
Data Augmentation as Feature Manipulation

Ruoqi Shen 1 Sébastien Bubeck 2 Suriya Gunasekar 2

Abstract
Data augmentation is a cornerstone of the
machine learning pipeline, yet its theoretical
underpinnings remain unclear. Is it merely a
way to artificially augment the data set size?
Or is it about encouraging the model to satisfy
certain invariance? In this work we consider
another angle, and we study the effect of data
augmentation on the dynamic of the learning
process. We find that data augmentation can
alter the relative importance of various features,
effectively making certain informative but hard
to learn features more likely to be captured in
the learning process. Importantly, we show
that this effect is more pronounced for non-
linear models, such as neural networks. Our
main contribution is a detailed analysis of data
augmentation on the learning dynamic for a
two layer convolutional neural network in the
recently proposed multi-view data model by
Allen-Zhu & Li (2020b). We complement this
analysis with further experimental evidence that
data augmentation can be viewed as feature
manipulation.

1. Introduction
Data augmentation is a powerful technique for inexpensively
increasing the size and diversity of training data.
Empirically, even minimal data augmentation can
substantially increase the performance of neural networks.
It is commonly argued that data augmentation is useful to
impose domain specific symmetries on the model, which
would be difficult to enforce directly in the architecture
(Simard et al., 2000; 2003; Chapelle et al., 2001; Yaeger
et al., 1996; Shorten & Khoshgoftaar, 2019). For example,
semantics of a natural image is invariant under translation
and scaling, so it is reasonable to augment an image data set

1University of Washington. Part of this work was done
as a intern at Microsoft Research. 2Microsoft Research.
Correspondence to: Ruoqi Shen <shenr3@cs.washington.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022.
Copyright 2022 by the author(s).

with translated and scaled variations of its inputs. Simple
augmentation with random crop up to 4 pixels can lead to
gains in the range 5-10% (Ciregan et al., 2012; Krizhevsky
et al., 2017). Another explanation often proposed for the role
of data augmentation is merely that it increases the sample
size. As an alternative to symmetry inducing or sample size
increase, we consider in this work the possibility that data
augmentation should in fact be viewed as a more subtle
feature manipulation mechanism on the data.

Consider, for illustration, an image data set with the task of
learning to detect whether there is a cow in the image. A
simplified view would be that there are true cow features
that generate the cow images, and we hope to learn those
true features. At the same time, because most images of
cows contain grass, it would not be surprising if a neural
network would learn to detect the spurious grass feature for
the task, and perhaps simply overfit the rare images such
as desert cows that are not explained by the grass feature
(and similarly overfit the perhaps few images with grass
and no cows). Now consider a simple data augmentation
technique such as Gaussian smoothing (let us assume
black and white images or else use additional color space
augmentations). The grass feature, sans color, is essentially
a high frequency texture information, so we can expect
the smoothing operation to make this feature significantly
diminished. In this example, the feature manipulation that
data augmentation performs is effectively to render the
spurious feature harder to detect, or more precisely to make
it harder to learn, which in turn boosts the true cow features
to become the dominant features.

Continuing the illustration above, let us explore further
the idea of data augmentation as feature manipulation.
First note that the true cow feature need not be one
“single well-defined object”, but rather we may have many
different true cow features. For example, true cow features
could be different for left-facing and right-facing cows.
An imbalance in the training data with respect to those
different features could make the rarer features hard to
learn compared to the more common features, similarly
to how the spurious grass feature was occluding the true
cow features. In the example above, it could happen that
in most images in the training data, the cows are facing
right, which in turn could mean that the neural network
will learn a cow feature with an orientation (right-facing),

and then simply memorize/overfit the cows facing left. Yet
another commonly used data augmentation technique such
as random horizontal flip would solve this by balancing the
occurrence of cow features with right-orientation and those
with left-orientation, hopefully leading to a neural network
dynamic that would discover both of those types of cow
features. Note that one might be tempted to interpret this
as inducing a mirror symmetry invariance in the model, but
we emphasize that the effect is more subtle: the learned
invariance is only for the relevant features, rather than being
an invariance for all images (e.g., on non-cow images one
might not be invariant to the orientation).

More generally, to understand feature learning with and
without data augmentation in gradient descent trained neural
networks, we can think of three types of features of interest:
(a) The “easy to learn and good” features, which are accurate
features for the learning problem and are easy to learn in
the sense that they have large relative contribution in the
gradient descent updates of the network. (b) The “hard to
learn and good” features, which are more nuanced to detect
but are essential to fit the harder samples in the population
distribution (e.g., examples with rare object orientations).
These are features that despite being accurate have small
relative contribution in the gradient descent updates (perhaps
due to lack of sufficient representation in the training data),
which in turn makes them hard to learn. (c) Finally, there
are the “easy to learn and bad” features, which while
inaccurate, nevertheless interfere with the learning process
as they have a large contribution in the gradient updates.
Such features often correspond to spurious correlations or
dominating noise patterns (e.g., the grass feature) which
arise due to limitations in training data size or data collection
mechanisms.1 In this paper, we study data augmentation as a
technique for manipulating the “easiness” and “hardness” of
features by essentially changing their relative contributions
in the gradient updates for the neural network.

We believe that this view of data augmentation as a feature
manipulation mechanism is more insightful (and closer to
the truth) than the complementary and more straightforward
views of “symmetry inducing” or “it’s just more data”. For
one, data augmentation with specific symmetries do not
necessarily lead to models that are respectively invariant.
For example, Azulay & Weiss (2019) show that even models
trained with extensive translation and scale augmentation
can be sensitive to single pixel changes in translation
and scaling on inputs far from the training distribution,
suggesting the inductive bias from data augmentation
is more subtle. Further, this view could form a basis
for studying more recent data augmentation techniques
like MixUp (Zhang et al., 2017), CutOut (DeVries &

1We do not mention “hard to learn and inaccurate” features
as they are conceptually irrelevant for the training dynamics or
accuracy of the model.

Taylor, 2017), and variants, which in spite of being widely
successful in image tasks do not fit the conventional
narrative of data augmentation.

Contributions Given the diversity of data augmentation
techniques (e.g., see Shorten & Khoshgoftaar (2019);
Feng et al. (2021) for a survey), it is a formidable
challenge to understand and analyze the corresponding
feature manipulation for each case, and this task is beyond
the scope of the present paper. Our more modest objective
is to start this program by studying a simple mathematical
model where data augmentation can be provably shown to
perform feature manipulation along the lines described in
the illustration above. Specifically, we consider a variant
of the multi-view data setting introduced in the pioneering
work of Allen-Zhu & Li (2020b) on ensemble learning.
In our data model, each data point is viewed as a set
of patches, with each patch being represented by a high-
dimensional vector in Rd. Moreover there is a set of K
“true/good” features v1,v2, . . . ,vK ∈ Rd. For any data
point, each patch is then some combination of noise and
features. Specifically at least one patch contains a “good”
feature whose orientation indicates the label, i.e., for some
k ∈ [K] this patch is yvk where y ∈ {−1, 1} is the binary
class label to be predicted. In this case we say that the data
point is of the kth type. The other patches contain different
forms of noise. If the training data contains sufficiently
many type-k data points, then the corresponding feature vk
is “easy to learn and good”, while the features corresponding
to rare types are “hard to learn and good”. To model the
“easy to learn and bad” features we assume that one patch
per datapoint receives a large (Gaussian) noise, which we
call the dominant noise. See Section 2 for exact details of
the model. Given such training data we show the following
for a two layer patch-wise convolutional network (see (3))
trained using gradient descent (there is a number of caveats,
see below for a list):

1. When one or more features are sufficiently rare, the
network will only learn the frequent “easy to learn
and good” features, and will overfit the remaining data
using the “easy to learn and bad” noise component.

2. On the other hand, with any data augmentation
technique that can permute or balance the features,
the network will learn all K features, and thus
achieve better test loss (and, importantly learn a better
representation of this data2). We show that this happens
because the representation of the “hard to learn and
good” features in the gradient updates will be boosted,

2As a consequence of learning all the K features, the learned
model will not only be more accurate on the data distribution of
training samples, but will also be robust to distribution shifts that
alter the proportion of data of the K feature types.

and simultaneously the relative contribution of the
dominant noise or the “easy to learn and bad” features
will be diminished.

3. We show that this phenomenon is more pronounced
for gradient descent dynamics in non-linear models
in the following sense: we prove that even at high
signal-to-noise ratio (SNR) the non-linear models
might memorize through the noise components, while
gradient descent on linear models overfit to noise only
at much lower SNR. This shows that data augmentation
is useful in a wider range of cases for non-linear models
than for linear models.

Moreover, our non-linear model can learn the
distribution even in the presence of feature noise (in
the form of −αyvk′ for some small α > 0, which
points to wrong class). On the other hand, a linear
model cannot have low test error with such feature
noise, thus showing a further separation between linear
and non-linear models.

Some of the caveats to our theoretical results include the
following points (none seem essential, but for some of them
going beyond would require significant technical work):

• Neural network architecture: we study two layer neural
network with a special activation function (the latter
can be viewed as a smoothed ReLU with fixed bias).
We also assume poly-logarithmic (in d) width.

• Training: we study gradient descent rather than
stochastic gradient descent, and furthermore we
assume a specific training time (the same one with
and without data augmentation).

• Data model: the distribution can be generalized in
many ways, including having data points with mixed
types (e.g., “multi-view” as in (Allen-Zhu & Li,
2020b)), heterogeneous noise components, or even
correlated noise components (see below for more on
this). We also assume a very high dimensional regime
d� n2 (where n is the training set size), although we
believe our results should hold for d� n.

Even though our theoretical results are in a limited setting,
the feature manipulation effect of data augmentation is
conceptually broader. We complement our analysis with
experiments on CIFAR-10 and synthetic datasets, where
we study data augmentation in more generality. We circle
back to our motivating problem with spurious features
(àla the cow grass features story) in a classification task.
Our experiments show that simply shifting the spurious
feature position randomly up to 2 pixels in each epoch, can
significantly improve the test performance by making the
spurious feature hard to learn. This happens even when

we do not change any non-spurious pixels/features (and
hence control learning additional image priors). We further
formulate experiments to evaluate the value of a single data
augmented image compared to an fully independent sample,
and see that on CIFAR10 dataset that once 50% independent
samples are available, a data augmented sample is almost as
effective as an independent sample for the learning task.
Finally, we show on synthetic dataset that the problem
arising from imbalance in views (as studied in our main
result) also holds for deeper convolutional architectures,
even when the views are merely translations of each other.

Related Work Starting with (Bishop, 1995) there is a
long line of work casting data augmentation as an effective
regularization technique, see (Dao et al., 2019; Rajput
et al., 2019; Wu et al., 2020; Yang et al., 2022) for recent
developments in that direction. Other theoretical analyses
have studied and quantified the gains of data augmentation
from an invariance perspective (Chen et al., 2020; Mei et al.,
2021). The viewpoint we take here, based on studying
directly the effect of augmentation on the learning dynamic,
is strongly influenced by the work of Zeyuan Allen-Zhu
and Yuanzhi Li in the last few years. For example in
Allen-Zhu & Li (2020a) they develop this perspective for
adversarial training (which in some ways can be thought
as a form of data augmentation, where each data point is
augmented to its adversarial version). There they show
that adversarial training leads to a certain form of feature
purification, which in essence means that the filters learned
by a convolutional neural network become closer to some
“ground truth” features. In (Allen-Zhu & Li, 2020b) they
introduce the multi-view model that we study here, and they
used it to study (among other things) ensemble learning. In
a nutshell, in their version of the model each data point has
several views that can be used for classification, and the
idea is that each model might learn only one of those views,
hence there is benefit to ensembling in that it will allow to
uncover all the features, just like here we suggest that data
augmentation is a way to uncover all the features. Other
notable works which share the philosophy of studying the
dynamic of learning (although focused on linear models)
include (Hanin & Sun, 2021) which investigates the impact
of data augmentation on optimization, and (Wu et al., 2020)
which considers the overparametrized setting and show that
data augmentation can improve generalization in this case.

Notation We use tilde notation Õ, Θ̃, Ω̃ to hide log factors
in standard asymptotic notation. For an integer K, [K] =
{1, 2, . . . ,K}. We interchangeably use a·b, 〈a,b〉, or a>b
for standard inner product between two vectors.

2. A mathematical model for understanding
feature manipulation

Our data model defined below is a variation of the multi-
view data distribution in (Allen-Zhu & Li, 2020b) for
a binary classification task. We represent the inputs
x as a collection of P non-overlapping patches x =
(x1,x2, . . . ,xP) ∈ Rd×P , where each patch is a d
dimensional vector. The task is associated with K unknown
“good” features denoted as v1,v2, . . . ,vK ∈ Rd, such that
for labels y ∈ {−1, 1}, their orientation as {yvk}k∈[K]

constitutes the K views or sub-types of the class y.3 Each
input xp patches either contain one of the “good” feature
{yvk} or a “bad” feature in the form of random and/or
feature noise. Formally, our distribution is defined below.

Definition 1. D is parametrized by
(
ρ, σξ, σζ , α

)
, where

ρ = (ρ1, ρ2, . . . , ρK) is a discrete distribution over the
features {vk}k∈[K], and σξ ,σζ , and α are noise parameters.
Without loss of generality, let ρ1 ≥ . . . ≥ ρK . A sample
(x, y) ∼ D is generated as follows:

(a) Sample y ∈ {1,−1} uniformly.

(b) Given y, the input x = (x1,x2, . . . ,xP) ∈ Rd×P is
sampled as below:

Feature patch: Choose the main feature patch p∗ ∈
[P] arbitrarily and set xp∗ = yvk∗ , where k∗ ∼ ρ..
Dominant noise: Choose a dominant noise patch
pξ 6= p∗ and generate xpξ = ξ, where ξ

i.i.d∼
N
(
0,

σ2
ξ

d Id
)
.

Background: For the remaining background patches4

p ∈ [P] \ {p∗, pξ}, select 0 ≤ αp ≤ α and set xp =
−αpyvkp + ζp, where kp ∼ ρ, ζp ∼ N (0, σ2

ζId).

Assumption 1. We assume the features {vk}k∈[K] are
orthonormal, i.e., ∀k,k′∈[K], vk · vk′ = 1k=k′ .

The training dataset consists of n i.i.d., samples from D,
Dtrain = {(x(i), y(i)) : i ∈ [n]} ∼ D⊗n. We are interested
in the high dimensional regime where n � d. n, P and
K can grow with d. Note that, in Definition 1 k∗, p∗, pξ,
ξ, and (αp, kp, ζp)p/∈{p∗,pξ} all depend on x, but we have
dropped this dependence in the notation to avoid clutter. In
our analysis, for i = 1, 2, . . . , n, we use k∗i , p∗i , pξi , ξ

(i),

3For M -class classification, our analysis can be adapted by
using separate set of features {vk,m}k for each class m ∈ [M],
rather than {±vk}k. For M = 2, under our learning algorithm,
using (vk,−1,vk,1) as features for y = −1, 1 is equivalent to
using −vk,vk with vk = vk,1 − vk,−1.

4In our definition, the dominant noise ξ and the main feature
vk∗ appear in exactly one patch. But our results also hold (by
virtue of parameter sharing in (3)) when for any disjoint non-
empty subsets Pf ,Pn ⊂ [P], we set ∀ p ∈ Pf , xp = yvk∗ and
∀ p ∈ Pn, xp = ξp ∼i.i.d N (0, σ2

ξId/d).

and (αp,i, kp,i, ζp,i)p/∈{p∗i ,pξ}i to denote the corresponding
quantities for the sample (x(i), y(i)) in the training dataset.

