
RL (EARL) benchmark (Sharma et al., 2022). We �nd that
MEDAL matches or outperforms competitive baselines in
all of the sparse-reward environments, with a more than a
40% gain in success rate on the hardest task where all other
comparisons fail completely. Our ablations additionally indi-
cate the importance of matching the state distribution in the
demonstrations, providing additional empirical support for
the hypothesis that the expert state distribution constitutes a

good starting state distribution for learning a task.

2. Related Work

Autonomous RL. Using additional policies to enable au-
tonomous learning goes back to the works of (Rivest &
Schapire, 1993) in context of �nite state automaton, also
referred to as “homing strategies” in (Even-Dar et al., 2005)
in context of POMDPs. More recently, in context of continu-
ous control, several works propose autonomous RL methods
targeting different starting distributions to learn from: Han
et al. (2015); Eysenbach et al. (2017) match the initial state
distribution, Zhu et al. (2020a) leverage state-novelty (Burda
et al., 2018) to create new starting conditions for every trial,
and Sharma et al. (2021) create a curriculum of starting
states based on the performance of the forward policy to
accelerate the learning. In addition, (Xu et al., 2020; Lu
et al., 2020) leverage ideas from unsupervised skill discov-
ery (Gregor et al., 2016; Eysenbach et al., 2018; Sharma
et al., 2019; Hazan et al., 2019; Campos et al., 2020), with
the former using it to create an adversarial initial state distri-
bution and the latter to tackle non-episodic lifelong learning
with a non-stationary task-distribution. Our work proposes
a novel algorithm MEDAL that, unlike these prior works,
opts to match the starting distribution to the state distri-
bution of demonstrations. Value-accelerated Persistent RL
(VaPRL) (Sharma et al., 2021) also considers the problem of
autonomous RL with a few initial demonstrations. Unlike
VaPRL, our algorithm does not rely on relabeling transi-
tions with new goals (Andrychowicz et al., 2017), and thus
does not require access to the functional form of the reward
function, eliminating the need for additional hyperparam-
eters that require task-speci�c tuning. A simple and task-
agnostic ARL method would accelerate the development of
autonomous robotic systems, the bene�ts of such autonomy
being demonstrated by several recent works (Chatzilyger-
oudis et al., 2018; Gupta et al., 2021; Smith et al., 2021; Ha
et al., 2020; Bloesch et al., 2022).

Distribution Matching in RL. Critical to our method is
matching the state distribution of the demonstrations. Such
a distribution matching perspective is often employed in
inverse RL (Ng et al., 2000; Ziebart et al., 2008; 2010; Finn
et al., 2016) and imitation learning (Ghasemipour et al.,
2020; Argall et al., 2009) or to encourage ef�cient explo-
ration (Lee et al., 2019). More recently, several works have
leveraged implicit distribution matching by posing a classi-
�cation problem, pioneered in Goodfellow et al. (2014), to
imitate demonstrations (Ho & Ermon, 2016; Baram et al.,
2017; Kostrikov et al., 2018; Rafailov et al., 2021), to im-
itate sequences of observations (Torabi et al., 2019; Zhu
et al., 2020b), or to learn reward functions for goal-reaching
(Fu et al., 2018; Singh et al., 2019). Our work employs
a similar discriminator-based approach to encourage the
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state distribution induced by the policy to match that of the
demonstrations. Importantly, our work focuses on creating
an initial state distribution that the forward policy can learn
ef�ciently from, as opposed to these prior works that are
designed for the episodic RL setting. As the experiments in
Section 5.2 and Section 5.3 show, na�̈ve extensions of these
methods to non-episodic settings don't fare well.

Accelerating RL using Demonstrations. There is rich
literature on using demonstrations to speed up reinforce-
ment learning, especially for sparse reward problems. Prior
works have considering shaping rewards using demonstra-
tions (Brys et al., 2015), pre-training the policy (Rajeswaran
et al., 2017), using behavior cloning loss as a regular-
izer for policy gradients (Rajeswaran et al., 2017) and
Q-learning (Nair et al., 2018), and initializing the replay
buffer (Nair et al., 2018; Vecerik et al., 2017; Hester et al.,
2018). MEDAL leverages demonstrations to accelerate non-
episodic reinforcement learning by utilizing demo distribu-
tion to create initial conditions for the forward policy. The
techniques proposed in these prior works are complimentary
to our proposal, and can be leveraged for non-episodic RL in
general as well. Indeed, for all methods in our experiments,
the replay buffer is initialized with demonstrations.

