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Abstract

Offline or batch reinforcement learning seeks to
learn a near-optimal policy using history data
without active exploration of the environment.
To counter the insufficient coverage and sample
scarcity of many offline datasets, the principle of
pessimism has been recently introduced to miti-
gate high bias of the estimated values. While pes-
simistic variants of model-based algorithms (e.g.,
value iteration with lower confidence bounds)
have been theoretically investigated, their model-
free counterparts — which do not require explicit
model estimation — have not been adequately
studied, especially in terms of sample efficiency.
To address this inadequacy, we study a pessimistic
variant of Q-learning in the context of finite-
horizon Markov decision processes, and character-
ize its sample complexity under the single-policy
concentrability assumption which does not re-
quire the full coverage of the state-action space.
In addition, a variance-reduced pessimistic Q-
learning algorithm is proposed to achieve near-
optimal sample complexity. Altogether, this work
highlights the efficiency of model-free algorithms
in offline RL when used in conjunction with pes-
simism and variance reduction.

1. Introduction
Reinforcement Learning (RL) has achieved remarkable suc-
cess in recent years, including matching or surpassing hu-
man performance in robotics control and strategy games (Sil-
ver et al., 2017; Mnih et al., 2015). Nevertheless, these suc-
cess stories often come with nearly prohibitive cost, where

1Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA 15213, USA 2Department of
Statistics and Data Science, The Wharton School, University of
Pennsylvania, Philadelphia, PA 19104, USA. Correspondence to:
Laixi Shi <laixishi@cmu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

an astronomical number of samples are required to train the
learning algorithm to a satisfactory level. Scaling up and
replicating the RL success in many real-world problems face
considerable challenges, due to limited access to large-scale
simulation data. In applications such as online advertising
and clinical trials, real-time data collection could be expen-
sive, time-consuming, or constrained in sample sizes as a
result of experimental limitations.

On the other hand, it is worth noting that tons of samples
might have already been accumulated and stored — albeit
not necessarily with the desired quality — during previous
data acquisition attempts. It is therefore natural to wonder
whether such history data can be leveraged to improve per-
formance in future deployments. In reality, the history data
was often obtained by executing some (possibly unknown)
behavior policy, which is typically not the desired policy.
This gives rise to the problem of offline RL or batch RL
(Lange et al., 2012; Levine et al., 2020),1 namely, how to
make the best use of history data to learn an improved or
even optimal policy, without further exploring the environ-
ment. In stark contrast to online RL that relies on active
interaction with the environment, the performance of offline
RL depends critically not only on the quantity, but also the
quality of history data (e.g., coverage over the space-action
space), given that the agent is no longer collecting new sam-
ples for the purpose of exploring the unknown environment.

Recently, the principle of pessimism (or conservatism) —
namely, being conservative in Q-function estimation when
there are not enough samples — has been put forward as
an effective way to solve offline RL (Buckman et al., 2020;
Kumar et al., 2020). This principle has been implemented in,
for instance, a model-based offline value iteration algorithm,
which modifies classical value iteration (Azar et al., 2017)
by subtracting a penalty term in the estimated Q-values and
has been shown to achieve appealing sample efficiency (Jin
et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b). It
is noteworthy that the model-based approach is built upon
the construction of an empirical transition kernel, and there-
fore, requires specific representation of the environment
(see, e.g. Agarwal et al., 2020; Li et al., 2020). It remains

1Throughout this paper, we will be using the term offline RL
(resp. dataset) or batch RL (resp. dataset) interchangeably.
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Algorithm Type Sample complexity
VI-LCB model-based H6SC?

ε2(Xie et al., 2021b)
PEVI-Adv model-based H4SC?

ε2(Xie et al., 2021b)
Q-LCB

(this work) model-free H6SC?

ε2

Q-LCB-Adv
(this work) model-free H4SC?

ε2

lower bound n/a H4SC?

ε2(Xie et al., 2021b)

Table 1. Comparisons between our results and prior art for finding
an ε-optimal policy in finite-horizon non-stationary MDPs. The
sample complexities included in the table are valid for sufficiently
small ε, with all logarithmic factors omitted.

unknown whether the pessimism principle can be incorpo-
rated into model-free algorithms — another class of popular
algorithms that performs learning without model estimation
— in a provably effective fashion for offline RL.

1.1. Main contributions

In this paper, we consider finite-horizon non-stationary
Markov decision processes (MDPs) with S states, A ac-
tions, and horizon length H . The focal point is to pin down
the sample efficiency for pessimistic variants of model-free
algorithms, under the mild single-policy concentrability
assumption (cf. Assumption 2.1) of the batch dataset intro-
duced in Rashidinejad et al. (2021); Xie et al. (2021b) (in
short, this assumption captures how close the batch dataset is
to an expert dataset, and will be formally introduced in Sec-
tion 2.2). Given K episodes of history data each of length
H (which amounts to a total number of T = KH samples),
our main contributions are summarized as follows.

• We first study a natural pessimistic variant of the Q-
learning algorithm, which simply modifies the classical
Q-learning update rule by subtracting a penalty term
(via certain lower confidence bounds). We prove that
pessimistic Q-learning finds an ε-optimal policy as
soon as the sample size T exceeds the order of (up to
log factor)

H6SC?

ε2
,

where C? denotes the single-policy concentrability co-
efficient of the batch dataset. In comparison to the
minimax lower bound Ω

(
H4SC?

ε2

)
developed in Xie

et al. (2021b), the sample complexity of pessimistic
Q-learning is at most a factor of H2 from optimal
(modulo some log factor).

• To further improve the sample efficiency of pessimistic
model-free algorithms, we introduce a variance-
reduced variant of pessimistic Q-learning. This al-
gorithm is guaranteed to find an ε-optimal policy as
long as the sample size T is above the order of

H4SC?

ε2
+
H5SC?

ε

up to some log factor. In particular, this sample
complexity is minimax-optimal (namely, as low as
H4SC?

ε2 up to log factor) for small enough ε (namely,
ε ≤ (0, 1/H]). The ε-range that enjoys near-optimality
is much larger compared to ε ≤

(
0, 1/H2.5

]
estab-

lished in Xie et al. (2021b) for model-based algorithms.

Both of the proposed algorithms achieve low computa-
tion cost (i.e., O(T )) and low memory complexities (i.e.,
O(min{T, SAH})). Additionally, more complete compar-
isons with prior sample complexities of pessimistic model-
based algorithms (Xie et al., 2021b) are provided in Table 1.
In comparison with model-based algorithms, model-free
algorithms require drastically different technical tools to
handle the complicated statistical dependency between the
estimated Q-values at different time steps.

1.2. Related works

In this section, we discuss several lines of works which are
related to ours, with an emphasis on value-based algorithms
for tabular settings with finite state and action spaces.

Offline RL. One of the key challenges in offline RL lies
in the insufficient coverage of the batch dataset, due to lack
of interaction with the environment (Levine et al., 2020;
Liu et al., 2020). To address this challenge, most of the
recent works can be divided into two lines: 1) regularizing
the policy to avoid visiting under-covered state and action
pairs (Fujimoto et al., 2019; Dadashi et al., 2021); 2) penal-
izing the estimated values of the under-covered state-action
pairs (Buckman et al., 2020; Kumar et al., 2020). Our work
follows the latter line (also known as the principle of pes-
simism), which has garnered significant attention recently.
In fact, pessimism has been incorporated into recent develop-
ment of various offline RL approaches, such as policy-based
approaches (Rezaeifar et al., 2021; Xie et al., 2021a; Zanette
et al., 2021), model-based approaches (Rashidinejad et al.,
2021; Uehara & Sun, 2021; Jin et al., 2021; Yu et al., 2020;
Kidambi et al., 2020; Xie et al., 2021b; Yin & Wang, 2021;
Uehara et al., 2021; Yan et al., 2022b; Yu et al., 2021b;
Yin et al., 2022), and model-free approaches (Kumar et al.,
2020; Yu et al., 2021a; Yan et al., 2022a).

Finite-sample guarantees for pessimistic approaches.
While model-free approaches with pessimism (Kumar et al.,
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2020; Yu et al., 2021a) have achieved considerable empir-
ical successes in offline RL, prior theoretical guarantees
of pessimistic schemes have been confined almost exclu-
sively to model-based approaches. Under the same single-
policy concentrability assumption used in prior analyses
of model-based approaches (Rashidinejad et al., 2021; Xie
et al., 2021b; Yin et al., 2021b), the current paper provides
the first finite-sample guarantees for model-free approaches
with pessimism in the tabular case without explicit model
construction. In addition, Yin & Wang (2021) directly em-
ployed the occupancy distributions of the behavior policy
and the optimal policy in bounding the performance of a
model-based approach, rather than the worst-case upper
bound of their ratios as done under the single-policy con-
centrability assumption.

Non-asymptotic guarantees for variants of Q-learning.
Q-learning, which is among the most famous model-free RL
algorithms (Watkins, 1989; Jaakkola et al., 1994; Watkins
& Dayan, 1992), has been adapted in a multitude of ways
to deal with different RL settings. Theoretical analyses for
Q-learning and its variants have been established in, for
example, the online setting via regret analysis (Jin et al.,
2018; Bai et al., 2019; Zhang et al., 2020b; Li et al., 2021b;
Dong et al., 2019; Zhang et al., 2020a;c; Jafarnia-Jahromi
et al., 2020; Yang et al., 2021), and the simulator setting via
probably approximately correct (PAC) bounds (Chen et al.,
2020; Wainwright, 2019; Li et al., 2021a). The variant that
is most closely related to ours is asynchronous Q-learning,
which aims to find the optimal Q-function from Markovian
trajectories following some behavior policy (Even-Dar &
Mansour, 2003; Beck & Srikant, 2012; Qu & Wierman,
2020; Li et al., 2021c; Yin et al., 2021a;b). Different from
ours, these works typically require full coverage of the state-
action space by the behavior policy, a much stronger as-
sumption than the single-policy concentrability assumed in
our offline RL setting.

Variance reduction in RL. Variance reduction, originally
proposed to accelerate stochastic optimization (e.g., the
SVRG algorithm proposed by Johnson & Zhang (2013)),
has been successfully leveraged to improve the sample effi-
ciency of various RL algorithms, including but not limited
to policy evaluation (Du et al., 2017; Wai et al., 2019; Xu
et al., 2019; Khamaru et al., 2020), planning (Sidford et al.,
2018a;b), Q-learning and its variants (Wainwright, 2019;
Zhang et al., 2020b; Li et al., 2021b;c; Yan et al., 2022a),
and offline RL (Xie et al., 2021b; Yin et al., 2021b).

1.3. Notation and paper organization

Let us introduce a set of notation that will be used through-
out. We denote by ∆(S) the probability simplex over a set
S, and introduce the notation [N ] := {1, · · · , N} for any

integerN > 0. For any vector x ∈ RSA (resp. x ∈ RS) that
constitutes certain values for each of the state-action pairs
(resp. state), we shall often use x(s, a) (resp. x(s)) to denote
the entry associated with the (s, a) pair (resp. state s). Sim-
ilarly, we shall denote by x := {xh}h∈[H] the set composed
of certain vectors for each of the time step h ∈ [H]. We
let ei represent the i-th standard basis vector, with the only
non-zero element being in the i-th entry.

Let X := (S,A,H, T ). The notation f(X ) . g(X )
(resp. f(X ) & g(X )) means that there exists a universal con-
stant C0 > 0 such that |f(X )| ≤ C0|g(X )| (resp. |f(X )| ≥
C0|g(X )|). In addition, we often overload scalar functions
and expressions to take vector-valued arguments, with the
interpretation that they are applied in an entrywise man-
ner. For example, for a vector x = [xi]1≤i≤n, we have
x2 = [x2i ]1≤i≤n. For any two vectors x = [xi]1≤i≤n and
y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means
xi ≤ yi (resp. xi ≥ yi) for all 1 ≤ i ≤ n.

Paper organization. The rest of this paper is organized
as follows. Section 2 introduces the backgrounds on finite-
horizon MDPs and formulates the offline RL problem. Sec-
tion 3 starts by introducing a natural pessimistic variant of
Q-learning along with its sample complexity bound, and fur-
ther enhances the sample efficiency via variance reduction
in Section 4. Section A presents the proof outline and key
lemmas. Finally, we conclude in Section 5 with a discussion
and defer the proof details to the supplementary material.

2. Background and problem formulation
2.1. Tabular finite-horizon MDPs

Basics. This work focuses on an episodic finite-horizon
MDP as represented by

M =
(
S,A, H, {Ph}Hh=1, {rh}Hh=1

)
,

where H is the horizon length, S is a finite state space of
cardinality S,A is a finite action space of cardinality A, and
Ph : S ×A → ∆(S) (resp. rh : S ×A → [0, 1]) represents
the probability transition kernel (resp. reward function) at
the h-th time step (1 ≤ h ≤ H). Throughout this paper, we
shall adopt the following convenient notation

Ph,s,a := Ph(· | s, a) ∈ [0, 1]1×S , (1)

which stands for the transition probability vector given the
current state-action pair (s, a) at time step h. The parame-
ters S, A and H can all be quite large, allowing one to cap-
ture the challenges arising in MDPs with large state/action
space and long horizon.

A policy (or action selection rule) of an agent is represented
by π = {πh}Hh=1, where πh : S → ∆(A) specifies the
associated selection probability over the action space at
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time step h (or more precisely, we let πh(a | s) represent the
probability of selecting action a in state s at step h). When π
is a deterministic policy, we abuse the notation and let πh(s)
denote the action selected by policy π in state s at step h.
In each episode, the agent generates an initial state s1 ∈ S
drawn from an initial state distribution ρ ∈ ∆(S), and rolls
out a trajectory over the MDP by executing a policy π as
follows:

{sh, ah, rh}Hh=1 = {s1, a1, r1, . . . , sH , aH , rH}, (2)

where at time step h, ah ∼ πh(· | sh) indicates the action
selected in state sh, rh = rh(sh, ah) denotes the determin-
istic immediate reward, and sh+1 denotes the next state
drawn from the transition probability vector Ph,sh,ah :=
Ph(· | sh, ah). In addition, let dπh(s) and dπh(s, a) denote
respectively the occupancy distribution induced by π at time
step h ∈ [H], namely,

dπh(s) := P(sh = s | s1 ∼ ρ, π),

dπh(s, a) := P(sh = s | s1 ∼ ρ, π)πh(a | s); (3)

here and throughout, we denote [H] := {1, · · · , H}. Given
that the initial state s1 is drawn from ρ, the above definition
gives

dπ1 (s) = ρ(s) for any policy π. (4)

Value function, Q-function, and optimal policy. The
value function V πh (s) of policy π in state s at step h is
defined as the expected cumulative rewards when this policy
is executed starting from state s at step h, i.e.,

V πh (s) := E

[
H∑

t=h

rt
(
st, at

) ∣∣∣ sh = s

]
, (5)

where the expectation is taken over the randomness of the
trajectory (2) induced by the policy π as well as the MDP
transitions. Similarly, the Q-function Qπh(·, ·) of a policy π
at step h is defined as

Qπh(s, a) := rh(s, a)

+ E

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
, (6)

where the expectation is again over the randomness induced
by π and the MDP except that the state-action pair at step
h is now conditioned to be (s, a). By convention, we shall
also set

V πH+1(s) = QπH+1(s, a) = 0 for any π and (s, a) ∈ S×A.
(7)

A policy π? = {π?h}Hh=1 is said to be an optimal policy if
it maximizes the value function (resp. Q-function) simul-
taneously for all states (resp. state-action pairs) among all

policies, whose existence is always guaranteed (Puterman,
2014). The resulting optimal value function V ? = {V ?h }Hh=1

and optimal Q-functions Q? = {Q?h}Hh=1 are denoted re-
spectively by

V ?h (s) := V π
?

h (s) = max
π

V πh (s),

Q?h(s, a) := Qπ
?

h (s, a) = max
π

Qπh(s, a)

for any (s, a, h) ∈ S × A × [H]. Throughout this paper,
we assume that π? is a deterministic optimal policy, which
always exists (Puterman, 2014).

Additionally, when the initial state is drawn from a given
distribution ρ, the expected value of a given policy π and
that of the optimal policy at the initial step are defined
respectively by

V π1 (ρ) := E
s1∼ρ

[
V π1 (s1)

]
,

V ?1 (ρ) := E
s1∼ρ

[
V ?1 (s1)

]
. (8)

Bellman equations. The Bellman equations play a fun-
damental role in dynamic programming (Bertsekas, 2017).
Specifically, the value function and the Q-function of any
policy π satisfy the following Bellman consistency equation:

Qπh(s, a) = rh(s, a) + E
s′∼Ph,s,a

[
V πh+1(s′)

]
(9)

for all (s, a, h) ∈ S×A× [H]. Moreover, the optimal value
function and the optimal Q-function satisfy the Bellman
optimality equation:

Q?h(s, a) = rh(s, a) + E
s′∼Ph,s,a

[
V ?h+1(s′)

]
(10)

for all (s, a, h) ∈ S ×A× [H].

2.2. Offline RL under single-policy concentrability

Offline RL assumes the availability of a history dataset Dµ
containing K episodes each of length H . These episodes
are independently generated based on a certain policy µ =
{µh}Hh=1 — called the behavior policy, resulting in a dataset

Dµ :=
{(
sk1 , a

k
1 , r

k
1 , . . . , s

k
H , a

k
H , r

k
H

)}K−1
k=0

.

Here, the initial states {sk1}Kk=1 are independently drawn

from ρ ∈ ∆(S) such that sk1
i.i.d.∼ ρ, while the remaining

states and actions are generated by the MDP induced by
the behavior policy µ. The total number of samples is thus
given by

T = KH.

With the notation (8) in place, the goal of offline RL amounts
to finding an ε-optimal policy π̂ = {π̂h}Hh=1 satisfying

V ?1 (ρ)− V π̂1 (ρ) ≤ ε
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with as few samples as possible, and ideally, in a computa-
tionally fast and memory-efficient manner.

Obviously, efficient offline RL cannot be accomplished with-
out imposing proper assumptions on the behavior policy,
which also provide means to gauge the difficulty of the
offline RL task through the quality of the history dataset.
Following the recent works Rashidinejad et al. (2021); Xie
et al. (2021b), we assume that the behavior policy µ satisfies
the following property called single-policy concentrability.

Assumption 2.1 (single-policy concentrability). The single-
policy concentrability coefficient C? ∈ [1,∞) of a behavior
policy µ is defined to be the smallest quantity that satisfies

max
(h,s,a)∈[H]×S×A

dπ
?

h (s, a)

dµh(s, a)
≤ C?, (11)

where we adopt the convention 0/0 = 0.

Intuitively, the single-policy concentrability coefficient mea-
sures the discrepancy between the optimal policy π? and
the behavior policy µ in terms of the resulting density ratio
of the respective occupancy distributions. It is noteworthy
that a finite C? does not necessarily require µ to cover the
entire state-action space; instead, it can be attainable when
its coverage subsumes that of the optimal policy π?. This
is in stark contrast to, and in fact much weaker than, other
assumptions that require either full coverage of the behav-
ior policy (i.e., min(h,s,a)∈[H]×S×A d

µ
h(s, a) > 0 (Li et al.,

2021c; Yin et al., 2021a;b)), or uniform concentrability over
all possible policies (Chen & Jiang, 2019). Additionally,
the single-policy concentrability coefficient is minimized
(i.e., C? = 1) when the behavior policy µ coincides with
the optimal policy π?, a scenario closely related to imitation
learning or behavior cloning (Rajaraman et al., 2020).

3. Pessimistic Q-learning: algorithms and
theory

In the current paper, we present two model-free algorithms
— namely, LCB-Q and LCB-Q-Advantage — for offline
RL, along with their respective theoretical guarantees. The
first algorithm can be viewed as a pessimistic variant of the
classical Q-learning algorithm, while the second one further
leverages the idea of variance reduction to boost the sample
efficiency. In this section, we begin by introducing LCB-Q.

3.1. LCB-Q: a natural pessimistic variant of Q-learning

Before proceeding, we find it convenient to first review the
classical Q-learning algorithm (Watkins, 1989; Watkins &
Dayan, 1992), which can be regarded as a stochastic approx-
imation scheme to solve the Bellman optimality equation
(10). Upon receiving a sample transition (sh, ah, rh, sh+1)
at time step h, Q-learning updates the corresponding entry

in the Q-estimate as follows

Qh(sh, ah) ← (1− η)Qh(sh, ah)

+ η
{
rh(sh, ah) + Vh+1(sh+1)

}
, (12)

where Qh (resp. Vh) indicates the running estimate of Q?h
(resp. V ?h ), and 0 < η < 1 is the learning rate. In com-
parison to model-based algorithms that require estimating
the probability transition kernel based on all the samples,
Q-learning, as a popular kind of model-free algorithms, is
simpler and enjoys more flexibility without explicitly con-
structing the model of the environment. The wide applicabil-
ity of Q-learning motivates one to adapt it to accommodate
offline RL.