Data augmentation Let D(aug)
train denote the augmented

dataset obtained by transforming the i.i.d. training dataset
Dtrain. Our model for data augmentation is such that D(aug)

train
has equal number of samples with main feature yvk for
each k ∈ [K]. Concretely, consider linear transformations
T1, . . . TK−1, such that for all k, Tk : Rd → Rd and satisfies

∀ k′ ∈ [K], Tk(vk′) = v((k′+k−1) mod K)+1). (1)

Such transformations are well defined for K ≤ d, and in
essence permute the feature vectors vk on patches with true
feature or feature noise. At the same time, the Gaussian
noise patches before and after transformation are no longer
i.i.d. We slightly abuse notation and define Tk(x) on x ∈
Rd×P as Tk(x) = (Tk(x1), Tk(x2), . . . , Tk(xp)) ∈ Rd×P ,
as well as Tk(Dtrain) on the training dataset as Tk(Dtrain) =
{(Tk(x(i)), y(i)) : i ∈ [n]}.

Our augmented dataset D(aug)
train consists Dtrain along with the

K − 1 transformations of of Dtrain as defined below:

D(aug)
train = Dtrain ∪ T1(Dtrain) . . . ∪ TK−1(Dtrain). (2)

Note that in D(aug)
train all the views are equally represented, i.e.,

for each k ∈ [K], we will have exactly n samples from the
feature yvk, and further D(aug)

train has more samples compared
to Dtrain with |D(aug)

train | = nK, but they are no longer i.i.d.

Since the features {vk}k are orthonormal (Assumption 1)
and all the non-feature noise are spherically symmetric,
without loss of generality, we can assume that {vk}k∈[K]

are simply the first K standard basis vectors in Rd, i.e.,
vk = ek. In this case, we can choose Tk for k ∈
[K − 1] as a permutation of coordinates satisfying (1) on
the first K coordinate. If we further assume that the the
permutations Tk do not have any fixed points, i.e., ∀ i ∈ [d],
Tk(z)[i] 6= z[i], then at initialization and updates of gradient
descent, the augmented samples in D(aug)

train satisfy the same
properties as i.i.d. samples in Dtrain (upto constants and log
factors). In this rest of the proof, we thus assume that Tk are
permutations of coordinates without any fixed points in the
orthogonal basis extended from {vk}k, and satisfies (1).

Role of different noise components Our main result
shows that when the dominant noise parameter σξ is
sufficiently large, a neural network can overfit to this noise
rather than learn all the views. However, with the right
data augmentation, we can show that all the views can be
accurately learned using a non-linear network. Furthermore,
in the presence of feature noise {−αpyvkp} (pointing
to wrong class), linear models are unable to fit our data
distribution, thus establishing a gap from linear models.

We choose the noise parameters σξ, σζ , α such that the
dominant noise ξ and the true features {yvk∗} have the
main contribution to the learning dynamic compared to the
feature noise (i.e., −αpyvkp) or the minor noise (i.e., ζp).
Thus, our results do not necessarily require noise in the
background patches beyond establishing gap with linear
models. Since the minor noise σζ does not provide any
additional insight, we assume σζ = 0. Our analysis can
handle small σζ with more tedious bookkeeping.

2.1. Learning algorithm

We use the following patch-wise convolutional network
architecture with C channels: let w = {w1,w2, . . .wC} ∈
Rd×C denote the learnable parameters of the model,

F (w,x) =
∑
c∈[C]

∑
p∈[P]

ψ(wc · xp) , (3)

where ψ is a non-linear activation function defined below:

ψ(z) =

sign(z) · 1

q |z|
q if |z| ≤ 1

z − q−1
q if z ≥ 1

z + q−1
q if z ≤ 1

−1 1

q=3

q=9
z

ψ(z)

Our activation is a smoothed version of symmetrized ReLU
with a fixed bias φ(z) = ReLU(z + 1) − ReLU(−z − 1).
In fact, as q → ∞, ψ → φ. Note that since we do not
train the second layer weights, we choose an odd-function
as activation to ensure that the outputs can be negative.

Consider the following logistic loss over the
training dataset Dtrain =

{
(x(i), y(i)), i ∈ [n]

}
:

L(w) = 1
n

∑n
i=1 `(y

(i)F (w,x(i))), where `(z) =
log(1 + exp(−z)).We learn the model using gradient
descent on the above loss with step size η, i.e., for c ∈ [C],
the weights wc at time step t are given by wc(t) = wc(t−
1)− η

n

∑n
i=1 y

(i)`′(y(i)F (w(t),x(i)))∇F (w(t),x(i)).

The following lemma summarizes the conditions at
Gaussian initialization w(0) = {wc(0) ∼ N (0, σ2

0Id) :
c ∈ [C]}.
Lemma 1. [Ginit-conditions] Consider n i.i.d. samples
Dtrain = {(x(i), y(i)) : i ∈ [n]} from the distribution in
Definition 1. Let the parameters w of the network in (3) be
initialized as wc(0) ∼ N (0, σ2

0Id) ∀ c ∈ [C]. If the number
of channels is C = Ω(log d), then with probability greater
than 1−O(n

2KC
poly(d)), the following conditions hold :

1. Feature-vs-parameter: ∀ k ∈ [K], max
c∈[C]

wc(0) · vk ≥

Ω(σ0), and max
c∈[C]

|wc(0) · vk| ≤ Õ (σ0) .

2. Noise-vs-parameter:∀ i ∈ [n], max
c∈[C]

wc(0) · y(i)ξ(i) ≥

Ω̃ (σ0σξ), and max
c∈[C]

|wc(0) · ξ(i)| ≤ Õ (σ0σξ) .

3. Noise-vs-noise: ∀ i ∈ [n], ξ(i) · ξ(i) = Θ(σ2
ξ) and

∀ i, j ∈ [n], i 6= j, |ξ(i) · ξ(j)| ≤ Õ(σ2
ξ/
√
d).

4. Feature-vs-noise: ∀ i ∈ [n], k ∈ [K], |ξ(i) · vk| ≤
Õ(σξ/

√
d).

5. Parameter norm: ∀ c ∈ [C], ‖wc(0)‖ = Θ(σ0

√
d).

The above lemma proved in the Appendix D follows from
standard Gaussian concentration bounds. Further, we can
show that Ginit also hold for the augmented dataset D(aug)

train

even though the samples in D(aug)
train are not i.i.d.

Lemma 1a. Ginit in Lemma 1 also holds for D(aug)
train defined

in (2) with n replaced by nK.

2.2. Clarification on capacity in this model

We now informally discuss the size of our model class
in the context of our data distribution. Consider the
convolutional model (3) with C = 1 and say α = 0
for sake of simplicity in the data distribution. Using
w1 = wgen = γ

∑K
k=1 vk for some large γ > 0 will

yield excellent training and test error. This is a model that
would “generalize”. On the other hand for a fixed training
set {(x(i), y(i))}i∈[n], one could also obtain almost perfect
training error by using w1 = woverfit = γ

∑n
i=1 y

(i)ξ(i),
whenever σξ and d � n (noise components {ξ(i)}i∈[n]

are near orthonormal). Indeed with high probability,
∀i∈[n], y

(i)f(woverfit,x(i)) = y(i)
∑
p∈[P] ψ(woverfit ·

x
(i)
p) is exactly

ψ
(
γσ2

ξ (1+Õ(
√
n/d))

)
+ψ
(
γσξO(

√
n/d)

)
= γσ2

ξ (1+o(1)) .

In other words the model with woverfit will almost
perfectly memorize the training set, while on the other
hand it is clear that it will completely fail to generalize.
This shows that the model class is large enough so that
any classical measure of complexity, e.g., Rademacher
complexity, would fail to predict generalization (even data-
dependent Rademacher complexity where the x(i) follow
our data distribution). In fact, our arguments below show
that gradient descent could lead to a model of the form
woverfit in a Rademacher complexity setting (i.e., with
random label y(i) independent of the inputs x(i)). Thus,
even restricting to models reached by gradient descent
would still yield a high Rademacher complexity. This
phenomenon has also been empirically observed in practical
neural networks (Neyshabur et al., 2015; Zhang et al., 2021),
and shown theoretically in simpler models in (Nagarajan &
Kolter, 2019). Thus, we are in a case where not only do we
need to leverage the fact that we are using gradient descent
to prove generalization, but we also need to use the specific
target function (i.e., the relation between y and x) that we
are working with.

2.3. Our argument in a nutshell

At a high level we show that there is a cutoff point in the
features, denote it Kcut, such that running gradient descent
on the above architecture and data distribution will lead to a
model which is essentially a mixture of parts of wgen and
parts of woverfit described above. Roughly it will be:∑

k≤Kcut

vk +
∑

i:k∗i>Kcut

y(i)ξ(i) . (4)

In words, the frequent enough features will be learned,
and the data points that correspond to infrequent enough
features will be memorized through their noise component.
Quite naturally, this cutoff point will be decreasing with
the magnitude of the noise σξ, i.e., the bigger the noise the
fewer features will be learned. While this argument also
holds for gradient descent dynamics on linear models, the
cutoff pointKcut of linear models can be higher than that of
the non-linear models, which shows that non-linear models
can memorize through the noise component at a higher SNR
(see Section 3.3 for the exact cutoff point).

Where data augmentation will come in is that it can
effectively change the frequency of the features, and in
the extreme case we consider to make them all equal,i.e.,
all with frequency 1/K. We then show that there exists a
setting of the parameters such that frequency 1/K is learned
at noise magnitude σξ, so that with data augmentation all
the features are learned.

2.4. Linear and tensor models

Before diving into the dynamics of gradient descent for
our neural network architecture and data distribution, let us
expand briefly on linear models. In Appendix E we study
the max-`2 margin linear classifier for our data, but for sake
of simplicity we consider here an even more basic predictor
that is specifically tailored to our data distribution: θ̄ :=
1
n

∑n
i=1

∑
p∈[P] y

(i)x
(i)
p .Note that θ̄ is a linear function on

Rd, and we naturally extend it to the domain Rd×P of our
data points (with slight overloading of notation) as θ̄(x) =∑
p∈[P] θ̄ · xp. Compared to a gradient descent learned

model, it is not clear whether this predictor is meaningful
beyond our specific data distribution, and we emphasize
that we study it merely as a shortest path to get quantitative
estimates for the discussion in Section 2.3 (e.g., for the
cutoff point and for the SNR of interest). In fact the (gradient
descent learnable) max margin linear classifier has even
better properties than the estimator w̄, see the Appendix E
for more details.

Derivation of a cutoff point. It is easy to check that
with our data distribution we have θ̄ = θ̄S + θ̄N where
θ̄S =

∑K
k=1 ρkvk (say the fraction of examples of type k

is exactly ρk) and θ̄N = 1
n

∑n
i=1 y

(i)ξ(i) (assume α = 0

for this discussion). In particular for x sampled from our

distribution, we have with high probability |θ̄N (x)| ' σ2
ξ√
nd

and θ̄S(x) ' ρky if x is of type k. This means that
the predictor θ̄ has successfully learned feature vk iff

ρk >
σ2
ξ√
nd

. In other words for this linear model the

cutoff frequency is at ρcut =
σ2
ξ√
nd

. With a small leap
of faith (related to the fact that after data augmentation
the noise terms are no longer i.i.d., which we show to be
not a in our proof of non-linear model) we can see that
as long as this cutoff frequency is smaller than 1√

K
, data

augmentation would enable full learning of all the views,
since in that case the post-augmentation frequencies 1

K are
larger than the cutoff frequency with n replaced by nK, i.e.,
1
K �

σ2
ξ√
nKd

= ρcut√
K

.

Effect of simple non-linearity on SNR. The simplest
type of “non-linearity” would be to consider a tensor
method for this problem (note that this is nothing
but a kernel method). Specifically, let T =

1
n

∑n
i=1

∑
p∈[P] yi

(
x

(i)
p

)⊗q
, be the natural empirical

tensor for this problem, for some odd q ∈ N, whose domain
is extended from Rd to Rd×P as before, i.e., T (x) =∑
p∈[P] T (xp). Note that this function can be realized in

our architecture with a pure polynomial activation function
ψ(z) = zq, see (Bubeck et al., 2021) for more on neural
network memorization with tensors. Similarly to the linear
case one can decompose the tensor into a signal and noise
components:

T = S+N, where S =

K∑
k=1

ρkv
⊗q
k , N =

1

n

n∑
i=1

yi

(
ξ(i)
)⊗q

.

For x sampled from our distribution, we have with high

probability, |N(x)| ' σ2q
ξ√
ndq

and S(x) ' ρky if x has vk
as its main feature. Thus here the cutoff frequency is at

ρ
(q)
cut =

σ2q
ξ√
ndq

. In particular we see that even at high SNR,

say when
√
nd � σ2

ξ �
√
d (in which case ρ(1)

cut = o(1))

we might have ρ(q)
cut = Ω(1) for q > 1. To put it differently,

the tensor methods will overfit to the noise at a different SNR
from the pure linear model would, which in turns mean that
there is a different range of SNR where data augmentation
will be useful for non-linear models such as tensors. We
will see this story repeating itself for the gradient descent
on our neural network architecture.

Quantitative comparison with the neural network results.
We note that the thresholds derived here are better than those
we obtain via our neural network analysis (note also that
the tensor method can handle α > 0 similarly to what our
non-linearity allows). However we emphasize again that,

on the contrary to gradient descent on neural networks, the
predictors here are artificial and specifically tailored to the
data distribution at hand. Furthermore the complexity of the
tensor method scales up with q, on the contrary to the neural
network dynamic.

3. Overview of gradient descent dynamics
Let us do some heuristic calculation in the simple case
where α = 0 (so that effectively there are only two relevant
patches in inputs, xp∗ = yvk∗ and xpξ = ξ, respectively).
Recall that wc(0) ∼ N (0, σ2

0Id) and ξ ∼ N (0, σ2
ξId/d).

Thus, E[|wc(0) ·xp∗ |2] = σ2
0 and E[|wc(0) ·xpξ |2] = σ2

0σ
2
ξ

for all channels c. We will initialize so that these quantities
are o(1), and thus f(w(0),x) = o(1) for (x, y) ∼ D. We
study the gradient flow on minimizing f in this section.

3.1. When you really learn...

For f to correctly classify a datapoint x with feature vk, it
is morally sufficient that |wc · vk| is of order 1 for some
channel c. Let us look at the dynamics starting close to
initialization (when f(w(0),x) = o(1)),

d

dt
wc · vk

= − 1

n

∑
i∈[n]

y(i) `′
(
y(i)F (wc,x

(i))
) [
∇wcF (w,x(i)) · vk

]
(a)
=

1 + o(1)

2n

∑
i∈[n]

∑
p∈[P]

ψ′(|wc · x(i)
p |) y(i)x(i)

p · vk

=
1 + o(1)

2n

∑
i∈[n]

ψ′(|wc · vk∗i |)vk∗i · vk+

1 + o(1)

2n

∑
i∈[n]

ψ′(|wc · ξ(i)|)y(i)ξ(i) · vk︸ ︷︷ ︸
:=ϑ

(b)
=

1 + o(1)

2
ρk ψ

′(|wc · vk|) + ϑ , (5)

where in (a), we use −`′(o(1)) = 1/2 + o(1) for logistic
loss `, ψ′(z) = ψ(|z|) since ψ is odd, and (b) follows from
{vk} being orthogonal.