3. Preliminaries

Autonomous Reinforcement Learning. We use the ARL
framework for non-episodic learning de�ned in Sharma
et al. (2022), which we brie�y summarize here. Consider
a Markov decision processM � (S; A ; p; r; � 0), where
S denotes the state space,A denotes the action space,
p : S � A � S 7! R� 0 denotes the transition dynamics,
r : S � A 7! R denotes the reward function and� 0 denotes
the initial state distribution. The learning algorithmA is de-
�ned as A : f si ; ai ; si +1 ; r i gt

i =0 7! f at ; � t g, which maps
the transitions collected in the environment until timet
to an actionat and its best guess at the optimal policy
� t : S � A 7! R� 0. First, the initial state is sampled ex-
actly once (s0 � � 0) at the beginning of the interaction
and the learning algorithm interacts with the environment
through the actionsat till t ! 1 . This is the key distinc-
tion from an episodic RL setting where the environment
resets to a state from the initial state distribution after a few
steps. Second, the action taken in the environment does not
necessarily come from� t , for example, a backward policy
� b may generate the action taken in the environment.

ARL de�nes two metrics:Continuing Policy Evaluation
measures the reward accumulated byA over the course of

training, de�ned asC(A) = lim h!1
1
h E

hP h
t =0 r (st ; at )

i

and Deployed Policy Evaluationmetric measures how
quickly an algorithm improves the output policy� t at the

task de�ned by the reward functionr , de�ned as:

D(A) =
1X

t =0

J (� � ) � J (� t ); (1)

whereJ (� ) = E
hP 1

j =0 
 j r (sj ; aj )
i

; s0 � � 0; at � � (� j st ),

st +1 � p(� j st ; at ) and� � 2 arg max� J (� ). The goal for
an algorithmA is to minimizeD(A), that is to bringJ (� t )
close toJ (� � ) in the least number of samples possible.
Intuitively, minimizing D(A) corresponds to maximizing
the area under the curve forJ (� t ) versust.

C(A) corresponds to the more conventional average-reward
reinforcement learning. While algorithms are able to accu-
mulate large rewards during training, they do not necessarily
recover the optimal policy in non-episodic settings (Zhu
et al., 2020a; Co-Reyes et al., 2020; Sharma et al., 2022). In
response, Sharma et al. (2022) introduceD(A) to explicitly
encourage algorithms to learn task-solving behaviors and
not just accumulate reward through training.

Imitation Learning via Distribution Matching. Genera-
tive Adversarial Networks (Goodfellow, 2016) pioneered
implicit distribution matching for distributions where like-
lihood cannot be computed explicitly. Given a dataset of
samplesf x i gN

i =1 , wherex i � p� (�) for some target distribu-
tion p� over the data spaceX , generative distributionp� (�)
can be learned through the following minimax optimization:

min
p�

max
D

Ex � p� [logD(x)] + Ex � p� [log(1 � D (x))] (2)

whereD : X 7! [0; 1] is discriminator solving a binary
classi�cation problem. This can be shown to minimize the
Jensen-Shannon divergence, that isDJS(p� jj p� ) (Goodfel-
low et al., 2014; Nowozin et al., 2016) by observing that
the Bayes-optimal classi�er satis�esD � (x) = p� (x )

p� (x )+ p� (x )
(assuming that prior probability of true data and fake data
is balanced). Because we do not require an explicit den-
sity under the generative distribution and only require the
ability to sample the distribution, this allows construction
of imitation learning methods such as GAIL (Ho & Ermon,
2016) which minimizesDJS(� � (s; a) jj � � (s; a)) , where
the policy� is rolled out in the environment starting from
initial state distribution� 0 to generate samples from the
state-action distribution� � (s; a) and� � (s; a) is the target
state-action distribution of the demonstrations.

4. Matching Expert Distributions for
Autonomous Learning (MEDAL)

Several prior works demonstrate the ineffectiveness of stan-
dard RL methods in non-episodic settings (Co-Reyes et al.,
2020; Zhu et al., 2020a; Sharma et al., 2022). Adding noise
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to actions, for example� -greedy in DQN (Mnih et al., 2015)
or Gaussian noise in SAC (Haarnoja et al., 2018)), can be
suf�cient for exploration in episodic setting where every trial
starts from a narrow initial state distribution. However, such
an approach becomes ineffective in non-episodic settings be-
cause the same policy is expected to both solve the task and
be suf�ciently exploratory. As a result, a common solution
in non-episodic autonomous RL settings is to learn another
policy in addition to the forward policy� f that solves the
task (Han et al., 2015; Eysenbach et al., 2017; Zhu et al.,
2020a): a backward policy� b that targets a set of states to
explore solving the task from. More precisely, the forward
policy � f learns to solve the task from a state sampled from
� b, the marginal state distribution of� b. An appropriate� b

can improve the ef�ciency of learning� f by creating an
effective initial state distribution for it. What should the
� b optimize? We discuss this question in Section 4.1 and
a practical way to optimize the suggested objective in Sec-
tion 4.2. An overview of our proposed algorithm is given in
Section 4.3.