Inspired by recent advances in incorporating the pessimism
principle for offline RL (Rashidinejad et al., 2021; Jin et al.,
2021), we study a pessimistic variant of Q-learning called
LCB-Q, which modifies the Q-learning update rule as fol-
lows

Qh(sh, ah) ← (1− ηn)Qh(sh, ah) (13)

+ ηn

{
rh(sh, ah) + Vh+1(sh+1)− bn

}
,

where ηn is the learning rate depending on the number of
times n that the state-action pair (sh, ah) has been visited
at step h, and the penalty term bn > 0 (cf. line 9 of Al-
gorithm 1) reflects the uncertainty of the corresponding
Q-estimate and implements pessimism in the face of uncer-
tainty. The entire algorithm, which is a single-pass algo-
rithm that only requires reading the offline dataset once, is
summarized in Algorithm 1.

3.2. Theoretical guarantees for LCB-Q

The proposed LCB-Q algorithm manages to achieve an
appealing sample complexity as formalized by the following
theorem.
Theorem 3.1. Consider any δ ∈ (0, 1). Suppose that the be-
havior policy µ satisfies Assumption 2.1 with single-policy
concentrability coefficient C? ≥ 1. Let cb > 0 be some suf-
ficiently large constant, and take ι := log

(
SAT
δ

)
. Assume

that T > SC?ι, then the policy π̂ returned by Algorithm 1
satisfies

V ?1 (ρ)− V π̂1 (ρ) ≤ ca
√
H6SC?ι3

T
(14)

with probability at least 1− δ, where ca > 0 is some univer-
sal constant.

As asserted by Theorem 3.1, the LCB-Q algorithm is guar-
anteed to find an ε-optimal policy with high probability, as
long as the total sample size T = KH exceeds

Õ

(
H6SC?

ε2

)
, (15)
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Algorithm 1 LCB-Q for offline RL
1: Parameters: some constant cb > 0, target success

probability 1− δ ∈ (0, 1), and ι = log
(
SAT
δ

)
.

2: Initialize: Qh(s, a) ← 0; Nh(s, a) ← 0 for all
(s, a, h) ∈ S × A × [H]; Vh(s) ← 0 for all (s, h) ∈
S × [H + 1]; π̂ s.t. π̂h(s) = 1 for all (h, s) ∈ [H]×S .

3: for Episode k = 1 to K do
4: // sampling from batch dataset

Sample a trajectory {sh, ah, rh}Hh=1 from Dµ.
5: for Step h = 1 to H do
6: // update the counter
7: Nh(sh, ah)← Nh(sh, ah) + 1; n← Nh(sh, ah).
8: ηn ← H+1

H+n
. // update the learning rate

9: bn ← cb

√
H3ι2

n
. // update the bonus term

10: // update the Q-estimates with LCB
11: Qh(sh, ah) ← Qh(sh, ah) + ηn

{
rh(sh, ah) +

Vh+1(sh+1)−Qh(sh, ah)− bn
}
.

12: // update the value estimates
13: Vh(sh)← max

{
Vh(sh), maxaQh(sh, a)

}
.

14: If Vh(sh) = maxaQh(sh, a): update π̂h(s) ←
argmaxaQh(s, a).

15: end for
16: end for
17: Output: the policy π̂.

where Õ(·) hides logarithmic dependencies. When the be-
havior policy is close to the optimal policy, the single-policy
concentrability coefficient C? is closer to 1; if this is the
case, then our bound indicates that the sample complexity
does not depend on the size A of the action space, which
can be a huge saving when the action space is enormous.

Comparison with model-based pessimistic approaches.
A model-based approach — called Value Iteration with
Lower Confidence Bounds (VI-LCB) — has been recently
proposed for offline RL (Rashidinejad et al., 2021; Xie et al.,
2021b). In the finite-horizon case, VI-LCB incorporates an
additional LCB penalty into the classical value iteration
algorithm, and updates all the entries in the Q-estimate
simultaneously as follows

Qh(s, a) ← rh(s, a) + P̂h,s,aVh+1 − bh(s, a), (16)

with the aim of tuning down the confidence on those state-
action pairs that have only been visited infrequently. Here,
P̂h,s,a represents the empirical estimation of the transition
kernel Ph,s,a, and bh(s, a) > 0 is chosen to capture the un-
certainty level of (P̂h,s,a−Ph,s,a)Vh+1. Working backward,
the algorithm estimates the Q-value Qh recursively over the
time steps h = H,H − 1, · · · , 1. In comparison with VI-
LCB, our sample complexity bound for LCB-Q matches the
bound developed for VI-LCB by Xie et al. (2021b), while
enjoying enhanced flexibility without the need of specifying

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)
⇡?(·|s0) ⇡?(·|s1) ⇡?(·|s2) ⇡?(·|s3) ⇡?(·|s4) ⇡?(·|s5)

samples (experience) model optimal value function policy (i.e. P 2 R|S||A|⇥|S|)
S A bQ(s, a)

Chris Watkins Peter Dayan
(s0, a0) (s1, a1) (s2, a2) (s3, a3) update Q variance-reduced Q-learning

| {z }

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)
⇡?(·|s0) ⇡?(·|s1) ⇡?(·|s2) ⇡?(·|s3) ⇡?(·|s4) ⇡?(·|s5)

samples (experience) model optimal value function policy (i.e. P 2 R|S||A|⇥|S|)
S A bQ(s, a)

Chris Watkins Peter Dayan
(s0, a0) (s1, a1) (s2, a2) (s3, a3) update Q variance-reduced Q-learning

| {z }

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)
⇡?(·|s0) ⇡?(·|s1) ⇡?(·|s2) ⇡?(·|s3) ⇡?(·|s4) ⇡?(·|s5)

samples (experience) model optimal value function policy (i.e. P 2 R|S||A|⇥|S|)
S A bQ(s, a)

Chris Watkins Peter Dayan
(s0, a0) (s1, a1) (s2, a2) (s3, a3) update Q variance-reduced Q-learning

| {z }

1

…
epoch m = 1
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…
update Q-estimate Q
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<latexit sha1_base64="5pIS/ZAOVq9592kU/6L0JFda78k=">AAACBXicbVDNS8MwHE3n15xfVY96CA5hBxntFPQ48OJxgvuAtYw0S7ewNClJKozSixf/FS8eFPHq/+DN/8Z0K6ibDwIv7/0eye8FMaNKO86XVVpZXVvfKG9WtrZ3dvfs/YOOEonEpI0FE7IXIEUY5aStqWakF0uCooCRbjC5zv3uPZGKCn6npzHxIzTiNKQYaSMN7GNPGDtPp53sDP7cvCjJBnbVqTszwGXiFqQKCrQG9qc3FDiJCNeYIaX6rhNrP0VSU8xIVvESRWKEJ2hE+oZyFBHlp7MtMnhqlCEMhTSHazhTfydSFCk1jQIzGSE9VoteLv7n9RMdXvkp5XGiCcfzh8KEQS1gXgkcUkmwZlNDEJbU/BXiMZIIa1NcxZTgLq68TDqNunteb9xeVJu1oo4yOAInoAZccAma4Aa0QBtg8ACewAt4tR6tZ+vNep+Plqwicwj+wPr4BkckmP0=</latexit>

Figure 1. An illustration of the epoch-based LCB-Q-Advantage
algorithm.

the transition kernel of the environment (as model estima-
tion might potentially incur a higher memory burden).

4. LCB-Q-Advantage for near-optimal offline
RL: algorithm and theory

The careful reader might notice that the sample complexity
(15) derived for LCB-Q remains a factor of H2 away from
the minimax lower bound (see Table 1). To further close the
gap and improve the sample complexity, we propose a new
variant called LCB-Q-Advantage, which leverages the idea
of variance reduction to accelerate convergence (Johnson
& Zhang, 2013; Sidford et al., 2018b; Wainwright, 2019;
Zhang et al., 2020b; Xie et al., 2021b; Li et al., 2021c;b).

Inspired by the reference-advantage decomposition adopted
in (Zhang et al., 2020b; Li et al., 2021b) for online Q-
learning, LCB-Q-Advantage maintains a collection of ref-
erence values {V h}Hh=1, which serve as running proxy for
the optimal values {V ?h }Hh=1 and allow for reduced vari-
ability in each iteration. To be more specific, the LCB-
Q-Advantage algorithm (cf. Algorithm 2 as well as the
subroutines in Algorithm 3 that closely resemble Li et al.
(2021b)) proceeds in an epoch-based style (the m-th epoch
consists of Lm = 2m episodes of samples), where the ref-
erence values are updated at the end of each epoch to be
used in the next epoch, and the Q-estimates are iteratively
updated during the remaining time of each epoch. By main-
taining two auxiliary sequences of pessimistic Q-estimates
— that is, QLCB constructed by the pessimistic Q-learning
update, and Q constructed by the pessimistic Q-learning
update based on the reference-advantage decomposition —
the Q-estimate is updated by taking the maximum over the
three candidates (cf. line 19 of Algorithm 2)

Qh(s, a)← max{QLCB
h (s, a), Qh(s, a), Qh(s, a)} (17)

when the state-action pair (s, a) is visited at the step h. We
now take a moment to discuss the key ingredients of the
proposed algorithm in further detail.

Updating the references V h and µh. At the end of each
epoch, the reference values {V h}Hh=1, as well as the associ-
ated running average {µh}Hh=1, are determined using what
happens during the current epoch. More specifically, the
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Algorithm 2 Offline LCB-Q-Advantage RL
1: Parameters: number of epochs M , universal constant
cb > 0, target success probability 1 − δ ∈ (0, 1), and
ι = log

(
SAT
δ

)
;

2: Initialize: Qh(s, a), Q
LCB
h (s, a), Qh(s, a), µh(s, a),

µnext
h (s, a), Nh(s, a) ← 0 for all (s, a, h) ∈ S × A × [H];
Vh(s), V h(s), V

next
h (s) ← 0 for all (s, h) ∈ S × [H + 1];

µref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δh(s, a),
Bh(s, a)← 0 for all (s, a, h) ∈ S ×A× [H];

3: for Epoch m = 1 to M do
4: Lm = 2m; // specify the number of episodes in the current

epoch
5: N̂h(s, a) = 0 for all (h, s, a) ∈ [H]× S ×A. // reset the

epoch-wise counter
6: /* Inner-loop: update value-estimates Vh(s, a) and Q-

estimates Qh(s, a)
7: for In-epoch Episode t = 1 to Lm do
8: Sample a trajectory {sh, ah, rh}Hh=1. // sampling
9: for Step h = 1 to H do

10: // update the overall counter
11: Nh(sh, ah)← Nh(sh, ah) + 1; n← Nh(sh, ah).
12: ηn ← H+1

H+n ; // update the learning rate
13: // update the Q-estimate with LCB
14: QLCB

h (sh, ah)← update-lcb-q();
15: // update the Q-estimate with LCB and reference-

advantage
16: Qh(sh, ah)← update-lcb-q-ra();
17: // update the estimates Qh and Vh
18: Qh(sh, ah)←
19: max{QLCB

h (sh, ah), Qh(sh, ah), Qh(sh, ah)}.
20: Vh(sh)← maxaQh(sh, a).
21: // update the epoch-wise counter and µnext

h for the
next epoch

22: N̂h(sh, ah)← N̂h(sh, ah) + 1;

23: µnext
h (sh, ah) ←

(
1− 1

N̂h(sh,ah)

)
µnext
h (sh, ah) +

1

N̂h(sh,ah)
V

next
h+1(sh+1).

24: end for
25: end for
26: for (s, a, h) ∈ S ×A× [H + 1] do
27: // set V h and µh for the next epoch
28: V h(s)← V

next
h (s); µh(s, a)← µnext

h (s, a).
29: // restart µnext

h and set V
next
h for the next epoch

30: V
next
h (s)← Vh(s); µnext

h (s, a)← 0.
31: end for
32: end for
33: Output: the policy π̂ s.t. π̂h(s) = arg maxaQh(s, a)

for any (s, h) ∈ S × [H].

following update rules for V h and µh are carried out at the
end of the m-th epoch:

V h(s)← V
next
h (s), (18a)

Algorithm 3 Auxiliary functions
1: Function update-lcb-q():
2: QLCB

h (sh, ah) ← (1 − ηn)QLCB
h (sh, ah) + ηn

(
r(sh, ah) +

Vh+1(sh+1)− cb
√

H3ι2

n

)
.

3: Function update-lcb-q-ra():
/* update the moment statistics of the interested terms

4: [µref
h , σ

ref
h , µ

adv
h , σadv

h ](sh, ah)← update-moments();
/* update the bonus difference and accumulative bonus

5: [δh, Bh](sh, ah)← update-bonus();
6: bh(sh, ah)← Bh(sh, ah)+(1−ηn) δh(sh,ah)ηn

+cb
H7/4ι

n3/4 +

cb
H2ι
n

;
// update the Q-estimate based on reference-advantage

7: Qh(sh, ah) ← (1 − ηn)Qh(sh, ah) + ηn
(
rh(sh, ah) +

Vh+1(sh+1)− V h+1(sh+1) + µh(sh, ah)− bh
)
;

8: Function update-moments():
9: µref

h (sh, ah)← (1− 1
n
)µref
h (sh, ah) +

1
n
V

next
h+1(sh+1);

// mean of the reference
10: σref

h (sh, ah)← (1− 1
n
)σref
h (sh, ah) +

1
n

(
V

next
h+1(sh+1)

)2;
// 2nd moment of the reference

11: µadv
h (sh, ah)← (1− ηn)µadv

h (sh, ah) + ηn
(
Vh+1(sh+1)−

V h+1(sh+1)
)
; // mean of the advantage

12: σadv
h (sh, ah)← (1− ηn)σadv

h (sh, ah) + ηn
(
Vh+1(sh+1)−

V h+1(sh+1)
)2. // 2nd moment of the advantage

13: Function update-bonus():
14: Bnext

h (sh, ah)← cb
√

ι
n

(√
σref
h (sh, ah)−

(
µref
h (sh, ah)

)2
+

√
H
√
σadv
h (sh, ah)−

(
µadv
h (sh, ah)

)2 );

15: δh(sh, ah)← Bnext
h (sh, ah)−Bh(sh, ah);

16: Bh(sh, ah)← Bnext
h (sh, ah).

µh(s, a)←
∑Lm
t=1 1(sth = s, ath = a)V h+1(sth+1)

max
{{∑Lm

t=1 1(sth = s, ath = a)
}
, 1
}

(18b)

for all (h, s, a) ∈ [H]×S ×A. Here, V h(s) is assigned by
V

next
h (s), which is maintained as the value estimate Vh(s) at

the end of the (m− 1)-th epoch, and the update of µh(s, a)
is implemented in a recursive manner in the current m-th
epoch. See also line 28 and line 30 of Algorithm 2.

Learning Q-estimate Qh based on the reference-
advantage decomposition. Armed with the references
V h and µh updated at the end of the previous (m − 1)-
th epoch, LCB-Q-Advantage iteratively updates the Q-
estimate Qh in all episodes during the m-th epoch. At each
time step h in any episode, whenever (s, a) is visited, LCB-
Q-Advantage updates the reference Q-value as follows:

Qh(s, a)← (1− η)Qh(s, a) + η
{
rh(s, a)
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+ P̂h,s,a
(
Vh+1 − V h+1

)
︸ ︷︷ ︸

estimate of Ph,s,a(Vh+1−V h+1)

+ µh︸︷︷︸
estimate of Ph,s,aV h+1

− bh(s, a)
}
.

(19)

Intuitively, we decompose the target Ph,s,aVh+1 into a refer-
ence part Ph,s,aV h+1 and an advantage part Ph,s,a(Vh+1−
V h+1), and cope with the two parts separately. In the sequel,
let us take a moment to discuss three essential ingredients of
the update rule (19), which shed light on the design rationale
of our algorithm.

• Akin to LCB-Q, the term P̂h,s,a
(
Vh+1 − V h+1

)

serves as an unbiased stochastic estimate of
Ph,s,a

(
Vh+1 − V h+1

)
if a sample transition

(s, a, sh+1) at time step h is observed. If Vh+1 stays
close to the reference V h+1 as the algorithm proceeds,
the variance of this stochastic term can be lower than
that of the stochastic term P̂h,s,aVh+1 in (13).

• The auxiliary estimate µh introduced in (18b) serves
as a running estimate of the reference part Ph,s,aV h+1.
Based on the update rule (18b), we design µh(s, a)
to estimate the running mean of the reference part[
Ph,s,aV h+1

]
using a number of previous samples. As

a result, we expect the variability of this term to be
well-controlled, particularly as the number of samples
in each epoch grows exponentially (recall that Lm =
2m).

• In each episode, the term bh(s, a) serves as the ad-
ditional confidence bound on the error between the
estimates of the reference/advantage and the ground
truth. More specifically, µref

h (s, a) and σref
h (s, a) are

respectively the running mean and 2nd moment of the
reference part

[
Ph,s,aV h+1

]
(cf. lines 9-10 of Algo-

rithm 3); µadv
h (s, a) and σadv

h (s, a) represent respec-
tively the running mean and 2nd moment of the ad-
vantage part

[
Ph,s,a(Vh+1 − V h+1)

]
(cf. lines 11-12

of Algorithm 3); Bh(s, a) aggregates the empirical
standard deviations of the reference and the advantage
parts. The LCB penalty term bh(s, a) is updated using
Bh(s, a) and δh(sh, ah) (cf. lines 5-6 of Algorithm 3),
taking into account the confidence bounds for both the
reference and the advantage.

In a nutshell, the auxiliary sequences of the reference values
are designed to help reduce the variance of the stochastic Q-
learning updates, which taken together with the principle of
pessimism play a crucial role in the improvement of sample
complexity for offline RL.

4.1. Theoretical guarantees for LCB-Q-Advantage

Encouragingly, the proposed LCB-Q-Advantage algorithm
provably achieves near-optimal sample complexity for suffi-

ciently small ε, as demonstrated by the following theorem.

Theorem 4.1. Consider any δ ∈ (0, 1), and recall that ι =
log
(
SAT
δ

)
and T = KH . Suppose that cb > 0 is chosen to

be a sufficiently large constant, and that the behavior policy
µ satisfies Assumption 2.1. Then there exists some universal
constant cg > 0 such that with probability at least 1 − δ,
the policy π̂ output by Algorithm 2 satisfies

V ?1 (ρ)− V π̂1 (ρ) ≤ cg
(√

H4SC?ι5

T
+
H5SC?ι4

T

)
.

(20)

As a consequence, Theorem 4.1 reveals that the LCB-Q-
Advantage algorithm is guaranteed to find an ε-optimal
policy (i.e., V ?1 (ρ)−V π̂1 (ρ) ≤ ε) as long as the total sample
size T exceeds

Õ

(
H4SC?

ε2
+
H5SC?

ε

)
. (21)

For sufficiently small accuracy level ε (i.e., ε ≤ 1/H), this
results in a sample complexity of

Õ

(
H4SC?

ε2

)
, (22)

thereby matching the minimax lower bound developed in
Xie et al. (2021b) up to logarithmic factor. Compared with
the minimax lower bound Ω

(
H4SA
ε2

)
in the online RL set-

ting (Domingues et al., 2021), this suggests that offline
RL can be fairly sample-efficient when the behavior policy
closely mimics the optimal policy in terms of the resulting
state-action occupancy distribution (a scenario where C? is
potentially much smaller than the size of the action space).

Comparison with offline model-based approaches. In
the same offline finite-horizon setting, the state-of-art model-
based approach called PEVI-Adv has been proposed by Xie
et al. (2021b), which also leverage the idea of reference-
advantage decomposition. In comparison with PEVI-Adv,
LCB-Q-Advantage not only enjoys the flexibility of model-
free approaches, but also achieves optimal sample complex-
ity for a broader range of target accuracy level ε. More
precisely, the ε-range for which the algorithm achieves sam-
ple optimality can be compared as follows:

ε ≤
(
0, H−1

]
︸ ︷︷ ︸

(Our LCB-Q-Advantage)

vs. ε ≤
(
0, H−2.5

]
︸ ︷︷ ︸

(PEVI-Adv)

, (23)

offering an improvement by a factor of H1.5.