If we can ignore ϑ, resulting dynamic reduces to an ODE
of the form g′(t) = ρkψ

′(g(t)) (ignoring constants) with
g(0) ≈ σ0 = o(1). As long as g(t) = wc(t) · vk is smaller
than 1 this can be rewritten as g′(t) = ρkg(t)q−1 (because
of the form of ψ we chose), or equivalently (g(t)2−q)′ =
−ρk up to constants. In particular, we see that after time
t = g(0)2−q/ρk, we will have g(t) = Θ(1). This suggests
that by time of order 1/(σq−2

0 ρk) at least one channel should
have learned vk

5.
5We assume q ≥ 3. For the case q = 1 or q = 2, the time

When can we indeed ignore (morally) the noise term ϑ?

At initialization this term is of order
σq−1
0 σqξ√
nd

. On the other

hand the “main” term wc · vk in (5) is of order ρkσ
q−1
0 .

Thus we see that we need
σqξ√
nd
� ρk. In fact we will need a

slightly more stringent condition, because the cancellation in
ϑ leading to a scaling of 1/

√
n becomes more complicated

to analyze after initialization due to the dependencies getting
introduced. So we will use the more brutal bound |ϑ| .
σq−1
0 σqξ√
d

which in turn means we need
σqξ√
d
� ρk.

Summarizing the above, we expect that if σqξ/
√
d � ρk,

then by time 1/(σq−2
0 ρk) we will have one channel that has

learned the feature vk.

3.2. ... and when you overfit ...

Another sufficient condition to correctly classify a datapoint
(x(j), y(j)) would be to overfit to its dominant noise part
ξ(j), i.e., |wc · ξ(j)| is of order 1 for some channel c. Here
we have at initialization:

d

dt
wc · ξ(j) =

1 + o(1)

2n

∑
i∈[n]

∑
p∈[P]

ψ′(|wc · x(i)
p |)y(i)x(i)

p · ξ
(j)

=
1 + o(1)

2n

(
y(j)ψ′(|wc · ξ(j)|)‖ξ(j)‖2

+ ψ′(|wc · vk∗j |)vk∗j · ξ
(j)

+
∑

i 6=j,p∈[P]

ψ′(|wc · x(i)
p |) y(i)x(i)

p · ξ
(j)

)

=
(1 + o(1))σ2

ξ

2n
y(j)ψ′(|wc · ξ(j)|) + Γ (6)

where Γ is the last two term from the penultimate step.

Assuming Γ can be ignored, we can mimic the reasoning
above (for wc · vk) with h(t) = y(j)wc · ξ(j) and h(0) =
O(σ0σξ). We thus expect to correctly classify a datapoint
by overfitting to its noise after time O(n/(σq−2

0 σqξ)).

When can we ignore the noise term Γ? The order of Γ is
σq+1
ξ σq−1

0 /
√
d (at initialization it is in fact this times 1/

√
n

but we ignore this improvement due to the dependencies
arising through learning). On the other hand the main
term in (6) is of order σq+1

ξ σq−1
0 /n at initialization, so

we obtain the condition
√
d � n (which could possibly

be improved to d � n if cancellation remained correct
throughout learning).

Summarizing again, if d � n2, by time in the order of
n/(σq−2

0 σqξ), we can expect the data points that were not fit
before this time to be overfit using noise parameters.

needed is 1/(σq−1
0 ρk).

3.3. ... and in what order

Let us assume d � n2 and
σqξ√
d
� ρk. Then the above

discussion reveals that if n/(σq−2
0 σqξ) � 1/(σ0ρk) ⇔

ρk � σqξ/n, we will not be able to learn vk because we
will overfit before learning (In fact, in this case, we do not

need the condition
σqξ√
d
� ρk). This essentially gives rise to

a channel filter (or a combination thereof) of the form (4),
with the cutoff point Kout = {k : ρk � σqξ/n} being now
specified.

Data augmentation can fix the order by effectively
permuting the features. After data augmentation, we get the
proportion of any feature to be 1/K and the training set size
to be nK. Note that our data augmentation only permutes
the coordinates so that the inner product between ξ and
Tk(ξ) should be at the same order as two independent noise.
The learning process only depend on the inner product
between the samples so our previous analysis still holds.
Then, after data augmentation, for every view k ∈ [K], we
have ρ(aug)

k = 1/K. Then, as long as σqξ/n = o(1), we

have ρ(aug)
k � σqξ/(nK) and are able to learn vk before

overfitting.

3.4. What about spurious features?

In addition to overfitting noise, the model can also overfit
spurious features. The spurious features can be viewed as
noise vectors that appear in more than one sample. We
do not prove this case formally in our main theorems for
simplicity, but we will give the proof intuition here. Let
u ∈ Rd, ‖u‖ = 1, be some spurious feature. Now assume
that in addition to the dominant noise patch and the feature
patch, u appears in 1 > ρ

(−1)
u > 0 fraction of the datapoints

with label y = 1 and ρ(−1)
u < ρ

(1)
u fraction of the datapoints

with label y = −1. We assume u is orthogonal to the main
features v1, ...,vK . Let Iu be the set of samples with u.
We have at initialization:

d

dt
wc · u

=
1 + o(1)

2n

∑
i∈[n]

∑
p∈[P]

ψ′(|wc · x(i)
p |)y(i)x(i)

p · u

=
1 + o(1)

2n

∑
i∈Iu

y(i)ψ′(|wc · u|)‖u‖2

+
1 + o(1)

2n

∑
i∈[n]

ψ′(|wc · ξ(i)|)y(i)ξ(i) · u

︸ ︷︷ ︸
:=Υ

=
1 + o(1)

2n
(ρ(1)

u − ρ(−1)
u)ψ′(|wc · u|)‖u‖2 + Υ. (7)

Assuming Υ can be ignored, we can mimic the reasoning
for wc · vk with h(t) = wc · u and h(0) = O(σ0). We

thus expect to correctly classify a datapoint in class y =
1 with spurious feature u by overfitting to u after time
O(n/(σq−2

0 (ρ
(1)
u − ρ(−1)

u))).

When can we ignore the noise term Υ? Similar to the term
ϑ in (5), the order of Υ is σqξσ

q−1
0 /

√
nd. On the other hand

the main term in (7) is of order (ρ
(1)
u − ρ(−1)

u)σq−1
0 . Thus

we need
σqξ√
nd
� ρ

(1)
u − ρ(−1)

u .

Summarizing above, since u can appear in both class y = 1
and class y = −1, it should not be used as an indicator of
the label y. However, when u appears predominantly in

one class (e.g., when
σqξ√
nd
� ρ

(1)
u − ρ(−1)

u), the model can
overfit u and use u to classify the datapoints.

4. Main Results
We learn the model F (w,x) in (3) using gradient descent
with step size η on loss L(w) in (??). The weight wc,
c ∈ [C], at time step t is denoted as wc(t). The weight
wc(t) for training on D(aug)

train is obtained similarly, with the
samples replaced by D(aug)

train =
{

(x(i), y(i)), i ∈ [Kn]
}

. In
addition to the assumptions we have discussed in Section 3,
we make some additional assumptions for controlling the
omitted quantities arising through training and testing.

Assumption 2. We assume the following holds. For some
constant q ≥ 3,

1. The first view is dominant, 1 ≥ ρ1 ≥ Ω(1). The other

views k ∈ [K]\ {1} are minor views, nρk ≤ o
(
σqξ

)
.

2. The standard deviation of the dominant noise satisfies
ω(1) ≤ σqξ ≤ o(n).

3. The standard deviation of the weights at initialization
is bounded, σ0 ≤ o(1/σξ).

4. The number of samples and views are bounded, nK ≤
o
(
σq−1

0 σq−1
ξ d1/2

)
.

5. The feature noise satisfies, for T =

Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
,

ω(P−1) ≤ α ≤ o
(
η−1T−1P−

1
q σξ min{d− 1

2 , σ0}
)
.

Condition 1-3 in Assumption 2 have been explained in
Section 3. σ0 ≤ o(1) and σ0σξ ≤ o(1) guarantee that at
initialization, the main features and the dominant noise have
o(1) correlation with the weight. We choose σξ ≥ ω(1)
so that without properly learning the main feature, the
inner product between random initialized weights and the
dominant patch can dominate the model output. Condition
4 is a more stringent version of the condition n � d1/2

in Section 3 to control all the terms during training. In
Condition 5, we assume an upper bound on the feature
noise α. We assume the existence of feature noise only for
establishing gap with linear models, so we did not optimize
the upper bound on α. It is possible the proof can go through
with milder constraints on α.

An example of a set of parameters that satisfy the above
assumption is

q = 3, σ0 = d−0.15, σξ = d0.1, n = d0.33,

K = d0.06, ρ1 =
1

2
, ρ2 = ρ3 = ... = ρK =

1

2(K − 1)
,

α = d−0.95, P = d.

In Theorem 3, we show that under the above conditions,
without data augmentation, gradient descent can find a
classifier with perfect training accuracy without learning
the minor views. On the other hand, Theorem 4 shows that
with data augmentation, all k views can be learned without
overfitting to noise.

Theorem 3 (Training without data augmentation). Suppose
that Assumption 2 holds. Let T be the first time step such
that w(T) can classify all (x(i), y(i)) ∈ Dtrain with constant
margin, i.e., ,

y(i)F (w(T),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ Dtrain.

For hidden channel number C = Θ(log d), and small
step size η, with probability at least 1 − O(n2K

poly(d)), T =

Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. Moreover, at time step T , views

v2, . . . ,vK have never been learned, so that ∀0≤t≤T ,

Pr
(x,y)∼D

[yF (w(t),x) < 0] ≥
(

1

2
−O

(
1√
C

)) K∑
k=2

ρk.

Theorem 4 (Training with data augmentation). Suppose
assumption 2 holds. Let T aug be the first time step such that
w(T aug) can classify all (x(i), y(i)) ∈ D(aug)

train with constant
margin, i.e.,

y(i)F (w(T aug),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ D(aug)
train .

For hidden channels number C = Θ(log d), and small step
size η, with probability at least 1 − O(n

2K3

poly(d)), T aug =

Θ̃
(
Kη−1σ−q+2

0

)
, and at T aug,

Pr
(x,y)∼D

[
yF (w(T aug),x) < 0

]
≤ nK

poly(d)
.

Remark 5. In Theorem 3 and Theorem 4, we evaluate the
testing accuracy at the earliest time step T when the trained
neural network with weights w(T) can classify all samples

in the training set Dtrain with a constant margin. Our result
does not rule out the possibility that if trained longer than
T̄ , the network can learn the minor views as well. However,
we should expect the gradients on the training set stay small
after the network can classify all sample correctly. The main
reason we assume an upper bound on ηT is when training
too long, the norm of the weights w can blow up. One
possible strategy to avoid such upper bound on ηT is to add
weight decay to the gradient descent algorithm in training.
Remark 6. For simplicity of the proof, we only keep track
of the channel with the maximum correlation with the
main feature or the noise, arg maxc∈[C] wc(t) · vk and
arg maxc∈[C] ywc(t) · ξ. For the other channels, we only
give a rough bound on their correlation. For this reason,
we assume the number of channels is C = Θ(log d) so that
the output is dominated by the channel with the maximum
correlation. To extend the result to higher number of
channels, such as polynomial in d, we need to keep track of
all channels and scale the output layer by 1

C .
Remark 7. In our model, we show that when there exists
some large dominant noise, the neural network overfits to the
noise instead of learning the minor features. In practice, the
model can overfit to any vector that contributes significantly
to the gradient of the loss. For example, our proof can
be extended to the case where there exists some spurious
feature that appears in sufficiently many samples. In such
case, even when the magnitude of the spurious feature is
smaller than the dominant noise in our distribution, the
network can still overfit it.

5. Experiment
Our theoretical results showed that data augmentation can
make it harder to overfit to the noise components (the “easy
to learn and bad” feature in our model) by manipulating the
relative gradient contribution of noise vs true features. To
simplify our analysis, we assumed independent dominant
noise in each sample. We hypothesize that the feature
manipulation effect of data augmentation is broader in
practice. In particular, our high level argument suggests
that a model can also overfit to spurious features, like the
grass feature in our story of cows in the introduction, which
have strong class dependent correlations. In Appedix A, we
complement our theory using experiments.

Acknowledgements
We would like to thank Yi Zhang for valuable feedback.

References
Allen-Zhu, Z. and Li, Y. Feature purification: How

adversarial training performs robust deep learning. arXiv
preprint arXiv:2005.10190, 2020a.

Allen-Zhu, Z. and Li, Y. Towards understanding ensemble,
knowledge distillation and self-distillation in deep
learning. arXiv preprint arXiv:2012.09816, 2020b.

Azulay, A. and Weiss, Y. Why do deep convolutional
networks generalize so poorly to small image
transformations? Journal of Machine Learning
Research, 20:1–25, 2019.

Berry, A. C. The accuracy of the gaussian approximation
to the sum of independent variates. Transactions of the
american mathematical society, 49(1):122–136, 1941.

Bishop, C. M. Training with noise is equivalent to tikhonov
regularization. Neural computation, 7(1):108–116, 1995.

Bubeck, S., Li, Y., and Nagaraj, D. A law of robustness
for two-layers neural networks. Conference on Learning
Theory (COLT), 2021.

Chapelle, O., Weston, J., Bottou, L., and Vapnik, V. Vicinal
risk minimization. Advances in neural information
processing systems, pp. 416–422, 2001.

Chen, S., Dobriban, E., and Lee, J. H. A group-theoretic
framework for data augmentation. Journal of Machine
Learning Research, 21(245):1–71, 2020.

Ciregan, D., Meier, U., and Schmidhuber, J. Multi-
column deep neural networks for image classification.
In 2012 IEEE conference on computer vision and pattern
recognition, pp. 3642–3649. IEEE, 2012.

Dao, T., Gu, A., Ratner, A., Smith, V., De Sa, C., and
Ré, C. A kernel theory of modern data augmentation.
In International Conference on Machine Learning, pp.
1528–1537. PMLR, 2019.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Elandt, R. C. The folded normal distribution: Two methods
of estimating parameters from moments. Technometrics,
3(4):551–562, 1961.

Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi,
S., Mitamura, T., and Hovy, E. A survey of data
augmentation approaches for nlp. arXiv preprint
arXiv:2105.03075, 2021.

Hanin, B. and Sun, Y. How data augmentation affects
optimization for linear regression. Advances in Neural
Information Processing Systems, 34, 2021.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

Mei, S., Misiakiewicz, T., and Montanari, A. Learning with
invariances in random features and kernel models. arXiv
preprint arXiv:2102.13219, 2021.

Nagarajan, V. and Kolter, J. Z. Uniform convergence
may be unable to explain generalization in
deep learning. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
05e97c207235d63ceb1db43c60db7bbb-Paper.
pdf.

Neyshabur, B., Tomioka, R., and Srebro, N. In search of the
real inductive bias: On the role of implicit regularization
in deep learning. In ICLR (Workshop), 2015.

Rajput, S., Feng, Z., Charles, Z., Loh, P.-L., and
Papailiopoulos, D. Does data augmentation lead to
positive margin? In International Conference on Machine
Learning, pp. 5321–5330. PMLR, 2019.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of Big Data,
6(1):1–48, 2019.

Simard, P. Y., Le Cun, Y. A., Denker, J. S., and Victorri,
B. Transformation invariance in pattern recognition:
Tangent distance and propagation. International Journal
of Imaging Systems and Technology, 11(3):181–197,
2000.

Simard, P. Y., Steinkraus, D., and Platt, J. C. Best
practices for convolutional neural networks applied to
visual document analysis. In Seventh International
Conference on Document Analysis and Recognition, 2003.
Proceedings., volume 3, pp. 958–958. IEEE Computer
Society, 2003.

Wu, S., Zhang, H., Valiant, G., and Ré, C. On the
generalization effects of linear transformations in data
augmentation. In International Conference on Machine
Learning, pp. 10410–10420. PMLR, 2020.

