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Abstract

Many bandit problems are characterized by the
learner making decisions under constraints. The
learner in Linear Contextual Bandits with Knap-
sacks (LinCBwK) receives a resource consump-
tion vector in addition to a scalar reward in each
time step which are both linear functions of the
context corresponding to the chosen arm. For a
fixed time horizon T , the goal of the learner is to
maximize rewards while ensuring resource con-
sumptions do not exceed a pre-specified budget.
We present algorithms and characterize regret for
LinCBwK in the smoothed setting where base
context vectors are assumed to be perturbed by
Gaussian noise. We consider both the stochas-
tic and adversarial settings for the base contexts,
and our analysis of stochastic LinCBwK can be
viewed as a warm-up to the more challenging ad-
versarial LinCBwK. For the stochastic setting, we
obtain Op

?
T q additive regret bounds compared

to the best context dependent fixed policy. The
analysis combines ideas for greedy parameter es-
timation in (Kannan et al., 2018; Sivakumar et al.,
2020) and the primal-dual paradigm first explored
in (Agrawal & Devanur, 2016; 2014a). Our main
contribution is an algorithm with Oplog T q com-
petitive ratio relative to the best context dependent
fixed policy for the adversarial setting. The algo-
rithm for the adversarial setting employs ideas
from the primal-dual framework (Agrawal & De-
vanur, 2016; 2014a) and a novel adaptation of the
doubling trick (Immorlica et al., 2019).
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1. Introduction
The contextual bandits framework (Langford & Zhang,
2007; Lattimore & Szepesvari, 2019; Slivkins, 2021) is a
popular sequential decision making framework used in mul-
tiple practical applications such as clinical trials, web search,
and content optimization. Contextual bandit problems have
multiple rounds where in each round a learner watches a set
of context vectors corresponding to K arms and chooses an
arm with the goal of maximizing cumulative rewards. In
linear contextual bandits (LinCB) (Chu et al., 2011; Li et al.,
2010), the rewards for an arm are a linear function of the
context vector. Algorithms for contextual bandit problems
typically have to balance between exploration, choosing po-
tentially sub-optimal arms for acquiring more information,
and exploitation, choosing arms to optimize immediate re-
wards. Motivated by fairness and ethics considerations (Bird
et al., 2016; Raghavan et al., 2018; Kannan et al., 2018) or to
avoid inefficient exploration strategies (Bastani et al., 2018),
recent work has studied settings where an exploration free
greedy algorithm can be employed. The crux of all such
prior work is an assumption of inherent randomness in con-
text vectors aiding exploration. In the smoothed bandits
framework (Kannan et al., 2018) the inherent randomness
is due to stochastic perturbations of the context vectors.

Often a learner has to operate under constraints while
maximizing rewards (Babaioff et al., 2015; Badanidiyuru
et al., 2012; Besbes & Zeevi, 2012; Singla & Krause, 2013;
Combes et al., 2015). For example clinical trials are con-
strained by available medical resources or optimizing for ad
placements should account for advertisers budget and user
reach. There is now a body of work under the theme bandits
with knapsacks (BwK) addressing the tension between max-
imizing rewards while satisfying constraints (Badanidiyuru
et al., 2013; Agrawal & Devanur, 2014a; 2016; Immorlica
et al., 2019; Agrawal et al., 2016; Badanidiyuru et al., 2014).

Smoothed LinCBwK. In this work, we consider the linear
contextual bandits with knapsacks (LinCBwK) problem
(Agrawal & Devanur, 2016) under the smoothed assumption
on context vectors. The LinCBwK problem has d resources
with budget B P R` for each resource. In each round
t, there are K context vectors txtpaquKa“1,xtpaq P Rm,
one corresponding to each arm a P rKs. The smoothed
context vectors are of the form xtpaq “ νtpaq ` gtpaq,
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where νtpaq P Bm2 (unit ball) is the base context vector
and gtpaq „ N p0, σ2Imˆmq are Gaussian perturbations.
Typically σ2 “ 1

m (Kannan et al., 2018; Sivakumar et al.,
2020). On choosing an arm at P rKs, the learner receives a
noisy reward rtpatq P R` and consumption vector vtpatq P
Rd` satisfying

Errtpaq | xtpaq, Ht´1s “ µᵀ
˚xtpaq , (1)

Ervtpaq | xtpaq, Ht´1s “W ᵀ
˚xtpaq , (2)

where Ht´1 denotes the history, the reward vector µ˚ P
Sm´1 (unit sphere) and the consumption matrix W˚ P

Rmˆd with columns in Sm´1 are fixed but unknown to
the learner. Additionally, the parameter µ˚ and columns
of W˚ can be assumed to have some structure like sparsity.
In each round, the learner also has a "no-op" option which
is to choose none of the arms and receive 0 reward with
0 resource consumption. The learner’s goal is to choose
arms which maximize the total reward over T time steps
while ensuring total consumption for each resource does not
exceed B.

max
T
ÿ

t“1

rtpatq s.t.
T
ÿ

t“1

vtpatq ď 1B . (3)

Stochastic and Adversarial Contexts. We study algo-
rithms under two assumptions on the base context vectors:
(a) Stochastic LinCBwK when the base context vectors
νtpaq are sampled from an unknown distribution, and (b)
Adversarial LinCBwK when the νtpaq are chosen by an
adaptive adversary. In both cases, we compare the learner’s
performance against an optimal adaptive policy with knowl-
edge of µ˚,W˚ which, unlike LinCB, is no longer a single
arm but a probability distribution over the arms (Agrawal
& Devanur, 2014a; Badanidiyuru et al., 2013; Immorlica
et al., 2019). Compared to LinCB, the learner’s algorithm is
more complicated because it should not only optimize the
per step reward but also account for how much resources
are being consumed vs. how much to conserve for future.

The tension between consumption vs. conservation dif-
ferentiates the algorithms for stochastic and adversarial
LinCBwK. While in the stochastic setting, historical data
can be extrapolated to guide decisions to consume vs. con-
serve, it is impossible in the adversarial setting to use his-
torical data to plan for the future. Thus, for stochastic
LinCBwK, we are able to achieve stronger additive re-
gret bounds with respect to the optimal adaptive policy.
Let OPT1 denote the optimal adaptive policy’s reward for
smoothed stochastic LinCBwK. We present an algorithm
whose reward REW satisfies

REW ě OPT1´Õ

˜

ˆ

OPT1

B
` 1

˙

?
T

σ

¸

, (4)

where Õp¨q notation hides dependence on logarithmic fac-
tors and dimension of the problem.

For adversarial LinCBwK, we are only able to bound the
competitive ratio, i.e., the ratio between the optimal adaptive
policy’s reward and the algorithm’s reward. With OPT2 de-
note the optimal adaptive policy’s reward for the smoothed
adversarial LinCBwK, we present an algorithm whose re-
ward REW satisfies

REW ě
OPT2

Opdrlog T sq
´Õ

˜

ˆ

OPT2

B
` 1

˙

?
T

σ

¸

. (5)

Our framework is general enough to handle structure as-
sumptions like sparsity on the parameter vectors.

LinCBwK Algorithms. Algorithms for both stochastic and
adversarial LinCBwK broadly perform two steps in each
round: 1) estimating reward and consumptions for each
arm, and 2) pulling arms while balancing earned reward and
resource consumptions. In the smoothed setting, we use
(episodic) greedy estimates of reward and consumptions for
each arm obtained using constrained least squares estimates
of the reward and consumption parameters (Kannan et al.,
2018; Sivakumar et al., 2020). This is in sharp contrast
with most existing work in contextual bandits including
prior work on stochastic LinCBwK (Agrawal & Devanur,
2016) which compute rewards based on upper confidence
bound (UCB). For choosing arms by balancing the tradeoff
between reward and consumptions, multiple primal-dual ap-
proaches have been explored in BwK (Badanidiyuru et al.,
2013; Agrawal & Devanur, 2016; 2014b; Immorlica et al.,
2019) and related literature on online stochastic packing
problems (Agarwal et al., 2014; Mehta, 2013; Mehta et al.,
2007; Buchbinder & Naor, 2009; Williamson & Shmoys,
2011; Devanur & Hayes, 2009; Agrawal & Devanur, 2014b;
Devanur et al., 2011; Feldman et al., 2010; Molinaro & Ravi,
2012). Our algorithm is built on the framework developed
in (Agrawal & Devanur, 2014b; 2016) where in each round,
the algorithm maximizes a linear combination of the reward
and consumptions with a tradeoff parameter Z. The func-
tion can be viewed as the Lagrangian of the constrained
linear program (LP) in (3) with suitable modifications due
to the sequential and bandit nature of the problem. Z can
be viewed as a global parameter which captures the tradeoff
between the optimal reward and the budget. Specifics of
the computation of Z differs for stochastic and adversarial
LinCBwK, being substantially more challenging for the ad-
versarial setting. Our algorithms provide ways of computing
Z and comes with regret bounds as in (4), (5).

Comparison with Prior Work. We analyze smoothed
LinCBwK where the (stochastic or adversarial) contexts
are perturbed by a small amount of Gaussian noise. The
smoothing assumption (Kannan et al., 2018; Sivakumar
et al., 2020) is a middle ground between assuming stochastic
independent contexts and adversarial contexts both of which
arguably are not representative of most real world problems.
In sharp contrast to the explore-exploit bandit algorithms
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Table 1. Comparisons with prior work on regret upper bounds and budget constraints. OPT is an upper bound on optimal reward, K is
number of arms, B is the budget, m is context dimension for the LinCBwK problem, d is number of constraints.