5. Discussions
Focusing on model-free paradigms, this paper has devel-
oped near-optimal sample complexities for some variants
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of pessimistic Q-learning algorithms — armed with lower
confidence bounds and variance reduction — for offline
RL. These sample complexity results, taken together with
the analysis framework developed herein, open up a few
exciting directions for future research. For example, the
pessimistic Q-learning algorithms can be deployed in con-
junction with their optimistic counterparts (e.g., Jin et al.
(2018); Li et al. (2021b); Zhang et al. (2020b)), when ad-
ditional online data can be acquired to fine-tune the policy
(Xie et al., 2021b). In addition, the ε-range for LCB-Q-
Advantage to attain sample optimality remains somewhat
limited (i.e., ε ∈ (0, 1/H])). Our concurrent work Li et al.
(2022) suggests that a new variant of pessimistic model-
based algorithm is sample-optimal for a broader range of ε,
which in turn motivates further investigation into whether
model-free algorithms can accommodate a broader ε-range
too without compromising sample efficiency. Moving be-
yond the tabular setting, it would be of great importance to
extend the algorithmic and theoretical framework to accom-
modate low-complexity function approximation (Nguyen-
Tang et al., 2021).
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Algorithm 4 LCB-Q for offline RL (a rewrite of Algorithm 1 to specify the dependency on k)

1: Parameters: some constant cb > 0, target success probability 1− δ ∈ (0, 1), and ι = log
(
SAT
δ

)
.

2: Initialize: Q1
h(s, a)← 0; N1

h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H]; V 1
h (s)← 0 for all (s, h) ∈ S × [H + 1]; π1

s.t. π1
h(s) = 1 for all (s, h) ∈ S × [H].

3: for Episode k = 1 to K do
4: Sample the k-th trajectory {skh, akh, rkh}Hh=1 from Dµ. // sampling from batch dataset
5: for Step h = 1 to H do
6: for (s, a) ∈ S ×A do
7: // carry over the estimates and policy
8: Nk+1

h (s, a)← Nk
h (s, a); Qk+1

h (s, a)← Qkh(s, a); V k+1
h (s)← V kh (s); πk+1

h (s)← πkh(s).
9: end for

10: Nk+1
h (skh, a

k
h)← Nk

h (skh, a
k
h) + 1. // update the counter

11: n← Nk+1
h (skh, a

k
h); ηn ← H+1

H+n . // update the learning rate

12: bn ← cb

√
H3ι2

n . // update the bonus term
13: // update the Q-estimates with LCB

14: Qk+1
h (skh, a

k
h)← Qkh(skh, a

k
h) + ηn

{
rh(skh, a

k
h) + V kh+1(skh+1)−Qkh(skh, a

k
h)− bn

}
.

15: // update the value estimates

16: V k+1
h (skh)← max

{
V kh (skh), maxaQ

k+1
h (skh, a)

}
.

17: // update the policy
18: If V k+1

h (skh) = maxaQ
k+1
h (skh, a): update πk+1

h (skh) = arg maxaQ
k+1
h (skh, a).

19: end for
20: end for

A. Analysis
In this section, we outline the main steps needed to establish the main results in Theorem 3.1 and Theorem 4.1. Before
proceeding, let us first recall the following rescaled learning rates

ηn =
H + 1

H + n
(24)

for the n-th visit of a given state-action pair at a given time step h, which are adopted in both LCB-Q and LCB-Q-Advantage.
For notational convenience, we further introduce two sequences of related quantities defined for any integers N ≥ 0 and
n ≥ 1:

ηN0 :=

{∏N
i=1(1− ηi) = 0, if N > 0,

1, if N = 0,
and ηNn :=





ηn
∏N
i=n+1(1− ηi), if N > n,

ηn, if N = n,

0, if N < n.

(25)

The following identity can be easily verified:

N∑

n=0

ηNn = 1. (26)

A.1. Analysis of LCB-Q

To begin with, we intend to derive a recursive formula concerning the update rule of Qkh — the estimate of the Q-function
at step h at the beginning of the k-th episode. Note that we have omitted the dependency of all quantities on the episode
index k in Algorithm 1. For notational convenience and clearness, we rewrite Algorithm 1 as Algorithm 4 by specifying the
dependency on the episode index k and shall often use the following set of short-hand notation when it is clear from context.

• Nk
h (s, a), or the shorthand Nk

h : the number of episodes that has visited (s, a) at step h before the beginning of the k-th
episode.
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• knh(s, a), or the shorthand kn: the index of the episode in which the state-action pair (s, a) is visited at step h for the
n-th times. We also adopt the convention that k0 = 0.

• P kh ∈ {0, 1}1×S : a row vector corresponding to the empirical transition at step h of the k-th episode, namely,

P kh (s) = 1
(
s = skh+1

)
for all s ∈ S. (27)

• πk = {πkh}Hh=1 with πkh(s) := arg maxaQ
k
h(s, a),∀(h, s) ∈ [H]×S: the deterministic greedy policy at the beginning

of the k-th episode.

• π̂: the final output π̂ of Algorithms 1 corresponds to πK+1 defined above; for notational simplicity, we shall treat π̂ as
πK in our analysis, which does not affect our result at all.

Consider any state-action pair (s, a). According to the update rule in line 14 of Algorithm 4, we can express (with the
assistance of the above notation)

Qkh(s, a) = Qk
Nkh+1
h (s, a) =

(
1− ηNkh

)
Qk

Nkh

h (s, a) + ηNkh

{
rh(s, a) + V k

Nkh

h+1

(
sk
Nkh

h+1

)
− bNkh

}
, (28)

where the first identity holds since kN
k
h denotes the latest episode prior to k that visits (s, a) at step h, and the learning

rate is defined in (24). Note that it always holds that k > kN
k
h . Applying the above relation (28) recursively and using the

notation (25) lead to

Qkh(s, a) = η
Nkh
0 Q1

h(s, a) +

Nkh∑

n=1

η
Nkh
n

(
rh(s, a) + V k

n

h+1

(
sk
n

h+1

)
− bn

)
. (29)

As another important fact, the value estimate V kh is monotonically non-decreasing in k, i.e.,

V k+1
h (s) ≥ V kh (s) for all (s, k, h) ∈ S × [K]× [H], (30)

which is an immediate consequence of the update rule in line 16 of Algorithm 4. Crucially, we observe that the iterate V kh
forms a “pessimistic view” of V π

k

h — and in turn V ?h — resulting from suitable design of the penalty term. This observation
is formally stated in the following lemma, with the proof postponed to Section C.1.

Lemma A.1. Consider any δ ∈ (0, 1), and suppose that cb > 0 is some sufficiently large constant. Then with probability at
least 1− δ,

∣∣∣∣∣

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≤
Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn (31)

holds simultaneously for all (k, h, s, a) ∈ [K]× [H]× S ×A, and

V kh (s) ≤ V πkh (s) ≤ V ?h (s) (32)

holds simultaneously for all (k, h, s) ∈ [K]× [H]× S .

In a nutshell, the result (32) in Lemma A.1 reveals that V kh is a pointwise lower bound on V π
k

h and V ?h , thereby forming
a pessimistic estimate of the optimal value function. In addition, the property (31) in Lemma A.1 essentially tells us that
the weighted sum of the penalty terms dominates the weighted sum of the uncertainty terms, which plays a crucial role
in ensuring the aforementioned pessimism property. As we shall see momentarily, Lemma A.1 forms the basis of the
subsequent proof.

We are now ready to embark on the analysis for LCB-Q, which is divided into multiple steps as follows.
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Step 1: decomposing estimation errors. With the aid of Lemma A.1, we can develop an upper bound on the performance
difference of interest in (20) as follows

V ?1 (ρ)− V π̂1 (ρ) = E
s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V π

K

1 (s1)
]

(i)

≤ E
s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V K1 (s1)

]

(ii)

≤ 1

K

K∑

k=1

(
E

s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V k1 (s1)

])

=
1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?1 (s)− V k1 (s)

)
, (33)

where (i) results from Lemma A.1 (i.e., V π
K

1 (s) ≥ V K1 (s) for all s ∈ S), (ii) follows from the monotonicity property in
(30), and the last equality holds since dπ

?

1 (s) = ρ(s) (cf. (4)).

We then attempt to bound the quantity on the right-hand side of (33). Given that π? is assumed to be a deterministic policy,
we have dπ

?

h (s) = dπ
?

h (s, π?(s)). Taking this together with the relations V kh (s) ≥ maxaQ
k
h(s, a) ≥ Qkh(s, π?h(s)) (see

line 16 of Algorithm 4) and V ?h (s) = Q?h(s, π?h(s)), we obtain

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
=

K∑

k=1

∑

s∈S
dπ

?

h (s, π?h(s))
(
V ?h (s)− V kh (s)

)

≤
K∑

k=1

∑

s∈S
dπ

?

h (s, π?h(s))
(
Q?h
(
s, π?h(s)

)
−Qkh

(
s, π?h(s)

))

=

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
(
Q?h(s, a)−Qkh(s, a)

)
(34)

for any h ∈ [H], where the last identity holds since π? is deterministic and hence

dπ
?

h (s, a) = 0 for any a 6= π?h(s). (35)

In view of (34), we need to properly control Q?h(s, a)−Qkh(s, a). By virtue of (26), we can rewrite Q?h(s, a) as follows

Q?h(s, a) =

Nkh∑

n=0

η
Nkh
n Q?h(s, a) = η

Nkh
0 Q?h(s, a) +

Nkh∑

n=1

η
Nkh
n Q?h(s, a)

= η
Nkh
0 Q?h(s, a) +

Nkh∑

n=1

η
Nkh
n

(
rh(s, a) + Ph,s,aV

?
h+1

)
, (36)

where the second line follows from Bellman’s optimality equation (10). Combining (29) and (36) leads to

Q?h(s, a)−Qkh(s, a)

= η
Nkh
0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n

(
Ph,s,aV

?
h+1 − V k

n

h+1(sk
n

h+1) + bn

)

= η
Nkh
0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n bn +

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)
+

Nkh∑

n=1

η
Nkh
n

(
Ph,s,a − P k

n

h

)
V k

n

h+1 (37)

≤ ηN
k
h

0 H + 2

Nkh∑

n=1

η
Nkh
n bn +

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)
, (38)
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where we have made use of the definition in (27) by recognizing P k
n

h V k
n

h+1 = V k
n

h+1(sk
n

h+1) in (37), and the last inequality
follows from the fact Q?h(s, a)−Q1

h(s, a) = Q?h(s, a)− 0 ≤ H and the bound (31) in Lemma A.1. Substituting the above
bound into (34), we arrive at

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
≤

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)η
Nkh (s,a)
0 H + 2

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn

︸ ︷︷ ︸
=: Ih

+

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V

knh(s,a)
h+1

)
. (39)

Step 2: establishing a crucial recursion. As it turns out, the last term on the right-hand side of (39) can be used to derive
a recursive relation that connects step h with step h+ 1, as summarized in the next lemma.

Lemma A.2. With probability at least 1− δ, the following recursion holds:

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V

knh(s,a)
h+1

)

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
. (40)

Lemma A.2 taken together with (39) implies that

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)

+ Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
. (41)

Invoking (41) recursively over the time steps h = H,H − 1, · · · , 1 with the terminal condition V kH+1 = V ?H+1 = 0, we
reach

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?1 (s)− V k1 (s)

)
≤ max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)

≤
H∑

h=1

(
1 +

1

H

)h−1(
Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
, (42)

which captures the estimation error resulting from the use of pessimism principle.

Step 3: controlling the right-hand side of (42). The right-hand side of (42) can be bounded through the following
lemma, which will be proved in Appendix C.3.

Lemma A.3. Consider any δ ∈ (0, 1). With probability at least 1− δ, we have

H∑

h=1

(
1 +

1

H

)h−1(
Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
. H2SC?ι+

√
H5SC?Kι3, (43)

where we recall that ι := log
(
SAT
δ

)
.

Combining Lemma A.3 with (42) and (33) yields

V ?1 (ρ)− V π̂1 (ρ) ≤ 1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?1 (s)− V k1 (s)

)
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≤ 1

K
max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)

≤ ca
2

√
H5SC?ι3

K
+
ca
2

H2SC?ι

K
=
ca
2

√
H6SC?ι3

T
+
ca
2

H3SC?ι

T

≤ ca
√
H6SC?ι3

T
(44)

for some sufficiently large constant ca > 0, where the last inequality is valid as long as T > SC?ι. This concludes the proof
of Theorem 3.1.

A.2. Analysis of LCB-Q-Advantage

We now turn to the analysis of LCB-Q-Advantage. Thus far, we have omitted the dependency of all quantities on the epoch
number m and the in-epoch episode number t in Algorithms 2 and 3. While it allows for a more concise description of our
algorithm, it might hamper the clarity of our proofs. In the following, we introduce the notation k to denote the current
episode as follows:

k :=

m−1∑

i=1

Li + t, (45)

which corresponds to the t-th in-epoch episode in the m-th epoch; here, Lm = 2m stands for the total number of in-epoch
episodes in the m-th epoch. With this notation in place, we can rewrite Algorithm 2 as Algorithm 5 in order to make clear
the dependency on the episode index k, epoch number m, and in-epoch episode index t.

Before embarking on our main proof, we make two crucial observations which play important roles in our subsequent
analysis. First, similar to the property (30) for LCB-Q, the update rule (cf. lines 19-20 of Algorithm 5) ensures the monotonic
non-decreasing property of Vh(s) such that for all k ∈ [K],

V k+1
h (s) ≥ V kh (s), for all (k, s, h) ∈ [K]× S × [H]. (46)

Secondly, V kh forms a “pessimistic view” of V ?h , which is formalized in the lemma below; the proof is deferred to
Appendix D.1.

Lemma A.4. Let δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with probability at least 1− δ,
the value estimates produced by Algorithm 2 satisfy

V kh (s) ≤ V πkh (s) ≤ V ?(s) (47)

for all (k, h, s) ∈ [K]× [H + 1]× S .

With these two observations in place, we can proceed to present the analysis for LCB-Q-Advantage. To begin with, the
performance difference of interest can be controlled similar to (33) as follows:

V ?1 (ρ)− V π̂1 (ρ) = E
s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V π

K

1 (s1)
]

(i)

≤ E
s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V K1 (s1)

]

(ii)

≤ 1

K

K∑

k=1

(
E

s1∼ρ

[
V ?1 (s1)

]
− E
s1∼ρ

[
V k1 (s1)

])

=
1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?1 (s)− V k1 (s)

)
, (48)

where (i) follows from Lemma A.4 (i.e., V π
K

1 (s) ≥ V K1 (s) for all s ∈ S), (ii) holds due to the monotonicity in (46) and the
last equality holds since dπ

?

1 (s) = ρ(s) (cf. (4)). It then boils down to controlling the right-hand side of (48). Towards this
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Algorithm 5 LCB-Q-Advantage (a rewrite of Algorithm 2 that specifies dependency on k or (m, t).)
1: Parameters: number of epochs M , universal constant cb > 0, target success probability 1 − δ ∈ (0, 1), and
ι = log

(
SAT
δ

)
;

2: Initialize: Q1
h(s, a), Q

LCB,1
h (s, a), Q

1

h(s, a), µ
1
h(s, a), µ

next,1
h (s, a), N1

h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H];
V 1
h (s), V

1
h(s), V

next,1
h (s)← 0 for all (s, h) ∈ S × [H + 1];

µref,1
h (s, a), σref,1

h (s, a), µadv,1
h (s, a), σadv,1

h (s, a), δ
1
h(s, a), B

1
h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H].

3: for Epoch m = 1 to M do
4: Lm = 2m; // specify the number of episodes in the current epoch
5: N̂

(m,1)
h (s, a) = 0 for all (h, s, a) ∈ [H]× S ×A. // reset the epoch-wise counter

6: /* Inner-loop: update value-estimates Vh(s, a) and Q-estimates Qh(s, a)
7: for In-epoch Episode t = 1 to Lm do
8: Set k ←∑m−1

i=1 Li + t. // set the episode index
9: Sample the k-th trajectory {skh, akh}Hh=1. // sampling from batch dataset

10: Compute πk s.t. πkh(s) = arg maxaQ
k
h(s, a) for all (s, h) ∈ S × [H]. // update the policy

11: for Step h = 1 to H do
12: for (s, a) ∈ S ×A do
13: // carry over the estimates
14: Nk+1

h (s, a)← Nk
h (s, a); N̂k+1

h (s, a)← N̂k
h (s, a); V k+1

h (s)← V kh (s);

15: QLCB,k+1
h (s, a)← QLCB,k

h (s, a) Q
k+1

h (s, a)← Q
k

h(s, a); Qk+1
h (s, a)← Qkh(s, a);

16: V
k+1

h (s)← V
k

h(s) V
next,k+1

h (s)← V
next,k
h (s); µk+1(s, a)← µk(s, a).

17: end for
18: Nk+1

h (skh, a
k
h)← Nk

h (skh, a
k
h) + 1; n← Nk+1

h (skh, a
k
h). // update the overall counter

19: ηn ← H+1
H+n ; // update the learning rate

20: // update the Q-estimate with LCB
21: QLCB,k+1

h (skh, a
k
h)← update-lcb-q();

22: // update the Q-estimate with LCB and reference-advantage

23: Q
k+1

h (skh, a
k
h)← update-lcb-q-ra();

24: // update the Q-estimate Qh and value estimate Vh
25: Qk+1

h (skh, a
k
h)← max{QLCB,k+1

h (skh, a
k
h), Q

k+1

h (skh, a
k
h), Qkh(skh, a

k
h)}.

26: V k+1
h (skh)← maxaQ

k+1
h (skh, a).

27: // update epoch-wise counter and µnext
h (s, a) for the next epoch

28: N̂
(m,t+1)
h (skh, a

k
h)← N̂

(m,t)
h (skh, a

k
h) + 1;

29: µnext,k+1
h (skh, a

k
h)←

(
1− 1

N̂
(m,t+1)
h (skh,a

k
h)

)
µnext,k
h (sh, ah) + 1

N̂
(m,t+1)
h (skh,a

k
h)
V

next,k
h+1 (sh+1).

30: end for
31: end for
32: /* Update the reference (V h, V

next
h ) and (µh, µnext

h )
33: for (s, a, h) ∈ S ×A× [H + 1] do
34: V

k+1

h (s)← V
next,k+1

h (s); µk+1
h (s, a)← µnext,k+1

h (s, a). // set V h and µh for the next epoch

35: V
next,k+1

h (s)← V k+1
h (s); µnext,k+1

h (s, a)← 0. // set µnext
h and V

next
h for the next epoch

36: end for
37: end for
38: Output: the policy π̂ = πK with K =

∑M
m=1 Lm.

end, it turns out that one can control a more general counterpart, i.e.,

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
(49)

for any h ∈ [H]. This is accomplished via the following lemma, whose proof is postponed to Appendix D.2.

Lemma A.5. Let δ ∈ (0, 1), and recall that ι := log
(
SAT
δ

)
. Suppose that ca, cb > 0 are some sufficiently large constants.
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Then with probability at least 1− δ, one has

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
≤ J1

h + J2
h + J3

h, (50)

where

J1
h :=

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)

[
η
Nkh (s,a)
0 H +

4cbH
7/4ι

(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]
,

J2
h := 2

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)B
k

h(s, a),

J3
h :=

(
1 +

1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2. (51)

As a direct consequence of Lemma A.5, one arrives at a recursive relationship between time steps h and h+ 1 as follows:

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2 + J1

h + J2
h. (52)

Recursing over time steps h = H,H − 1, · · · , 1 with the terminal condition V kH+1 = V ?H+1 = 0, we can upper bound the
performance difference at h = 1 as follows

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?1 (s)− V k1 (s)

)
≤ max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)

≤
H∑

h=1

(
1 +

1

H

)h−1(
48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2 + J1

h + J2
h

)
. (53)

To finish up, it suffices to upper bound each term in (53) separately. We summarize their respective upper bounds as follows;
the proof is provided in Appendix D.3.

Lemma A.6. Fix δ ∈ (0, 1), and recall that ι := log
(
SAT
δ

)
. With probability at least 1− δ, we have

H∑

h=1

(
1 +

1

H

)h−1
J1
h . H2.75(SC?)

3
4K

1
4 ι2 +H3SC?ι3, (54a)

H∑

h=1

(
1 +

1

H

)h−1
J2
h .

√√√√H4SC?ι3 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
√
H3SC?Kι5 +H4SC?ι4, (54b)

H∑

h=1

(
1 +

1

H

)h−1(
48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2

)
.

√
H3C?K log

2H

δ
+H4C?