Yaeger, L., Lyon, R., and Webb, B. Effective training of a
neural network character classifier for word recognition.
Advances in neural information processing systems, 9:
807–816, 1996.

Yang, S., Dong, Y., Ward, R., Dhillon, I. S.,
Sanghavi, S., and Lei, Q. Sample efficiency of data
augmentation consistency regularization. arXiv preprint
arXiv:2202.12230, 2022.

https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/05e97c207235d63ceb1db43c60db7bbb-Paper.pdf

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

A. Experiments
Our theoretical results showed that data augmentation can make it harder to overfit to the noise components (the “easy to
learn and bad” feature in our model) by manipulating the relative gradient contribution of noise vs true features. To simplify
our analysis, we assumed independent dominant noise in each sample. We hypothesize that the feature manipulation effect
of data augmentation is broader in practice. In particular, our high level argument suggests that a model can also overfit
to spurious features, like the grass feature in our story of cows in the introduction, which have strong class dependent
correlations. In Section A.1, we show experiments to this effect that complement our theory. We further conduct two
additional experiments that support this paper’s thesis. In Section A.2, we show an experiment with a modified data
augmentation pipeline that demonstrates that the benefits of data augmentation cannot be fully explained by the learning of
right invariance by the model. Finally, in Section A.3 we elaborate on the problem with unbalanced views, where we show
that adding extra samples from one dominant view to balanced dataset can hurt the performance of the learned models.

A.1. Spurious Feature

We use images of the dog class and the cat class from CIFAR-10 dataset, which are of size 32× 32 pixels and 3 channels.
We generate a row of random pixels u ∼ N (0, σ2Id), where d = 32 and σ = 25, which is added as a synthetic spurious
feature to a class dependent position in an image. The spurious feature u is added to the first channel in the row rcat for cat
images, and in row rdog for dog images. For each image x in the dataset, with probability p < 1 we introduce a spurious
feature, and with probability (1− p) we leave it unperturbed. We always select rcat ∈ {0, 1, . . . , 15} in the upper half of the
image, and rdog ∈ {16, 17, . . . , 31} in the lower half. In this way, the spurious feature position has a weak correlation to
the class label. See Figure 1 for sample images with spurious features. We consider three types training sets with varying
degrees of data augmentation as shown Figure 1-(b,c,d).

1. No augmentation: As a baseline without augmentation, we center-crop the image to size [3, 28, 28].
2. Random crop: In each epoch, we randomly crop a [3, 28, 28] from the original [3, 32, 32] image—a standard technique

used in practice. This would in essence disperse the position of spurious feature u. For example, cat images with u in
row rcat = 9, will now contain u in a row uniformly chosen from raug

cat ∼ U({5, 6, 7, 8, 9}).
3. Randomized noise position: Random crop, although standard, has a confounding effect that in addition to perturbing

the position of u, it might also incorporate other useful inductive biases about images. For a more direct comparison
to the baseline, we also look at a special augmentation, wherein we perturb just the spurious feature row position
by a uniform random number in [−2, 2] in each epoch and then use a simple center crop. As in the case of random
crop, this would again disperse the spurious feature from rcat = 9 to raug

cat ∈ U({5, 6, 7, 8, 9}). But the non-spurious
features/pixels remain the same as baseline.

(a) Original images (b) No augmentation (c) Random crop (d) Random noise position

Figure 1: Examples of training images in the spurious features experiment (Section A.1). For ease of visualization, we use a green line
rather than random row vector u to indicate the spurious feature. In the original [3, 32, 32] images shown in (a), the spurious feature
is added to the first channel of row rcat = 9 for the cat class (lower images), and of row rdog = 22 for the dog class (upper images).
Sub-figures (b,c,d) correspond to samples from different data augmentation methods described in the experiment.

We compare the testing accuracy of training on these three types of training set in Figure 2 for different values of rcat and
rdog. When (rcat, rdog) = (15, 16) (Figure 2, right), after data augmentation with either random noise position or random
crop, the position of u in the perturbed imaged has a large overlap across classes. So it is not surprising that the test accuracy
with augmentation remains about the same for almost all values of p (fraction of images with spurious features). On the
other hand, for positions (9, 22) and (12, 19) (Figure 2, left & center)), although the two data augmentation techniques
disperse the positions of spurious feature, its location in the two classes still stays separated. The cat images always have u
in the upper half of the image while the dog images always have u in the lower half of the image. Interestingly, even so, the

data augmentation, specially even the simple random feature position, can improve the test accuracy. In this case, while
augmentation does not eliminate the existence of spurious features, it still diminishes them by making the spurious features
harder to be learned and overfitted. In addition to shifting the spurious features, random crop can shift other important
features as well to boost the minor views, so the testing accuracy when training with random crop can be even higher than
only shifting the spurious feature position.

0.0 0.2 0.4 0.6 0.8 1.0

50

60

70

80

Te
st
 a
cc
ur
ac
y

rcat= 9, rdog= 22

Random noise position
Random crop
No augmentation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction p of images with spurious features

rcat= 12, rdog= 19

Random noise position
Random crop
No augmentation

0.0 0.2 0.4 0.6 0.8 1.0

rcat= 15, rdog= 16

Random noise position
Random crop
No augmentation

Figure 2: Comparison of different data augmentation strategies for the CIFAR-10 cat-vs-dog classification task with a synthetic spurious
feature. The plots show results for different sets of positions of spurious feature (rcat, rdog) as we vary the fraction p of all the images that
have the spurious feature. The plots are averaged over five runs with error bars of one standard deviation. The test datapoints are always
center-cropped images of size [3, 28, 28] with no spurious feature. In all configurations, we train a ResNet20 network using SGD for 120
epochs with momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to (0.01, 0.001) at epochs (40, 80).

A.2. Augmented samples vs. independent samples

When using data augmentation, typically a new random transformation (e.g., random flip or crop at a random position of an
image) is used in each epoch of training. This procedure effectively increases the training dataset size (albeit with non i.i.d
correlated samples). In this experiment, we control for the number of unique samples seen by the training algorithm and ask
the question: how effective is a single data augmented sample compared to an independent sample?

For this experiment, we work with the full CIFAR-10 dataset which has 50000 training examples for 10 classes. Given a
ratio p of independent samples to total sample size, we generate a training set of size n = 50000 as follows: We first select
pn independent samples for the task. We then cyclically generate a data augmented variant these pn independent samples
until we obtain the remaining (1− p)n datapoint. For example, in the CIFAR-10 dataset with n = 50000, if p = 0.6, the
training set consists of 30000 independent samples, of which 20000 have one additional augmented sample. If p = 0.2, the
training set has 10000 independent samples and four data augmented versions of each of the 10000 independent samples.
Thus, for p = 1, there is no augmentation, and for smaller p, there are more augmented samples, but less independent
samples. The dataset thus generated is then fixed for all epochs. In this way, the number of unique samples seen by training
algorithm is always n = 50000 for all p.

In Figure 3, we compare the accuracies of a ResNet20 model trained on such partially data augmented samples to the
baseline of training with just the pn independent samples without any augmentation. Our experiment shows that even this
partial data augmentation can significantly improve the testing accuracy. In this experiment, since each example has only a
small number of augmented variations (e.g., for p ≥ 0.5 at most one augmented variant of the an example is seen throughout
training), it is unlikely that they lead to learning any kind of task specific invariance, which is the usual motivation. However,
by having the important feature appearing at a slightly different location, data augmentation can still facilitate the learning
of the important features via the feature manipulation view described in our paper. Furthermore, comparing the accuracy
of un-augmented full dataset with p = 1.0 on blue-dashed curve to that of data augmented training for p ≥ 0.5 on the red
curve, we see that a fixed data augmented image can improve the test accuracy nearly as much as an independent sample
does. This shows that if we have an important feature in an image, e.g., a cat ear, shifting it two pixels can help nearly as
effectively as a completely new cat ear.

A.3. Unbalanced Dataset

In this experiment, we train a simple convolutional neural network on a synthetic dataset with unbalanced views. We show
that when one view is much more prevalent in the dataset than the other views, having more samples of the dominant view
can hurt learning. Our data consist of samples (x, y) from two classes y ∈ {−1, 1}. The input x ∈ R3×15 has 3 channels,

0.2 0.4 0.6 0.8 1.0
Ratio p of independent data to total data

0.6

0.7

0.8

Te
st
in
g
ac

cu
ra
cy

With data augmentation
Without data augmentation

Figure 3: Augmented vs independent samples: for each p on the x-axis, the data augmented training (red-solid curve) uses 50000p
independent images from CIFAR-10, along with 50000(1− p) data augmented samples. The augmented dataset is fixed across epochs.
For the baseline without data augmentation (blue-dashed curve) we simply use the 50000p independent samples. We use the standard
CIFAR-10 test dataset and the results are averaged over 3 runs. In each instance, we train a ResNet20 for 160 epochs using SGD with
momentum 0.9, weight decay 0.005, and learning rate starting at 0.1 and annealed to (0.01, 0.001) at epochs (80, 120).

each with 15 pixels. After sampling y uniformly, we generate x by setting one of the 15 pixels to the main feature [y, y, y].
The other pixels are set to a Gaussian noise N (0, σ2

ξI3). For different choices of σξ, we first construct a balanced dataset
Dbal of size nbal such that roughly equal number of samples that have the good feature [y, y, y] present at each pixel. Our
full dataset Dfull with nfull samples consists of Dbal along with additional nfull − nbal samples with the main feature only at
pixel 3. We use a balanced testing dataset.

0.85

0.90

0.95

1.00

Te
st
 a
cc
ur
ac

y

σξ= 0.3

full
bal

σξ= 0.4 σξ= 0.5

0.25 0.50 0.75 1.00
nbal/nfull

0.7

0.8

0.9

Te
st
 a
cc
ur
ac

y

σξ= 0.6

0.25 0.50 0.75 1.00
nbal/nfull

σξ= 0.7

0.25 0.50 0.75 1.00
nbal/nfull

σξ= 0.8

Figure 4: Comparison of training on Dbal to Dfull as we vary the ratio of balanced examples nbal/nfull for different values of noise
magnitude σξ. We learn the data using a simple convolutional neural network with two convolutional layers with ReLU activation, a
maxpool layer and a linear layer. The two convolutional layers and the max pool layer have kernel size 4, and strides 2,1 and 2, respectively.
The models are trained for 200 epochs using SGD with momentum 0.9, weight decay 0.05, and learning rate starting at 0.1 and annealed
to 0.01 at epoch 100. For all training sets, the training accuracy at the end of training is at least 0.99.

In Figure 4, we see that compared to the balanced dataset Dbal, although the full dataset Dfull has strictly more samples with
the accurate kind of features, when σξ is not too large, the test accuracy is consistently on par or even lower than training on
just the balanced subset. In this case, the views are simply features positioned at different pixels. For very large σξ, the
test accuracy of the balanced subset can be low because in such case, the full dataset can learn the dominant view well, but
the unbalanced dataset has too few samples to learn any view. The experiment shows that even for architectures such as

convolutional networks, which are believed to have some translation invariance, we should not expect samples from one
view to help the learning of other views.

Appendix
We clarify that throughout the appendix c1, c2, . . . denote constants, while C denotes the number of channels in our model
(3) and is not a constant, but is a function of d. Throughout the appendix, for any sample (x(i), y(i)), we let P(i)

bp be the

background patches of (x(i), y(i)) and for k ∈ [K], P(i)
bp,k be the background patches with feature noise −αp,iyvk.

B. Useful concentration lemmas
We first state the following standard results on Gaussian samples. These will be used in our proof frequently. .

Lemma 2 (Laurent-Massart χ2 tail bound). Consider a standard Gaussian vector z ∼ N (0, Id). For any positive vector
a ∈ Rd≥0, and any t > 0, the following concentration holds

Pr
[d∑
i=1

aiz
2
i ≥ ‖a‖1 + 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ exp(−t),

Pr
[d∑
i=1

aiz
2
i ≤ ‖a‖1 − 2‖a‖2

√
t
]
≤ exp(−t).

The following corollary immediately follows from using t = log (2/δ) and ai = 1 in the above lemma

Corollary 3 (`2 norm of Gaussian vector). Consider z ∼ N (0, σ2Id), for any δ ∈ (0, 1) and large enough d, we have with
probability greater than 1− δ,

σ2d

(
1− 2

√
log(2/δ)

d

)
≤ ‖z‖22 ≤ σ2d

(
1 + 4

√
log(2/δ)

d

)
.

Lemma 4 (Gaussian correlation). Consider independently sampled Gaussian vectors z1 ∼ N (0, σ2
1Id) and z2 ∈

N (0, σ2
2Id). For any δ ∈ (0, 1) and large enough d, there exists a constant c1, c2 such that

|z1 · z2| ≤ c1σ1σ2

√
d log(2/δ) w.p ≥ 1− δ,

z1 · z2 ≥ c2σ1σ2

√
d w.p ≥ 1/4.

Proof. Let u = ‖z2‖2 and v = z1 · z2

‖z2‖2 . Since z1 is spherically symmetric, we have v ∼ N (0, σ2
1) and is independent of

u. We first show the upper bound.

Pr(|uv| ≥ t) = Pr(|v| ≥ t/u, u ≥ c) + Pr(|v| ≥ t/u, u ≤ c) (holds ∀ c > 0)
≤ min

c>0
Pr(u ≥ c) + Pr(|v| ≥ t/c)

≤ Pr
(
u ≥ 2σ2

√
d
)

+ Pr

(
|v| ≥ t

2σ2

√
d

)
(using c = 2σ2

√
d)

≤ exp

(
−d

4

)
+ exp

(
− t2

8σ2
1σ

2
2d

)
(using Lemma 2 on u = ‖z2‖2 and v ∼ N (0, σ2

1))

Using t = 2σ1σ2

√
2d log(2/δ), we get the first inequality for all d ≥ 4 log(2/δ).

For the lower bound, using a similar argument as above we have

Pr(uv ≤ t) ≤ min
c>0

Pr(v ≤ t/c) + Pr(u ≤ c)

≤ Pr
(
v ≤ σ1

4

)
+ Pr

(
u ≤ 1

2
σ2

√
d

)
(using c = 1

2σ2

√
d and t = 1

8σ1σ2

√
d)

≤ 5

8
+ exp

(
− d

16

)
≤ 3

4
(using Lemma 2 on u and cdf bound on v)

The lower bound thus holds for d ≥ 16 log(8) using t = 1
8σ1σ2

√
d. This concludes the proof of the lemma.

Lemma 5 (Gaussian tail concentration). Consider i.i.d samples {zc ∼ N (0, σ2) : c ∈ [C]}. We have the following:

max
c∈[C]

|zc| ≤ σ
√

2 log
2C

δ
, w.p ≥ 1− δ,

max
c∈[C]

zc ≥
σ

2
, w.p ≥ 1− exp(−C/4).

Proof. These are standard Gaussian tail bounds, which we prove here for completeness. We have:

Pr

(
max
c∈[C]

zc ≥ t
)
≤
∑
c∈[C]

Pr(zc ≥ t) ≤ C exp

(
−t2

2σ2

)
.

Using the same argument for over 2C variables {zc ∼ N (0, σ2),−zc ∼ N (0, σ2)}c∈[C] along with t = σ
√

2 log(2C/δ),

we have the first inequality that maxc∈[C] |zc| ≤ σ
√

2 log 2C
δ , w.p ≥ 1− δ.

Furthermore, ∀c∈[C], we have Pr(zc ≥ σ/2) ≥ 1/4, hence

Pr

(
max
c∈[C]

zc ≥ σ/2
)
≥ 1−

(
1− 1/4

)C ≥ 1− exp(−C/4)

This concludes the proof of the lemma.