Setting Regret Budget B

Stochastic BwK (Badanidiyuru et al., 2013) Op
?
K OPTp1`

a

OPT {Bqq

Adversarial BwK (Immorlica et al., 2019) OPT {Opd log T q ´OpT 7{4K{Bq ΩpKT 3{4q

Stochastic LinCBwK (Agrawal & Devanur, 2016) Opm
?
T q ΩpmT 3{4q

Smoothed Stochastic LinCBwK (This paper) Opm
?
T q Ωpm2{3T 3{4q

Smoothed Adversarial LinCBwK (This paper) OPT {Opd log T q ´Opm
?
T q ΩpT 3{4q

in prior literature (Agrawal & Devanur, 2016; Immorlica
et al., 2019), we show an exploration free greedy algorithm
theoretically achieves optimal regret in the smoothed set-
ting. Practically such exploration free bandit algorithms
are desirable in problems where ethics, fairness (Bird et al.,
2016), or computational efficiency (Bastani et al., 2018)
are concerns. For LinCB, (Bietti et al., 2018) empirically
show the greedy algorithm to perform as well as state-of-
the-art explore-exploit bandit algorithms on many practical
datasets.

Table 1 is a summary of prior results for variations of the
bandit with knapsacks problems. Our results for stochas-
tic LinCBwK match upto log factors the regret bounds for
LinCBwK in (Agrawal & Devanur, 2016) and the bounds for
LinCB with smoothed contexts in (Sivakumar et al., 2020).
Our main contribution is an algorithm and regret analysis
for smoothed adversarial LinCBwK. Although we do not
rigorously analyze lower bounds, our algorithm achieves
worst case competitive ratio which match upto constant
factors the bounds in (Immorlica et al., 2019) for the ar-
guably simpler setting of adversarial multi armed bandits
(MAB) with knapsacks. We also analyze regret bounds in
the high-dimensional regularized setting, e.g., Lasso.

Notations: Vectors are denoted by bold symbols, e.g., µ,y,
and matrices are denoted by upper case letters, e.g., W,X .
For context xtpaq “ νtpaq ` gtpaq, a P rKs, we will use
Xt, Nt, Gt P RmˆpK`1q with Xt “ Nt `Gt to denote the
set of base context vectors, Gaussian perturbation vectors,
and observed context vectors respectively in round t. The
last column in Xt, Nt, Gt is 0 corresponding to the no-op
arm. rt P RK`1 and Vt P RdˆpK`1q will denote the reward
and consumption vectors at time t.

2. Smoothed LinCBwK
As discussed in Section 1, in the smoothed setting, the
context vectors are Gaussian perturbed versions of base
context vectors, i.e., for all a P rKs,

xtpaq “ νtpaq ` gtpaq , (6)

where νtpaq P Bm2 are the base context vectors and gtpaq „
N p0, σ2Imˆmq are Gaussian perturbations. We consider

two settings for the base context vectors νtpaq: (a) stochas-
tic, where the νtpaq are stochastically chosen independently
from a fixed but unknown distribution, and (b) adversar-
ial, where the νtpaq are chosen by an adaptive adversary.
The following result establishes high probability bounds on
}xtpaq}2.

Lemma 1 Let β :“ argmax
tPrT s,aPrKs

}xtpaq}2. Then with proba-

bility at least p1´ δq,

β ď O
´

1` σ
a

m logpTK{δq
¯

. (7)

We will assume σ2 “ 1{m. Since the parameter vectors
have L2 norm unity the rewards and consumptions in each
time step are bounded by Opβq.

Our framework can handle sparsity assumptions on µ˚ and
columns of W˚. Without loss of generality, we will assume
the same structure for µ˚ and the columns of W˚. The
sparsity structure is represented by an atomic norm Jp¨q
(Chandrasekaran et al., 2012). We use the constrained least
squares estimator in each step for estimation.

pµt “ argmin
µPRm

1

2t
}ỹt ´ S̃tµ}

2
2 s.t. Jpµq ď Jpµ˚q ,

and

pxWtq:j “ argmin
wPRm

1

2t
}pQ̃tq:j´S̃tw}

2
2 s.t. Jpwq ď JpW˚jq,

where S̃t P Rtˆm is the matrix with contexts chosen before
time t as rows, ỹt P Rt are the rewards observed before
time t and Q̃t P Rtˆd are the consumption vectors observed
before time t. Let Ec :“ te | Jpµ˚ ` eq ď Jpµ˚qu
denote the error set and A “ cone pEcq X S

m´1 denote the
error cone (Wainwright, 2019; Vershynin, 2018; Banerjee
et al., 2014). Error sets for the columns of W˚ are defined
similarly. Our results for regret will have dependence on
the Gaussian width of the error set wpAq (Talagrand, 2005;
2014). For example wpAq “ Θp

?
mq if no structure is as-

sumed for the parameter vectors and wpAq “ Θp
?
s logmq

if the parameters are s-sparse and Lasso (Tibshirani, 1996)
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is used for parameter estimation. Henceforth we will over-
load the term A to denote the error cone for constrained
estimation of µ˚ and columns of W˚.

We will compare our algorithms to the class of dynamic
policies. Formally, let φpT q “ pXt, rt, Vtq

T
t“1 denote a

particular instantiation of contexts for T time steps. rt P
RK`1, Vt P RdˆpK`1q denote the reward and consumption
vectors at time t including for the no-op arm. A dynamic
policy pt : φpT q ÞÑ ∆K`1 maps contexts at each time step
to distributions over K ` 1 options, viz. the K arms and
the no-op option. In particular, we develop regret bounds
with respect to the optimal dynamic policy p˚p¨q which has
foreknowledge of µ˚,W˚ and the mechanism by which the
contexts are generated. Interestingly, we will in fact work
with a suitably defined context dependent static policy as
a benchmark by showing that its reward upper bounds the
reward of the optimal dynamic policy while satisfying the
resource constraints.

Benchmarks: Stochastic setting. In the stochastic setting
Xt’s are generated from an unknown distribution D. Here
D is the distribution for the convolution Xt “ Nt ` Gt
with Xt, Nt, Gt P RmˆpK`1q denoting the observed con-
text matrix, base vectors matrix and Gaussian perturba-
tion matrix respectively. The last column of all matri-
ces is the 0 vector corresponding to the no-op arm. Let
π : RmˆpK`1q ÞÑ ∆K`1 denote a context dependent prob-
ability distribution over arms and let rpπq and vpπq denote
the expected reward and consumption vector of policy πp¨q,
i.e.,

rpπq :“ EX„Drr
ᵀπpX;Dqs, vpπq :“ EX„DrV πpX;Dqs .

Let,

π˚ :“ argmax
π

Trpπq s. t. Tvpπq ď B1 . (8)

We revisit a result by (Agrawal & Devanur, 2016) which
shows that in the stochastic setting, the reward obtained by
the optimal dynamic policy p˚p¨q can be upper bounded by
an optimal context dependent static policy π˚p¨q.

Lemma 2 (Lemma 1 in (Agrawal & Devanur, 2016))
Let ĘOPT1 :“ EφpT qr

řT
t“1 µ

ᵀ
˚Xtp

˚
t pφpT qqs denote the

value of the optimal feasible dynamic policy p˚ which
knows parameters µ˚,W˚ and distribution D. Then, the
optimal static policy π˚ in (8) satisfies: Trpπ˚q ě ĘOPT1

and Tvpπ˚q ď B1.

Since the optimal static policy π˚ is competitive with the
optimal dynamic policy p˚, for the stochastic setting it suf-
fices to compare the performance of our proposed algorithm
with the performance of π˚. If the sequence of arms chosen
by our algorithm is tatu, we define regret as: R1pT q :“

OPT1´
řT
t“1 rtpatq, where OPT1 :“ Trpπ˚q.

Benchmarks: Adversarial setting. In the smoothed adver-
sarial setting, the base context vectors νtpaq, a P rKs are
chosen by an adaptive adversary, and the optimal feasible
dynamic policy p˚ is the one which maximizes the cumu-
lative reward p˚ :“ argmaxp

řT
t“1 µ

ᵀ
˚XtptpφpT qq while

staying feasible. As in the smoothed stochastic setting, we
consider the optimal static policy π˚ that depends on con-
text Xt and realization φpT q. The policy π˚ optimizes the
cumulative reward while staying feasible, i.e.,

π˚ :“ argmax
π

T
ÿ

t“1

µᵀ
˚XtπpXt;φpT qq

s. t.
T
ÿ

t“1

W ᵀ
˚XtπpXt;φpT qq ď B1 . (9)

Lemma 3 Let ĘOPT2 :“
řT
t“1 µ

ᵀ
˚Xtp

˚
t pφpT qq and

OPT2 :“
řT
t“1 µ

ᵀ
˚Xtπ

˚pXt;φpT qq respectively denote
the value of the optimal feasible dynamic and static policies
which have knowledge of the parameters µ˚,W˚. Then
OPT2 ě ĘOPT2.

Since the optimal static policy again dominates the optimal
dynamic policy under feasibility, it suffices to compare the
performance of our algorithm to that of the static policy π˚.
If the sequence of arms chosen by our algorithm is tatu, we
define regret as: R2pT q :“ OPT2´

řT
t“1 rtpatq, where

OPT2 :“
řT
t“1 µ

ᵀ
˚Xtπ

˚pXt;φpT qq.