√
Sι2. (54c)

Substituting the above upper bounds into (48) and (53) and recalling that T = HK, we arrive at

V ?1 (ρ)− V π̂1 (ρ) .
1

K
max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)



Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity

.
1

K



√√√√H4SC?ι3 max

h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
(√

H3SC?Kι5 +H4SC?ι4 +H2.75(SC?)
3
4K

1
4 ι2
)



(i)� 1

K



√√√√H4SC?ι3 max

h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
√
H3SC?Kι5 +H4SC?ι4




(ii)

.
1

K

(√
H3SC?Kι5 +H4SC?ι4

)

�
√
H4SC?ι5

T
+
H5SC?ι4

T
,

where (i) has made use of the AM-GM inequality:

2H2.75(SC?)
3
4K

1
4 ≤

(
H0.75(SC?)

1
4K

1
4

)2
+
(
H2(SC?)

1
2

)2
=
√
H3SC?K +H4SC?,

and (ii) holds by letting x := maxh∈[H]

∑K
k=1

∑
s∈S d

π?

h (s)
(
V ?h (s)− V kh (s)

)
and solving the inequality x .√

H4SC?ι3x+
√
H3SC?Kι5 +H4SC?ι4. This concludes the proof.

B. Technical lemmas
B.1. Preliminary facts

Our results rely heavily on proper choices of the learning rates. In what follows, we make note of several useful properties
concerning the learning rates, which have been established in (Jin et al., 2018; Li et al., 2021b).

Lemma B.1 (Lemma 1 in (Li et al., 2021b)). For any integer N > 0, the following properties hold:

1

Na
≤

N∑

n=1

ηNn
na
≤ 2

Na
for all

1

2
≤ a ≤ 1, (55a)

max
1≤n≤N

ηNn ≤
2H

N
,

N∑

n=1

(ηNn )2 ≤ 2H

N
,

∞∑

N=n

ηNn ≤ 1 +
1

H
. (55b)

In addition, we gather a few elementary properties about the Binomial distribution, which will be useful throughout the
proof. The lemma below is adapted from Xie et al. (2021b, Lemma A.1).

Lemma B.2. Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1]. For any δ ∈ (0, 1), we have

p

N ∨ 1
≤ 8 log

(
1
δ

)

n
, (56)

and

N ≥ np

8 log
(
1
δ

) if np ≥ 8 log

(
1

δ

)
, (57a)

N ≤
{
e2np if np ≥ log

(
1
δ

)
,

2e2 log
(
1
δ

)
if np ≤ 2 log

(
1
δ

)
.

(57b)

with probability at least 1− 4δ.

Proof. To begin with, we directly invoke Xie et al. (2021b, Lemma A.1) which yields the results in (56) and (57a). Regarding
(57b), invoking the Chernoff bound (Vershynin, 2018, Theorem 2.3.1) with E[N ] = np, when np ≥ log

(
1
δ

)
, it satisfies

P(N ≥ e2np) ≤ e−np
(
enp

e2np

)e2np
≤ e−np ≤ δ.
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Similarly, when np ≤ 2 log
(
1
δ

)
, we have

P
(
N ≥ 2e2 log

(
1

δ

))
(i)

≤ e−np
(

enp

2e2 log
(
1
δ

)
)2e2 log( 1

δ )

(ii)

≤ e−np
(
enp

e2np

)2e2 log( 1
δ )

≤ e−2e2 log( 1
δ ) ≤ δ,

where (i) results from Vershynin (2018, Theorem 2.3.1), and (ii) follows from the basic fact e2 log
(
1
δ

)
≥ 2 log

(
1
δ

)
≥ np.

Taking the union bound thus completes the proof.

B.2. Freedman’s inequality and its consequences

Both the samples collected within each episode and the algorithms analyzed herein exhibit certain Markovian structure. As
a result, concentration inequalities tailored to martingales become particularly effective for our analysis. In this subsection,
we collect a few useful concentration results that will be applied multiple times in the current paper. These results might be
of independent interest.

To begin with, the following theorem provides a user-friendly version of Freedman’s inequality (Freedman, 1975); see Li
et al. (2021a, Section C) for more details.

Theorem B.3 (Freedman’s inequality). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · , and let Ek stand for the expectation
conditioned on Fk. Suppose that Yn =

∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and Ek−1
[
Xk

]
= 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=

n∑

k=1

Ek−1
[
X2
k

]
.

In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 <∞. Then for any positive integer
m ≥ 1, with probability at least 1− δ one has

|Yn| ≤
√

8 max
{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (58)

We shall also record some immediate consequence of Freedman’s inequality tailored to our problem. Recall that N i
h(s, a)

denotes the number of times that (s, a) has been visited at step h before the beginning of the i-th episode, and kn(s, a)
stands for the index of the episode in which (s, a) is visited for the n-th time. The following concentration bound has been
established in Li et al. (2021b, Lemma 7).

Lemma B.4. Let
{
W i
h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
and

{
uih(s, a,N) ∈ R | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
be a

collections of vectors and scalars, respectively, and suppose that they obey the following properties:

• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th episode;

• ‖W i
h‖∞ ≤ Cw;

• uih(s, a,N) is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th episode, and a
given positive integer N ∈ [K];

• 0 ≤ uih(s, a,N) ≤ Cu;

• 0 ≤∑Nkh (s,a)
n=1 u

knh(s,a)
h (s, a,N) ≤ 2.

In addition, consider the following sequence

Xi(s, a, h,N) := uih(s, a,N)
(
P ih − Ph,s,a

)
W i
h+1 1

{
(sih, a

i
h) = (s, a)

}
, 1 ≤ i ≤ K, (59)
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with P ih defined in (27). Consider any δ ∈ (0, 1). Then with probability at least 1− δ,
∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣

.

√
Cu log2 SAT

δ

√√√√
Nkh (s,a)∑

n=1

u
knh(s,a)

h (s, a,N)Varh,s,a
(
W

knh(s,a)

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ
(60)

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

Next, we make note of an immediate consequence of Lemma B.4 as follows.

Lemma B.5. Let
{
W i
h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
be a collection of vectors satisfying the following properties:

• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th episode;

• ‖W i
h‖∞ ≤ Cw.

For any positive N ≥ H , we consider the following sequence

Xi(s, a, h,N) := ηNNih(s,a)
(
P ih − Ph,s,a

)
W i
h+1 1

{
(sih, a

i
h) = (s, a)

}
, 1 ≤ i ≤ K, (61)

with P ih defined in (27). Consider any δ ∈ (0, 1). With probability at least 1− δ,
∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣ .
√
H

N
C2

w log2 SAT

δ
(62)

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

Proof. Taking uih(s, a,N) = ηN
Nih(s,a)

, one can see from (55b) in Lemma B.1 that

∣∣uih(s, a,N)
∣∣ ≤ 2H

N
=: Cu.

Recognizing the trivial bound Varh,s,a
(
W

knh(s,a)
h+1

)
≤ C2

w, we can invoke Lemma B.4 to obtain that, with probability at least
1− δ,

∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣ .
√
Cu log2 SAT

δ

√√√√
Nkh (s,a)∑

n=1

ηNn C
2
w +

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

.

√
H

N
log2 SAT

δ
· Cw +

HCw

N
log2 SAT

δ
.

√
HC2

w

N
log2 SAT

δ

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K], where the last line applies (55b) in Lemma B.1
once again.

Finally, we introduce another lemma by invoking Freedman’s inequality in Theorem B.3.

Lemma B.6. Let
{
W k
h (s, a) ∈ RS | (s, a) ∈ S × A, 1 ≤ k ≤ K, 1 ≤ h ≤ H + 1

}
be a collection of vectors satisfying

the following properties:

• W k
h (s, a) is fully determined by the given state-action pair (s, a) and the samples collected up to the end of the

(k − 1)-th episode;

• ‖W k
h (s, a)‖∞ ≤ Cw.
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For any positive Cd ≥ 0, we consider the following sequences

Xh,k := Cd


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,akhW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,aW

k
h+1(s, a)


 , 1 ≤ k ≤ K, (63)

Xh,k := Cd


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,aW

k
h+1(s, a)


 , 1 ≤ k ≤ K. (64)

Consider any δ ∈ (0, 1). Then with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW k

h+1(s, a)
]2

log
2H

δ
+ 2CdC

?Cw log
2H

δ
(65)

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ
(66)

hold simultaneously for all h ∈ [H].

Proof. We intend to apply Freedman’s inequality (cf. Theorem B.3) to control
∑K
k=1Xh,k. Considering any given time

step h, it is easily verified that

Ek−1[Xh,k] = 0, Ek−1[Xh,k] = 0,

where Ek−1 denotes the expectation conditioned on everything happening up to the end of the (k − 1)-th episode. To
continue, we observe that

|Xh,k| ≤ Cd

(
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)

+ 1

)∥∥W k
h+1(s, a)

∥∥
∞ ≤ 2CdC

?Cw, (67)

|Xh,k| ≤ Cd

(
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)

+ 1

)∥∥W k
h+1(s, a)

∥∥
∞ ≤ 2CdC

?Cw, (68)

where we use the assumptions d
π?
h (s,a)

dµh(s,a)
≤ C? for all (h, s, a) ∈ [H]×S×A (cf. Assumption 2.1) and

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤

Cw.

Recall that ∆(S×A) is the probability simplex over the set S×A of all state-action pairs, and we denote by dµh ∈ ∆(S×A)
the state-action visitation distribution induced by the behavior policy µ at time step h ∈ [H]. With this in hand, we obtain

K∑

k=1

Ek−1[|Xh,k|2] ≤
K∑

k=1

C2
dEk−1


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,akhW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,aW

k
h+1(s, a)



2

≤
K∑

k=1

C2
dE(skh,a

k
h)∼d

µ
h

[
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,akhW

k
h+1(skh, a

k
h)

]2

=

K∑

k=1

C2
d

∑

(s,a)∈S×A

dπ?h (s, a)

dµh(s, a)
dπ?h (s, a)

[
Ph,s,aW

k
h+1(s, a)

]2

(i)

≤
K∑

k=1

C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW

k
h+1(s, a)

]2
(69)

≤
K∑

k=1

C2
d

∑

(s,a)∈S×A
C?dπ?h (s, a)

∥∥W k
h+1(skh, a

k
h)
∥∥2
∞ ≤ C

2
dC

?C2
wK, (70)
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where (i) follows from dπ?h (s,a)

dµh(s,a)
≤ C? (see Assumption 2.1) and the assumption

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤ Cw.

Similarly, we can derive

K∑

k=1

Ek−1[|Xh,k|2] ≤
K∑

k=1

C2
dEk−1


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,aW

k
h+1(s, a)



2

≤
K∑

k=1

C2
dE(skh,a

k
h)∼d

µ
h

[
EPkh∼Ph,sk

h
,ak
h

[
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)

]2]

=

K∑

k=1

C2
d

∑

(s,a)∈S×A

dπ?h (s, a)

dµh(s, a)
dπ?h (s, a)EPkh∼Ph,s,a

[
P khW

k
h+1(s, a)

]2

(i)

≤
K∑

k=1

C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)EPkh∼Ph,s,a

[
P khW

k
h+1(s, a)

]2
(71)

=

K∑

k=1

C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
(72)

≤
K∑

k=1

C2
d

∑

(s,a)∈S×A
C?dπ?h (s, a)

∥∥W k
h+1(s, a)

∥∥2
∞ ≤ C

2
dC

?C2
wK, (73)

where (i) follows from dπ?h (s,a)

dµh(s,a)
≤ C? (see Assumption 2.1) and the assumption

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤ Cw.

Plugging in the results in (67) and (69) (resps. (68) and (72)) to control
∑K
k=1 |Xh,k| (resps.

∑K
k=1

∣∣Xh,k

∣∣), we invoke
Theorem B.3 with m = dlog2Ke and take the union bound over h ∈ [H] to show that with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√√8 max





K∑

k=1

C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW k

h+1(s, a)
]2
,
C2

dC
?C2

wK

2m



 log

2H

δ

+
8

3
CdC

?Cw log
2H

δ

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW k

h+1(s, a)
]2

log
2H

δ
+ 6CdC

?Cw log
2H

δ

and

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√√8 max





K∑

k=1

C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
,
C2

dC
?C2

wK

2m



 log

2H

δ

+
8

3
CdC

?Cw log
2H

δ

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
log

2H

δ
+ 6CdC

?Cw log
2H

δ

holds simultaneously for all h ∈ [H].
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C. Proof of main lemmas for LCB-Q (Theorem 3.1)
C.1. Proof of Lemma A.1

C.1.1. PROOF OF INEQUALITY (31)

To begin with, we shall control
∑Nkh (s,a)
n=1 η

Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1 by invoking Lemma B.5. Let

W i
h+1 := V ih+1,

which satisfies

‖W i
h+1‖∞ ≤ H =: Cw.

Applying Lemma B.5 with N = Nk
h (s, a) reveals that, with probability at least 1− δ,

∣∣∣∣∣

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=1

Xi

(
s, a, h,Nk

h (s, a)
)
∣∣∣∣∣ ≤ cb

√
H3ι2

Nk
h (s, a)

(74a)

holds simultaneously for all (s, a, k, h) ∈ S ×A× [K]× [H], provided that the constant cb > 0 is large enough and that
Nk
h (s, a) > 0. If Nk

h (s, a) = 0, then we have the trivial bound

∣∣∣∣∣

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ = 0. (74b)

Additionally, from the definition bn = cb

√
H3ι2

n , we observe that





∑Nkh (s,a)
n=1 η

Nkh (s,a)
n bn ∈

[
cb
√

H3ι2

Nkh (s,a)
, 2cb

√
H3ι2

Nkh (s,a)

]
, if Nk

h (s, a) > 0
∑Nkh (s,a)
n=1 η

Nkh (s,a)
n bn = 0, if Nk

h (s, a) = 0
(75)

holds simultaneously for all s, a, h, k ∈ S ×A× [H]× [K], which follows directly from the property (55a) in Lemma B.1.

Combining the above bounds (74) and (75), we arrive at the advertised result

∣∣∣∣∣

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≤
Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn.

C.1.2. PROOF OF INEQUALITY (32)

Note that the second inequality of (32) holds straightforwardly as

V πh (s) ≤ V ?(s)

holds for any policy π. As a consequence, it suffices to establish the first inequality of (32), namely,

V kh (s) ≤ V πkh (s) for all (s, h, k) ∈ S × [H]× [K]. (76)

Before proceeding, let us introduce the following auxiliary index

ko(h, k, s) := max
{
l : l < k and V lh(s) = max

a
Qlh(s, a)

}
(77)

for any (h, k, s) ∈ [H]× [K]× S , which denotes the index of the latest episode — before the end of the (k − 1)-th episode
— in which Vh(s) has been updated. In what follows, we shall often abbreviate ko(h, k, s) as ko(h) whenever it is clear from
the context.
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Towards establishing the relation (76), we proceed by means of an inductive argument. In what follows, we shall first justify
the desired inequality for the base case when h+ 1 = H + 1 for all episodes k ∈ [K], and then use induction to complete
the argument for other cases. More specifically, consider any step h ∈ [H] in any episode k ∈ [K], and suppose that the first
inequality of (32) is satisfied for all previous episodes as well as all steps h′ ≥ h+ 1 in the current episode, namely,

V k
′

h′ (s) ≤ V π
k′

h′ (s) for all (k′, h′, s) ∈ [k − 1]× [H + 1]× S, (78a)

V kh′(s) ≤ V π
k

h′ (s) for all h′ ≥ h+ 1 and s ∈ S. (78b)

We intend to justify that the following is valid

V kh (s) ≤ V πkh (s) for all s ∈ S, (79)

assuming that the induction hypothesis (78) holds.

Step 1: base case. Let us begin with the base case when h+ 1 = H + 1 for all episodes k ∈ [K]. Recognizing the fact
that V πH+1 = V kH+1 = 0 for any π and any k ∈ [K], we directly arrive at

V kH+1(s) ≤ V πkH+1(s) for all (k, s) ∈ [K]× S. (80)

Step 2: induction. To justify (79) under the induction hypothesis (78), we decompose the difference term to obtain

V π
k

h (s)− V kh (s) = V π
k

h (s)−max
{

max
a

Qkh(s, a), V k−1h (s)
}

= Qπ
k

h

(
s, πkh(s)

)
−max

{
max
a

Qkh(s, a), V
ko(h)
h (s)

}
, (81)

where the last line holds since Vh(s) has not been updated during episodes ko(h), ko(h) + 1, · · · , k − 1 (in view of the
definition of ko(h) in (77)). We shall prove that the right-hand side of (81) is non-negative by discussing the following two
cases separately.

• Consider the case where V kh (s) = maxaQ
k
h(s, a). Before continuing, it is easily observed from the update rule in

line 16 and line 16 of Algorithm 1 that: Vh(s) and πh(s) are updated hand-in-hand for every h. Thus, it implies that

πkh(s) = arg max
a

Qkh(s, a), when V kh (s) = max
a

Qkh(s, a) (82)

holds for all (k, h) ∈ [K]× [H]. As a result, we express the term of interest as follows:

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πkh(s)

)
−max

a
Qkh(s, a) = Qπ

k

h

(
s, πkh(s)

)
−Qkh

(
s, πkh(s)

)
. (83)

To continue, we turn to controlling a more general term Qπ
k

h (s, a)−Qkh(s, a) for all (s, a) ∈ S ×A. Invoking the fact

η
Nkh
0 +

∑Nkh
n=1 η

Nkh
n = 1 (see (25) and (26)) leads to

Qπ
k

h (s, a) = η
Nkh
0 Qπ

k

h (s, a) +

Nkh∑

n=1

η
Nkh
n Qπ

k

h (s, a).

This relation combined with (29) allows us to express the difference between Qπ
k

h and Qkh as follows

Qπ
k

h (s, a)−Qkh(s, a) = η
Nkh
0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nkh∑

n=1

η
Nkh
n

[
Qπ

k

h (s, a)− rh(s, a)− V knh+1(sk
n

h+1) + bn

]

(i)
= η

Nkh
0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nkh∑

n=1

η
Nkh
n

[
Ph,s,aV

πk

h+1 − V k
n

h+1(sk
n

h+1) + bn

]
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(ii)

≥
Nkh∑

n=1

η
Nkh
n

[
Ph,s,aV

πk

h+1 − V k
n

h+1(sk
n

h+1) + bn

]

(iii)
=

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V π

k

h+1 − V k
n

h+1

)
+

Nkh∑

n=1

η
Nkh
n

[(
Ph,s,a − P k

n

h

)
V k

n

h+1 + bn

]

(iv)

≥
Nkh∑

n=1

η
Nkh
n

[(
Ph,s,a − P k

n

h

)
V k

n

h+1 + bn

]
. (84)

Here, (i) invokes the Bellman equationQπ
k

h (s, a) = rh(s, a)+Ph,s,aV
πk

h+1; (ii) holds sinceQπ
k

h (s, a) ≥ 0 = Q1
h(s, a);

(iii) relies on the notaion (27); and (iv) comes from the fact

V π
k

h+1 ≥ V kh+1 ≥ V k
n

h+1,

owing to the induction hypothesis in (78) as well as the monotonicity of Vh+1 in (30). Consequently, it follows from
(84) that

Qπ
k

h (s, a)−Qkh(s, a) ≥
Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1 +

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn

≥
Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn −

∣∣∣∣∣

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≥ 0 (85)

for all state-action pair (s, a), where the last inequality holds due to the bound (31) in Lemma A.1. Plugging the above
result into (83) directly establishes that

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πk(s)

)
−Qkh

(
s, πk(s)

)
≥ 0. (86)

• When V kh (s) = V
ko(h)
h (s), it indicates that

V
ko(h)
h (s) = max

a
Q
ko(h)
h (s, a), π

ko(h)
h (s) = arg max

a
Q
ko(h)
h (s, a), (87)

which follows from the definition of ko(h) in (77) and the corresponding fact in (82). We also make note of the fact that

πkh(s) = π
ko(h)
h (s), (88)

which holds since Vh(s) (and hence πh(s)) has not been updated during episodes ko(h), ko(h) + 1, · · · , k− 1 (in view
of the definition (77)). Combining the above two results, we can show that

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πkh(s)

)
− V ko(h)h (s) = Qπ

k

h

(
s, πkh(s)

)
−max

a
Q
ko(h)
h (s, a)

= Qπ
k

h

(
s, π

ko(h)
h (s)

)
−Qko(h)h

(
s, π

ko(h)
h (s)

)

≥ 0, (89)

where the final line can be verified using exactly the same argument as in the previous case to show (84) and then (86).
Here, we omit the proof of this step for brevity.

To conclude, substituting the relations (86) and (89) in the above two cases back into (81), we arrive at

V π
k

h (s)− V kh (s) ≥ 0

as desired in (79). This immediately completes the induction argument.
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C.2. Proof of Lemma A.2

Observing that Lemma A.2 would follow immediately if we could establish the following relation:

Ah :=

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)

︸ ︷︷ ︸
=:Ah,k

≤
K∑

k=1

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)

︸ ︷︷ ︸
=:Bh,k

+16

√
H2C?K log

H

δ
+ 8HC? log

H

δ
, (90)

the remainder of the proof is thus dedicated to proving (90).