Lemma 8 (Berry–Esseen theorem (Berry, 1941)). Consider i.i.d samples {ui : i ∈ [n]} with Eui = 0, Eu2
i = σ2 > 0 and

E |ui|3 = ρ <∞. Let Fn be the cumulative distribution function of 1
σ
√
n

∑n
i=1 ui, and Φ be the cumulative distribution

function of the standard normal distribution. For all t, there exists a constant c1 such that

|Fn(t)− Φ(t)| ≤ c1ρ

σ3
√
n
.

Lemma 9 (Anti-concentration of q-th power of Gaussian random variables). Consider i.i.d samples {zc ∼ N (0, 1) : c ∈
[C]}. For constant integer q ≥ 1, there exist constants c1, c2 > 0 such that for any t ≤ o(1),

Pr

∑
c∈[C]

zqc ≥ c1t
√
C

 ≥ 1

2
− o(1)− c2√

C
.

Proof. For constant q, Ez2q
c ≤ O(1) and E |zc|3q ≤ O(1) (Elandt, 1961). Then, by Lemma 8, for any t, there exist c1 and

c2 such that

Pr

 1

c1
√
C

∑
c∈[C]

zqc ≥ t

 ≥ Pr [z1 ≥ t]−
c2√
C
.

Choosing t = o(1) proves the lemma.

C. Additional notation
Recall the data distribution D from Definition 1. Further recall that, for i ∈ [n], we use k∗i , p∗i , pξi , ξ(i), and
(αp,i, kp,i)p/∈{p∗i ,p

ξ
i }

to denote the respective quantities k∗, p∗, pξ, ξ, and (αp, kp)p/∈{p∗,pξ} in Definition 1 for the ith

training sample (x(i), y(i)) ∈ Dtrain ∼ D. In addition to these notation in Section 2, we introduce the following additional
notation for the proofs.

1. ∀ k ∈ [K], let Ik = {i ∈ [n] : k∗i = k} denote the set of indices of the training data (x, y) with yvk as the main
feature. Further, let nk = |Ik|

2. ∀ i ∈ [n] and ∀ k ∈ [K], let P(i)
bp,k be the background patches of the ith sample with kth-type feature noise, i.e.,

P(i)
bp,k = {p ∈ [P] \ {p∗i , p

ξ
i } : x(i)

p = −αp,iyvk};

and let P(i)
bp =

⋃
k∈[K] P

(i)
bp,k = [P] \ {p∗i , p

ξ
i } denote the set of all background patches of the ith sample.

Remark 1. For k ∈ [K], let ρ̂k = 1
n |Ik| denote the empirical fraction in the training data of kth. Recall that ki are sampled

independently with Pr(k∗i = k) = ρk. Thus, with with high probability, ρk and ρ̂k differ at most by
√

log(n)
n . In the rest of

the paper, for simplicity we assume ρk = ρ̂k.

Similarly, let ρ̂(noise)
k be the proportion of feature noise −yvk in dataset Dtrain, i.e., ρ̂(noise)

k = 1
n(P−2) |{i ∈ [n], p ∈

[P] \ {p∗i , p
ξ
i }]|kp,i = k}| Again from standard concentration, we have ρk and ρ̂(noise)

k differ by negligible quantity with high
probability, thus we also assume ρk = ρ̂(noise)

k .

D. Proof of initialization conditions in Lemma 1
Lemma 1. [Ginit-conditions] Consider n i.i.d. samples Dtrain = {(x(i), y(i)) : i ∈ [n]} from the distribution in Definition 1.
Let the parameters w of the network in (3) be initialized as wc(0) ∼ N (0, σ2

0Id) ∀ c ∈ [C]. If the number of channels is
C = Ω(log d), then with probability greater than 1−O(n

2KC
poly(d)), the following conditions hold :

1. Feature-vs-parameter: ∀ k ∈ [K], max
c∈[C]

wc(0) · vk ≥ Ω(σ0), and max
c∈[C]

|wc(0) · vk| ≤ Õ (σ0) .

2. Noise-vs-parameter:∀ i ∈ [n], max
c∈[C]

wc(0) · y(i)ξ(i) ≥ Ω̃ (σ0σξ), and max
c∈[C]

|wc(0) · ξ(i)| ≤ Õ (σ0σξ) .

3. Noise-vs-noise: ∀ i ∈ [n], ξ(i) · ξ(i) = Θ(σ2
ξ) and ∀ i, j ∈ [n], i 6= j, |ξ(i) · ξ(j)| ≤ Õ(σ2

ξ/
√
d).

4. Feature-vs-noise: ∀ i ∈ [n], k ∈ [K], |ξ(i) · vk| ≤ Õ(σξ/
√
d).

5. Parameter norm: ∀ c ∈ [C], ‖wc(0)‖ = Θ(σ0

√
d).

Proof. Recall the setting of the lemma: ∀ k ∈ [K], ‖vk‖2 = 1, ∀ i ∈ [n], y(i)ξ(i) i.i.d∼ N (0,
σ2
ξ

d Id), and ∀ c ∈ [C],

wc(0)
i.i.d∼ N (0, σ2

0Id). We have the following arguments that prove the lemma, where we use δ = 1
poly(d) .

1. Feature parameter correlations: ∀ k ∈ [K], we have {wc(0) · vk ∼ N (0, σ2
0)}c∈[C] are C i.i.d Gaussian. Thus, using

union bound on the Gaussian tail concentration in Lemma 5 we have condition (1) holds w.p. ≥ 1−Kδ−K exp(−C/4).

2. Noise-parameter correlation: ∀ i ∈ [n] and ∀ c ∈ [C] using Gaussian correlation bound from Lemma 4, we have
|wc(0) · ξ(i)| ≥ Õ(σ0σξ) w.p. ≥ 1− nCδ.

Furthermore, using the second inequality in Lemma 4, we have wc(0) · y(i)ξ(i) ≥ c2
√
σ0σξ w.p. ≥ 1/4. Hence,

maxc∈[C] wc(0) · y(i)ξ(i) ≥ c2
√
σ0σξ w.p. ≥ 1− (1− 1/4)C ≥ 1− exp(C).

Thus, summing over failure probabilities, we have that condition (2) holds w.p. ≥ 1− nCδ − n exp(−C/4)

3. Noise-noise correlations: Using the `2 norm bound from Corollary 3 on ‖ξ(i)‖
2

2, and the correlation tail bound on
|ξ(i) · ξ(j)| for i 6= j from Lemma 4, we have condition (3) holds w.p. ≥ 1− 2n2δ

4. Feature noise correlation: ∀ k ∈ [K], we have {ξ(i) · vk ∼ N (0, σ2
ξ/d)}i∈[n] are n i.i.d Gaussians. Thus, again using

union bound on the Gaussian tail concentration in Lemma 5 condition (4) holds w.p. ≥ 1− nδ.

5. Parameter norm: From concentration of `2 norm of Gaussian vector in Corollary 3, condition (5) holds w.p. ≥ 1−2Cδ
.

The lemma follows from using δ = 1
poly(d) and C = Ω(log d)⇒ exp(−C) = O(1

poly(d)).

Lemma 1a. Ginit in Lemma 1 also holds for D(aug)
train defined in (2) with n replaced by nK.

Proof. Recall that since the features {vk}k are orthonormal (Assumption 1) and all the non-feature noise are spherically
symmetric, without loss of generality, we assume that {vk}k∈[K] are simply the first K standard basis vectors in Rd, i.e.,
vk = ek. In this case, we choose Tk for k ∈ [K − 1] as a permutation of coordinates of Rd without any fixed points, i.e.,
∀ i ∈ [d], Tk(z)[i] 6= z[i] that satisfies (1) on the first K coordinate.

We now show that the Ginit conditions in Lemma 1 holds for D(aug)
train = Dtrain ∪ T1(Dtrain) ∪ T2(Dtrain) ∪ . . . ∪ TK−1(Dtrain)

defined with transformations {Tk}k∈[K−1] described above.

• First, among the Ginit conditions, (1) and (5) are independent of the samples and hence immediately hold.

• Secondly, ∀ i ∈ [n] and ∀ k ∈ [K], Tk(ξ(i)) is simply some permutation of the coordinates of ξ(i) ∼ N (0, σ2
ξId/d),

and hence Tk(ξ(i)) ∼ N (0, σ2
ξId/d) has the same marginal distribution as ξ(i). This implies that conditions (2) and

(4), as well the norm condition in (3) of Lemma 1 also holds for D(aug)
train .

• Finally, note that ∀ i 6= j, ∀ k, k′, Tk(ξ(i)) and Tk′(ξ(j)) are independent Gaussians. Thus, the correlation bounds in
(3) of the form |Tk(ξ(i)) · Tk′(ξ(j))| = Õ(σ2

ξ/
√
d) for all i 6= j also follow from the proof of Lemma 1.

The only non-trivial condition we want to show is the following bound on the noise correlations of distinct transformations
of the same sample, i.e., we only need to show that |ξ(i) · Tk(ξ(i))| ≤ Õ(σ2

ξ/
√
d) with high probability for all k ∈ [K − 1].

Note that for any 1 ≤ k < k′ ≤ K − 1, Tk(ξ(i)) · Tk′(ξ(i)) is equivalent in distribution to ξ(i) · Tk′−k(ξ(i)).

Claim 1. If ξ ∼ N (0, σ2
ξId/d) then ∀ k ∈ [K − 1], |ξ · Tk(ξ)| ≤ O

(
σ2
ξ

√
log (1/δ)

d

)
w.p. ≥ 1− δ.

Proof. At a high level, we create a non-overlapping partition of the entries of ξ into three vectors ξ′, ξ′′, and ξ′′′, each of
which of length at least d/6. The partition is chosen such that same partitioning of entries of Tk(ξ) denoted as ξ̃

′
, ξ̃
′′

, and
ξ̃
′′′

are independent of ξ′, ξ′′, and ξ′′′, respectively. We then have ξ · Tk(ξ) = ξ′ · ξ̃
′
+ ξ′′ · ξ̃

′′
+ ξ′′′ · ξ̃

′′′
, where each term

is a dot product of two independent spherical Gaussians of length at least d/6 and entrywise variance of σ2
ξ/d. The claim

then follows from bounding each term using Lemma 4.

We divide the coordinates of ξ into disjoint and ordered lists L1, L2, . . ., constructed as follows. The first list is

L1 =
[
ξ[1], Tk(ξ)[1], T 2

k (ξ)[1], . . . , T s1k (ξ)[1]
]
,

where T mk denotes composition of Tk for m times, and we stop the list at the first s1 ≤ d− 1 such that T s1+1
k (e1) = e1

(when T s1+1
k (ξ)[1] = ξ[1]). We claim that this stopping criteria ensures that L1 has s1 unique coordinate of ξ without any

duplicates. If not, there exists some 0 ≤ s′ < s′′ ≤ s1 such that T s′′k (e1) = T s′k (e1). Since Tk is a permutation (hence
invertible), this would imply that T s

′′−s′
k (e1) = e1 for s′′ − s′ ≤ s1, which contradicts the stopping criteria.

Note that if s1 = d− 1, we have included all the coordinates of ξ in L1, and we stop our stop our construction here. If L1

does not contain all coordinates of ξ, let 1 < j2 ≤ d be the first coordinate such that ξ[j2] /∈ L1. Let,

L2 =
[
ξ[j2], Tk(ξ)[j2], T 2

k (ξ)[j2], . . . , T s2k (ξ)[j2]
]
,

where we stop either when all the entries of ξ have been included in L(m)
1 or L(m)

2 , or at the first integer s2 such that
T s2+1
k (ej2) = ej2 (when T s2+1

k (ξ)[j2] = ξ[j2]). With a similar argument as with L1, there are no duplicate coordinates
in L2. Furthermore, we either have have L2 and L1 containing disjoint coordinates of ξ, or have L1 ⊂ L2. To see this,
suppose for 0 ≤ s′ ≤ s1 and 0 ≤ s′′ ≤ s2, we have T s′k (e1) = T s′′k (ej2). If s′ ≥ s′′, again from invertibility of Tk, we

would have T s
′−s′′

k (e1) = ej2 for s′ − s′′ ≤ s1, which is contradiction for ξ[j2] /∈ L1. On the other hand, if s′ < s′′,
then T s

′′−s′
k (ej2) = e1, and the entire construction of L1 would also be contained in L2. This would imply that all the

coordinates of L1 are contained in L2 exactly once (since L2 does not have duplicates). Without loss of generality, we
assume the former condition that L2 and L1 are disjoint holds as otherwise, L1 ⊂ L2 and we can simply drop the first list
L1 from our construction, and our proof follows exactly.

We construct L3, L4, . . . , L` similarly until all coordinates of ξ belong to exactly one list. We also define
T L1, T L2, . . . , T L` as lists obtained by circularly shifting the coordinates of L1, L2, . . . , L`, respectively, by one index.
For example, T L1 =

[
Tk(ξ)[1], T 2

k (ξ)[1], . . . , T s1k (ξ)[1], ξ[1]
]
.

By construction, for l = 1, 2 . . . `, for every coordinate of ξ that is included in Ll, has the same coordinate of Tk(ξ) is
included in T Ll at the same position, i.e., for all i ≤ sl, j ≤ d, Ll[i] = ξ[j] =⇒ T Ll[i] = T (ξ)[j]. We now construct ξ′,
ξ′′, and ξ′′′. For l = 1, 2 . . . , `, do the following:

• Sequentially distribute all the elements except the last element of Ll to ξ′, ξ′′, ξ′′′, e.g., the 1st element of Ll goes to ξ′,
2nd to ξ′′, 3rd to ξ′′′, 4th to ξ′ and so on. This assignment ensures that ξ′, ξ′′, ξ′′′ do not contain any adjacent entries of
Ll, i.e., if Ll[i] is in ξ′, then Ll[i+ 1] is not in ξ′, and same is true for ξ′′, and ξ′′.

• Include the last element of Ll to a list among ξ′, ξ′′, ξ′′′ that does not contain the first or the second last element of Ll.
Thus the last element of Ll is not in the same list as its circularly adjacent neighbors ξ[jl] and T sl−1

k (ξ)[jl].

• Repeat the exact assignment as above to distribute the elements of T Ll to ξ̃
′
, ξ̃

(′′
, ξ̃
′′′

.

By construction, {ξ′, ξ′′, ξ′′′} and {ξ̃
′
, ξ′′, ξ′′′} satisfy the following properties: (a) ξ · Tk(ξ) = ξ′ · ξ̃

′
+ ξ′′ · ξ̃

′′
+ ξ′′′ · ξ̃

′′′
.

(b) ξ′, ξ′′, and ξ′′′ are independent of ξ̃
′
, ξ̃
′′

, and ξ̃
′′′

, respectively. Furthermore, each of these vectors is a spherical Gaussian
with entrywise variance of σ2

ξ/d. (c) we have included at least d/3− 1 = Θ(d) entries of ξ in each of ξ′, ξ′′, and ξ′′′. The

claim now follows from using Lemma 4 on ξ′ · ξ̃
′
, ξ′′ · ξ̃

′′
, and ξ′′′ · ξ̃

′′′
.

The above claim completes the proof of Lemma 1a.

E. Linear models
In this section we discuss the behavior of linear models for data from our distribution D in Definition 1. We consider the
same patchwise convolutional model in (3), but without non-linearity. Without loss of generality, assume C = 1. Thus, for
θ ∈ Rd, the model effectively becomes f linear(θ,x) = θ · x̄, where x̄ =

∑
p xp.

Linear models without feature noise. In the first result stated and proved below, we assume no feature noise αp = 0. In
this case, x̄(i) = y(i)vk∗i + ξ(i). Recall the notation that for k ∈ [K], Ik = {i ∈ [n] : k∗i = k} and nk = |Ik|.