3. Greedy Algorithm
In this section we discuss the greedy algorithm
GreedyLinCBwK (Algorithm 1) used in both the stochas-
tic and adversarial settings. GreedyLinCBwK is based on
the primal-dual paradigm explored in prior work on BwK
(Agrawal & Devanur, 2014a;b; 2016; Immorlica et al., 2019)
with a key unique aspect: our algorithm keeps updating
estimates pµt,xWt respectively of the true reward and con-
sumption parameters µ˚,W˚ and picks arms greedily using
these estimates. The greedy approach of arm selection in
GreedyLinCBwK is in sharp contrast with both the existing
UCB-based approach for LinCBwK in the stochastic set-
ting (Agrawal & Devanur, 2014a;b; 2016) and the approach
for adversarial BwK setting in (Immorlica et al., 2019). The
overall approach in GreedyLinCBwK has similarities with
prior work on both stochastic and adversarial bandits with
knapsacks (Agrawal & Devanur, 2016; Immorlica et al.,
2019) in that the primal arm selection is with bandit feed-
back and the dual update is essentially a full information
online convex optimization (OCO).
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Algorithm 1 GreedyLinCBwK

Input: Parameter Z P R`, budget B, context matrix S1,
reward vector y1, consumption matrix Q1

Initialize θ1 using uniform distribution
for t “ 1 to T do

pS,y, Q,θ, Teffqt`1 “ GreedySteppZ,B, pS,y, Q,θ, Teffqtq

if Qt`1ej ě B for any j P rds then
EXIT

end if
end for

Algorithm 2 GreedyStep

Input: Parameter Z P R`, budget B, context matrix St,
reward vector yt, consumption matrix Qt, dual vector θt,
Teffptq

Estimate pµt,xWt “ EstimatepSt,yt, Qt, Teffptqq

Set at “ argmax
aPrKs

xtpaq
ᵀppµt ´ ZxWtθtq .

if xtpatqᵀppµt ´ ZxWtθtq ě ´2ζt as in (10) then
Select arm at, Teffpt` 1q “ Teffptq ` 1
Observe reward rtpatq and consumption vtpatq P Rd
Append xtpatq, rtpatq, vtpatq to St, yt, Qt to get
St`1,yt`1, Qt`1.

else
Set at “ the no-op arm, Teffpt` 1q “ Teffptq
Set St`1,yt`1, Qt`1 “ St,yt, Qt.

end if
Update θt`1 using OMD with gtpθq :“ xθ, pvtpatq ´
B0

T 1qy and θt P ∆d`1

3.1. The GreedyLinCBwK Algorithm

The algorithm has three key steps as illustrated in
GreedyStep (Algorithm 2): parameter estimation, arm se-
lection to receive reward and consumption vector, and dual
update, with some steps picking the no-op arm.

Estimation. In each step, the algorithm estimates the re-
ward vector pµt and constraint parameter xWt based on a con-
strained least squares formulation as shown in Estimate

(Algorithm 3). In the smoothed stochastic setting, one can
show that the estimated parameters pµt,xWt approach the
true parameters at aOp1{

a

Teffptqq rate using standard tech-
niques. Showing a similar result for the smoothed adver-
sarial settings needs more care, and our analysis leverages
recent advances in such analysis (Sivakumar et al., 2020).

Arm Selection. The arm selection is based on

at “ argmax
aPrKs

xtpaq
ᵀppµt ´ ZxWtθtq ,

Algorithm 3 Estimate

Input: Context matrix St, reward vector yt, consumption
matrix Qt, effective steps Teffptq
Compute SVD of design matrix: 1?

Teffptq
St “ UDV ᵀ

Compute Puffer transformation: F “ UD´1Uᵀ and
define S̃t “ FSt, ỹt “ Fyt, Q̃t “ FQt
Estimate parameters using constrained least squares

pµt “ argmin
µPRm

1

2Teffptqq
}ỹt ´ S̃tµ}

2
2 s.t. Jpµq ď Jpµ˚q

pxWtq:j “ argmin
wPRm

1

2Teffptq
}pQ̃tq:j ´ S̃tw}

2
2 s.t. Jpwq ď JpW˚jq

as long as xtpatqᵀppµt ´ ZxWtθtq ě ´2ζt where

ζt “ O

¨

˝

´

wpAq `
a

logpTd{δq
¯

Zβ logK

σ
a

Teffptq

˛

‚ , (10)

otherwise the no-op arm is selected. Such an arm choice
was first explored in (Agrawal & Devanur, 2014b; 2016)
who prescribed using Z “ ΩpOPT {Bq to obtain optimal
regret rates, where OPT is the reward obtained by the opti-
mal static policy. As we show in subsequent sections, the
algorithms for the stochastic and adversarial settings differ
in how OPT and by extension Z is estimated and used.

Dual Update. For a chosen arm at, the corresponding
consumption vector vtpatq needs to stay within the per step
budget BT 1, i.e., vtpatq ´ B

T 1 ď 0. Similar to (Agrawal &
Devanur, 2016; Immorlica et al., 2019) we will assume the
presence of a dummy time resource with B{T consumption
in each round irrespective of the chosen arm. Following
related work (Agrawal & Devanur, 2016; Abernethy et al.,
2011), the dual update involves maximizing xθt`1,vtpatq´
B
T 1y under the constraint θt`1 P ∆d`1 sequentially, which
can be done with online mirror descent (OMD).

No-op Arm. Note that GreedyStep (Algorithm 2) chooses
the no-op arm only when the objective for all arms is below
´2ζt with ζt as in (10) which changes with time. The nega-
tive threshold ´2ζt corresponds to the objective value esti-
mation error when using pµt,xWt to estimate the objective in-
stead of µ˚,W˚. In particular, in steps where GreedyStep
chooses the no-op arm, an algorithm using µ˚,W˚ would
also have chosen the no-op arm with high probability.

3.2. Primal-Dual Perspective

We develop an understanding of GreedyLinCBwK by con-
sidering the optimization problem in hindsight to find the
optimum static policy over T steps. The purpose is to gain
insights about key steps in the algorithm, and more rigorous
technical results are presented in subsequent sections.
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Consider the optimization problem:

max
π

T
ÿ

t“1

µᵀ
˚XtπpXtq s.t. W ᵀ

˚XtπpXtq ´
B

T
1 ď 0 , t P rT s

(11)

Let yt P Rpd`1qˆ1
` be the Lagrange mulipliers correspond-

ing to the t-th constraint, and let θt “ yt{}yt}1 be the
normalized Lagrange multipliers. The Lagrangian is given
by:

Lpπ,θq “
T
ÿ

t“1

µᵀ
˚XtπpXtq ´

T
ÿ

t“1

B

yt,W
ᵀ
˚XtπpXtq ´

B

T
1

F

“

T
ÿ

t“1

µᵀ
˚XtπpXtq ´ Z

T
ÿ

t“1

B

θt,W
ᵀ
˚XtπpXtq ´

B

T
1

F

,

where Z is a suitable constant. Note that we are not showing
the primal constraints πpXtq P ∆K`1 and dual constraints
θt P ∆d`1 explicitly to avoid clutter.

Scaling constant Z. Let OPT denote the (primal) optimal
value for (11). Since the primal is a feasible bounded LP,
strong duality holds (Bertsimas & Tsitsiklis, 1997; Boyd &
Vandenberghe, 2005), and the solutions of the primal and
dual problems match, i.e., is both OPT. With y˚t denoting
the optimal Lagrange dual parameters, by strong duality
OPT “

řT
t“1xy

˚
t ,

B
T 1y. Then, with Z˚t :“ }y˚t }1 and

θ˚t “ y˚t {}y
˚
t }1, we have

OPT “
T
ÿ

t“1

xy˚t ,
B

T
1y “

T
ÿ

t“1

Z˚t xθ
˚
t ,
B

T
1y

“

T
ÿ

t“1

Z˚t
B

T
“ B ¨ Z˚,

where Z˚ :“ 1
T

řT
t“1 Z

˚
t “

1
T

řT
t“1 }y

˚
t }1, so that we

have Z˚ “ OPT
B . Thus, the optimal scaling constant Z˚

is simply the per step average of the sum of optimal Lan-
grange multipliers }y˚t }1, and satisfies Z˚ “ OPT

B so that
an estimate of OPT will yield an estimate of Z˚. In the
online setting, y˚t are not known, and are estimated sequen-
tially. As a result, GreedyLinCBwK will keep an (running)
estimate of OPT and hence Z based on (a) the current esti-
mates pµt,xWt respectively of µ˚,W˚, and (b) the contexts
X1:t observed till time step t.

Primal updates. The primal update would ideally be based
on BcLpπ,θq

BπpXtq
, i.e., gradient of the Lagrangian w.r.t. the policy.

Since we can pull only one arm, i.e., a bandit step, the update
will have to be based on partials w.r.t. πpXtqpaq, a P rKs
and picking the arm with the largest gradient, i.e., a Frank-
Wolfe, conditional gradient, or coordinate ascent type up-
date (Frank & Wolfe, 1956). Note that the partial derivative
is simply: BLpπ,θq

BπpXtqpaq
“ xtpaq

ᵀ pµ˚ ´ ZW˚θtq, and the
arm chosen is the one which maximizes this.

Dual updates. Since the true consumption vector at step
t by pulling arm a is vtpaq and since the primal is a
maximization, the cumulative dual objective to be mini-
mized is ´

řT
t“1xθt,vtpaq ´

B
T 1y over θt P ∆d`1. For

convenience, we will equivalently consider maximizing
řT
t“1xθt,vtpaq ´

B
T 1y. Since the problem needs to be

solved sequentially, this becomes a simple example of OCO
with a linear objective and simplex constraint , which can
be solved by online mirror descent (OMD) or exponentiated
gradient (EG) descent (Shalev-Shwartz et al., 2012) with
sublinear regret.