To continue, let us first consider two auxiliary sequences {Yh,k}Kk=1 and {Zh,k}Kk=1 which are the empirical estimation of
Ah,k and Bh,k respectively. For any time step h in episode k, Yh,k and Zh,k are defined as follows

Yh,k :=
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,akh

Nkh (s
k
h,a

k
h)∑

n=1

η
Nkh (s

k
h,a

k
h)

n

(
V ?h+1 − V

kn(skh,a
k
h)

h+1

)
,

Zh,k :=

(
1 +

1

H

)
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,akh

(
V ?h+1 − V kh+1

)
.

To begin with, let us establish the relationship between {Yh,k}Kk=1 and {Zh,k}Kk=1:

K∑

k=1

Yh,k =

K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,akh

Nkh (s
k
h,a

k
h)∑

n=1

η
Nkh (s

k
h,a

k
h)

n

(
V ?h+1 − V

kn(skh,a
k
h)

h+1

)

(i)
=

K∑

l=1

dπ
?

h (slh, a
l
h)

dµh(slh, a
l
h)
Ph,slh,alh





NKh (slh,a
l
h)∑

N=N lh(s
l
h,a

l
h)

ηNN lh(slh,alh)




(
V ?h+1 − V lh+1

)
(91)

≤
(

1 +
1

H

) K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,akh

(
V ?h+1 − V kh+1

)
=

K∑

k=1

Zh,k. (92)

Here, (i) holds by replacing kn(skh, a
k
h) with l and gathering all terms that involve V ?h+1 − V

kn(skh,a
k
h)

h+1 ; in the last line, we

have invoked the property
∑NKh (s,a)
N=n ηNn ≤

∑∞
N=n η

N
n = 1 + 1/H (see (55b)) together with the fact V ?h+1 − V lh+1 ≥ 0

(see Lemma A.1), and have further replaced l with k.

With this relation in hand, to verify (90), we further decompose Ah into several terms

Ah =

K∑

k=1

Ah,k =

K∑

k=1

Yh,k +

K∑

k=1

(Ah,k − Yh,k)
(i)

≤
K∑

k=1

Zh,k +

K∑

k=1

(Ah,k − Yh,k)

=

K∑

k=1

Bh,k +

K∑

k=1

(Zh,k −Bh,k) +

K∑

k=1

(Ah,k − Yh,k) (93)

where (i) follows from (92).

As a result, it remains to control
∑K
k=1 (Zh,k −Bh,k) and

∑K
k=1 (Ah,k − Yh,k) separately in the following.

Step 1: controlling
∑K
k=1 (Ah,k − Yh,k). We shall first control this term by means of Lemma B.6. Specifically, consider

W k
h+1(s, a) :=

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)
, Cd := 1 (94)
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which satisfies

∥∥W k
h+1(s, a)

∥∥
∞ ≤

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(∥∥V ?h+1

∥∥
∞ +

∥∥∥V k
n(s,a)

h+1

∥∥∥
∞

)
≤ 2H =: Cw. (95)

Here we use the fact that ηN
k
h

0 +
∑Nkh
n=1 η

Nkh
n = 1 (see (25) and (26)). Then, applying Lemma B.6 with (94), we have with

probability at least 1− δ, the following inequality holds true

∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ

?

h (s, a)
[
Ph,s,aW k

h+1(s, a)
]2

log
H

δ
+ 2CdC

?Cw log
H

δ

(i)

≤

√√√√8C?
K∑

k=1

∥∥W k
h+1(s, a)

∥∥2
∞ log

H

δ
+ 4HC? log

H

δ

≤ 8

√
H2C?K log

H

δ
+ 4HC? log

H

δ
, (96)

where (i) holds by
∥∥Ph,s,a

∥∥
1

= 1.

Step 2: controlling
∑K
k=1 (Zh,k −Bh,k). Similarly, we shall control

∑K
k=1 (Zh,k −Bh,k) by invoking Lemma B.6.

Recalling that

Zh,k −Bh,k =

(
1 +

1

H

)
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,akh

(
V ?h+1 − V kh+1

)
−
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
, (97)

consider

W k
h+1(s, a) := V ?h+1 − V kh+1, Cd :=

(
1 +

1

H

)
≤ 2 (98)

which satisfies

∥∥W k
h+1(s, a)

∥∥
∞ ≤

∥∥V ?h+1

∥∥
∞ +

∥∥V kh+1

∥∥
∞ ≤ 2H =: Cw. (99)

Again, in view of Lemma B.6, we have with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ

?

h (s, a)
[
Ph,s,aW k

h+1(s, a)
]2

log
H

δ
+ 2CdC

?Cw log
H

δ

(i)

≤

√√√√32C?
K∑

k=1

∥∥W k
h+1(s, a)

∥∥2
∞ log

H

δ
+ 8HC? log

H

δ

≤ 16

√
H2C?K log

H

δ
+ 8HC? log

H

δ
, (100)

where (i) holds by
∥∥Ph,s,a

∥∥
1

= 1.

Step 3: putting together. Substitution results in (96) and (100) back into (93) completes the proof of Lemma A.2 by

Ah ≤
K∑

k=1

Bh,k +
∣∣∣
K∑

k=1

(Zh,k −Bh,k)
∣∣∣+
∣∣∣
K∑

k=1

(Ah,k − Yh,k)
∣∣∣ ≤

K∑

k=1

Bh,k + 24

√
H2C?K log

H

δ
+ 12HC? log

H

δ
.
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C.3. Proof of Lemma A.3

Recall that the term of interest in (42) is given by
H∑

h=1

(
1 +

1

H

)h−1(
24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
+

H∑

h=1

(
1 +

1

H

)h−1
Ih. (101)

First, it is easily seen that
(

1 +
1

H

)h−1
≤
(

1 +
1

H

)H
≤ e for every h = 1, · · · , H, (102)

which taken collectively with the expression of the first term in (101) yields
H∑

h=1

(
1 +

1

H

)h−1(
24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
≤ 24e

H∑

h=1

(√
H2C?K log

2H

δ
+HC? log

2H

δ

)

.

√
H4C?K log

H

δ
+H2C? log

H

δ
. (103)

As a result, it remains to control the second term in (101). Plugging the expression of Ih (cf. (39)) and invoking the fact
(102) give

H∑

h=1

(
1 +

1

H

)h−1
Ih =

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)η
Nkh (s,a)
0 H

+ 2

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn

≤ e
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)η
Nkh (s,a)
0 H

︸ ︷︷ ︸
=:A

+ 2e

H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn

︸ ︷︷ ︸
=:B

.

(104)

Step 1: controlling the quantities A and B in (104). We first develop an upper bound on the quantity A in (104).
Recognizing the fact that ηN0 = 0 for any N > 0 (see (25)), we have

A = e

H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)η
Nkh (s,a)
0 H

≤ eH
H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

1
(
Nk
h (s, a) < 1

)

≤ eH
H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
8ι

dµh(s, a)
+ eH

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=d 8ι

d
µ
h
(s,a)

e
1
(
Nk
h (s, a) < 1

)

= eH

H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) 8ι

dµh
(
s, π?(s)

) + eH

H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) K∑

k=d 8ι

d
µ
h
(s,π?(s))

e
1
(
Nk
h

(
s, π?(s)

)
< 1
)
,

where the last equality holds since π? is a deterministic policy (so that dπ
?

h (s, a) 6= 0 only when a = π?(s)). Recalling
dπ
?

h (s,a)
dµh(s,a)

≤ C? under Assumption 2.1, we can further bound A by

A ≤ 8eH2SC?ι+ eH

H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) K∑

k=d 8ι

d
µ
h
(s,π?(s))

e
1
(
Nk
h

(
s, π?(s)

)
< 1
)
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= 8eH2SC?ι, (105)

where the last inequality follows since when k ≥ 8ι
dµh(s,a)

, one has — with probability at least 1− δ — that

Nk
h (s, a) ≥ kdµh(s, a)

8ι
≥ 1,

holds simultaneously for all (s, a, h, k) ∈ S ×A× [K]× [H] (as implied by (57a)).

Turning to the quantity B in (104), one can deduce that

B = 2e

H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n bn

.
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

√
H3ι2

Nk
h (s, a) ∨ 1

=

H∑

h=1

K∑

k=1

∑

s∈S
dπ

?

h

(
s, π?(s)

)
√

H3ι2

Nk
h

(
s, π?(s)

)
∨ 1

, (106)

where the inequality follows from inequality (75), and the last equality is valid since π? is a deterministic policy. To further

control the right hand side above, Lemma B.2 provides an upper bound for
√

1/
(
Nk
h

(
s, π?(s)

)
∨ 1
)

which in turn leads to

B .
√
H3ι3

H∑

h=1

K∑

k=1

∑

s∈S
dπ

?

h

(
s, π?(s)

)
√

1

kdµh
(
s, π?(s)

)

.
√
H3C?ι3

H∑

h=1

K∑

k=1

∑

s∈S

√
dπ

?

h

(
s, π?(s)

)√1

k

.
√
H5C?Kι3 max

h

∑

s∈S

√
dπ

?

h

(
s, π?(s)

)

.
√
H5C?Kι3 ·

(
√
S ·
√∑

s∈S
dπ

?

h

(
s, π?(s)

)
)
�
√
H5SC?Kι3, (107)

where the second inequality follows from the fact dπ
?

h (s,a)
dµh(s,a)

≤ C? under Assumption 2.1, and the last line invokes the
Cauchy-Schwarz inequality.

Taking the upper bounds on both A and B collectively establishes

H∑

h=1

(
1 +

1

H

)h−1
Ih ≤ A+B . H2SC?ι+

√
H5SC?Kι3. (108)

Step 2: putting everything together. Combining (103) and (108) allows us to establish that

H∑

h=1

(
1 +

1

H

)h−1(
Ih + 16

√
H2C?K log

2H

δ
+ 8HC? log

2H

δ

)
. H2SC?ι+

√
H5SC?Kι3,

as advertised.

D. Proof of lemmas for LCB-Q-Advantage (Theorem 4.1)
Additional notation for LCB-Q-Advantage. Let us also introduce, and remind the reader of, several notation of interest
in Algorithm 5 as follows.

• Nk
h (s, a) (resp. N (m,t)

h (s, a)) denotes the value of Nh(s, a) — the number of episodes that has visited (s, a) at step h
at the beginning of the k-th episode (resp. the beginning of t-th episode of the m-th epoch); for the sake of conciseness,
we shall often abbreviate Nk

h = Nk
h (s, a) (resp. N (m,t)

h = N
(m,t)
h (s, a)) when it is clear from context.
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• Lm = 2m: the total number of in-epoch episodes in the m-th epoch.

• knh(s, a): the index of the episode in which (s, a) is visited for the n-th time at time step h; (mn
h(s, a), tnh(s, a)) denote

respectively the index of the epoch and that of the in-epoch episode in which (s, a) is visited for the n-th time at
step h; for the sake of conciseness, we shall often use the shorthand kn = knh(s, a), (mn, kn) = (mn

h(s, a), knh(s, a))
whenever it is clear from context.

• Qkh(s, a), QLCB,k
h (s, a), Q

k

h(s, a) and V kh (s) are used to denote Qh(s, a), QLCB
h (s, a), Qh(s, a), and Vh(s) at the

beginning of the k-th episode, respectively.

• V kh(s), V
next,k
h (s), µkh(s, a), µnext,k

h (s, a) denote the values of V h(s), V
next
h (s), µh(s, a) and µnext

h (s, a) at the begin-
ning of the k-th episode, respectively.

• N̂ (m,t)
h (s, a) represents N̂h(s, a) at the beginning of the t-th in-epoch episode in the m-th epoch.

• N̂ epo,m
h (s, a) denotes N̂ (m,Lm+1)

h (s, a), representing the number of visits to (s, a) in the entire duration of the m-th
epoch.

• [µref,k
h , σref,k

h , µadv,k
h , σadv,k

h , δ
k

h, B
k

h, b
k

h]: the values of [µref
h , σ

ref
h , µadv

h , σadv
h , δh, Bh, bh] at the beginning of the k-th

episode, respectively.

In addition, for a fixed vector V ∈ R|S|, let us define a variance parameter with respect to Ph,s,a as follows

Varh,s,a(V ) := E
s′∼Ph,s,a

[(
V (s′)− Ph,s,aV

)2]
= Ph,s,a(V 2)− (Ph,s,aV )2. (109)

This notation will be useful in the subsequent proof. We remind the reader that there exists a one-to-one mapping between
the index of the episode k and the index pair (m, t) (i.e., the epoch m and in-epoch episode t), as specified in (45). In the
following, for any episode k, we recall the expressions of V h+1 and µh (which is the running mean of V h+1).

• Recalling the update rule of V h and V
next
h in line 34 and line 35 of Algorithm 5, we observe that both the reference

values for the current epoch V h and for the next epoch V
next
h remain unchanged within each epoch. Additionally, for

any epoch m, V h takes the value of V
next
h in the previous (m− 1)-th epoch; namely, for any episode k happening in

the m-th epoch, we have

V
k

h = V
next,k′

h (110)

for all episode k′ within the (m− 1)-th epoch.

• µkh serves as the estimate of Ph,s,aV
k

h+1 constructed by the samples in the previous (m− 1)-th epoch (collected by
updating µnext

h ). Recall the update rule of µh in line 34 and line 29 of Algorithm 5: for any (s, a, h) ∈ S ×A× [H],
we can write µkh as

µkh(s, a) = µ
(m,1)
h (s, a) = µ

next,(m,1)
h (s, a) = µ

next,(m−1,Lm−1)
h (s, a)

=

∑N
(m,1)
h

i=N
(m−1,1)
h +1

V
next,ki

h+1 (sk
i

h+1)

N̂ epo,m−1
h (s, a) ∨ 1

=

∑N
(m,1)
h

i=N
(m−1,1)
h +1

V
k

h+1(sk
i

h+1)

N̂ epo,m−1
h (s, a) ∨ 1

, (111)

where the last equality follows from (110) using the fact that the indices of episodes in which (s, a) is visited within
the (m− 1)-th epoch are {i : i = N

(m−1,1)
h + 1, N

(m−1,1)
h + 2, · · · , N (m,1)

h }.

Finally, according to the update rules of µadv,kn+1

h (skh, a
k
h) and σadv,kn+1

h (skh, a
k
h) in lines 11-12 of Algorithm 3, we have

µadv,kn+1

h (skh, a
k
h) = µadv,kn+1

h (skh, a
k
h) = (1− ηn)µadv,kn

h (skh, a
k
h) + ηn

(
V k

n

h+1(sk
n

h+1)− V k
n

h+1(sk
n

h+1)
)
,
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σadv,kn+1

h (skh, a
k
h) = σadv,kn+1

h (skh, a
k
h) = (1− ηn)σadv,kn

h (skh, a
k
h) + ηn

(
V k

n

h+1(sk
n

h+1)− V k
n

h+1(sk
n

h+1)
)2
.

Applying this relation recursively and invoking the definitions of ηN
k
h

n in (25) give

µadv,kN
k
h+1

h (s, a) =

Nkh∑

n=1

η
Nkh
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)
, σadv,kN

k
h+1

h (s, a) =

Nkh∑

n=1

η
Nkh
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2
. (112)

Similarly, according to the update rules of µref,kn+1

h (s, a) and σref,kn+1

h (s, a) in lines 9-10 of Algorithm 3, we obtain

µref,kn+1

h (s, a) = µref,kn+1
h (s, a) =

(
1− 1

n

)
µref,kn

h (s, a) +
1

n
V

next,kn

h+1 (sk
n

h+1),

σref,kn+1

h (s, a) = σref,kn+1
h (s, a) =

(
1− 1

n

)
σref,kn

h (s, a) +
1

n

(
V

next,kn

h+1 (sk
n

h+1)
)2
.

Simple recursion leads to

µref,kN
k
h+1

h (s, a) =
1

Nk
h

Nkh∑

n=1

P k
n

h V
next,kn

h+1 , σref,kN
k
h+1

h (s, a) =
1

Nk
h

Nkh∑

n=1

P k
n

h

(
V

next,kn

h+1

)2
. (113)

D.1. Proof of Lemma A.4

Akin to the proof of Lemma A.1, the second inequality of (47) holds trivially since

V πh (s) ≤ V ?h (s)

holds for any policy π. Thus, it suffices to focus on justifying the first inequality of (47), namely,

V kh (s) ≤ V πkh (s) ∀(k, h, s) ∈ [K]× [H]× S, (114)

which we shall prove by induction.

Step 1: introducing the induction hypothesis. For notational simplicity, let us define

ko(h, k, s) := max
{
l : l < k and V lh(s) = max

a
max

{
QLCB,l
h (s, a), Q

l

h(s, a)
}}

(115)

for any (h, k, s) ∈ [H] × [K] × S. Here, ko(h, k, s) denotes the index of the latest episode — right at the end of the
(k − 1)-th episode — in which Vh(s) has been updated, which shall be abbreviated as ko(h) whenever it is clear from
context.

In what follows, we shall first justify the advertised inequality for the base case where h = H + 1 for all episodes k ∈ [K],
followed by an induction argument. Regarding the induction part, let us consider any k ∈ [K] and any h ∈ [H], and suppose
that

V k
′

h′ (s) ≤ V π
k′

h′ (s) for all (k′, h′, s) ∈ [k − 1]× [H + 1]× S, (116a)

V kh′(s) ≤ V π
k

h′ (s) for all h′ ≥ h+ 1 and s ∈ S. (116b)

We intend to justify

V kh (s) ≤ V πkh (s) ∀s ∈ S, (117)

assuming that the induction hypotheses (116) hold.
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Step 2: controlling the confident bound
∑Nkh
n=1 η

Nkh
n b

kn+1

h . Before proceeding, we first introduce an auxiliary result on

bounding
∑Nkh
n=1 η

Nkh
n b

kn+1

h , which plays a crucial role. For any (s, a), it is easily seen that

Nk
h (s, a) = 0 =⇒

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n b

kn(s,a)+1

h = 0. (118)

When Nk
h (s, a) > 0, expanding the definitions of b

kn+1

h (cf. line 6 of Algorithm 3) and δ
k+1

h (cf. line 15 of Algorithm 3)
leads to

Nkh∑

n=1

η
Nkh
n b

kn+1

h

=

Nkh∑

n=1

ηn

Nkh∏

i=n+1

(1− ηi) ·
((

1− 1

ηn

)
B
kn

h (s, a) +
1

ηn
B
kn+1

h (s, a)

)
+ cb

Nkh∑

n=1

η
Nkh
n

n3/4
H7/4ι+ cb

Nkh∑

n=1

η
Nkh
n

n
H2ι

=

Nkh∑

n=1




Nkh∏

i=n+1

(1− ηi)B
kn+1

h (s, a)−
Nkh∏

i=n

(1− ηi)B
kn

h (s, a)


+ cb

Nkh∑

n=1

η
Nkh
n

n3/4
H7/4ι+ cb

Nkh∑

n=1

η
Nkh
n

n
H2ι

(i)
=

Nkh∑

n=1

Nkh∏

i=n+1

(1− ηi)B
kn+1

h (s, a)−
Nkh∑

n=2

Nkh∏

i=n

(1− ηi)B
kn

h (s, a) + cb

Nkh∑

n=1

η
Nkh
n

n3/4
H7/4ι+ cb

Nkh∑

n=1

η
Nkh
n

n
H2ι

(ii)
=

Nkh∑

n=1

Nkh∏

i=n+1

(1− ηi)B
kn+1

h (s, a)−
Nkh−1∑

n=1

Nkh∏

i=n+1

(1− ηi)B
kn+1

h (s, a) + cb

Nkh∑

n=1

η
Nkh
n

n3/4
H7/4ι+ cb

Nkh∑

n=1

η
Nkh
n

n
H2ι

= B
kN

k
h+1

h (s, a) + cb

Nkh∑

n=1

η
Nkh
n

n3/4
H7/4ι+ cb

Nkh∑

n=1

η
Nkh
n

n
H2ι, (119)

where we abuse the notation to let
∏j
i=j+1(1 − ηi) = 1. Here, (i) holds since B

k1

(s, a) = 0, (ii) follows from the

fact that B
kn+1

(s, a) = B
kn+1

(s, a), since (s, a) has not been visited at step h during the episodes between the indices

kn + 1 and kn+1 − 1. Combining the above result in (119) with the properties 1
(Nkh )

3/4 ≤
∑Nkh
n=1

η
Nkh
n

n3/4 ≤ 2
(Nkh )

3/4 and

1
Nkh
≤∑Nkh

n=1
η
Nkh
n

n ≤ 2
Nkh

(see Lemma B.1), we arrive at

B
kN

k
h+1

h (s, a) + cb
H7/4ι

(Nk
h )3/4

+ cb
H2ι

Nk
h

≤
Nkh∑

n=1

η
Nkh
n b

kn+1

h ≤ Bk
Nkh+1

h (s, a) + 2cb
H7/4ι

(Nk
h )3/4

+ 2cb
H2ι

Nk
h

(120)

as long as Nk
h (s, a) > 0.