Theorem 6. With high probability, the max `2 margin linear model over Dtrain = {(x̄(i), y(i)) : i ∈ [n]} is given by

θ̂`2 =
∑
k∈[K]

1

1 + (1 + o(1))σ2
ξ/nk

(
vk +

1

nk

∑
i∈Ik

y(i)ξ(i)

)
(8)

Proof. Without loss of generality, assume the data points are grouped by the feature type k∗i , such that I1 = {1, 2, . . . , n1},
I2 = {n1 + 1, n1 + 2, . . . n1 + n2}, and so on. Also let X ∈ Rn×d denote a matrix containing y(i)x̄(i) as rows and let
K = XX> ∈ Rn×n denote the corresponding kernel matrix.

The `2 max margin classifier is given by θ̂`2 = minθ ‖θ‖22 s.t. Xθ ≥ 1. From the optimality conditions of the max-margin
problem, we know that there exists a dual variable ν ∈ Rn+, s.t. θ̂`2 = X>ν. We use notation νk ∈ Rnk+ such that
ν = [ν>1 ,ν

>
2 , . . .ν

>
K]>. We can now write the objective and constraints of the max margin problem in terms of dual

variables as follows: ‖θ‖22 = ν>Kν and the margin condition is Kν ≥ 1.

Let us first look at structure ofK. Recall that x̄(i) = y(i)vk∗i +ξ(i), where {vk}k are orthonormal and ξ(i) ∼ N (0, σ2
ξId/d).

Using the standard concentration inequalities in Appendix B, the following holds with high probability.

Kij = y(i)x̄(i) · y(j)x̄(j) =

1 + σ2

ξ + Õ(
σ2
ξ√
d
) if i = j

1 + Õ(
σ2
ξ√
d
) if i 6= j, k∗i = k∗j

Õ(
σ2
ξ√
d
) if i 6= j, k∗i 6= k∗j

.

We can combine all the Õ(
σ2
ξ√
d
) terms in ∆, and write K = K̄ + ∆ where K̄ij = 1k∗i=k∗j

+ σ2
ξ1i=j . Thus, K̄ is a block

diagonal matrix which is dominant compared to lower order terms in ∆.

Based on this block dominant structure of K, for w = X>ν and ν ≥ 0, the margin on data points is given by,

∀ i ∈ Ik, (Kν)i = ‖νk‖1 + σ2
ξνk,i + (∆ν)i, (9)

and the `2 norm is given by,

‖θ‖22 = ν>Kν =

 ∑
k∈[K]

‖νk‖21 + σ2
ξ‖νk‖22

+ ν>∆ν. (10)

Recall that ∆ij = Õ(σ2
ξ/
√
d), we have the following two possibilities of ν:

Case 1. ‖ν‖∞ = O(1): In this case (∆ν)i = o(σ2
ξ) and we have (Kν)i = ‖νk‖1 + σ2

ξνk,i + o(σ2
ξ). Thus the margin

constraint requires that mink mini∈Ik ‖νk‖1 + σ2
ξνk,i + o(σ2

ξ) ≥ 1. Furthermore, for large enough d, ‖θ‖22 is
monotonic in νk,i (for positive νk,i). Thus the optimal ν is given by

∀ k ∈ [K], ∀ i ∈ Ik, νk,i =
1

nk + (1 + o(1))σ2
ξ

. (11)

In this case, ‖θ‖22 = 1
1+σ2

ξ/nk
(1 + o(1)) = O(1).

Case 2. If ν = ω(1), then ‖θ‖22 = ω(1) which is suboptimal compared to the above case.

In conclusion, we have the optimal ν for the max-margin problem given by (11). Thus,

θ̂`2 = X>ν =
∑
k∈[K]

∑
i∈Ik

νk,iy
(i)x̄(i)

=
∑
k∈[K]

∑
i∈Ik

vk + y(i)ξ(i)

nk + (1 + o(1))σ2
ξ

=
∑
k∈[K]

1

1 + (1 + o(1))σ2
ξ/nk

(
vk +

1

nk

∑
i∈Ik

y(i)ξ(i)

)
.

This concludes the proof of the theorem.

For the above classifier, for simplicity, we look at the case when there are only two views, k = 2. Corollary 7 follows from

direct calculation on θ̂
>
`2x for a sample x from our distribution. The thresholds given in Corollary 7 are better than the

threshold we derive for our neural network.

Corollary 7. Suppose k = 2, ω(1) ≤ σ2
ξ ≤
√
nd and n ≤ d. The `2 max-margin linear model in (8) can successfully learn

feature v1. To successfully learn feature v2, we need ρ2 �
σ2
ξ√
nd

if n ≤ o(σ2
ξ) and ρ2 �

σ3
ξ

n
√
d

otherwise.

Linear models with feature noise. In the second result, we study linear models in the presence of feature noise. We show
linear models are not able to learn samples from our data distribution D while the non-linear model we study can learn D.
To facilitate the proof of linear models, we make some additional simplifications. These simplifications are not necessary for
our main results. For linear model results alone, we consider the case when the dominant noise ξ is zero, i.e., σξ = 0. Note
that letting σξ > 0 can only make the classification harder. Let Λ(x) be the sum of the coefficients of the feature noise if x,
i.e., Λ(x) =

∑
k∈[K]

∑
p∈Pbp αp. Let µΛ be the probability that Λ(x) > 1 for each (x, y). We assume that the patch with

the main feature is chosen uniform randomly from [P]. Let D′ be the distribution satisfies the above assumptions.

Theorem 10. For any linear classifier θ ∈ Rd×P , we have

Pr
(x,y)∼D′

[sign 〈x,θ〉 6= sign y] >
1

P
min {µΛ, 1− µΛ} min

k∈[K]
ρk.

Moreover, there exists a non-linear model F in (3) with weights w, such that

Pr
(x,y)∼D′

[sign F (w,x) 6= sign y] = 0.

Proof. Let ∆ = minp∈[P],k∈[K] θ(p−1)d+k−1 and p∗, k∗ = arg minp∈[P],k∈[K] θ(p−1)d+k−1. If ∆ ≤ 0, for any sample
with main feature yvk∗ in patch p∗, and Λ(x) ≤ 1,

y 〈x,θ〉 ≤ −∆ + Λ(x)∆ < 0.

If ∆ > 0, then for any sample with main feature yvk∗ in patch p∗, with Λ(x) > 1,

y 〈x,θ〉 ≤ ∆− Λ(x)∆ ≤ 0.

Then, for both the case that ∆ > 0 and the case that ∆ ≤ 0, with probability at least min {µΛ, 1− µΛ}mink∈[K] ρk/P ,
sign 〈x,θ〉 6= sign y.

Now, consider the non-linear model given by weights w1 =
∑
k∈[K] vk and wc = 0 for all c ∈ [C]\ {1}. For any datapoint

(x, y) with main feature yvk∗ ,

yF (w,x) = y
∑
c∈[C]

∑
p∈[P]

ψ (〈wc,xp〉)

= ψ (〈w1,vk∗〉)−
∑
k∈[K]

∑
Pbp,k

ψ (〈w1, αvk〉)

≥ 1

q
− 1

q
αqP

> 0.

Thus, we have sign F (w,x) = sign y for all samples (x, y).

F. Proof of the Main Results
F.1. Dynamics of network weights: learning features and noise

We first present a few lemmas useful for the proof of the main results. We derive the training trajectories for the dataset
without data augmentation Dtrain. All lemmas in this section also hold for the dataset with data augmentation D(aug)

train with n
replaced Kn and ρk replaced by ρ(aug)

k = 1
K . We defer the proof of the lemmas to Appendix G.

Lemma 11 and Lemma 12 give some rough bounds on 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉, which are used repeatedly in the proof.

Lemma 11 (Rough upper and lower bound on 〈wc(t),vk〉). Suppose Ginit holds and

α ≤ o
(
σ

1
q

ξ d
− 1

2qP−
1
q

(
σ0 + ηTρk + ηTσξd

−1/2
)− q−1

q

)
.

For all 0 ≤ t′ ≤ t ≤ T and k ∈ [K], we have

max
c∈[C]

〈wc(t),vk〉 ≤ max
c∈[C]

〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)

≤ Õ
(
σ0 + ηT

(
ρk + σξd

−1/2
))

,

and

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)
.

Lemma 12 (Rough lower bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

For all 0 ≤ t ≤ t′ ≤ T and i ∈ [n], we have

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Combining Lemma 11 and Lemma 12, we can show that when the time step T is bounded, 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉

are lower bounded.

Lemma 13 (Lower bound on 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉). Suppose Ginit holds,

n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. For all 0 ≤ t′ ≤ t ≤ T , and c ∈ [C],

〈wc(t),vk〉 ≥ 〈wc(t
′),vk〉 − o(σ0),

and for all i ∈ [n],

y(i)
〈
wc(t), ξ

(i)
〉
≥ y(i)

〈
wc(t

′), ξ(i)
〉
− o (σ0σξ) .

Next, Lemma 14 and Lemma 15 compute the time it takes for the model to learn the main feature vk, k ∈ [K] and overfit
the noise ξ(i), i ∈ [n]. Lemma 16 and Lemma 17 upper bound 〈wc(t),vk〉 and 〈wc(t), ξ

(i)〉 for t smaller than the time
identified in Lemma 14 and Lemma 15.

Lemma 14 (Learning the main feature). Suppose Ginit holds, C = Θ(log d), σ0σξ ≤ o(1), σqξd
−1/2 ≤ o(ρk) and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃

((
ηρkσ

q−2
0

)−1
)

. For any k ∈ [K] and 0 ≤ t ≤ T , if

max
c∈[C]

〈wc(t),vk〉 ≤ O(C−1/q), and max
i∈[n],c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ),

then

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

.

Moreover, if maxi∈[n],c∈[C]

〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
1

ηρkσ
q−2
0

)
, there exists T ′ ≤ Õ

(
1

ηρkσ
q−2
0

)
such that

maxc∈[C] 〈wc(T
′),vk〉 ≥ Ω

(
C−1/q

)
.

Lemma 15 (Overfitting the dominant noise). Suppose Ginit holds, C = Θ(log d), n ≤
o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
.

Let i ∈ [n] be some sample such that for all 0 ≤ t ≤ T , maxc∈[C]

〈
wc(t),vk∗i

〉
≤ O(C−1/q). For any time step 0 ≤ t ≤ T

, if
max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q),

we have

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

.

Moreover, there exists times step T ′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
such that maxc∈[C] y

(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Lemma 16 (Upper bound on 〈wc(t),vk〉). If Ginit holds, for all k ∈ [K] and t ≤ o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
,

max
c∈[C]

〈wc(t),vk〉 ≤ Õ (σ0) .

Lemma 17 (Upper bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds, n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

})
,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
. For all t ≤ o(nη−1σ−qξ σ−q+2

0) and i ∈ [n], maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ).

Finally, Lemma 18 bounds 〈wc(t), ξ〉 for some noise patch ξ from the testing set. Lemma 18 is useful in proving the test
accuracy.

Lemma 18 (Bound on 〈wc(t), ξ〉 for ξ from the testing set). Let ξ ∼ N (0, σ2
ξId) be a random noise vector

independent of the dataset. Suppose Ginit holds, C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
,

K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. With probability at least 1 − nK

polyd , for all c ∈ [C] and
0 ≤ t ≤ T ,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

F.2. Proof of main results from Lemmas in Appendix F.1

We first derive some implications of Assumption 2 that we use as conditions in the lemmas in F.1.

1. nK ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
follows from nK ≤ o(σq−1

0 σq−1
ξ d1/2) and σξ ≥ ω(1).

2. K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

follows from nK ≤ o(σq−1
0 σq−1

ξ d1/2), σξ ≥ ω(1) and n ≥ ω(σqξ).

3. σξd−1/2 ≤ o(1) follows from nK ≤ o
(
σq−1

0 σq−1
ξ d1/2

)
, σ0σξ ≤ o(1) and n ≥ ω(σqξ).

4. σqξK ≤ o(d1/2) follows from nK ≤ o(σq−1
0 σq−1

ξ d1/2), σξσ0 ≤ o(1) and o(n) ≥ σqξ ≥ ω(1).

5. α ≤ o
(
P−

1
q σξ min

{
d−1/2, σ0

} (
σ0 + ηT maxk∈[K] ρk + ηTσξd

−1/2
)−1
)

follows from σξd
−1/2 ≤ o(1), σ0 ≤

o(1) and ηT ≥ ω(1).

Now, using Lemma 11 - 18, we prove the main theorems.

Theorem 3 (Training without data augmentation). Suppose that Assumption 2 holds. Let T be the first time step such that
w(T) can classify all (x(i), y(i)) ∈ Dtrain with constant margin, i.e., ,

y(i)F (w(T),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ Dtrain.

For hidden channel number C = Θ(log d), and small step size η, with probability at least 1 − O(n2K
poly(d)), T =

Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. Moreover, at time step T , views v2, . . . ,vK have never been learned, so that ∀0≤t≤T ,

Pr
(x,y)∼D

[yF (w(t),x) < 0] ≥
(

1

2
−O

(
1√
C

)) K∑
k=2

ρk.

Proof. By Lemma 1, with probability at least 1 − O
(
n2K log d

polyd

)
, Ginit holds. We first show that all (x(i), y(i)) ∈ Dtrain

can be classified correctly with constant margin at some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
. We first consider the samples

i ∈ [n] such that k∗i = 1. If Assumption 2 holds, ω(σqξ) ≤ n, so η−1ρ−1
1 σ−q+2

0 ≤ o
(
nη−1σ−qξ σ−q+2

0

)
. By Lemma

17, maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
η−1ρ1σ

−q+2
0

)
. Then, by Lemma 14, there exists some

t∗ ≤ Õ
(
η−1ρ−1

1 σ−q+2
0

)
such that maxc∈[C] 〈wc(t

∗),v1〉 = Θ
(
C−1/q

)
. Moreover, by Lemma 13, at any time step

t∗ ≤ t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, the feature v1 satisfies,

max
c∈[C]

〈wc(t
′),v1〉 ≥ max

c∈[C]
〈wc(t

∗),v1〉 − o (σ0) ≥ Ω
(
C−1/q

)
.

We can further show for all c ∈ [C] and t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, 〈wc(t

′),v1〉 and y(i)
〈
wc(t

′), ξ(i)
〉

are lower bounded.
By Lemma 13, when Ginit holds,

〈wc(t
′),v1〉 ≥ 〈wc(0),v1〉 − o (σ0) ≥ −Õ(σ0),

and for all i ∈ [n],
y(i)

〈
wc(t

′), ξ(i)
〉
≥ y(i)

〈
wc(0), ξ(i)

〉
− o (σ0σξ) ≥ −Õ(σ0σξ).

Then, there exists some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
such that for i with k∗i = 1,

y(i)F (w(T),x(i)) = y(i)
∑
c∈[C]

∑
p∈[P]

ψ
(〈

wc(T),x(i)
p

〉)

= y(i)
∑
c∈[C]

ψ
(〈

wc(T), y(i)vk∗i

〉)
+ y(i)

∑
c∈[C]

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ
(〈

wc(T),−αp,iy(i)vk

〉)
+ y(i)

∑
c∈[C]

ψ
(〈

wc(T), ξ(i)
〉)

(12)

≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω̃ (1) .

The third step follows from maxc∈[C] 〈wc(T),v1〉 ≥ Ω
(
C−1/q

)
, minc∈[C] 〈wc(T),v1〉 ≥ −Õ(σ0),

minc∈[C] y
(i)
〈
wc(T), ξ(i)

〉
≥ −Õ(σ0σξ) and Lemma 11. The last step follows from the the upper bound assumption on

α, σ0 ≤ o(1) and σ0σξ ≤ o(1).