Proposition 1 With gtpθq “ xθ,vtpaq ´ B
T 1y, OMD with

constraint θt P ∆d`1 achieves the following regret:

RDpT q “ max
θP∆d`1

T
ÿ

t“1

gtpθq´
T
ÿ

t“1

gtpθtq “ O
´

a

T logpdq
¯

.

3.3. Main Result: Reward from GreedyLinCBwK

Theorem 1 lower bounds the reward obtained by the greedy
algorithm. Tstop is either T or the first round any re-
source consumption exceeds B. The algorithm incurs ad-
ditive regret RpT q due to use of estimates pµ,xW instead of
µ˚,W˚ to compute the reward and constraint objectives.
The reward can be lower bounded by either of two quanti-
ties. The primal update ensures the reward is greater than
OPTpTstopq`ZpγapTstopq´γπpTstopqq. Presence of the no-
op arm ensures the reward is lower bounded by ZγapTstopq.

Theorem 1 Let Tstop ď T denote the stopping time of the
algorithm. Let β “ maxtPrT s,aPrKs }xtpaq}2 be the maxi-
mum `2 norm of context vectors. Then with probability at
least 1´ 2δ ,

REW ěmax
“

OPTpTstopq ` ZpγapTstopq ´ γπpTstopqq,

ZγapTstopq
‰

´OpZRpT qq ,

where

REW “

Tstop
ÿ

t“1

xµ˚,xtpatqy (12)

OPTpTstopq “

Tstop
ÿ

t“1

xµ˚, Xtπ
˚pXtqy (13)

γπpTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚Xtπ

˚pXtq,θty (14)

γapTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚xtpatq,θty . (15)
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and, with σ2 being the Gaussian perturbation variance,

RpT q “ O

¨

˝

´

wpAq `
a

logpTd{δq
¯

β
?
T logK

σ

˛

‚ .

(16)

4. Smoothed Stochastic LinCBwK
In this section, we discuss the algorithm for stochastic
LinCBwK. The algorithm has two phases. In the initial
warm start phase with T0 time steps, the arms are chosen
uniformly at random. The parameter Z is estimated at the
end of the warm start phase. We further discuss estimation
of Z in Section 4.1. In the exploit phase, greedy Algorithm
1 is run with a fixed Z computed at the end of the warm start
phase and a budget B1 “ B ´ βT0. This is due to Lemma 1
which bounds the maximum consumption for any resource
per round to β. The execution of the algorithm stops either
after T time steps or when one of the resource consump-
tion exceeds B. Our algorithm differs from (Agrawal &
Devanur, 2016) in two aspects. The algorithm chooses arms
uniformly at random in the warm start phase instead of the
more involved exploration technique employed in (Agrawal
& Devanur, 2016). The algorithm computes greedy esti-
mates of the reward and constraint objectives in each time
step of the exploit phase instead of UCB estimates.

4.1. Estimation of Z

Recall the discussion in Section 3.2 where we establish
Z˚ “ OPT1

B where OPT1 is the optimal static policy re-
ward. To estimate Z after the warm start phase, we esti-
mate the optimal reward zOPTpT0;ωpT0qq where ωpT0q “

pXt, rt,vt, atq
T0
t“1 are observations in the warm start phase

and extrapolate it. Let pµT0 and xWT0 denote the parameter
estimates at the end of the warm start phase. Then,

zOPTpT0;ωpT0qq :“ max
π

T0
ÿ

t“1

pµᵀ
T0
XtπpXtq

s.t.
T0
ÿ

t“1

xW ᵀ
T0
XtπpXtq ď B0 `RpT0q ,

zOPTpT ;ωpT0qq :“
T

T0

zOPTpT0q , (17)

where B0 “ pT0{T qB and RpT0q is an upper
bound on the regret

řT0

t“1pW˚ ´ xWT0
qXtπpXtq af-

ter the warm start phase. Note that RpT0q “

O

ˆ

´

wpAq`
?

logpT0d{δq
¯

β
?
T0 logK

σ

˙

is the regret at the end

of the warm start phase. We set ZpT0q as follows.

ZpT0q “

´

zOPTpT ;ωpT0qq ` 2
´

T
T0

¯

RpT0q

¯

B
` 1 .

Algorithm 4 Smoothed Stochastic LinCBwK
Input: Budget B P R`, Total timesteps T .
Initialize S1 “ rs, y1 “ rs, Q1 “ rs

for τ “ 1 to T0 do
Select arm xτ paτ q uniformly at random, observe noisy
reward rτ paτ q and consumption vector vτ paτ q P
Rd. Obtain Sτ`1, yτ`1, Qτ`1 by appending xτ paτ q,
rτ paτ q, vτ paτ q to Sτ , yτ , Qτ .

end for
Let B1 “ B ´ βT0. Compute parameter Z such that
OPT1

B1 ď Z ď O
`

OPT1

B1 ` 1
˘

.
Run Algorithm GreedyLinCBwK with budget B1 from
time T0 ` 1 to T .

We revisit the following result from (Agrawal & Devanur,
2016) on error bounds on estimator zOPTpT ;ωpT0qq with
respect to the optimal reward OPT1. The bounds account
for both the extrapolation error and use of pµT0 ,

xWT0 instead
of the true parameters for estimation.

Lemma 4 [Lemma 5 in (Agrawal & Devanur, 2016)] For

RpT0q “ O

ˆ

pwpAq`
?

logpT0d{δqqβ
?
T0 logK

σ

˙

, with proba-

bility at least 1´ δ

zOPTpT ;ωpT0qq ě OPT1´2

ˆ

T

T0

˙

RpT0q

zOPTpT ;ωpT0qq ď OPT1`9

ˆ

T

T0

˙

RpT0q

ˆ

OPT1

B
` 1

˙

(18)

Set ZpT0q “

´

{OPTpT ;ωpT0qq`2
´

T
T0

¯

RpT0q

¯

B ` 1. Then with
probability 1´Opδq,

ZpT0q ě
OPT1

B
` 1

ZpT0q ď

¨

˝1`
11

´

T
T0

¯

RpT0q

B

˛

‚

ˆ

OPT1

B
` 1

˙

.

(19)

Moreover if B ě Ω̃
´

T?
T0

wpAq logK
σ

¯

then ZpT0q ď

O
`

OPT1

B ` 1
˘

.

4.2. Regret Analysis

Let Tstop ď T denote the stopping time step of the algo-
rithm which is either T or the first time any of the resource
consumption exceeds B. The final regret is obtained by
combining the results of Lemma 4 and Theorem 1. Since
arms are chosen at random we accrue linear regret in the
warm start phase. Here RDpT q is the regret of the dual
OCO algorithm from Proposition 1.
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Theorem 2 Assume B ě Ω̃
´

max
´

T0,
T?
T0

wpAq logK
σ

¯¯

.

Then if ZpT0q is set as outlined in Lemma 4, we have

OPT1

B
` 1 ď ZpT0q ď O

ˆ

OPT1

B
` 1

˙

. (20)

Moreover with probability at least 1´ 6δ, following is the
regret for the greedy Algorithm 4,

regretpT q ď O

ˆˆ

OPT1

B
` 1

˙

max pT0, RpT qq

˙

,

(21)

where RpT q “ O

ˆ

´

wpAq`
?

logpTd{δq
¯

β
?
T logK

σ

˙

.

We wrap up with special cases of our results.

Corollary 1 Assume the variance of the Gaussian noise in
the smoothed setting σ2 “ Ωp1{mq. Then with probability
at least 1´Opδq,

• If Jp¨q is the `22 norm, T0 “ Õ
`

m2{3
?
T
˘

and B ě

Ω̃pm2{3T 3{4q,

regretpT q ď Õ

ˆˆ

OPT1

B
` 1

˙

m
?
T

˙

(22)

• If Jp¨q “ } ¨ }1, µ˚ and columns of W˚ are s-
sparse, T0 “ Õppm ¨ s logmq1{3

?
T q and B ě

Ω̃pm ¨ s logmq1{3T 3{4q,

regretpT q ď Õ

ˆˆ

OPT1

B
` 1

˙

?
m
a

s logm
?
T

˙

(23)

5. Smoothed Adversarial LinCBwK
In this section, we consider adversarial LinCBwK where
the base context vectors νtpaq, a P rKs of the smoothed
contexts xtpaq “ νtpaq ` gtpaq are chosen by an adaptive
adversary. The basic ideas behind the algorithm remain the
same as in stochastic LinCBwK except for the estimation
of the tradeoff parameter Z which balances optimizing the
reward and consumption. But unlike the stochastic setting
it is not possible to estimate OPT2, the reward from the
optimal feasible static policy, without knowledge of the
adversarially chosen contexts νtpaq over all time steps.

5.1. Estimation of Z

We address this challenge by adapting a variant of the stan-
dard doubling trick in online learning (Shalev-Shwartz et al.,
2012). At any stage, the algorithm has an estimate of the
value of OPT and by extension Z. In each time step t, the
realized cumulative reward is compared with the estimate

for OPT and the algorithm updates the estimate for OPT
when the realized reward is double that of the current es-
timate for OPT, and also updates the estimate for Z. A
related doubling trick adaptation is used in (Immorlica et al.,
2019) for the adversarial multi-armed bandits with knap-
sacks problem although the algorithmic details are different.