Step 3: base case. Let us look at the base case with h = H+1 for any k ∈ [K]. Recalling the facts that V πH+1 = V kH+1 = 0
for any π and any k ∈ [K], we reach

V kH+1(s) ≤ V πkH+1(s) for all (k, s) ∈ [K]× S. (121)

Step 4: induction arguments. We now turn to the induction arguments. Suppose that (116) holds for a pair (k, h) ∈
[K]× [H]. Everything comes down to justifying (117) for time step h in the episode k.

First, we recall the update rule of Vh(s) in lines 25-26 of Algorithm 5:

V kh (s) = max
a

Qkh(s, a) = Qkh
(
s, πkh(s)

)
= max

{
QLCB,k
h

(
s, πkh(s)

)
, Q

k

h

(
s, πkH(s)

)
, Qk−1h

(
s, πkh(s)

)}
.

Then we shall verify (117) in three different cases.
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• When V kh (s) = QLCB,k
h

(
s, πkh(s)

)
, the term of interest can be controlled by

V π
k

h (s)− V kh (s)
(i)
= Qπ

k

h

(
s, πkh(s)

)
−QLCB,k

h

(
s, πkh(s)

)
≥ 0,

where (i) holds since πk is set to be the greedy policy such that V π
k

h (s) = Qπ
k

h (s, πkh(s)), and the last inequality
follows directly from the analysis for LCB-Q (see (85)).

• When V kh (s) = Q
k

h

(
s, πkh(s)

)
, we obtain

V π
k

h (s)− V kh (s) = Qπ
k

h

(
s, πkh(s)

)
−Qkh

(
s, πkh(s)

)
. (122)

To prove the term on the right-hand side of (122) is non-negative, we proceed by developing a more general lower
bound on Qπ

k

h (s, a)−Qkh(s, a) for every (s, a) ∈ S ×A. Towards this, recalling the definition of Nk
h and kn, we can

express

Q
k

h(s, a) = Q
kN

k
h+1

h (s, a).

Thus, according to the update rule (cf. line 7 in Algorithm 3), we arrive at

Q
k

h(s, a) = Q
kN

k
h+1

h (s, a)

= (1− ηNkh )Q
kN

k
h

h (s, a) + ηNkh

{
rh(s, a) + V k

Nkh

h+1 (sk
Nkh

h+1)− V k
Nkh

h+1(sk
Nkh

h+1) + µk
Nkh

h (s, a)− bk
Nkh+1

h

}
.

Applying this relation recursively and invoking the definitions of ηN
k
h

0 and ηN
k
h

n in (25) give

Q
k

h(s, a) = η
Nkh
0 Q

1

h(s, a) +

Nkh∑

n=1

η
Nkh
n

{
rh(s, a) + V k

n

h+1(sk
n

h+1)− V k
n

h+1(sk
n

h+1) + µk
n

h (s, a)− bk
n+1

h

}
. (123)

Additionally, for any policy πk, the basic relation ηN
k
h

0 +
∑Nkh
n=1 η

Nkh
n = 1 (see (26) and (25)) gives

Qπ
k

h (s, a) = η
Nkh
0 Qπ

k

h (s, a) +

Nkh∑

n=1

η
Nkh
n Qπ

k

h (s, a). (124)

Combing (123) and (124) leads to

Qπ
k

h (s, a)−Qkh(s, a) = η
Nkh
0

(
Qπ

k

h (s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n

{
Qπ

k

h (s, a)− rh(s, a)− V knh+1(sk
n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1

h

}
. (125)

Plugging in the construction of µh in (111) and invoking the Bellman equation

Qπ
k

h (s, a) = rh(s, a) + Ph,s,aV
πk

h+1, (126)

we arrive at

Qπ
k

h (s, a)− rh(s, a)− V knh+1(sk
n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1

h

= Ph,s,aV
πk

h+1 + V
kn

h+1(sk
n

h+1)− V knh+1(sk
n

h+1)−

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

V
kn

h+1(sk
i

h+1)

N̂ epo,mn−1
h (s, a) ∨ 1

+ b
kn+1

h
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= Ph,s,aV
πk

h+1 − V k
n

h+1(sk
n

h+1) +
(
P k

n

h − Ph,s,a
)
V
kn

h+1 +


Ph,s,a −

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1


V

kn

h+1 + b
kn+1

h

= Ph,s,a

(
V π

k

h+1 − V k
n

h+1

)
+ b

kn+1

h + ξk
n

h ,

where

ξk
n

h :=
(
P k

n

h − Ph,s,a
)(
V
kn

h+1 − V k
n

h+1

)
+


Ph,s,a −

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1


V

kn

h+1. (127)

Inserting the above result into (125) leads to the following decomposition

Qπ
k

h (s, a)−Qkh(s, a) = η
Nkh
0

(
Qπ

k

h (s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n

{
Ph,s,a

(
V π

k

h+1 − V k
n

h+1

)
+ b

kn+1

h + ξk
n

h

}
(128)

≥
Nkh∑

n=1

η
Nkh
n (b

kn+1

h + ξk
n

h ), (129)

which holds by virtue of the following facts:

(i) The initialization Q
1

h(s, a) = 0 and the non-negativity of Qπh(s, a) for any policy π and (s, a) ∈ S ×A lead to
Qπ

k

h (s, a)−Q1

h(s, a) = Qπ
k

h (s, a) ≥ 0.

(ii) For any episode kn appearing before k, making use of the induction hypothesis V π
k

h+1(s) ≥ V kh+1(s) in (116b)
and the monotonicity of Vh(s) in (46), we obtain

V π
k

h+1(s)− V knh+1(s) ≥ V kh+1(s)− V knh+1(s) ≥ 0. (130)

The following lemma ensures that the right-hand side of (129) is non-negative. We postpone the proof of Lemma D.1
to Appendix D.4 to streamline our discussion.

Lemma D.1. For any δ ∈ (0, 1), there exists some sufficiently large constant cb > 0, such that with probability at
least 1− δ,

∣∣∣∣
Nkh∑

n=1

η
Nkh
n ξk

n

h

∣∣∣∣ ≤
Nkh∑

n=1

η
Nkh
n b

kn+1

h , ∀k ∈ [K]. (131)

Taking this lemma together with the inequalities (122) and (129) yields

V π
k

h (s)− V kh (s) = Qπ
k

h (s, a)−Qkh(s, a) ≥
Nkh∑

n=1

η
Nkh
n b

kn+1

h −
∣∣∣∣
Nkh∑

n=1

η
Nkh
n ξk

n

h

∣∣∣∣ ≥ 0.

• Next, consider the case where V kh (s) = Qk−1h

(
s, πkh(s)

)
. In view of the definition of ko(h) in (115), one has

V kh (s) = Qk−1h

(
s, πkh(s)

)
= Q

ko(h)
h

(
s, πkh(s)

)
= max

{
Q

LCB,ko(h)
h

(
s, πkh(s)

)
, Q

ko(h)

h

(
s, πkh(s)

)}
,

since Qh
(
s, πkh(s)

)
has not been updated during the episode ko(h) and remains unchanged in the episodes ko(h) +

1, ko(h) + 2, · · · , k − 1. With this equality in hand, the term of interest in (117) can be controlled by

V π
k

h (s)− V kh (s) = Qπ
k

h (s, πkh(s))−max
{
Q

LCB,ko(h)
h

(
s, πkh(s)

)
, Q

ko(h)

h

(
s, πkh(s)

)}
≥ 0,

where the last inequality follows from the facts

Qπ
k

h (s, πkh(s))−QLCB,ko(h)
h (s, πkh(s))

(i)

≥ 0,
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Qπ
k

h (s, πkh(s))−Qko(h)h (s, πkh(s))
(ii)

≥ 0.

Here, (i) follows from the same analysis framework for showing (84) and (86); (ii) holds due to the following fact

Qπ
k

h (s, a)−Qko(h)h (s, a) ≥
N
ko(h)
h∑

n=1

η
N
ko(h)
h

n (b
kn+1

h + ξk
n

h ) ≥ 0,

which is obtained directly by adapting (129) and then invoking (131) for k = ko(h); since the analysis follows verbatim,
we omit their proofs here.

Combining the above three cases verifies the induction hypothesis in (117), provided that (116) is satisfied.

Step 5: putting everything together. Combining the base case in Step 3 and induction arguments in Step 4, we can
readily verify the induction hypothesis in Step 1, which in turn establishes Lemma A.4.

D.2. Proof of Lemma A.5

For every h ∈ [H], we can decompose

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

) (i)

≤
K∑

k=1

∑

s∈S
dπ

?

h

(
s, π?h(s)

) (
Q?h
(
s, π?h(s)

)
−Qkh

(
s, π?h(s)

))

=

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)
(
Q?h(s, a)−Qkh(s, a)

)
, (132)

where (i) follows from the fact V kh (s) = maxaQ
k
h(s, a) ≥ maxaQ

k

h(s, a) ≥ Qkh(s, π?h(s)) (see lines 25-26 in Algorithm 5).
Here, the last equality is due to (35).

Step 1: bounding Q?h(s, a)−Qkh(s, a). The basic relation ηN
k
h

0 +
∑Nkh
n=1 η

Nkh
n = 1 (see (26) and (25)) gives

Q?h(s, a) = η
Nkh
0 Q?h(s, a) +

Nkh∑

n=1

η
Nkh
n Q?h(s, a), (133)

which combined with (123) leads to

Q?h(s, a)−Qkh(s, a) = η
Nkh
0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n

{
Q?h(s, a)− rh(s, a)− V knh+1(sk

n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1

h

}
. (134)

Invoking the Bellman optimality equation

Q?h(s, a) = rh(s, a) + Ph,s,aV
?
h+1, (135)

we can decompose Q?h(s, a)−Qkh(s, a) similar to (128) by inserting (127) as follows:

Q?h(s, a)−Qkh(s, a) = η
Nkh
0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nkh∑

n=1

η
Nkh
n

{
Ph,s,a

(
V ?h+1 − V k

n

h+1

)
+ b

kn+1

h + ξk
n

h

}

(i)

≤ η
Nkh
0 H +

Nkh∑

n=1

η
Nkh
n

(
b
kn+1

h + ξk
n

h

)
+

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)
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(ii)

≤ η
Nkh
0 H +

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)
+ 2

Nkh∑

n=1

η
Nkh
n b

kn+1

h

(iii)

≤ η
Nkh
0 H +

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)
+ 2

(
B
k

h(s, a) + 2cb
H7/4ι

(
Nk
h ∨ 1

)3/4 + 2cb
H2ι

Nk
h ∨ 1

)
, (136)

where (i) follows from the initialization Q
1

h(s, a) = 0 and the trivial upper bound Qπh(s, a) ≤ H for any policy π, (ii) holds
owing to the fact (see (131))

Nkh∑

n=1

η
Nkh
n

(
b
kn+1

h + ξk
n

h

)
≤

Nkh∑

n=1

η
Nkh
n b

kn+1

h +

∣∣∣∣
Nkh∑

n=1

η
Nkh
n ξk

n

h

∣∣∣∣ ≤ 2

Nkh∑

n=1

η
Nkh
n b

kn+1

h , (137)

and (iii) comes from (120) with the fact B
kN

k
h+1

h (s, a) = B
k

h(s, a).

Step 2: decomposing the error in (132). Plugging (136) into (132) and rearranging terms yield
K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
(138)

≤
K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

[
η
Nkh (s,a)
0 H + 2B

k

h(s, a) +
4cbH

7/4ι
(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]

+

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)

≤
K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

[
η
Nkh (s,a)
0 H +

4cbH
7/4ι

(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]

︸ ︷︷ ︸
=:J1

h

+ 2

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)B
k

h(s, a)

︸ ︷︷ ︸
=:J2

h

+

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)
. (139)

Step 3: controlling the last term in (139). If we could verify the following result

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)

≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2

︸ ︷︷ ︸
=:J3

h

, (140)

then combining this result with inequality (139) would immediately establish Lemma A.5. As a result, it suffices to verify
the inequality (140), which shall be accomplished as follows.

Proof of inequality (140). We first make the observation that the left-hand side of inequality (140) is the same as what
Lemma A.2 shows. Therefore, we shall establish this inequality following the same framework as in Appendix C.2. To
begin with, let us recall several definitions in Appendix C.2:

Ah :=

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)

︸ ︷︷ ︸
=:Ah,k

,
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Bh,k :=

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
,

Yh,k =
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,akh

Nkh (s
k
h,a

k
h)∑

n=1

η
Nkh (s

k
h,a

k
h)

n

(
V ?h+1 − V

kn(skh,a
k
h)

h+1

)
,

Zh,k =

(
1 +

1

H

)
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,akh

(
V ?h+1 − V kh+1

)
, (141)

and we also remind the reader of the relation in (93) as follows

Ah ≤
K∑

k=1

Bh,k +

K∑

k=1

(Zh,k −Bh,k) +

K∑

k=1

(Ah,k − Yh,k) . (142)

Equipped with these relations, we aim to control
∑K
k=1 (Zh,k −Bh,k) and

∑K
k=1 (Ah,k − Yh,k) respectively as follows.

• We first bound
∑K
k=1 (Ah,k − Yh,k), which is similar to (96) (as controlled by Lemma B.6). Repeating the argument

and tightening the bound from the second line of (96), we have for all (h, s, a) ∈ [H]× S × A, with probability at
least 1− δ,

∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW k

h+1(s, a)
]2

log
2H

δ
+ 2CdC

?Cw log
2H

δ

≤

√√√√√8C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n Ph,s,a

(
V ?h+1 − V

kn(s,a)
h+1

)


2

+ 4HC? log
2H

δ

(i)

≤
√

8C? log
2H

δ
(36HK + 3c2aH

6SC?ι) + 4HC? log
2H

δ

≤ 32

√
HC?K log

2H

δ
+ 12caH

3C?
√
Sι2. (143)

Here, (i) holds by virtue of the following fact

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n Ph,s,a

(
V ?h+1 − V k

n(s,a)
h+1

)


2

≤ 36HK + 3c2aH
6SC?ι, (144)

whose proof is postponed to Appendix D.2.1.

• Next, we turn to
∑K
k=1 (Zh,k −Bh,k), which can be bounded similar to (100) (as controlled via Lemma B.6). Repeating

the argument and tightening the bound from the second line of (100) yield

∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,aW k

h+1(s, a)
]2

log
2H

δ
+ 2CdC

?Cw log
2H

δ

≤ 8

√√√√C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,a

(
V ?h+1 − V kh+1

)]2
+ 8HC? log

2H

δ
. (145)

To further control (145), we have

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)

[
Ph,s,a

(
V ?h+1 − V kh+1

)]2 (i)

≤
K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

(
V ?h+1 − V kh+1

)2
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(ii)

≤ H

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

(
V ?h+1 − V kh+1

)

(iii)

≤ 2HK + c2aH
6SC?ι. (146)

Here, (i) holds due to the non-negativity of the variance

Varh,s,a(V ?h+1 − V
k

h+1) = Ph,s,a(V ?h+1 − V kh+1)2 −
(
Ph,s,a(V ?h+1 − V kh+1)

)2 ≥ 0; (147)

(ii) follows from the basic property
∥∥V ?h+1 − V kh+1

∥∥
∞ ≤ H; to see why (iii) holds, we refer the reader to (154), which

will be proven in Appendix D.2.1 as well. Inserting (146) back into (145) yields
∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)

∣∣∣∣∣ ≤ 8

√
C? log

2H

δ
(2KH + c2aH

6SC?ι) + 8HC? log
2H

δ

≤ 16

√
HC?K log

2H

δ
+ 16caH

3C?
√
Sι. (148)

Substituting the inequalities (143) and (148) into (142), and using the definitions in (141), we arrive at

Ah =

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V ?h+1 − V k

n(s,a)
h+1

)

≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+

K∑

k=1

(Zh,k −Bh,k) +

K∑

k=1

(Ah,k − Yh,k)

≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 32

√
HC?K log

2H

δ
+ 12caH

3C?
√
Sι2

+ 16

√
HC?K log

2H

δ
+ 16caH

3C?
√
Sι

≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2, (149)

which directly verifies (140) and completes the proof.

D.2.1. PROOF OF INEQUALITY (144)

Step 1: rewriting the term of interest. We first invoke Jensen’s inequality to obtain

( Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

))2
≤

Nkh∑

n=1

η
Nkh
n

(
Ph,s,a

(
V ?h+1 − V k

n

h+1

))2
≤

Nkh∑

n=1

η
Nkh
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)2
,

where the first inequality follows from
∑Nkh
n=1 η

Nkh
n = 1 (see (26) and (25)), and the last inequality holds by the non-negativity

of the variance Varh,s,a[V ?h+1 − V k
n

h+1]. This allows one to derive

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)


2

≤
K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

Nkh∑

n=1

η
Nkh
n

(
V ?h+1 − V k

n

h+1

)2

(i)

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)2
+ 32

√
H4C?K log

2H

δ
+ 32H2C? log

2H

δ
, (150)

where (i) can be verified in a way similar to the proof of Lemma A.2 in Appendix C.2. We omit the details for conciseness.
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Step 2: controlling the first term in (150). Let us introduce the following short-hand notation

kstop := c2aH
5SC?ι,

and decompose the term in (150) as follows

∑

s∈S
dπ

?

h+1(s)

K∑

k=1

(
V ?h+1(s)− V kh+1(s)

)2 (i)

≤ H

K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)

= H

kstop∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+H

K∑

k=kstop+1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
. (151)

Here, (i) holds since 0 ≤ V ?h+1(s)− V kh+1(s) ≤ H . The first term in (151) satisfies

H

kstop∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
≤ H

(
ca

√
H5SC?ιkstop + caH

2SC?ι

)
≤ c2aH6SC?ι, (152)

where the first inequality holds by applying the results of LCB-Q in (44) with K = kstop. The second term in (151) can be
controlled as follows:

H

K∑

k=kstop+1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
≤ HK

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kstoph+1 (s)

)

≤ HK 1

kstop

kstop∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)

≤ HK
(
ca

√
H5SC?ι

kstop
+
caH

2SC?ι

kstop

)
≤ 2HK, (153)

where the first and the second inequalities hold by the monotonicity property V k+1
h+1 ≥ V kh+1 introduced in (46), and the final

inequality follows from applying (44).

Inserting the results in (152) and (153) into (151) yields

∑

s∈S
dπ

?

h+1(s)

K∑

k=1

(
V ?h+1(s)− V kh+1(s)

)2 ≤ H
K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
≤ 2HK + c2aH

6SC?ι. (154)

Step 3: combining the above results. Inserting the above result (154) back into (150), we reach:

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n Ph,s,a

(
V ?h+1 − V k

n

h+1

)


2

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1 − V kh+1

)2
+ 32

√
H4C?K log

2H

δ
+ 32H2C? log

2H

δ

(i)

≤ 4HK + 2c2aH
6SC?ι+ 32

√
H4C?K log

2H

δ
+ 32H2C? log

2H

δ
(ii)

≤ 36HK + 3c2aH
6SC?ι, (155)

where (i) holds due to (154) and 1 + 1
H ≤ 2, and (ii) results from the Cauchy-Schwarz inequality.

D.3. Proof of Lemma A.6

We shall verify the three inequalities in (54) separately.
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D.3.1. PROOF OF INEQUALITY (54a)

We start by rewriting the term of interest using the expression of J1
h in (51) as

H∑

h=1

(
1 +

1

H

)h−1
J1
h

=

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

[
η
Nkh (s,a)
0 H +

4cbH
7/4ι

(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]

=

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)η
Nkh (s,a)
0 H

︸ ︷︷ ︸
=:J 1

1

+

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
4cbH

7/4ι

(Nk
h (s, a) ∨ 1)3/4

︸ ︷︷ ︸
=:J 2

1

+

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
4cbH

2ι

Nk
h (s, a) ∨ 1

︸ ︷︷ ︸
=:J 3

1

. (156)

Invoking (105) and (102) yields

J 1
1 . H2SC?ι. (157)

In terms of J 2
1 , one has

J 2
1 =

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
4cbH

7/4ι

(Nk
h (s, a) ∨ 1)

3
4

(i)

. H7/4ι2
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
1

(kdµh(s, a))
3
4

(ii)

. H7/4ι2(C?)
3
4

H∑

h=1

K∑

k=1

1

k
3
4

∑

(s,a)∈S×A

(
dπ

?

h (s, a)
) 1

4

= H7/4ι2(C?)
3
4

H∑

h=1

K∑

k=1

1

k
3
4

∑

(s,a)∈S×A
1
(
a = π?h(s)

) (
dπ

?

h (s, a)
) 1

4

,

where (i) holds due to (102) and 1
Nkh (s,a)∨1

≤ 8ι
kdµh(s,a)

from Lemma B.2, and (ii) follows from the definition of C? in
Assumption 2.1. A direct application of Hölder’s inequality leads to

J 2
1 ≤ H7/4ι2(C?)