Figure 2.Comparison of sampling initial statess0 from the state
distribution of the optimal policy� � , with sampling the initial
state from the default distribution� 0 in the episodic setting. The
episodic return is computed by initializing the agent ats0 � � 0 in
both the cases. The former improves both the sample ef�ciency
and the performance of the �nal policy.

4.1. Finding Better Starting States

In episodic settings,� f always starts exploring from� 0,
which is the same distribution from which it will be eval-
uated. A natural objective for� b then is to minimize the
distance between� b and� 0. And indeed, prior works have
proposed this approach (Han et al., 2015; Eysenbach et al.,
2017) by learning a backward controller to retrieve the ini-
tial state distribution� 0. While the initial state distribution
cannot be changed in the episodic setting,� b does not have
any restriction to match� 0 in the autonomous RL setting. Is
there a better initial state distribution to ef�ciently learn� f

from?

Interestingly, Kakade & Langford (2002) provide a theoret-

ical discussion on how the initial state distribution affects
the performance. The main idea is that learning an optimal
policy often requires policy improvement at states that are
unlikely to be visited. Creating a more uniform starting state
distribution can accelerate policy improvement by encourag-
ing policy improvement at those unlikely states. The formal
statement can be found in (Kakade & Langford, 2002, Corol-
lary 4.5). Informally, the result states that the upper bound
on the difference between the optimal performance and that
of policy � is proportional tok � � (s)

� k1 , where� � is the
state distribution of the optimal policy and� is the initial
state distribution. This suggests that an initial state distribu-
tion � that is close to the optimal state distribution� � would
enable ef�cient learning. Intuitively, some initial states in
the optimal state distribution would simplify the exploration
by being closer to high reward states, which can be boot-
strapped upon to learn faster from the harder initial states.
To empirically verify the theoretical results, we compare
the learning speed of RL algorithm in the episodic setting
on tabletop organization(environment details in Section 5)
when starting from (a) the standard initial state distribution,
that iss0 � � 0, versus (b) states sampled from the stationary
distribution of the optimal policy, that iss0 � � � (s). We
�nd in Figure 2 that the latter not only improves the learning
speed, but also improves the performance by nearly 18%.

4.2. Resetting to Match the Expert State Distribution

The theoretical and empirical results in the previous section
suggest that� f should attempt to solve the task from an
initial state distribution that is close to� � (s), thus implying
that� b should try to match� � (s). How do we match� b to
� � ? We will assume access to a small set of samples from
� � (s) in the form of demonstrationsDf . Because we are
limited to sampling� b and only have a �xed set of samples
from � � , we consider the following optimization problem:

min
� b

max
C

Es� � �

�
logC(s)

�
+ Es� � b

�
log(1 � C(s))

�
(3)

whereC : S 7! [0; 1] is a state-space classi�er. This op-
timization is very much reminiscent of implicit distribu-
tion matching techniques used in (Goodfellow et al., 2014;
Nowozin et al., 2016; Ho & Ermon, 2016; Ghasemipour
et al., 2020) when only the samples are available and densi-
ties cannot be explicitly measured. This can be interpreted
as minimizing the Jensen-Shannon divergenceDJS(� b jj � � ).
Following these prior works,C(s) solves a binary classi�-
cation wheres � � � has a label1 ands � � b has a label0.
Further,� b solves a RL problem to maximizeEs� � b [r (s; a)],
where the reward functionr (s; a) = � log(1 � C(s)) .
Assuming suf�ciently expressive non-parametric function
classes,(� � ; 0:5) is a saddle point for Equation 3.