Similar to the the stochastic setting, Algorithm 5 has a
warm start phase with T0 rounds. But unlike the stochastic
setting the warm start phase is only required to get good es-
timates of the reward and constraint parameters. The exploit
phase in Algorithm 5 is further subdivided into multiple
epochs. Let T1 denote the start time step of an epoch. Let
ωpT1q “ pXt, rt,vt, atq

T1
t“1 denote data observed until T1.

At the first step of the epoch, zOPTpT1;ωpT1qq and ZpT1q

are computed with data ωpT1q as follows:

zOPTpT1;ωpT1qq :“ max
π

T1
ÿ

t“1

pµᵀ
T1
XtπpXtq

s.t.
T1
ÿ

t“1

xW ᵀ
T1
XtπpXtq ď B `RpT1q ,

ZpT1q :“
zOPTpT1;ωpT1qq

2dB
. (24)

The value of zOPTpT2;ωpT2qq is monitored in each time
step T2 ą T1 of an epoch until zOPTpT2;ωpT2qq ě

2zOPTpT1;ωpT1qq at which point the epoch is terminated
and a new epoch is started. Each epoch is allocated a budget
B1{2rlog T s. In each time step of an epoch GreedyStep

(Algorithm 2) is run until a new epoch is started or when
the allocated budget for any resource is exhausted. In case
of budget exhaustion, an arm is chosen uniformly at random
with a fixed probability until a new epoch starts.

5.2. Regret Analysis

It is evident that the Z estimates improve with progression
of epochs. We therefore focus on the last completed epoch
and show there is sufficient reward to be collected from
this epoch. Moreover we show that the greedy algorithm
receives minimum Ωp1{pd log T qq fraction of the reward
available in the final completed epoch. OPT2 denotes the
reward of the optimal static policy from Lemma 3.

Theorem 3 Assume B ě ΩpT 3{4q. Then with probability
at least 1 ´ 6δ following is a lower bound on the reward
obtained by the greedy algorithm

REW ě
OPT2

16drlog T s
´O

ˆˆ

OPT2

B
` 1

˙

RpT q

˙

,

(25)

where RpT q “ O

ˆ

´

wpAq`
?

logpTdq{δ
¯

β
?
T logK

σ

˙

.
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Algorithm 5 Smoothed Adversarial LinCBwK
Input: Budget B, number of time steps T
Initialize S1, y1, Q1 “ rs

for t “ 1 to T0 do
Select arm xtpatq uniformly at random, observe noise
reward rtpatq and consumption vector vtpatq. Get
St`1, yt`1, Qt`1 by appending xtpatq, rtpatq,vtpatq
to St, yt, Qt.

end for
Let B1 “ B ´ T0.
Initialize epoch j “ tlog2

zOPTpT0;ωpT0qqu

for each epoch do
Let T1 be the initial time step of epoch. Estimate
zOPTpT1;ωpT1qq, ZpT1q using (24)
Compute budget B0 “

B1

2rlog T s

Initialize θT1 using uniform distribution.
for each time step T2 in epoch do

Recompute zOPTpT2;ωpT2qq using (24)
if zOPTpT2;ωpT2qq ě 2j`1 then

Increment j “ j ` 1 and start a new epoch
else

if any budget consumed then
Run Algorithm GreedyStep with B “ B0

and Z “ ZpT1q.
else

Play any arm uniformly at random with proba-
bility T´1{4, play the no-op arm otherwise

end if
end if

end for
end for

(Immorlica et al., 2019) obtain Opdrlog T sq competitive
ratio for adversarial multi-armed bandits (MAB) with knap-
sacks and show it to be optimal. We match the bound for
the linear contextual bandit setting with smoothed contexts
with better additive regret rates. Note that (Immorlica et al.,
2019) considered oblivious adversaries where we consider
adaptive adversaries in the smoothed setting. Further, the
additive regret in (Immorlica et al., 2019) is Õ

`

KT 7{4{B
˘

so for regret bounds to be meaningful requires the condi-
tion B

K OPT ě Ω̃pT 7{4q. Our setup requires much milder
assumptions. We wrap up with special cases of our result.

Corollary 2 Assume the variance of the Gaussian noise in
the smoothed setting σ2 “ Ωp1{mq. Let OPT be the opti-
mal reward and κ ď Opdrlog T sq. Then with probability at
least 1´Opδq,

• If Jp¨q “ } ¨ }2 and B ě Ω̃pT 3{4q,

REW ě
OPT2

κ
´ Õ

ˆˆ

OPT2

B
` 1

˙

m
?
T logK

˙

• If Rp¨q “ } ¨ }1, µ˚ and columns of W˚ are s-sparse
and B ě Ω̃pT 3{4q,

REW ě
OPT2

κ
´ Õ

ˆˆ

OPT2

B
` 1

˙

?
m
a

s logm
?
T

˙

6. Conclusion
We considered the linear contextual bandit with knapsacks
(LinCBwK) problem in the smoothed setting where the con-
texts chosen by nature, stochastically or adversarially, is
perturbed by Gaussian noise. Such smoothed analysis, es-
pecially in the adversarial setting, is a mechanism to soften
the worst case analysis and prior work has illustrated that
simpler algorithms often work when avoiding the worst
case. Our results in this paper continue this tradition. As the
first work which analyzes smoothed adversarial LinCBwK
with adaptive adversaries, we show that a combination of a
greedy strategy to choose arms combined with a doubling
trick gives a suitable algorithm for the setting. Scope for
future work includes consideration of more flexible mod-
els for the rewards as well as budgets, including dynamic
budgets.
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A. Concentration Inequalities
We restate the following Hoeffding-type result for dependent variables from (Sivakumar et al., 2020).

Lemma 5 (Lemma 11 from (Sivakumar et al., 2020)) Let tZtu be a sub-Gaussian martingale difference sequence (MDS)
and let z1:t denote a realization of Z1:t. Let tatu be a sequence of random variables such that at “ ftpz1:pt´1qq for some
sequence function ft with |at| ď αt a.s. for suitable constants α1, . . . , αT . Then, for any τ ą 0, we have

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

atzt

ˇ

ˇ

ˇ

ˇ

ˇ

ě τ

¸

ď 2 exp

#

´
τ2

4cκ2
řT
t“1 α

2
t

+

, (26)

for absolute constants c ą 0 and where κ is the ψ2-norm of the conditional subGaussian random variables.

Corollary 3 Let z1:T denote denote a realization of a sub-Gaussian martingale difference sequence such that
ErZi|z1:i´1s “ 0 and }Zi}ψ2

ď κ1. Then using τ “
a

4cκ2
1T logp1{δq “ Op

a

T logp1{δqq,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

zt

ˇ

ˇ

ˇ

ˇ

ˇ

ě

b

4cκ2
1T logp1{δq

¸

ď δ . (27)

B. Benchmark and Reward, Consumption Bounds
Lemma 1: Let β “ argmax

tPrT s,aPrKs

}xtpaq}2. Then with probability atleast 1´ δ,

β ď O
´

1` σ
a

m logpTK{δq
¯

. (28)

Proof: We have xtpaq “ νtpaq`gtpaq where νtpaq P Bm2 and gtpaq „ N p0, σ2Imˆmq. Therefore we have the following,

}xtpaq}2 ď }νtpaq}2 ` }gtpaq}2 ď 1` }gtpaq}2 . (29)

To obtain bounds on }gtpaq}2, note that Er}gtpaq}2s ď
a

Er}gtpaq}22s “ σ
?
m. Moreover we have the following result.

Lemma 6 (Lemma 1 from Laurent and Massart (Laurent & Massart, 2000)) Support x „ χ2
m, i.e., x “

řm
i“1 g

2
i for

gi P N p0, 1q independently, then
P
“

x ě m` 2
?
mε` 2ε

‰

ď expp´εq . (30)

Therefore from the above lemma the following can be deduced,

P r}gtpaq}2 ě 5σ
?
mεs ď expp´εq .

Taking the max over all time steps by union bound argument,

P

„

max
tPrT s,aPrKs

}gtpaq}2 ě 5σ
?
mε



ď TK expp´εq .

Now choosing ε “ logpTK{δq and by simple arithmatic manipulations and combining with (29) we get the stated result.

Lemma 2: Let ĘOPT1 :“ EφpT qr
řT
t“1 µ

ᵀ
˚Xtp

˚
t pφpT qqs denote the value of the optimal feasible dynamic policy p˚ which

knows parameters µ˚,W˚ and distribution D. Here p˚t pφpT qq denotes the distribution over arms in the t-th time step. Then,
the optimal static policy π˚ in (8) satisfies: Trpπ˚q ě ĘOPT1 and Tvpπ˚q ď B1.

Proof: Given the dynamic policy p˚, construct the following static context dependent policy π˚ as follows.

π˚pXq :“
1

T

T
ÿ

t“1

EφpT qrp˚t pφpT qq|Xs .
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Now by definition,

Trpπ˚q “ TEX„Drr
ᵀπ˚pX;Dqs “ EφpT qr

T
ÿ

t“1

rᵀp˚t pφpT qqs “
ĘOPT1

Tvpπ˚q “ TEX„DrVtπ
˚pX;Dqs “ EφpT qr

T
ÿ

t“1

Vtp
˚
t pφpT qqs ď B1 .

Lemma 3: Let ĘOPT2 :“
řT
t“1 µ

ᵀ
˚Xtp

˚
t pφpT qq and OPT :“

řT
t“1 µ

ᵀ
˚Xtπ

˚pXt;φpT qq denote the value of the optimal
feasible dynamic policy and the optimal static policy which has knowledge of the parameters µ˚,W˚. Then OPT ě ĘOPT2.