3
4

H∑

h=1

K∑

k=1

1

k
3
4


 ∑

(s,a)∈S×A
1(a = π?h(s))




3/4
 ∑

(s,a)∈S×A
dπ

?

h (s, a)




1/4

(iii)

≤ H7/4ι2(SC?)
3
4

H∑

h=1

K∑

k=1

1

k
3
4

. H2.75(SC?)
3
4K

1
4 ι2, (158)

where (iii) follows since π? is assumed to be a deterministic policy.

Similarly, we can derive an upper bound on J 3
1 as follows:

J 3
1 =

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
4cbH

2ι

Nk
h (s, a) ∨ 1

(i)

. H2ι2
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

kdµh(s, a)
. H3SC?ι3, (159)
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where (i) follows from the result in (102) and the fact 1
Nkh (s,a)∨1

≤ 8ι
kdµh(s,a)

(cf. Lemma B.2), and the last relation results
from the definition of C? (cf. Assumption 2.1) and the assumption that π? is a deterministic policy.

Putting the preceding results (157), (158) and (159) together, we conclude that
H∑

h=1

(
1 +

1

H

)h−1
J1
h . H2.75(SC?)

3
4K

1
4 ι2 +H3SC?ι3. (160)

D.3.2. PROOF OF INEQUALITY (54b)

Making use of the definition of B
k

h(s, a) (cf. (14)) in the expression of J2
h (cf. (51)), we obtain

H∑

h=1

(
1 +

1

H

)h−1
J2
h = 2

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)B
k

h(s, a)

= 2

H∑

h=1

(
1 +

1

H

)h−1
cb
√
Hι

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√σadv,k
h (s, a)−

(
µadv,k
h (s, a)

)2

Nk
h (s, a) ∨ 1

+ 2

H∑

h=1

(
1 +

1

H

)h−1
cb
√
ι

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√σref,k
h (s, a)−

(
µref,k
h (s, a)

)2

Nk
h (s, a) ∨ 1

.
√
Hι

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√σadv,k
h (s, a)−

(
µadv,k
h (s, a)

)2

Nk
h (s, a) ∨ 1

︸ ︷︷ ︸
=:J 1

2

+
√
ι

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√σref,k
h (s, a)−

(
µref,k
h (s, a)

)2

Nk
h (s, a) ∨ 1

︸ ︷︷ ︸
=:J 2

2

, (161)

where the last inequality follows from (102). In the following, we shall look at the two terms in (161) separately.

Step 1: controlling J 1
2 . Recalling the expressions of σadv,k

h (s, a) = σadv,kN
k
h+1

h (s, a) in (112), we observe that the main
part of J 1

2 in (161) satisfies

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√√σadv,k
h (s, a)−

(
µadv,k
h (s, a)

)2

Nk
h (s, a) ∨ 1

≤ √ι
H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√
dπ

?

h (s, a)
dπ

?

h (s, a) · σadv,k
h (s, a)

kdµh(s, a)

=
√
ι

H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√√√√
dπ

?

h (s, a)
dπ

?

h (s, a)
∑Nkh (s,a)
n=1 η

Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2

kdµh(s, a)

(i)

≤
√
C?ι

H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√√√√1

k
1
(
a = π?h(s)

)
· dπ?h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2

(ii)

≤
√
C?ι

√√√√√
K∑

k=1

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2
√√√√

K∑

k=1

H∑

h=1

∑

(s,a)∈S×A
1
(
a = π?h(s)

)1

k

.
√
HSC?ι2

√√√√√
K∑

k=1

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2
, (162)
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where the first inequality is due to the fact 1
Nkh (s,a)∨1

≤ 8ι
kdµh(s,a)

from Lemma B.2, (i) follows from the definition of C? in
Assumption 2.1 and (35), and (ii) follows from the Cauchy-Schwarz inequality. To continue, we claim the following bound
holds, which will be proven in Appendix D.3.4:

K∑

k=1

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2

. H2 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+K +H5

√
SC?ι2. (163)

Combining the above inequality with (162), we arrive at

J 1
2 .
√
H2SC?ι3

√√√√H2 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+K +H5

√
SC?ι2

.

√√√√H4SC?ι3 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
√
H2SC?Kι3 +H3.5SC?ι2.5. (164)

Step 2: controlling J 2
2 . Recalling the expressions of µref,k+1

h (s, a) = µref,kN
k
h+1

h (s, a) and σref,k+1
h (s, a) =

σref,kN
k
h+1

h (s, a) in (113) to J 2
2 in (161), we can deduce that

J 2
2 =
√
ι

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑
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√√√√√σref,k
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(
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)2

Nk
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≤ √ι
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?
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Nk
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√√√√√
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(
V

next,kn

h+1 (sk
n
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Nk
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n=1 V
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h+1 (sk
n

h+1)

Nk
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)2

︸ ︷︷ ︸
=:Fh,k

.

(165)

We further decompose and bound Fh,k as follows:

Fh,k
(i)

≤

√√√√
∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)
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√√√√
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︸ ︷︷ ︸
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n=1 2H

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

Nk
h (s, a) ∨ 1

︸ ︷︷ ︸
=:Lh,k

,

(166)

where (i) follows from the fact that for some k′ ∈ [K], V
next,kn

h+1 = V k
′

h+1 ≤ V ?h+1 (see the update rule of V
next

in line 35
and the fact in (47)), and (ii) holds due to the fact that

(∑Nkh (s,a)
n=1 V ?h+1(sk

n

h+1)

Nk
h (s, a) ∨ 1

)2
−
(∑Nkh (s,a)

n=1 V
next,kn

h+1 (sk
n

h+1)

Nk
h (s, a) ∨ 1

)2
≤ 2H

∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

Nk
h (s, a) ∨ 1

.
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Inserting (166) back into (165), we arrive at

J 2
2 ≤
√
ι

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

(Gh,k + Lh,k)

(i)

.
√
ι
(√

H3SC?Kι4 +H4SC?ι3 +
√
H3SC?Kι2 +H2.5SC?ι3

)
.
√
H3SC?Kι5 +H4SC?ι4, (167)

where (i) follows from the following facts

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Lh,k .
√
H3SC?Kι4 +H4SC?ι3, (168)

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Gh,k .
√
H3SC?Kι2 +H2.5SC?ι3. (169)

We postpone the proofs of (168) and (169) to Appendix D.3.5 and Appendix D.3.6, respectively.

Putting the bounds together. Substitute (164) and (167) back into (161) to yield

H∑

h=1

(
1 +

1

H

)h−1
J2
h .

√√√√H4SC?ι3 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
√
H2SC?Kι3 +H3.5SC?ι2.5

+
√
H3SC?Kι5 +H4SC?ι4

.

√√√√H4SC?ι3 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+
√
H3SC?Kι5 +H4SC?ι4.

D.3.3. PROOF OF INEQUALITY (54c)

Invoking inequality (102) directly leads to

H∑

h=1

(
1 +

1

H

)h−1(
48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2

)
.

√
H3C?K log

2H

δ
+H4C?

√
Sι2

as claimed.

D.3.4. PROOF OF INEQUALITY (163)

We shall control the term in (163) in a way similar to the proof of Lemma A.2 in Appendix C.2.

Step 1: decomposing the terms of interest. Akin to Appendix C.2, let us introduce the terms of interest and definitions
as follows:

Ah :=

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2

︸ ︷︷ ︸
=:Ah,k

,

Bh,k :=

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)2
,

Yh,k =
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)

Nkh (s
k
h,a

k
h)∑

n=1

η
Nkh (s

k
h,a

k
h)

n P k
n

h

(
V k

n

h+1 − V
kn

h+1

)2
,
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Zh,k =

(
1 +

1

H

)
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
P kh

(
V kh+1 − V

k

h+1

)2
. (170)

With these definitions in place, we directly adapt the argument in (93) to arrive at

Ah ≤
K∑

k=1

Bh,k +

K∑

k=1

(Zh,k −Bh,k) +

K∑

k=1

(Ah,k − Yh,k) . (171)

As a consequence, it remains to control
∑K
k=1 (Zh,k −Bh,k) and

∑K
k=1 (Ah,k − Yh,k) separately.

Step 2: controlling
∑K
k=1 (Ah,k − Yh,k). To control

∑K
k=1 (Ah,k − Yh,k), we resort to Lemma B.6 by setting

W k
h+1(s, a) :=

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V k

n

h+1 − V
kn

h+1

)2
, Cd := 1, (172)

which satisfies
∥∥W k

h+1(s, a)
∥∥
∞ ≤ 4H2 =: Cw.

Applying Lemma B.6 with (172) yields that: with probability at least 1− δ,
∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

.

√√√√√C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V k

n

h+1 − V
kn

h+1

)2


2

+ C?H2 log
2H

δ
. (173)

To further control the first term in (173), it follows from Jensen’s inequality that

Ph,s,a



Nkh∑

n=1

η
Nkh
n

(
V k

n

h+1 − V
kn

h+1

)2


2

≤ Ph,s,a
Nkh∑

n=1

η
Nkh
n

(
V k

n

h+1 − V
kn

h+1

)4
, (174)

which yields

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a



Nkh (s,a)∑

n=1

η
Nkh (s,a)
n

(
V k

n

h+1 − V
kn

h+1

)2


2

≤
K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

Nkh∑

n=1

η
Nkh
n

(
V k

n

h+1 − V
kn

h+1

)4

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)4
+ 32

√
H8C?K log

2H

δ
+ 32H4C? log

2H

δ
. (175)

This can be verified similar to the proof for Lemma A.2 in Appendix C.2. We omit the details for conciseness. To continue,
it follows that

K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)4
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(i)

≤
M∑

m=1

Lm∑

t=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V (m,t)

h+1 (s)
)4

(ii)
=

M∑

m=1

Lm∑

t=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V ((m−1)∨1,1)

h+1 (s)
)4

(iii)
=
∑

s∈S
dπ

?

h+1(s)

M∑

m=1

2m
(
V ?h+1(s)− V ((m−1)∨1,1)

h+1 (s)
)4

= 4
∑

s∈S
dπ

?

h+1(s)

M−2∑

m−2=−1
2m−2

(
V ?h+1(s)− V ((m−1)∨1,1)

h+1 (s)
)4

= 4

0∑

m−2=−1
2m−2

(
V ?h+1(s)− V (1,1)

h+1 (s)
)4

+ 4
∑

s∈S
dπ

?

h+1(s)

M−2∑

m−2=1

2m−2
(
V ?h+1(s)− V (m−1,1)

h+1 (s)
)4
.

Here, (i) holds by using the pessimistic property V ? ≥ V k ≥ V k for all k ∈ [K] (see (47)) and by regrouping the summands;
(ii) follows from the fact (see updating rules in line 34 and line 35) that for any (m, s, h) ∈ [M ]× S × [H + 1],

V
(m,t)

h (s) = V
((m−1)∨1,1)
h (s), t = 1, 2, · · · , Lm; (176)

and (iii) results from the choice of the parameter Lm = 2m. In addition, we can further control

K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)4 (iv)

≤ 8H4 + 4
∑

s∈S
dπ

?

h+1(s)

M−2∑

m=1

Lm∑

t=1

(
V ?h+1(s)− V (m+1,1)

h+1 (s)
)4

(v)

≤ 8H4 + 4
∑

s∈S
dπ

?

h+1(s)

M−2∑

m=1

Lm∑

t=1

(
V ?h+1(s)− V (m,t)

h+1 (s)
)4

≤ 8H4 + 4
∑

s∈S
dπ

?

h+1(s)

K∑

k=1

(
V ?h+1(s)− V kh+1(s)

)4
(177)

≤ 8H4 + 4H3
∑

s∈S
dπ

?

h+1(s)

K∑

k=1

(
V ?h+1(s)− V kh+1(s)

)

(vi)

. H3K +H8SC?ι. (178)

Here, (iv) follows from the fact 0 ≤ V ?h+1(s)− V (1,1)
h+1 (s) ≤ H − 0 = H; (v) holds since V ?h+1 ≥ V

(m+1,1)
h+1 = V

(m,Lm)
h+1 ≥

V
(m,t)
h+1 for all t ∈ [Lm] (using the monotonic increasing property of Vh+1 introduced in (46)); and (vi) follows from (154).

Putting (178) and (175) together with (173), we arrive at

∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)

∣∣∣∣∣ .

√√√√C? log
2H

δ

(
H3K +H8SC?ι+

√
H8C?K log

2H

δ
+H4C? log

2H

δ

)
+ C?H2 log

2H

δ

.
√
H3C?Kι+H4

√
SC?ι2. (179)

Step 3: controlling
∑K
k=1 (Zh,k −Bh,k). Similarly, we also invoke Lemma B.6 to control

∑K
k=1 (Zh,k −Bh,k). Let’s

set

W k
h+1(s, a) :=

(
V kh+1 − V

k

h+1

)2
, Cd :=

(
1 +

1

H

)
≤ 2, (180)

which satisfies
∥∥W k

h+1(s, a)
∥∥
∞ ≤ 4H2 =: Cw.
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Applying Lemma B.6 with (180) yields that: with probability at least 1− δ,
∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

.

√√√√C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
V kh+1 − V

k

h+1

]4
+ C?H2 log

2H

δ

(i)

.

√
C? log

2H

δ
(H3K +H8SC?ι) + C?H2 log

2H

δ
.
√
H3C?Kι+H4

√
SC?ι2, (181)

where (i) follows from (177) and (178).

Step 4: combining the results. Inserting (181) and (179) back into (171), we can conclude that

K∑

k=1

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

Nkh (s,a)∑

n=1

η
Nkh (s,a)
n P k

n

h

(
V k

n

h+1 − V
kn

h+1

)2
=

H∑

h=1

Ah

≤
H∑

h=1

K∑

k=1

Bh,k +

H∑

h=1

K∑

k=1

(Zh,k −Bh,k) +

H∑

h=1

K∑

k=1

(Ah,k − Yh,k)

≤
H∑

h=1

K∑

k=1

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)2
+

H∑

h=1

∣∣∣∣∣
K∑

k=1

(Zh,k −Bh,k)

∣∣∣∣∣+

H∑

h=1

∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)

∣∣∣∣∣

≤ H
H∑

h=1

K∑

k=1

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V kh+1(s)− V kh+1(s)

)
+
√
H5C?Kι+H5

√
SC?ι2

(i)

. H

H∑

h=1

K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)
+K +H5

√
SC?ι2

. H2 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?h (s)− V kh (s)

)
+K +H5

√
SC?ι2, (182)

where (i) follows from the same routine to obtain (177) and the Cauchy-Schwarz inequality.

D.3.5. PROOF OF INEQUALITY (168)

Step 1: decomposing the error in (168). The term in (168) obeys

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Lh,k

=

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

√√√√
∑Nkh (s,a)
n=1 2H

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

Nk
h (s, a) ∨ 1

(i)

.
√
Hι

H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√
dπ

?

h (s, a)

kdµh(s, a)

√√√√dπ
?

h (s, a)ι
∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

kdµh(s, a)

(ii)

.
√
HC?ι2

H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√
1(a = π?(s))

k

√√√√dπ
?

h (s, a)
∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

kdµh(s, a)
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(iii)

.
√
HC?ι2

√√√√√
H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

dπ
?

h (s, a)
∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)− V next,kn

h+1 (sk
n

h+1)
)

kdµh(s, a)

√√√√
H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

1(a = π?(s))

k

.
√
H2SC?ι3

√√√√√
H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

dµh(s, a)

K∑

k=1

1

k

Nkh (s,a)∑

n=1

(
V ?h+1(s

kn(s,a)
h+1 )− V next,kn

h+1 (s
kn(s,a)
h+1 )

)

(iv)
=
√
H2SC?ι3

√√√√
H∑

h=1

K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
P kh

K∑

k′=k

1

k′
(V ?h+1 − V

next,k
h+1 )

.
√
H2SC?ι4

√√√√
H∑

h=1

K∑

k=1

dπ
?

h (skh, a
k
h)P kh

dµh(skh, a
k
h)

(V ?h+1 − V
next,k
h+1 ). (183)

Here, (i) follows from the fact 1
Nkh (s,a)∨1

≤ 8ι
kdµh(s,a)

(cf. Lemma B.2); (ii) follows from the definition of C? in Assump-
tion 2.1; (iii) invokes the Cauchy-Schwarz inequality; (iv) can be obtained by regrouping the terms (the terms involving
(V ?h+1 − V

next,k
h+1 ) associated with index k will only been added during episodes k′ = k, k + 1, · · · ,K).

With this upper bound in hand, we further decompose

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Lh,k .
√
H2SC?ι4

√√√√
H∑

h=1

K∑

k=1

dπ
?

h (skh, a
k
h)P kh

dµh(skh, a
k
h)

(V ?h+1 − V
next,k
h+1 )

(i)

.
√
H2SC?ι4

√√√√
H∑

h=1

K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
P kh

(
V ?h+1 − V

k

h+1

)

(ii)

.
√
H2SC?ι4

√√√√
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

(
V ?h+1 − V

k

h+1

)

+
√
H2SC?ι4

√√√√√

∣∣∣∣∣∣

H∑

h=1

K∑

k=1


 ∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a −
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
P kh



(
V ?h+1 − V

k

h+1

)
∣∣∣∣∣∣
. (184)

Here (i) holds due to the following observation: denoting by m the index of the epoch in which episode k occurs, we have

V
next,k
h+1 = V

(m,1)
h+1 ≥ V ((m−1∨1),1)

h+1 = V
k

h+1, (185)

which invokes the monotonicity of V kh+1 in (46). In addition, (ii) arises from the Cauchy-Schwarz inequality.

Step 2: controlling the first term in (184). The first term in (184) satisfies
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a

(
V ?h+1 − V

k

h+1

)
=

H∑

h=1

K∑

k=1

∑

(s,a)∈S×A
dπ

?

h (s, a)
〈
Ph(· | s, a), V ?h+1 − V

k

h+1

〉

(i)
=

H∑

h=1

K∑

k=1

∑

s′∈S
dπ

?

h+1(s′)
(
V ?h+1(s′)− V kh+1(s′)

)

(ii)

. H2 +

H∑

h=1

K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?h+1(s)− V kh+1(s)

)

(iii)

. HK +H6SC?ι, (186)

where (i) holds due to the fact
∑

(s,a)∈S×A d
π?

h (s, a)Ph(· | s, a) = dπ
?

h+1(·), (ii) comes from the same argument employed
to establish (177), and (iii) follows from (154).
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Step 3: controlling the second term in (184). We shall invoke Lemma B.6 for this purpose. To proceed, let

W k
h+1(s, a) := V ?h+1 − V

k

h+1, Cd =: 1, (187)

which satisfies
∥∥W k

h+1(s, a)
∥∥
∞ ≤ H =: Cw.

Applying Lemma B.6 with (187) yields, for all h ∈ [H], with probability at least 1− δ
∣∣∣∣∣
K∑

k=1


 ∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a −
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
P kh



(
V ?h+1 − V

k

h+1

) ∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

.

√√√√C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

(
V ?h+1 − V

k

h+1

)2
+HC? log

2H

δ

(i)

.

√√√√√C? log
2H

δ


H2 +

K∑

k=1

∑

(s,a)∈S×A
dπ?h (s, a)Ph,s,a

(
V ?h+1 − V kh+1

)2

+HC? log

2H

δ

(ii)

.

√
C? log

2H

δ
(HK +H6SC?ι) +HC? log

2H

δ

.
√
HC?Kι+H3

√
SC?ι. (188)

Here (i) follows from the same routine to arrive at (177), and (ii) comes from (154). As a result, the second term in (184)
satisfies, with probability at least 1− δ,
∣∣∣∣∣∣

H∑

h=1

K∑

k=1


 ∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a −
dπ

?

h (skh, a
k
h)P kh

dµh(skh, a
k
h)



(
V ?h+1 − V

k

h+1

)
∣∣∣∣∣∣

≤
H∑

h=1

∣∣∣∣∣∣

K∑

k=1


 ∑

(s,a)∈S×A
dπ

?

h (s, a)Ph,s,a −
dπ

?

h (skh, a
k
h)P kh

dµh(skh, a
k
h)



(
V ?h+1 − V

k

h+1

)
∣∣∣∣∣∣
.
√
H3C?Kι+H4

√
SC?ι. (189)

Step 4: combining the results. Finally, inserting (186) and (189) into (184), we arrive at

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a)

Lh,k

.
√
H2SC?ι4

√
HK +H6SC?ι+

√
H2SC?ι4

√√
H3C?Kι+H4

√
SC?ι

.
√
H3SC?Kι4 +H4SC?ι3 +

√
H2SC?ι4

√
HK +H4

√
SC?ι .