We next show that the training accuracy is perfect for all i ∈ [n] such that k∗i 6= 1. By Lemma 16 and Assumption

2 that ρk ≤ o
(
n−1σqξ

)
and n ≤ o(σq−1

ξ σq−1
0 d1/2), we have σ0

ηρkσ
q−1
0 +ησξd−1/2

≥ ω
(
nη−1σ−qξ σ−q+2

0

)
, and therefore

maxc∈[C] 〈wc(t),vk〉 ≤ Õ (σ0) for all 0 ≤ t ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and k 6= 1. Then, for any i ∈ [n] such that k∗i 6= 1,

by Lemma 15, there exists some time step t(i) such that maxc∈[C] y
(i)
〈
wc(t

(i)), ξ(i)
〉
≥ Ω

(
C−1/q

)
. Moreover, by Lemma

13, for all t(i) ≤ t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
, maxc∈[C] y

(i)
〈
wc(t

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Then, there exists some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
such that for all (x(i), y(i)) ∈ Dtrain such that k∗i 6= 1,

y(i)F (w(T),x(i)) ≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω

(
1

C

)
.

The first step follows from (12), and Lemma 11. The second step follows from the upper bound assumption on α, σ0 ≤ o(1)
and σ0σξ ≤ o(1).

Thus, at some T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
, for all i ∈ [n], we have y(i)F (w(t),x(i)) ≥ Ω

(
1
C

)
≥ Ω̃ (1).

Next, we show that the margin is o(1) at t ≤ o
(
nη−1σ−qξ σ−q+2

0

)
for any (x(i), y(i)) such that k∗i 6= 1. Since t ≤

o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
, by Lemma 16, maxc∈[C]

〈
wc(t),vk∗i

〉
≤ Õ (σ0). Since t ≤ o

(
nη−1σ−qξ σ−q+2

0

)
, by Lemma 17,

y(i)
〈
wc(T), ξ(i)

〉
≤ Õ(σ0σξ). Then,

y(i)F (w(t),x(i)) ≤ CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ CÕ(σq0σ

q
ξ)

≤ o(1). (13)

The first step follows from (12). The second step follows from the upper bound assumption on α, σ0 ≤ o(1) and σ0σξ ≤ o(1).

Thus, we have show that T = Θ̃
(
nη−1σ−qξ σ−q+2

0

)
.

Finally, we show that the testing accuracy is bad on the testing dataset. For any (x, y) ∼ D with the main feature vk∗ such
that k∗ 6= 1 and dominant noise ξ, since maxc∈[C] |〈wc(t),vk〉| ≤ Õ (σ0) for any t ≤ T , following (12),

yF (w(t),x) ≤ CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ y

∑
c∈[C]

ψ (〈wc(t), ξ〉)

≤ CÕ(σq0) + CÕ
(
σqξσ

q
0

)

+ y
∑
c∈[C]

ψ (〈wc(0), ξ〉) +

∣∣∣∣∣∣y
∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣
≤ Co(σqξσ

q
0) + y

∑
c∈[C]

ψ (〈wc(0), ξ〉) +

∣∣∣∣∣∣y
∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ .
The second step uses the upper bound on α. The last step follows the assumption σξ ≥ ω(1). For any c ∈ [C], by Lemma
4, with probability at least 1− 1

polyd , |〈wc(0), ξ〉| ≤ Õ(σ0σξ). Then, by Lemma 18, |〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ)

with probability at least 1− nK
polyd and therefore |〈wc(t), ξ〉| ≤ Õ(σ0σξ) and∣∣∣∣∣∣y

∑
c∈[C]

ψ (〈wc(t), ξ〉)− y
∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ ≤
∑
c∈[C]

qÕ(σq−1
0 σq−1

ξ) |〈wc(t), ξ〉 − 〈wc(0), ξ〉|

≤ Co(σqξσ
q
0)

For t = 0, 〈wc(0), ξ〉 ∼ N (0, σ2
0 ‖ξ‖

2
) and {〈wc(0), ξ〉 : c ∈ [C]} are independent. By Lemma 3, ‖ξ‖2 = Θ(σ2

ξ). Then,
by Lemma 9, with probability at least 1

2 −O(1√
C

),

yF (w(t),x) ≤ Co(σqξσ
q
0) + y

∑
c∈[C]

ψ (〈wc(0), ξ〉) < 0.

Theorem 4 (Training with data augmentation). Suppose assumption 2 holds. Let T aug be the first time step such that
w(T aug) can classify all (x(i), y(i)) ∈ D(aug)

train with constant margin, i.e.,

y(i)F (w(T aug),x(i)) ≥ Ω̃(1), for all (x(i),y(i))∈ D(aug)
train .

For hidden channels number C = Θ(log d), and small step size η, with probability at least 1 − O(n
2K3

poly(d)), T aug =

Θ̃
(
Kη−1σ−q+2

0

)
, and at T aug,

Pr
(x,y)∼D

[
yF (w(T aug),x) < 0

]
≤ nK

poly(d)
.

Proof. By Lemma 1a, Ginit holds with probability at least 1−O
(
n2K3 log d

polyd

)
.

We first show that T aug = Õ
(
Kη−1σ−q+2

0

)
. For the augmented dataset, we have ρ(aug)

k = 1
K for all k ∈ [K]

and the size of the dataset is Kn. For any k ∈ [K], if Assumption 2 holds, ω(σqξ) ≤ n, so η−1ρ(aug)
k
−1σ−q+2

0 ≤
o
(
Knη−1σ−qξ σ−q+2

0

)
. Then, for any i ∈ [Kn] with k∗i = k, by Lemma 17 maxc∈[C] y

(i)
〈
wc(T), ξ(i)

〉
≤ Õ (σ0σξ)

for all 0 ≤ t ≤ Õ
(
Kη−1σ−q+2

0

)
. Then, under the assumption σqξK ≤ o

(
d1/2

)
, by Lemma 14, there exists some

tk = Θ̃
(

1

ηρ(aug)
k σq−2

0

)
such that maxc∈[C] 〈wc(tk),vk〉 ≥ Ω

(
C−1/q

)
. By Lemma 13, for any tk ≤ t′ ≤ Θ̃

(
Kη−1σ−q+2

0

)
,

maxc∈[C] 〈wc(t
′),vk〉 ≥ Ω

(
C−1/q

)
. Then, there exists some T = Θ̃

(
Kη−1σ−q+2

0

)
such that for all (x(i), y(i)) ∈ D(aug)

train ,

y(i)F (w(T),x(i)) = y(i)
∑
c∈[C]

∑
p∈[P]

ψ
(〈

wc(T),x(i)
p

〉)
= y(i)

∑
c∈[C]

ψ
(〈

wc(T), y(i)vk∗i

〉)
+ y(i)

∑
c∈[C]

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ
(〈

wc(T),−αp,iy(i)vk

〉)
+ y(i)

∑
c∈[C]

ψ
(〈

wc(T), ξ(i)
〉)

(14)

≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
− CÕ(σq0σ

q
ξ)

≥ Ω̃ (1) .

The third step follows from maxc∈[C] 〈wc(T),vk〉 ≥ Ω
(
C−1/q

)
, Lemma 11 and Lemma 13. The last step follows from

the upper bound assumption on α, σ0 ≤ o(1) and σ0σξ ≤ o(1).

Next, when t = o
(

1

ηρ(aug)
k σq−2

0

)
, by Lemma 16 ,

〈
wc(t),vk∗i

〉
≤ Õ(σ0). By Lemma 17, y(i)

〈
wc(T), ξ(i)

〉
≤ Õ(σ0σξ).

Then,

y(i)F (w(t),x(i)) ≤CÕ(σq0) + CPαqÕ

((
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ CÕ(σq0σ

q
ξ)

≤o(1).

The second step follows from the upper bound assumption on α, σ0 ≤ o(1) and σ0σξ ≤ o(1). Thus, we have shown that

T (aug) = Θ̃
(
Kη−1σ−q+2

0

)
.

Finally, we show that the testing accuracy is perfect at T (aug) = Θ̃
(
Kη−1σ−q+2

0

)
. For any sample (x, y) in the testing set

with dominant noise ξ, if Ginit hold, by (14),

yF (w(T (aug)),x) ≥ Ω

(
1

C

)
− CÕ(σq0)− CPαqÕ

((
σ0 + ηT (aug)

(
max
k∈[K]

ρk + σξd
−1/2

))q)
+ y

∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)

≥ Ω

(
1

C

)
+ y

∑
c∈[C]

ψ (〈wc(0), ξ〉)−

∣∣∣∣∣∣y
∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)
− y

∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ .
For any c ∈ [C], by Lemma 4, with probability at least 1 − 1

polyd , |〈wc(0), ξ〉| ≤ Õ(σ0σξ). Then, by Lemma 18,∣∣〈wc(T
(aug)), ξ

〉
− 〈wc(0), ξ〉

∣∣ ≤ o(σ0σξ) with probability at least 1 − nK
polyd and therefore

∣∣〈wc(T
(aug)), ξ

〉∣∣ ≤ Õ(σ0σξ)
and ∣∣∣∣∣∣y

∑
c∈[C]

ψ
(〈
wc(T

(aug)), ξ
〉)
− y

∑
c∈[C]

ψ (〈wc(0), ξ〉)

∣∣∣∣∣∣ ≤
∑
c∈[C]

qÕ(σq−1
0 σq−1

ξ)
∣∣〈wc(T

(aug)), ξ
〉
− 〈wc(0), ξ〉

∣∣
≤ Co(σqξσ

q
0).

Thus, with probability at least 1− nK
polyd , yF (w(T (aug)),x) ≥ Ω̃(1).

G. Deferred Proof of Lemmas in Appendix F
In this section, we present the proof of lemmas necessary for proving our main result.

Lemma 11 (Rough upper and lower bound on 〈wc(t),vk〉). Suppose Ginit holds and

α ≤ o
(
σ

1
q

ξ d
− 1

2qP−
1
q

(
σ0 + ηTρk + ηTσξd

−1/2
)− q−1

q

)
.

For all 0 ≤ t′ ≤ t ≤ T and k ∈ [K], we have

max
c∈[C]

〈wc(t),vk〉 ≤ max
c∈[C]

〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)

≤ Õ
(
σ0 + ηT

(
ρk + σξd

−1/2
))

,

and

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)
.

Proof. For any k ∈ [K], c ∈ [C] and 0 ≤ t < T ,

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
(15)

We bound each term separately. Since 1

1+ey
(i)F (w(t),x(i))

≤ 1 for all i ∈ [n], ‖vk‖22 = 1, and ψ′ (〈wc(t),vk〉) ≤ 1 for all
k ∈ [K], we have

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≤ O(ηρk).

The feature noise term

− η
n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 ≤ 0.

When Ginit holds,
〈
ξ(i),vk

〉
≤ Õ(σξd

−1/2) for all i ∈ [n]. Since 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′
(〈

wc(t), ξ
(i)
〉)
≤ 1,

η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
≤ Õ

(
ησξd

−1/2
)
.

Then, for all 0 ≤ t < T ,

〈wc(t+ 1),vk〉 ≤ 〈wc(t),vk〉+ ηÕ
(
ρk + σξd

−1/2
)
,

which implies for any 0 ≤ t′ ≤ t ≤ T ,

〈wc(t),vk〉 ≤ 〈wc(t
′),vk〉+ η(t− t′)Õ

(
ρk + σξd

−1/2
)
.

Next, we lower bound 〈wc(t),vk〉 using induction. When Ginit holds, 〈wc(0),vk〉 ≥ −Õ
(
σ0 + ηTσξd

−1/2
)
. Assume for

all 0 ≤ t′ ≤ t,

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
≥ −Õ

(
σ0 + ηTσξd

−1/2
)

for induction. We have

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≥ 0.

We have shown that 〈wc(t),vk〉 ≤ Õ
(
σ0 + ηTρk + ηTσξd

−1/2
)

for all c ∈ [C] and k ∈ [K]. By the induction hypothesis,

η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

≤ ηαqPÕ

((
σ0 + ηTρk + ηTσξd

−1/2
)q−1

)
≤ Õ

(
ησξd

−1/2
)
.

The last inequality follows from α ≤ Õ
(
σ

1
q

ξ d
− 1

2qP−
1
q /
(
σ0 + ηTρk + ηTσξd

−1/2
) q−1

q

)
. When Ginit holds,

− η
n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)

y(i)
〈
ξ(i),vk

〉)
≤ Õ

(
ησξd

−1/2
)
.

Then, plugging into (15), for any 0 ≤ t′ ≤ t+ 1 ≤ T,

−〈wc(t+ 1),vk〉 ≤ − 〈wc(t
′),vk〉+ η(t+ 1− t′)Õ

(
σξd
−1/2

)
.

Thus, we have completed the induction and therefore

min
c∈[C]

〈wc(t),vk〉 ≥ min
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
.

Finally, for t′ = 0, when Ginit holds, |〈wc(0),vk〉| ≤ Õ(σ0).

Lemma 12 (Rough lower bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

For all 0 ≤ t ≤ t′ ≤ T and i ∈ [n], we have

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Proof. For any c ∈ [C] and i ∈ [n], we have

y(i)
〈
wc(t+ 1), ξ(i)

〉
= y(i)

〈
wc(t), ξ

(i)
〉

+
η

n

1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(16)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(17)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (w(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 (18)

We have η
n

(
1

1+ey
(i)F (w(t),x(i))

ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
positive for any i ∈ [n]. Since 1

1+ey
(j)F (w(t),x(j))

≤ 1 and

ψ′
(〈

wc(t), ξ
(j)
〉)
≤ 1 for all j ∈ [n] , if Ginit holds,

(16) ≥ −ηÕ
(
σ2
ξd
−1/2

)
, (17)≥ −ηÕ

(
σξd
−1/2

)
.

Also,

(18) ≥ −ηÕ
(
αqPσξd

−1/2 max
k∈[K]

|〈wc(t),vk〉|q−1

)
≥ −ηÕ

(
αqPσξd

−1/2
(
σ0 + ηT

(
ρk + σξd

−1/2
))q−1

)
≥ −ηÕ

(
σξd
−1/2

)
The second inequality follows from Lemma 11. The third inequality follows from the upper bound on α. Then,

y(i)
〈
wc(t+ 1), ξ(i)

〉
− y(i)

〈
wc(t), ξ

(i)
〉
≥ −ηÕ

(
σ2
ξd
−1/2 + σξd

−1/2
)
,

which gives

min
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ min
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Lemma 13 (Lower bound on 〈wc(t),vk〉 and 〈wc(t), ξ
(i)〉). Suppose Ginit holds,

n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ Õ

(
min

{
1, σ

1
q

ξ d
− 1

2q

}
P−1/q

(
σ0 + ηT

(
max
k∈[K]

ρk + σξd
−1/2

))−(q−1)/q
)
.

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. For all 0 ≤ t′ ≤ t ≤ T , and c ∈ [C],

〈wc(t),vk〉 ≥ 〈wc(t
′),vk〉 − o(σ0),

and for all i ∈ [n],

y(i)
〈
wc(t), ξ

(i)
〉
≥ y(i)

〈
wc(t

′), ξ(i)
〉
− o (σ0σξ) .

Proof. By Lemma 12, for any (x(i), y(i)),

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≥ max
c∈[C]

y(i)
〈
wc(t

′), ξ(i)
〉
− η(t− t′)Õ

(
σ2
ξd
−1/2 + σξd

−1/2
)
.

Then, when t − t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, or when t − t′ ≤

Õ
(
Kη−1σ−q+2

0

)
and K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, η(t− t′)Õ
(
σ2
ξd
−1/2 + σξd

−1/2
)
≤ o (σ0σξ).