Proof: For each context set X observed in φpT q, construct the following static context dependent policy,

π˚pXq :“ avgrp˚t pφpT qq|Xs .

It therefore follows by definition that ĘOPT2 :“ OPT2 and
řT
t“1W

ᵀ
˚Xtπ

˚pXt;φpT qq “
řT
t“1W

ᵀ
˚Xtp

˚
t pφpT qq ď 1B.

C. Reward and Constraint Parameter Estimation
We prove upper bounds on parameter estimation errors in each round for the reward and constraint parameters. To be concise
we will directly reference results from (Sivakumar et al., 2020) wherever possible.

C.1. Covariance Matrix Minimum Eigenvalue

Theorem 4 Consider any time step t in Algorithm 1 when the no-op arm is not chosen. Let xtpatq be the context
corresponding to the chosen arm. The following is a lower bound on the minimum eigenvalue of the covariance matrix,

λmin

`

Extpatq rxtpatqxtpatq
ᵀs
˘

ě c1
σ2

logK
(31)

Proof: Let xtpatq “ νtpatq ` gtpatq where at :“ argmax
aPrKs

xtpaq
T pµ̂t ´ZŴtθtq. Set φt “ µ̂t ´ZŴtθt. By definition,

λmin

˜

E

«

xtpatqxtpatq
ᵀ

ˇ

ˇ

ˇ

ˇ

ˇ

xtpatq “ argmax
xtpaq

xxtpaq,φty

ff¸

“ min
w:}w}2“1

wᵀ

˜

E

«

xtpatqxtpatq
ᵀ

ˇ

ˇ

ˇ

ˇ

ˇ

xtpatq “ argmax
xtpaq

xxtpaq,φty

ff¸

w

“ min
w:}w}2“1

˜

E

«

wᵀxtpatqxtpatq
ᵀw

ˇ

ˇ

ˇ

ˇ

ˇ

xtpatq “ argmax
xtpaq

xxtpaq,φty

ff¸

ě min
w:}w}2“1

Var

˜«

xw,νtpatq ` gtpatqy

ˇ

ˇ

ˇ

ˇ

ˇ

xtpatq “ argmax
xtpaq

xxtpaq,φty

ff¸

ě min
w:}w}2“1

Var

˜«

xw,gtpatqy

ˇ

ˇ

ˇ

ˇ

ˇ

gtpatq “ argmax
gtpaq

xνtpaq ` gtpaq,φty

ff¸

(32)

Let Q P Rmˆm be an orthogonal matrix such that Qφt “ p}φt}2, 0, . . . , 0q. Also let pgtpa1q, . . . ,gtpaKqq “
pQᵀεtpa1q, . . . , Q

ᵀεtpaKqq. Due to rotational invariance property of multivariate Gaussian distributions εtpaiq „
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Np0, σ2Imˆmq. The r.h.s. in (32) evaluates to the following,

min
w:}w}2“1

Var

«

xgtpatq,wy

ˇ

ˇ

ˇ

ˇ

ˇ

gtpatq “ argmax
gtpaq

xνtpaq ` gtpaq,φty

ff

“ min
w:}w}2“1

Var

«

xQgtpatq, Qwy

ˇ

ˇ

ˇ

ˇ

ˇ

gtpatq “ argmax
gtpaq

xQνtpaq `Qgtpaq, Qφty

ff

“ min
w:}w}2“1

Var

«

xεtpatq,wy

ˇ

ˇ

ˇ

ˇ

ˇ

εtpatq “ argmax
εtpaq

xQνtpaq ` εtpaq, Qφty

ff

“ min
w:}w}2“1

Var

«

xεtpatq,wy

ˇ

ˇ

ˇ

ˇ

ˇ

εtpatq “ argmax
εtpaq

pQνtpaq ` εtpaqq1

ff

“ min
w:}w}2“1

˜

w2
1Varpεtpatq1q

ˇ

ˇ

ˇ

ˇ

ˇ

εtpatq “ argmax
εtpaq

pQνtpaq ` εtpaqq1

¸

`

˜

m
ÿ

j“1

w2
jVarpεtpatqjq

ˇ

ˇ

ˇ

ˇ

ˇ

εtpatq “ argmax
εtpaq

pQνtpaq ` εtpaqq1

¸

(33)

Note that in the above, pQνtpaq ` εtpaqq1 denotes the first coordinate of the vector Qνtpaq ` εtpaq. The below lemma
establishes lower bounds on

˜

Varpεtpatq1q

ˇ

ˇ

ˇ

ˇ

ˇ

εtpatq “ argmax
εtpaq

pQνtpaq ` εtpaqq1

¸

Lemma 7 Let g1, . . . , gK be independent Gaussian random variables sampled from Np0, σ2q. Let b1, . . . , bK denote K
random real numbers. Then,

˜

Varpgiq

ˇ

ˇ

ˇ

ˇ

ˇ

gi “ argmax
gj

pgj ` bjq

¸

ě

˜

Varpgiq

ˇ

ˇ

ˇ

ˇ

ˇ

gi “ argmax
gj

gj

¸

ě c1
σ2

logK
, (34)

for some positive constant c1.

We first prove the inequality pVarpgiq | gi “ argmax
gj

pgj ` bjqq ě pVarpgiq | gi “ argmax
gj

gjq. Let gp1q, ¨ ¨ ¨ , gpKq denote

the order statistics of the Gaussian random variables such that gp1q ě ¨ ¨ ¨ ě gpKq. Now there are K! permutations of the
sum bi ` gpjq, 1 ď i, j ď K. Assume we have K buckets A1, ¨ ¨ ¨ , AK and we partition the K! permutations into the K
buckets such that A1 Y ¨ ¨ ¨ YAK contains all the K! permutations and Ak XAk1 “ φ, 1 ď k, k1 ď K, k ‰ k1.

Consider a single permutation when bi`gpjq has the highest value for some 1 ď i, j ď K. Assume ties are broken randomly
with equal probability. For example, if bi ` gpjq, bi1 ` gpj1q, have equal values either is selected at random with equal
probability.

Case 1: If j “ K we assign the permutation to the bucket AK .

Case 2: If case 1 is not satisfied, consider indices pi1, i2, j1q such that the following conditions are satisfied:

1. 1 ď i1, i2, j1 ă K, i1 ‰ i2, j ď j1

2. bi ` gpjq ě bi1 ` gpj1q and bi ` gpjq ą bi2 ` gpj1`1q in the current permutation

3. bi`gpj1q ą bi1`gpjq in the permutation derived from the current permutation by swapping gpjq, gpj1q but bi`gpj1`1q ă

bi2 ` gpjq in the permutation obtained by swapping gpjq, gpj1`1q

Condition 2, basically, is the assumption that bi ` gpjq has the highest value for the current permutation. Condition 3 finds
an index j1 ą j such in spite of swapping gpj1q and gpjq to obtain a new permutation, bi ` gpj1q has the highest value, but if
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gpj1`1q and gpjq are swapped bi ` gpj1`1q no longer has the highest value. Note that one possible assignment is i1 “ i and
j1 “ j

In this case we assign the permutation to bucket Aj1 .

Now by construction, the buckets partition the K! permutations, i.e., Ak X Ak1 “ φ, k ‰ k1. Also in bucket Aj , gpj1q’s
are present in equal proportion @ j1 ď j. This is because of the following reason. Bucket Aj has no permutation with
bi1 ` gpj1q, j

1 ą j with highest value due to the construction above. Let bi ` gpjq have the highest value for a permutation
from bucket j. Then since gpj1q ą gpjq, @j

1 ă j, the permutation obtained by swapping gpjq, gpj1q will have bi ` gpj1q as the
highest value and all the permutations are equally probable.

Therefore,

pVarpgiq | gi “ argmax
gj

pgj ` bjqq “
K
ÿ

i“1

pVarpgiq | gi ě gpjqqP pAjq , (35)

where P pAjq is the proportion of the K! permutations in bucket j. Finally, we observe that pV arpgiq | gi ě gpjqq has
the lowest value when j “ 1 and hence

řK
i“1pVarpgiq | gi ě gpjqqP pAjq has the lowest value when P pA1q “ 1 and

P pAjq “ 0, j ‰ 1, thus proving

pVarpgiq | gi “ argmax
gj

pgj ` bjqq ě pVarpgiq | gi “ argmax
gj

gjq . (36)

C.2. Reward and Constraint Parameters Estimation Error Bounds

The following result is borrowed from (Sivakumar et al., 2020). Note that the result in (Sivakumar et al., 2020) was proved
for the setting when the base vectors are chosen adversarially and by extension are also applicable to the simpler setting
when the base vectors are chosen stochastically.

Theorem 5 [Theorem 7 in (Sivakumar et al., 2020)] Consider any time step t after the warm start phase. Let Teffptq
denote the number of time steps before t when the no-op arm was not chosen. Assume the rows of the design matrix in time
step t satisfy the following covariance minimum eigenvalue condition.

λmin

`

Extpatq rxtpatqxtpatq
ᵀs
˘

ě c1
σ2

logK
. (37)

Then with probability atleast 1´ δ{T following is the estimation error bounds for the reward and constraint parameters.