Relationship to Prior Imitation Learning Methods.
GAIL (Ho & Ermon, 2016) proposes to match the state-
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action distribution� � (s; a) to that of the expert� � (s; a),
that is minimizeDJS(� � (s; a) jj � � (s; a)) . Prior works
have considered the problem of imitation learning when
state-only observations are available (Torabi et al., 2019;
Zhu et al., 2020b) by minimizingDf (� � (s; s0) jj � � (s; s0)) ,
wheref -divergence enables generalized treatment of dif-
ferent discrepancy measures such KL-divergence of JS-
divergence used in prior work (Nowozin et al., 2016). In
contrast to these works, our work proposes to minimize
DJS(� � (s) jj � � (s)) . Furthermore, state distribution match-
ing is only used for the backward policy in our algorithm,
whereas the forward policy is maximizing return, as we sum-
marize in the next section. Finally, unlike prior works, the
motivation for matching the state distributions is to create an
effective initial state distribution for the forward policy� f .
Our experimental results in Section 5.2 suggest that naively
extending GAIL to non-episodic settings is not effective,
validating the importance of these key differences.

Algorithm 1 Matching Expert Distributions for Au-
tonomous Learning (MEDAL)

require: forward demosDf ;
optional: backward demosDb;
initialize: R f ; � f (a j s); Q� f (s; a); // forward policy
initialize: R b; � b(a j s); Q� b (s; a); // backward policy
initialize: C(s); // state-space discriminator
R f  R f [ D f ; R b  R b [ D b;
s � � 0; // sample initial state
while not donedo

// run forward policy for a �xed number of steps or
until goal is reached, otherwise run backward policy
if forwardthen

a � � f (� j s);
s0 � p(� j s; a); r  r (s; a);
R f  R f [ f (s; a; s0; r )g;
update� f ; Q� f ;

else
a � � b(� j s);
s0 � p(� j s; a); r  � log(1 � C(s0)) ;
R b  R b [ f (s; a; s0; r )g;
update� b; Q� b ;

end if
// train disriminator everyK steps
if train-discriminatorthen

// sample a batch of positivesSp from the forward
demosDf , and a batch of negativesSn from back-
ward replay bufferR b

Sp � D f ; Sn � R b;
updateC onSp [ Sn ;

end if
s  s0;

end while

4.3. MEDAL Overview

With these components in place, we now summarize our
proposed algorithm,Matching Expert Distributions for Au-
tonomous Learning(MEDAL). We simultaneously learn
the following components: aforward policy that learns
to solve the task and will also be used for evaluation, a
backward policythat learns creates the initial state distri-
bution for the forward policy by matching the state dis-
tribution in the demonstrations, and �nally astate-space
discriminatorthat learns to distinguish between the states
visited by the backward policy and the states visited in
the demonstrations. MEDAL assumes access to a set of
forward demonstrationsDf , completing the task from the
initial state distribution, and optionally, a set of backward
demonstrationsDb undoing the task back to the initial state
distribution. The forward policy� f is trained to maximize
E[

P 1
t =0 
 t r (st ; at )] and the replay buffer for the forward

policy is initialized usingDf . The backward policy� b

trains to minimizeDJS(� b(s) jj � � (s)) which translates into
maximizing� E[

P 1
t =0 
 t log(1 � C(st +1 ))] and the replay

buffer for the backward policy is initialized using the back-
ward demonstrationsDb, if available. Finally, the state-
space discriminatorC(s) trains to classify states sampled
from theforward demonstrationsDf with label1 and states
visited by� b as label0. Note, we are trying to match the
state marginal of policy� b (i.e. � b(s)) to the optimal state
distribution� � (s) (approximated viaforward demonstra-
tionsDf , notbackward demonstrations), thereby motivating
the classi�cation problem forC(s).

When interacting with the environment during training, we
alternate between collecting samples using� f for a �xed
number of steps and collecting samples using� b for a �xed
number of steps. The policies can be updated using any RL
algorithm. The state-space discriminatorC(s) is updated
everyK steps collected in the environment, with the states
visited by� b being labeled as0 and states inDf labeled
as1. The minibatch for updating the parameters ofC(s) is
balanced to ensure equal samples from� � (s) and� b(s). The
pseudocode for MEDAL is provided in Algorithm 1, and
further implementation details can be found in Appendix A.

5. Experiments

In this section, we empirically analyze the performance
of MEDAL to answer to following questions: (1) How
does MEDAL compare to other non-episodic, autonomous
RL methods? (2) Given the demonstrations, can existing
imitation learning methods suf�ce? (3) How important
is it for the backward controller to match the entire state
distribution, instead of just the initial state distribution?

Environments. To analyze these questions, we consider
three sparse-reward continuous-control environments from