By Lemma 11,

max
c∈[C]

〈wc(t),vk〉 ≥ max
c∈[C]

〈wc(t
′),vk〉 − η(t− t′)Õ

(
σξd
−1/2

)
.

Then, when t − t′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
and n ≤ o

(
σq−1

0 σq−1
ξ d1/2

)
, or when t − t′ ≤ Õ

(
Kη−1σ−q+2

0

)
and

K ≤ o(σq−1
0 σ−1

ξ d1/2),

η(t− t′)Õ
(
σξd
−1/2

)
≤ o (σ0) ,

which completes the proof.

Lemma 14 (Learning the main feature). Suppose Ginit holds, C = Θ(log d), σ0σξ ≤ o(1), σqξd
−1/2 ≤ o(ρk) and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃

((
ηρkσ

q−2
0

)−1
)

. For any k ∈ [K] and 0 ≤ t ≤ T , if

max
c∈[C]

〈wc(t),vk〉 ≤ O(C−1/q), and max
i∈[n],c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ),

then

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

.

Moreover, if maxi∈[n],c∈[C]

〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ) for all t ≤ Õ

(
1

ηρkσ
q−2
0

)
, there exists T ′ ≤ Õ

(
1

ηρkσ
q−2
0

)
such that

maxc∈[C] 〈wc(T
′),vk〉 ≥ Ω

(
C−1/q

)
.

Proof. By the upper bound on α and Lemma 11, for any i ∈ [n] and c ∈ [C],∑
k′∈[K]

∑
p∈P(i)

bp,k′

ψ
(〈

wc(t),−y(i)αp,ivk′
〉)
≤
∑
k′∈[K]

∑
p∈P(i)

bp,k

|〈wc(t), αp,ivk′〉|q

≤ Õ
(
αqP

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q)
≤ o(1).

Then, since maxc∈[C] 〈wc(t),vk〉 ≤ O(C−1/q), and maxc∈[C] y
〈
wc(t), ξ

(i)
〉
≤ o(1) for all i ∈ [n], we have for all i

such that k∗i = k, y(i)F (w(t),x(i)) ≤ O(1) and 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1).

Now, we compute the update 〈wc(t+ 1),vk〉 − 〈wc(t),vk〉,

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 (19)

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉)
y(i)

〈
ξ(i),vk

〉)
(20)

Then, when Ginit holds, since 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1) for all i ∈ [n] such that k∗i = k,

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
= Θ

(
ηρk |〈wc(t),vk〉|q−1

)
.

We can bound the term (19) as

|(19)| ≤ Õ

 η

N

n∑
i=1

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉)

≤ Õ
(
ηρkα

qP |〈wc(t),vk〉|q−1
)
≤ o(ηρk |〈wc(t),vk〉|q−1

).

For the term (20), if Ginit holds,

|(20)| ≤ η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉) ∣∣∣〈ξ(i),vk

〉∣∣∣)

≤ Õ

(
η

n

n∑
i=1

∣∣∣〈w(t)
c , ξ(i)

〉∣∣∣q−1 〈
ξ(i),vk

〉)
≤ Õ

(
ησq−1

0 σqξd
−1/2

)
.

For t = 0, if Ginit holds, maxc∈[C] 〈wc(0),vk〉 ≥ Ω̃(σ0). Then, if σq−1
0 σqξd

−1/2 ≤ o(ρkσq−1
0), we have

max
c∈[C]

〈wc(t+ 1),vk〉 = max
c∈[C]

〈wc(t),vk〉+ Θ

(
ηρkψ

′
(

max
c∈[C]

〈wc(t),vk〉
))

, (21)

which shows maxc∈[C] 〈wc(t),vk〉 is increasing. Then, (21) holds for all t.

Starting from some 〈wc(t
′),vk〉, the number of iterations it takes to reach maxc∈[C] 〈wc(t),vk〉 ≥ 2 maxc∈[C] 〈wc(t

′),vk〉

is at most O
(

maxc∈[C]〈wc(t′),vk〉
ηρk(maxc∈[C]〈wc(t′),vk〉)

q−1

)
. Then, starting from Θ(σ0), it takes at most

Õ

(∞∑
i=0

2iσ0

ηρk(2iσ0)q−1

)
≤ Õ

(
1

ηρkσ
q−2
0

)

time steps to reach maxc∈[C] 〈wc(t),vk〉 ≥ Ω
(
C−1/q

)
.

Lemma 15 (Overfitting the dominant noise). Suppose Ginit holds, C = Θ(log d), n ≤
o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
.

Let i ∈ [n] be some sample such that for all 0 ≤ t ≤ T , maxc∈[C]

〈
wc(t),vk∗i

〉
≤ O(C−1/q). For any time step 0 ≤ t ≤ T

, if
max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q),

we have

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

.

Moreover, there exists times step T ′ ≤ Õ
(
nη−1σ−qξ σ−q+2

0

)
such that maxc∈[C] y

(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω

(
C−1/q

)
.

Proof. By the upper bound on α and Lemma 11, for any c ∈ [C],∣∣∣∣∣∣∣
∑
k′∈[K]

∑
p∈P(i)

bp,k′

ψ (〈wc(t), αp,ivk′〉)

∣∣∣∣∣∣∣ ≤
∑
k′∈[K]

∑
p∈P(i)

bp,k

|〈wc(t), αp,ivk′〉|q

≤ Õ
(
αqP

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q)
≤ o(1).

For i, when maxc∈[C]

〈
wc(t), vk∗i

〉
≤ O(C−1/q), maxc∈[C] y

(i)
〈
wc(t), ξ

(i)
〉
≤ O(C−1/q) and∣∣∣∣∣∣∣

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ (〈wc(t),−yαp,ivk〉)

∣∣∣∣∣∣∣ ≤ o(1),

we have y(i)F (w(t),x(i)) ≤ O(1) and therefore 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1). Then,

y(i)
〈
wc(t+ 1), ξ(i)

〉
= y(i)

〈
wc(t), ξ

(i)
〉

+
η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(22)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (wc(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(23)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (wc(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 . (24)

If 1

1+ey
(i)F (w(t),x(i))

≥ Ω(1), and Ω̃ (σ0σξ) ≤ maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉

,

η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
≥ Ω̃

(η
n

(σ0σξ)
q−1

σ2
ξ

)
.

When Ginit holds, since 1

1+ey
(i)F (w(t),x(i))

≤ 1, ψ′
(〈

wc(t), ξ
(j)
〉)
≤ 1, and ψ′

(〈
wc(t),vk∗j

〉)
≤ 1, |(22)| ≤

Õ
(
ησ2

ξd
−1/2

)
and |(23)| ≤ Õ

(
ησξd

−1/2
)
.

By Lemma 11 and the upper bound on α,

|(24)| ≤ Õ
(
ηαqP max

k∈[K]
|〈wc(t),vk〉|q−1

σξd
−1/2

)
≤ Õ

(
ηαqP (σ0 + ηT (ρk + σξ))

q−1
σξd
−1/2

)
≤ Õ

(
ησξd

−1/2
)
.

When Ginit holds, Ω̃ (σ0σξ) ≤ y(i) maxc∈[C]

〈
wc(0), ξ(i)

〉
. Then, when n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, for

t = 0,

max
c∈[C]

y(i)
〈
wc(t+ 1), ξ(i)

〉
= max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉

+
η

n
Θ̃

(
σ2
ξψ
′
(

max
c∈[C]

y(i)
〈
wc(t), ξ

(i)
〉))

, (25)

which shows maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉

is increasing. Then, (25) holds for all 0 ≤ t ≤ T .

Starting from maxc∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉

, the number of iterations it takes to reach maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≥

2 maxc∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉

is at most O

(
nmaxc∈[C] y

(i)〈wc(t′),ξ(i)〉
ησ2
ξ(maxc∈[C] y(i)〈wc(t′),ξ(i)〉)q−1

)
. Then, starting from

maxc∈[C] y
(i)
〈
wc(0), ξ(i)

〉
≥ Ω̃ (σ0σξ), it takes at most

T ′ ≤ Õ

(∞∑
i=0

n2iσ0σξ
ησ2

ξ (2iσ0σξ)q−1

)
≤ Õ

(
n

ησ2
ξ (σ0σξ)q−2

)

time steps to reach maxc∈[C] y
(i)
〈
wc(T

′), ξ(i)
〉
≥ Ω(C−1/q).

Lemma 16 (Upper bound on 〈wc(t),vk〉). If Ginit holds, for all k ∈ [K] and t ≤ o
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
,

max
c∈[C]

〈wc(t),vk〉 ≤ Õ (σ0) .

Proof. For every k ∈ [K],

〈wc(t+ 1),vk〉

= 〈wc(t),vk〉+
η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
p∈P(i)

bp,k

αp,iψ
′ (〈wc(t), αp,ivk〉) ‖vk‖22

 (26)

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

w(t)
c , ξ(i)

〉)
y(i)

〈
ξ(i),vk

〉)
(27)

Then, since 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′ (〈wc(t),vk〉) ≤ O
(
|〈wc(t),vk〉|q−1

)
,

η

n

∑
i:k∗i=k

(
1

1 + ey(i)F (w(t),x(i))
ψ′ (〈wc(t),vk〉) ‖vk‖22

)
≤ O

(
ηρk |〈wc(t),vk〉|q−1

)
.

The second term (26)≤ 0. For (27), since
∣∣∣ y(i)

1+ey
(i)F (w(t),x(i))

∣∣∣ ≤ 1 and ψ′
(〈

w
(t)
c , ξ(i)

〉)
≤ 1, if Ginit holds, (27) ≤

Õ
(
σξd
−1/2

)
.

Finally, if Ginit holds, 〈wc(0),vk〉 ≤ Õ (σ0), so it takes at least t ≥ Ω̃
(

σ0

ηρkσ
q−1
0 +ησξd−1/2

)
time steps to reach

〈wc(t),vk〉 ≥ 2 〈wc(0),vk〉.

Lemma 17 (Upper bound on 〈wc(t), ξ
(i)〉). Suppose Ginit holds, n ≤ o

(
min

{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

})
,

for some T ≥ Ω̃
(
nη−1σ−qξ σ−q+2

0

)
. For all t ≤ o(nη−1σ−qξ σ−q+2

0) and i ∈ [n], maxc∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ).

Proof. We prove using induction. At t = 0, when Ginit holds, maxi∈[n],c∈[C] y
(i)
〈
wc(0), ξ(i)

〉
≤ Õ(σ0σξ). Assume

maxi∈[n],c∈[C] y
(i)
〈
wc(t

′), ξ(i)
〉
≤ Õ(σ0σξ) for any 0 ≤ t′ ≤ t for induction. For any c ∈ [C],

y(i)
〈
wc(t+ 1), ξ(i)

〉

= y(i)
〈
wc(t), ξ

(i)
〉

+
η

n

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)∥∥∥ξ(i)

∥∥∥2

2

)
+
η

n

∑
j:j 6=i

(
y(i)y(j)

1 + ey(j)F (w(t),x(j))
ψ′
(〈

wc(t), ξ
(j)
〉)〈

ξ(j), ξ(i)
〉)

(28)

+
η

n

n∑
j=1

(
y(i)

1 + ey(j)F (wc(t),x(j))
ψ′
(〈

wc(t),vk∗j

〉)〈
vk∗j , ξ

(i)
〉)

(29)

− η

n

n∑
j=1

 y(i)

1 + ey(j)F (wc(t),x(j))

∑
k∈[K]

∑
p∈P(j)

bp,k

ψ′ (〈wc(t), αp,jvk〉)
〈
αp,jvk, ξ

(i)
〉 . (30)

Then, when Ginit holds, by 1

1+ey
(i)F (w(t),x(i))

≤ 1 and ψ′(·) ≤ 1,

y(i)
〈
wc(t+ 1), ξ(i)

〉
≤ y(i)

〈
wc(t), ξ

(i)
〉

+ ηÕ(n−1σq−1
0 σq+1

ξ + σ2
ξd
−1/2 + σξd

−1/2 + αqPσξd
−1/2

(
σ0 + ηT

(
ρk + σξd

−1/2
))q−1

)

≤ y(i)
〈
wc(0), ξ(i)

〉
+ ηtÕ(n−1σq−1

0 σq+1
ξ + σ2

ξd
−1/2 + σξd

−1/2).

The last step uses the upper bound on α and the induction hypothesis. Since n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
and t ≤ o(nη−1σ−qξ σ−q+2

0), maxi∈[n],c∈[C] y
(i)
〈
wc(t), ξ

(i)
〉
≤ Õ(σ0σξ).

Lemma 18 (Bound on 〈wc(t), ξ〉 for ξ from the testing set). Let ξ ∼ N (0, σ2
ξId) be a random noise vector

independent of the dataset. Suppose Ginit holds, C = Θ(log d), n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
,

K ≤ o
(

min
{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

α ≤ o

(
P−

1
q min

{
1, σ

1
q

ξ d
− 1

2q

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)− q−1
q

,

(
σ0 + ηT max

k∈[K]
ρk + ηTσξd

−1/2

)−1
})

,

for some T = Θ̃
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
. With probability at least 1 − nK

polyd , for all c ∈ [C] and
0 ≤ t ≤ T ,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

Proof. For any 0 ≤ t < T ,

〈wc(t+ 1), ξ〉

= 〈wc(t), ξ〉+
η

n

n∑
i=1

y(i)

1 + ey(i)F (w(t),x(i))
ψ′
(〈

wc(t), ξ
(i)
〉)〈

ξ(i), ξ
〉

+
η

n

n∑
i=1

(
1

1 + ey(i)F (w(t),x(i))
ψ′
(〈
wc(t),vk∗i

〉) 〈
vk∗i , ξ

〉)

− η

n

n∑
i=1

 1

1 + ey(i)F (w(t),x(i))

∑
k∈[K]

∑
p∈P(i)

bp,k

ψ′ (〈wc(t), αp,ivk〉) 〈αp,ivk, ξ〉

 .

By Lemma 4, with probability at least 1 − nK
polyd , for all i ∈ [n],

〈
ξ(i), ξ

〉
≤ Õ(σ2

ξd
−1/2) and for all k ∈ [K],

〈vk, ξ〉 ≤ Õ(σξd
−1/2). Then, by 1

1+ey
(i)F (w(t),x(i))

≤ 1 , ψ′
(〈

wc(t), ξ
(i)
〉)
≤ 1, ψ′

(〈
wc(t),vk∗i

〉)
≤ 1 and

ψ′ (〈wc(t), αp,ivk〉) ≤ 1,

|〈wc(t+ 1), ξ〉 − 〈wc(t), ξ〉|

≤ Õ(ησ2
ξd
−1/2) + Õ(ησξd

−1/2) + Õ

(
ηαqPσξd

−1/2

(
σ0 + ηT

(
max
k′

ρk′ + σξd
−1/2

))q−1
)

≤ ηÕ(σ2
ξd
−1/2 + σξd

−1/2).

The second step uses Lemma 11. The third step uses the upper bound on α. Summing over 0 ≤ t′ ≤ t,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ ηT Õ(σ2
ξd
−1/2 + σξd

−1/2).

When n ≤ o
(

min
{
σq−1

0 σqξd
1/2, σq−1

0 σq−1
ξ d1/2

})
, K ≤ o

(
min

{
σq−1

0 σ−1
ξ d1/2, σq−1

0 d1/2
})

, and

T ≤ Õ
(

max
{
nη−1σ−qξ σ−q+2

0 ,Kη−1σ−q+2
0

})
,

|〈wc(t), ξ〉 − 〈wc(0), ξ〉| ≤ o(σ0σξ).