}µ̂t ´ µ˚}2 ď O

¨

˝

´

wpAq `
a

logpTd{δq
¯

logK

σ
a

Teffptq

˛

‚ (38)

max
1ďjďd

}pWtq:j ´ pW˚q:j}2 ď O

¨

˝

´

wpAq `
a

logpTd{δq
¯

logK

σ
a

Teffptq

˛

‚ . (39)

Proof: Theorem 4 proves the covariance minimum eigenvalue condition. The parameter estimation error upper bounds can
be obtained using arguments from Theorem 7 in (Sivakumar et al., 2020) with slight modifications.

D. Greedy Algorithm Subroutine Analysis
We provide proof for Theorem 1.
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Theorem 1 Let Tstop ď T denote the stopping time of the algorithm. Let β “ maxtPrT s,aPrKs }xtpaq}2 be the maximum `2
norm of context vectors. Then with probability at least 1´ 2δ ,

REW ěmax
“

OPTpTstopq ` ZpγapTstopq ´ γπpTstopqq,

ZγapTstopq
‰

´OpZRpT qq ,

where

REW “

Tstop
ÿ

t“1

xµ˚,xtpatqy (12)

OPTpTstopq “

Tstop
ÿ

t“1

xµ˚, Xtπ
˚pXtqy (13)

γπpTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚Xtπ

˚pXtq,θty (14)

γapTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚xtpatq,θty . (15)

and, with σ2 being the Gaussian perturbation variance,

RpT q “ O

¨

˝

´

wpAq `
a

logpTd{δq
¯

β
?
T logK

σ

˛

‚ . (16)

Proof: We first revise the notations that will be used in the proof. Let Teff “ TeffpTstopq be the effective number of time
steps where any arm other than no-op is chosen after T time steps. The arm chosen by the algorithm at time step t satisfies
one of the following two conditions.

1. The no-op arm is chosen by the algorithm when xtpa
1
tq

ᵀppµt ´ ZxWtθtq ă ´2ζt with a1t “ argmax
aPrKs

xtpaq
ᵀppµt ´

ZxWtθtq,

2. Arm at is chosen when xtpatq
ᵀppµt ´ ZxWtθtq ě ´2ζt,

where ζt “ O

ˆ

´

wpAq`
?

logpTd{δq
¯

Zβ logK

σ
?
Teffptq

˙

.

Let Υno denote the set of time steps when condition 1 is triggered and Υa denotes the set of time steps when condition 2 is
triggered. The size of the sets |Υno| “ Tstop ´ Teff and |Υa| “ Teff.

Assume Algorithm 1 has knowledge of µ˚,W˚. Then in time step t arm xtpa
˚
t q will be chosen and both of the below

conditions are true,

Tstop
ÿ

t“1

pxµ˚,xtpa
˚
t qy ´ ZxW

ᵀ
˚xtpa

˚
t q,θtyq ě 0

Tstop
ÿ

t“1

pxµ˚,xtpa
˚
t qy ´ ZxW

ᵀ
˚xtpa

˚
t q,θtyq ě

Tstop
ÿ

t“1

pxµ˚, Xtπ
˚pXtqy ´ ZxW

ᵀ
˚Xtπ

˚pXtq,θtyq . (40)

The first line is because we have the no-op option which has 0 rewards and 0 consumption. Note that since we have
knowledge of µ˚,W˚ we no longer need to consider the negative threshold ζt which was to account for parameter estimation
errors.

The below lemma shows that with high probability when the algorithm chooses the no-op arm in rounds in Υno the actual
arm chosen with foreknowledge of µ˚,W˚ will also be the no-op arm.
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Lemma 8 Denote optimal arm in each round by a˚t which is the arm that would have been chosen if the true parameters
µ˚,W˚ were known and optimal arm other than no-op in each time step by a

1
˚
t :“ argmax

aPrKs

xtpaq
ᵀpµ˚ ´ ZW˚θtq. Let

a1t :“ argmax
aPrKs

xtpaq
ᵀppµt ´ ZxWtθtq be the optimal arm without considering no-op chosen in the Algorithm. Then for any

round t in Υno with ζt “ O

ˆ

´

wpAq`
?

logpTd{δq
¯

Zβ logK

σ
?
Teffptq

˙

, we have

xtpa
1
tq

ᵀppµt ´ ZxWtθtq ă ´2ζt . (41)

Then with probability atleast 1´ 2δ
T , a˚t is also the no-op arm.

Proof: For the algorithm with knowledge of µ˚,W˚ to choose the no-op arm we have to prove xµ˚,xtpa
1
˚
t qy ´

ZxW ᵀ
˚xtpa

1
˚
t q,θty ă 0.

xµ˚,xtpa
1
˚
t qy ´ ZxW

ᵀ
˚xtpa

1
˚
t q,θty “ xµ˚ ´ pµt,xtpa

1
˚
t qy ´ ZxpW˚ ´xWtq

ᵀxtpa
1
˚
t q,θty

` xpµt,xtpa
1
˚
t qy ´ Zx

xW ᵀ
t xtpa

1
˚
t q,θty

ă xµ˚ ´ pµt,xtpa
1
˚
t qy ´ ZxpW˚ ´xWtq

ᵀxtpa
1
˚
t q,θty

` xpµt,xtpa
1
tqy ´ Zx

xW ᵀ
t xtpa

1
tq,θty

looooooooooooooooooomooooooooooooooooooon

´2ζt

ă }xtpa
1
˚
t q}2}µ˚ ´ pµt}2

loooooooooooomoooooooooooon

ăζt

`Z }xtpa
1
˚
t q}2}W˚ ´xWt}8}θt}1

looooooooooooooooomooooooooooooooooon

ăζt

´2ζt

ă 0 with probability 1´
2δ

T

In the second line we use xpµt,xtpa
1
˚
t qy ´ZxxW

ᵀ
t xtpa

1
˚
t q,θty ď xpµt,xtpa

1
tqy ´Zx

xW ᵀ
t xtpa

1
tq,θty by definition. Also since

the no-op arm was chosen we have xpµt,xtpa1tqy ´ ZxxW
ᵀ
t xtpa

1
tq,θty ă ´2ζt. In the third line we use }xtpa˚t q}2 ď β from

Lemma 1 and use estimation error bounds from Theorem 5.

Now it can be deduced from Lemma 8 using a union bound argument over rounds in Υno when the no-op arm is chosen
with high probability the optimal arm is also the no-op arm. Therefore with probability 1´

2δpTstop´Teffq

T ,

ÿ

tPΥno

xµ˚,xpatqy “
ÿ

tPΥno

xµ˚,xpa
˚
t qy “

ÿ

tPΥno

xW ᵀ
˚xpatq,θty “

ÿ

tPΥno

xW ᵀ
˚xpa

˚
t q,θty “ 0 . (42)

The following is true for time steps in set Υa due to the greedy choice made in Algorithm 2.

ÿ

tPΥa

´

xpµt,xtpatqy ´ ZxxW
ᵀ
t xtpatq,θty

¯

ě
ÿ

tPΥa

´

xpµt,xtpa
˚
t qy ´ Zx

xW ᵀ
t xtpa

˚
t q,θty

¯

ñ
ÿ

tPΥa

pxµ˚,xtpatqy ´ ZxW
ᵀ
˚xtpatq,θtyq `

ÿ

tPΥa

xpµt ´ µ˚,xtpatq ´ xtpa
˚
t qy

looooooooooooooooooomooooooooooooooooooon

ďRµpTstopq

(43)

´ Z
ÿ

tPΥa

xpxWt ´W˚q
ᵀpxtpatq ´ xtpa

˚
t qq,θty

looooooooooooooooooooooooomooooooooooooooooooooooooon

ďRW pTstopq

ě
ÿ

tPΥa

pxµ˚,xtpa
˚
t qy ´ ZxW

ᵀ
˚xtpa

˚
t q,θtyq (44)
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Combining results (40), (42) and (44) leads to the following with probability atleast 1´
2δpTstop´Teffq

T .

Tstop
ÿ

t“1

xµ˚,xtpatqy

loooooooomoooooooon

REW

ě Z

Tstop
ÿ

t“1

xW ᵀ
˚xtpatq,θty

loooooooooooomoooooooooooon

γapTstopq

´
ÿ

tPΥa

xpµt ´ µ˚,xtpatq ´ xtpa
˚
t qy

looooooooooooooooooomooooooooooooooooooon

ďRµpTstopq

´Z
ÿ

tPΥa

xpW˚ ´xWtq
ᵀpxtpatq ´ xtpa

˚
t qq,θty

looooooooooooooooooooooooomooooooooooooooooooooooooon

ďRW pTstopq

Tstop
ÿ

t“1

xµ˚,xtpatqy

loooooooomoooooooon

REW

ě

Tstop
ÿ

t“1

xµ˚, Xtπ
˚pXtqyy

looooooooooomooooooooooon

OPTpTstopq

´
ÿ

tPΥa

xpµt ´ µ˚,xtpatq ´ xtpa
˚
t qy

looooooooooooooooooomooooooooooooooooooon

ďRµpTstopq

´Z
ÿ

tPΥa

xpW˚ ´xWtq
ᵀpxtpatq ´ xtpa

˚
t qq,θty

looooooooooooooooooooooooomooooooooooooooooooooooooon

ďRW pTstopq

` Z
T
ÿ

t“1

xW ᵀ
˚xtpatq,θty

looooooooooomooooooooooon

γapTstopq

´Z
T
ÿ

t“1

xW ᵀ
˚Xtπ

˚pXtq,θty

loooooooooooooomoooooooooooooon

γπpTstopq

. (45)

The below lemma upper bounds the regret RµpTstopq, RW pTstopq.