√
H3SC?Kι4 +H4SC?ι3, (190)

where the last two inequalities follow from the Cauchy-Schwarz inequality.

D.3.6. PROOF OF INEQUALITY (169)

Recall the expression of Gh,k in (166) as

G2
h,k =

∑Nkh (s,a)
n=1

(
V ?h+1(sk

n

h+1)
)2

Nk
h (s, a) ∨ 1

−
(∑Nkh (s,a)

n=1 V ?h+1(sk
n

h+1)

Nk
h (s, a) ∨ 1

)2
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=

∑Nkh (s,a)
n=1 P k

n

h

(
V ?h+1

)2

Nk
h (s, a) ∨ 1

−
(∑Nkh (s,a)

n=1 P k
n

h V ?h+1

Nk
h (s, a) ∨ 1

)2
. (191)

To continue, we make the following observation

Gh,k ≤
{∣∣G2

h,k − Varh,s,a(V ?h+1)
∣∣+ Varh,s,a(V ?h+1)

}1/2

≤
∣∣G2

h,k − Varh,s,a(V ?h+1)
∣∣1/2 +

√
Varh,s,a(V ?h+1) (192)

due to the elementary inequality
√
a2 + b2 ≤ a + b for any a, b ≥ 0. Here, we remind the reader that Varh,s,a(V ?h+1) =

Ph,s,a(V ?h+1)2 − (Ph,s,aV
?
h+1)2 (cf. (109)). This allows us to rewrite

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Gh,k

≤
H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√
∣∣∣G2

h,k − Varh,s,a(V ?h+1)
∣∣∣

Nk
h (s, a) ∨ 1

+

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
Varh,s,a(V ?h+1)

Nk
h (s, a) ∨ 1

, (193)

leaving us with two terms to cope with.

Step 1: controlling the first term of (193). By definition, we have

∣∣G2
h,k − Varh,s,a(V ?h+1)

∣∣ =

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h

(
V ?h+1

)2

Nk
h (s, a) ∨ 1

−
(∑Nkh (s,a)

n=1 P k
n

h V ?h+1

Nk
h (s, a) ∨ 1

)2
− Ph,s,a(V ?h+1)2 +

(
Ph,s,aV

?
h+1

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h

(
V ?h+1

)2

Nk
h (s, a) ∨ 1

− Ph,s,a(V ?h+1)2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

(∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

)2
−
(
Ph,s,aV

?
h+1

)2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h

(
V ?h+1

)2

Nk
h (s, a) ∨ 1

− Ph,s,a(V ?h+1)2

∣∣∣∣∣∣
+ 2H

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

− Ph,s,aV ?h+1

∣∣∣∣∣∣
, (194)

where the last inequality holds due to
∣∣∣∣∣∣

(∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

)2
−
(
Ph,s,aV

?
h+1

)2
∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

− Ph,s,aV ?h+1

∣∣∣∣∣∣
·

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

+ Ph,s,aV
?
h+1

∣∣∣∣∣∣

≤ 2H

∣∣∣∣∣∣

∑Nkh (s,a)
n=1 P k

n

h V ?h+1

Nk
h (s, a) ∨ 1

− Ph,s,aV ?h+1

∣∣∣∣∣∣
.

We now control the two terms in (194) separately by invoking Lemma B.4. For the first term in (194), let us set

W i
h+1 :=

(
V ?h+1

)2
, and uih(s, a,N) :=

1

N ∨ 1
:= Cu, (195)

which indicates that

‖W i
h+1‖∞ ≤ H2 =: Cw, (196)

Applying Lemma B.4 with (195) and N = Nk
h = Nk

h (s, a), with probability at least 1− δ
2 , we arrive at

∣∣∣∣∣∣
1

Nk
h (s, a) ∨ 1

Nkh∑

n=1

(P k
n

h − Ph,s,a)(V ?h+1)2

∣∣∣∣∣∣
=

∣∣∣∣∣
k∑

i=1

Xi

(
s, a, h,Nk

h

)
∣∣∣∣∣
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.

√
Cu log2 SAT

δ

√√√√
Nkh∑

n=1

uk
n

h (s, a,Nk
h )Varh,s,a

(
W kn
h+1

)
+

(
CuCw +

√
Cu

Nk
h ∨ 1

Cw

)
log2 SAT

δ

�
√

ι2

Nk
h ∨ 1

√√√√
Nkh∑

n=1

1

Nk
h ∨ 1

‖W kn
h+1‖2∞ +

H2ι2

Nk
h ∨ 1

. H2ι2

√
1

Nk
h ∨ 1

. (197)

Similarly, for the second term in (194), with W i
h+1 := V ?h+1, we have with probability at least 1− δ

2 ,

1

Nk
h (s, a) ∨ 1

Nkh∑

n=1

(
P k

n

h − Ph,s,a
)
V ?h+1 . Hι2

√
1

Nk
h (s, a) ∨ 1

. (198)

Inserting (197) and (198) back into (194) yields

∣∣G2
h,k − Varh,s,a(V ?h+1)

∣∣ . H2ι2

√
1

Nk
h (s, a) ∨ 1

. (199)

Consequently, the first term in (193) can be controlled as

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√√√√
∣∣∣G2

h,k − Varh,s,a(V ?h+1)
∣∣∣

Nk
h (s, a) ∨ 1

. Hι

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

1
(
Nk
h (s, a)

) 3
4 ∨ 1

. H2(SC?)
3
4K

1
4 ι2, (200)

where the last inequality holds due to (158).

Step 2: controlling the second term of (193). The second term can be decomposed as

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
Varh,s,a(V ?h+1)

Nk
h (s, a) ∨ 1

(i)

.
H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

√
C?ιdπ

?

h (s, a)Varh,s,a(V ?h+1)

k
1 (a = π?h(s))

(ii)

.
√
C?ι

√√√√
H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

Varh,s,a(V ?h+1)

√√√√
H∑

h=1

∑

(s,a)∈S×A

K∑

k=1

1

k
1 (a = π?h(s))

.
√
HSC?Kι2

√√√√
H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Varh,s,a(V ?h+1), (201)

where (i) follows from the facts 1
Nkh (s,a)∨1

≤ 8ι
kdµh(s,a)

by Lemma B.2 and the definition of C? in Assumption 2.1, (ii) holds
by the Cauchy-Schwarz inequality, and the final inequality comes from the fact that π? is deterministic.

We are then left with bounding
∑H
h=1

∑
(s,a)∈S×A d

π?

h (s, a)Varh,s,a(V ?h+1). Note that

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)Varh,s,a(V ?h+1) = Es1∼ρ,sh+1∼Ph,sh,π?h(sh)

[
H∑

h=1

Varh,sh,π?h(sh)(V
?
h+1)

]

(i)
= Es1∼ρ,sh+1∼Ph,sh,π?h(sh)

[
H∑

h=1

(
rh (sh, π

?
h(sh)) + V ?h+1(sh+1)− V ?h (sh)

)2
]

(ii)
= Es1∼ρ,sh+1∼Ph,sh,π?h(sh)

[
H∑

h=1

(
rh(sh, π

?
h(sh)) + V ?h+1(sh+1)− V ?h (sh)

)
]2
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(iii)
= Es1∼ρ,sh+1∼Ph,sh,π?h(sh)

[(
H∑

h=1

rh(sh, π
?
h(sh))

)
− V ?1 (s1)

]2
(iv)

≤ H2, (202)

where (i) follows from Bellman’s optimality equation, (ii) follows from the Markov property, (iii) holds due to the fact that
V ?H+1(s) = 0 for all s ∈ S, and (iv) arises from the fact rh(s, a) ≤ 1 for all (s, a, h) ∈ S × A × [H]. Substituting (202)
back into (201), we get

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
Varh,s,a(V ?h+1)

Nk
h (s, a) ∨ 1

.
√
H3SC?Kι2. (203)

Step 4: combing the results. Combining (200) and (203) with (193) yields

H∑

h=1

∑

(s,a)∈S×A
dπ

?

h (s, a)

K∑

k=1

√
1

Nk
h (s, a) ∨ 1

Gh,k . H2(SC?)
3
4K

1
4 ι2 +

√
H3SC?Kι2

.
√
H3SC?Kι2 +H2.5SC?ι3. (204)

D.4. Proof of Lemma D.1

In view of (127), we can decompose the term of interest into

∣∣∣∣
Nkh (s,a)∑

n=1

η
Nkh (s,a)
n ξk

n

h

∣∣∣∣ ≤ |U1|+ |U2|,

where

U1 :=

Nkh∑

n=1

η
Nkh
n

(
P k

n

h − Ph,s,a
)(
V
kn

h+1 − V k
n

h+1

)
, (205a)

U2 :=

Nkh∑

n=1

η
Nkh
n


Ph,s,a −

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1


V

kn

h+1. (205b)

Next, we turn to controlling these two terms separately with the assistance of Lemma B.4.

Step 1: controlling U1. In the following, we invoke Lemma B.4 to control U1 in (205a). Let us set

W i
h+1 := V

i

h+1 − V ih+1, and uih(s, a,N) := ηNNih(s,a)
≥ 0,

which indicates that

‖W i
h+1‖∞ ≤ ‖V

i

h+1‖∞ + ‖V ih+1‖∞ ≤ 2H =: Cw,

and

max
N,h,s,a∈

(
{0}∪[K]

)
×[H]×S×A

ηNNih(s,a)
≤ 2H

N ∨ 1
=: Cu. (206)

Here, the last inequality follows since (according to Lemma B.1 and the definition in (25))

ηNNih(s,a)
≤ 2H

N ∨ 1
, if 0 ≤ N i

h(s, a) ≤ N ;

ηNNih(s,a)
= 0, if N i

h(s, a) > N.



Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity

To continue, it can be seen from (26) that

0 ≤
N∑

n=1

u
knh(s,a)
h (s, a,N) =

N∑

n=1

ηNn ≤ 1 (207)

holds for all (N, s, a) ∈ [K]× S ×A. Therefore, choosing N = Nk
h (s, a) = Nk

h for any (s, a) and applying Lemma B.4
with the above quantities, we arrive at

|U1| =

∣∣∣∣∣∣

Nkh∑

n=1

η
Nkh
n

(
P k

n

h − Ph,s,a
)(
V
kn

h+1 − V k
n

h+1

)
∣∣∣∣∣∣

=

∣∣∣∣∣
k∑

i=1

Xi

(
s, a, h,Nk

h

)
∣∣∣∣∣

.

√
Cu log2 SAT

δ

√√√√
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uk
n

h (s, a,Nk
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(
W kn
h+1

)
+

(
CuCw +

√
Cu

N ∨ 1
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)
log2 SAT

δ

�
√

Hι2

Nk
h ∨ 1

√√√√
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n=1

η
Nkh
n Varh,s,a

(
V
kn

h+1 − V k
n

h+1

)
+

H2ι2

Nk
h ∨ 1

(208)

.

√
Hι2

Nk
h ∨ 1

√
σadv,kN

k
h+1

h (s, a)−
(
µadv,kN

k
h+1

h (s, a)
)2

+
H7/4ι2

(Nk
h ∨ 1)3/4

+
H2ι2

Nk
h ∨ 1

. (209)

with probability at least 1− δ. Here, the proof of the inequality (209) is postponed to Appendix D.4.1 in order to streamline
the presentation of the analysis.

Step 2: bounding U2. Making use of the result in (111), we arrive at

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1

V
kn

h+1 =

∑N
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h

i=N
(mn−1,1)
h +1

P k
i

h V
next,ki

h+1

N̂ epo,mn−1
h (s, a) ∨ 1

.

To continue, for any (s, a) ∈ S ×A, we rewrite and rearrange U2 (cf. (205b)) as follows:

U2 =

Nkh∑

n=1

η
Nkh
n


Ph,s,a −
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(mn,1)
h

i=N
(mn−1,1)
h +1
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(i)
=
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η
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V
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=
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(
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h

)
V
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=

Nkh∑
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N
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η
Nkh
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(
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)
V
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=

Nkh∑
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N
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where (i) follows from the fact that N (mn,1)
h −N (mn−1,1)

h = N̂ epo,mn−1
h (s, a), and (ii) is obtained by rearranging terms

with respect to i (the terms with respect to V
next,ki

h+1 will only be added during the epoch mi + 1), and the last equality holds

since mn − 1 = mi for all n = N
(mi+1,1)
h + 1, N

(mi+1,1)
h + 2, N

(mi+2,1)
h .

With the above relation in mind, we are ready to invoke Lemma B.4 to control U2. To continue, for any episode j ≤ k, let us
denote by m(j) the index of the epoch in which episode j happens (with slight abuse of notation). Let us set

W j
h+1 := V

next,j
h+1 , and ujh(s, a,N) :=

N
(m(j)+2,1)
h ∧N∑

n=N
(m(j)+1,1)
h +1

ηNn

N̂
epo,m(j)
h (s, a) ∨ 1

.

As a result, we see that

‖W j
h+1‖∞ ≤ ‖V

next,j
h+1 ‖∞ ≤ H =: Cw

and the following fact (which will be established in Appendix D.4.2)

0 ≤ ujh(s, a,N) =

N
(m(j)+2,1)
h ∧N∑

n=N
(m(j)+1,1)
h +1

ηNn

N̂
epo,m(j)
h (s, a) ∨ 1

≤ 64e2ι

N ∨ 1
=: Cu (210)

holds for all (j, h, s, a) ∈ [K]× [H]× S ×A with probability at least 1− δ.

Given that N = Nk
h (s, a) = Nk

h , applying Lemma B.4 with the above quantities, we can show that for any state-action pair
(s, a) ∈ S ×A,

|U2| =
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+
Hι3

(Nk
h ∨ 1)3/4

. (211)

To streamline the presentation of the analysis, we shall postpone the proof of (211) to Appendix D.4.3.

Step 3: summing up. Combining the bounds in (209) and (211) yields that: for any state-action pair (s, a) ∈ S ×A,

∣∣∣∣
Nkh (s,a)∑
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η
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h

∣∣∣∣ ≤ |U1|+ |U2|

.

√
Hι2

Nk
h ∨ 1

√
σadv,kN

k
h+1

h (s, a)−
(
µadv,kN

k
h+1

h (s, a)
)2

+

√
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+ cb
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(Nk
h ∨ 1)3/4

+ cb
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Nk
h ∨ 1

≤ Bk
Nkh+1

h (s, a) + cb
H7/4ι2

(Nk
h ∨ 1)3/4

+ cb
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(212)
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holds for some sufficiently large constant cb > 0, where the last line follows from the definition of B
kN

k
h+1

h (s, a) in line 14
of Algorithm 3. As a consequence of the inequality (212), for any (s, a) ∈ S ×A, one has

∣∣∣∣
Nkh∑

n=1

η
Nkh
n ξk
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h
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+ cb
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h ∨ 1

≤
Nkh∑

n=1

η
Nkh
n b

kn+1

h ,

where the last inequality holds due to (120). We have thus concluded the proof of Lemma D.1.

D.4.1. PROOF OF INEQUALITY (209)

To establish the inequality (209), it is sufficient to consider the difference

W1 :=

Nkh∑

n=1

η
Nkh
n Varh,s,a(V k

n

h+1 − V
kn

h+1)− σadv,kN
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Before continuing, it is easily verified that if Nk
h = Nk

h (s, a) = 0, the basic fact
∑Nkh
n=1 η

Nkh
n = 0 leads to W1 = 0, and

therefore, (209) holds directly. The remainder of the proof is thus dedicated to controlling W1 when Nk
h = Nk

h (s, a) ≥ 1.
Recalling the definition in (109)
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, (213)

we can take this result together with (112) to yield
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. (214)

It then boils down to control the above two terms in (214) separately when Nk
h = Nk

h (s, a) ≥ 1.

Step 1: controlling W 1
1 . To control W 1

1 , we shall invoke Lemma B.4 by setting

W i
h+1 := (V ih+1 − V

i

h+1)2, and uih(s, a,N) := ηNNih(s,a)
≥ 0,

which obey

‖W i
h+1‖∞ ≤ ‖V

i

h+1‖2∞ + ‖V ih+1‖2∞ ≤ 2H2 =: Cw.

Invoking the facts in (206) and (207), we arrive at

2H

N ∨ 1
=: Cu
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and

0 ≤
N∑

n=1

u
knh(s,a)
h (s, a,N) ≤ 1, ∀(N, s, a) ∈ [K]× S ×A.

Therefore, choosing N = Nk
h (s, a) = Nk

h for any (s, a) and applying Lemma B.4 with the above quantities, we arrive at,
with probability at least 1− δ,
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. (215)

Step 2: controlling W 2
1 . Observe that Jensen’s inequality gives

( Nkh∑
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, (216)

due to the fact
∑Nkh
n=1 η

Nkh
n = 1 (see (26) and (25)). Plugging the above relation into (214) gives
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Note that the first term in (217) is exactly |U1| defined in (205a), which can be controlled by invoking (208) to achieve that,
with probability at least 1− δ,
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where the final inequality holds since Varh,s,a
(
V k

n

h+1 − V
kn

h+1

)
. H2 and the fact in (26). In addition, the second term in

(217) can be controlled straightforwardly by
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where we have used the fact in (26),
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Taking the above two facts collectively with (217) yields
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Step 3: summing up. Plugging the results in (215) and (219) back into (214), we have

W1 ≤W 1
1 +W 2

1 .

√
H5ι2

Nk
h ∨ 1

+
H3ι2

Nk
h ∨ 1

,

which leads to the desired result (209) directly.

D.4.2. PROOF OF INEQUALITY (210)

To begin with, let us recall two pieces of notation that shall be used throughout this proof:

1. m(j): the index of the epoch in which the j-th episode occurs.

2. N̂ epo,m
h (s, a): the value of N̂ (m,Lm+1)

h (s, a), representing the number of visits to (s, a) in the entire m-th epoch with
length Lm = 2m.

Applying (56) and taking the union bound over (m(j), h, s, a) ∈ [M ]× [H]× S ×A yield

N̂
epo,m(j)
h (s, a) ∨ 1 ≥ 2m(j)dµh(s, a)

8 log
(
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δ

) (220)

with probability at least 1− δ/2.

For any epoch m, if we denote by klast(m) the index of the last episode in the m-th epoch, we can immediately see that

klast(m) =

m∑

i=1

Li =

m∑

i=1

2i = 2m+1 − 2 ≤ 2m+1. (221)

Applying (56) again and taking the union bound over (m(j), h, s, a) ∈ [M ] × [H] × S × A, one can guarantee that for
every n ∈ [N

(m(j)+1,1)
h , N
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h ], with probability at least 1− δ/2,
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) . (222)

Combine the above results to yield
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(223)

where (i) follows from (220), (ii) and (iii) hold due to (222). As a result, we arrive at
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where the last inequality holds since
∑N
i=1

ηNi
i ≤ 2

N∨1 (see Lemma B.1).
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D.4.3. PROOF OF INEQUALITY (211)

In this subsection, we intend to control the following term
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for all (s, a) ∈ S ×A. First, it is easily seen that if Nk
h = 0, then we have W2 = 0 and thus (211) is satisfied. Therefore,

the remainder of the proof is devoted to verifying (211) when Nk
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we arrive at
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(224)

In the sequel, we intend to control the terms in (224) separately.

Step 1: controlling W 1
2 . The first term W 1

2 can be controlled by invoking Lemma B.4 and set
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1

N
=: Cu.

To proceeding, with the fact

∥∥W i
h+1

∥∥
∞ ≤

∥∥∥V next,i
h+1

∥∥∥
2

∞
≤ H2 =: Cw

and N = Nk
h (s, a) = Nk

h , applying Lemma B.4 with the above quantities, we have for all state-action pair (s, a) ∈ S ×A,
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Step 2: controlling W 2
2 . Towards controlling W 2

2 in (224), we observe that by Jensen’s inequality,
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Equipped with this relation, W 2
2 satisfies
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As for the first term in (226), let us set
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with probability at least 1− δ. In addition, the second term can be bounded straightforwardly by
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Step 3: combining the above results. Plugging the results in (225) and (227) into (224), we reach
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thus establishing the desired inequality (211).