Lemma 9 Let,

RpT q “ O

¨

˝

´

wpAq `
a

logpTd{δq
¯

β
?
T logK

σ

˛

‚ , (46)

where β “ max
tPrT s,aPrKs

}xtpaq}2 ď O
´

1` σ
a

m logpTK{δq
¯

. With probability atleast 1´
2δTeff

T ,

RµpTstopq ď RpT q RW pTstopq ď RpT q . (47)

Proof: Let Υa denote the set of time steps when any arm other than no-op was chosen. Then we have the following,

RµpTstopq ď 2β
ÿ

tPΥa

}µ˚ ´ pµt}2

ď 2β
ÿ

tPΥa

c ¨

´

wpAq `
a

logpTd{δq
¯

logK

σ
a

Teffptq
....... with prob. ě 1´

δTeff

T
, using Theorem 5 and union bound

ď 2βc ¨

´

wpAq `
a

logpTd{δq
¯

a

Teffptq logK

σ
ď RpT q , (48)

where c is a positive constant and in line 2 we use the reward estimation error rates from Theorem 5 together with a union
bounding argument.

Similarly for bounding the constraint regret consider the following,

RW pTstopq ď 2β
ÿ

tPΥa

}xWt ´W˚}8}θ}1

ď 2β
ÿ

tPΥa

max
1ďjďd

}pxWtq:j ´ pW˚q:j}2 .... since }θ}1 ď 1

ď 2β
ÿ

tPP2

c ¨

´

wpAq `
a

logpTd{δq
¯

logK

σ
a

Teffptq
....... with prob. ě 1´

δTeff

T
, Theorem 5 and union bound

ď 2βc ¨

´

wpAq `
a

logpTd{δq
¯

a

Teffptq logK

σ
ď RpT q . (49)

Now from equation (45) and the result of Lemma 9 we get the advertised result with the observation that Tstop ď T .
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E. Regret For Smoothed Stochastic Linear Bandits with Knapsacks

Lemma 4 [Lemma 5 in (Agrawal & Devanur, 2016)] For RpT0q “ O

ˆ

pwpAq`
?

logpT0d{δqqβ
?
T0 logK

σ

˙

, with probability

at least 1´ δ

zOPTpT ;ωpT0qq ě OPT1´2

ˆ

T

T0

˙

RpT0q

zOPTpT ;ωpT0qq ď OPT1`9

ˆ

T

T0

˙

RpT0q

ˆ

OPT1

B
` 1

˙ (18)

Set ZpT0q “

´

{OPTpT ;ωpT0qq`2
´

T
T0

¯

RpT0q

¯

B ` 1. Then with probability 1´Opδq,

ZpT0q ě
OPT1

B
` 1

ZpT0q ď

¨

˝1`
11

´

T
T0

¯

RpT0q

B

˛

‚

ˆ

OPT1

B
` 1

˙

.

(19)

Moreover if B ě Ω̃
´

T?
T0

wpAq logK
σ

¯

then ZpT0q ď O
`

OPT1

B ` 1
˘

.

Proof: We borrow work from Lemma 5 in (Agrawal & Devanur, 2016). The only difference compared to (Agrawal &
Devanur, 2016) is the step to bound the empirical reward and consumptions with the expectation since we have Gaussian
perturbations which are no longer bounded. We have to prove the following.

ˇ

ˇ

ˇ

ˇ

ˇ

T0
ÿ

t“1

xµ˚, XtπpXtqy ´ EX rxµ˚, XtπpXtqys

ˇ

ˇ

ˇ

ˇ

ˇ

ď RpT0q

max
1ďjďd

ˇ

ˇ

ˇ

ˇ

ˇ

T0
ÿ

t“1

xpW˚q:j , XtπpXtqy ´ EX rxpW˚q:j , XtπpXtqys

ˇ

ˇ

ˇ

ˇ

ˇ

ď RpT0q (50)

This is equivalent to proving bounds on
ˇ

ˇ

ˇ

řT0

t“1xµ˚, XtπpXtq ´ EX rXtπpXtqsy

ˇ

ˇ

ˇ
“ |

řT0

t“1 zt| where zt “ xµ˚, XtπpXtq´

EX rXtπpXtqsy. Note that zt are (conditionally on history) sub-Gaussian with sub-Gaussian norm c2p1 ` σq “ Op1q.
This is because the base vectors of the contexts are bounded in Bm2 and σ2 is the variance of the Gaussian perturbations.
Therefore applying Corollary 3 we get,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T0
ÿ

t“1

xµ˚, XtπpXtq ´ EX rXtπpXtqsy

ˇ

ˇ

ˇ

ˇ

ˇ

ě

b

4c22p1` σq
2 logpT0d{δq

¸

ď pδ{T0dq . (51)

Similarly,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T0
ÿ

t“1

xpW˚q:j , XtπpXtq ´ EX rXtπpXtqsy

ˇ

ˇ

ˇ

ˇ

ˇ

ě

b

4c22p1` σq
2 logpT0d{δq

¸

ď pδ{T0dq . (52)

Now taking a union bound over all 1 ď j ď d and with the observation
a

4c22p1` σq
2 logpT0d{δq ď RpT0q we obtain 50

with probability atleast δ{T0. The rest of the proof follows Lemma 5 in (Agrawal & Devanur, 2016) and Lemmas F.4,F.6 in
(Agrawal & Devanur, 2014a).

We provide the proof for the final regret bounds in the stochastic setting for the greedy algorithm.

Theorem 2 Assume B ě Ω̃
´

max
´

T0,
T?
T0

wpAq logK
σ

¯¯

. Then if ZpT0q is set as outlined in Lemma 4, we have

OPT1

B
` 1 ď ZpT0q ď O

ˆ

OPT1

B
` 1

˙

. (20)



Smoothed Linear Contextual Bandits with Knapsacks

Moreover with probability at least 1´ 6δ, following is the regret for the greedy Algorithm 4,

regretpT q ď O

ˆˆ

OPT1

B
` 1

˙

max pT0, RpT qq

˙

, (21)

where RpT q “ O

ˆ

´

wpAq`
?

logpTd{δq
¯

β
?
T logK

σ

˙

.

Proof: The condition on B and ZpT0q is a consequence of result of Lemma 4. We now focus on bounding the regret. We
accrue maximum OpβT0q regret in the warm start phase. For characterizing regret during the exploit phase, let’s start with
the lower bound for REW from Theorem 1. With probability atleast 1´ 2δ,

REW ě OPTpTstopq ` ZpT0qγapTstopq ´ ZpT0qγπpTstopq ´OpZpT0q ¨RpT qq , (53)

where

REW “

Tstop
ÿ

t“1

xµ˚,xtpatqy (54)

OPTpTstopq “

Tstop
ÿ

t“1

xµ˚, Xtπ
˚pXtqy (55)

γπpTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚Xtπ

˚pXtq,θty (56)

γapTstopq “

Tstop
ÿ

t“1

xW ᵀ
˚xtpatq,θty . (57)

For stochastic LinCBwK t “ 1 references first round after warm start phase T0 ` 1, and if the algorithm stops at time step
T 1 then Tstop “ T 1 ´ T0

Taking expectations w.r.t. X on both sides, with probability atleast 1´ 2δ

EX rREWs ě EX rOPTpTstopqs ` ZpT0qEX rγapTstopq ´ γπpTstopqs ´OpZpT0q ¨RpT qq . (58)

Also using definition of optimal regret,

EX rOPTpTstopqs “ EXt

«

Tstop
ÿ

t“1

xµ˚, Xtπ
˚pXtqy

ff

“
Tstop

T
OPT1 . (59)

Lemma 10 Following is upper bound on EX rγapTstopq ´ γπpTstopqs,

EX rγapTstopq ´ γπpTstopqs ě B

ˆ

1´
Tstop

T

˙

´ βT0 ´RDpTstopq , (60)

where RDpTstopq is the regret of the OCO algorithm.

Proof: We make the following observations.
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EX rγapTstopq ´ γπpTstopqs “ EX r
Tstop
ÿ

t“1

xW ᵀ
˚ pxtpatq ´Xtπ

˚pXtqq,θtys (61)

“

Tstop
ÿ

t“1

C

θt , EXtrW
ᵀ
˚xtpatq|Ht´1s

loooooooooooomoooooooooooon

vt

´EXtrW
ᵀ
˚Xtπ

˚pXtqs
looooooooooomooooooooooon

ďB1
T by definition of π˚

G

ě

Tstop
ÿ

t“1

B

θt , vt ´ 1
B

T

F

“

Tstop
ÿ

t“1

gtpθtq , (62)

where gtpθtq is the objective maximized by OCO algorithm in each step. We therefore obtain lower bounds on
řTstop
t“1 gtpθtq.

Let θ˚ “ argmax
}θ}1ď1,θiě0

řTstop
t“1 gtpθq. If RDpTstopq is the regret of the OCO algorithm up to time Tstop, the following is true,

Tstop
ÿ

t“1

gtpθtq ě

Tstop
ÿ

t“1

gtpθ
˚q ´RDpTstopq .

Consider the two cases, when Tstop ă T and Tstop “ T .

Case 1: If Tstop ă T , then
řTstop
t“1xej ,vty ě B1 “ B ´ βT0 for some j “ 1, . . . , d. Therefore,

Tstop
ÿ

t“1

gtpθtq ě

Tstop
ÿ

t“1

gtpθ
˚q ´RDpTstopq ě

Tstop
ÿ

t“1

gtpejq ´RDpTstopq “

Tstop
ÿ

t“1

B

ej ,vt ´ 1
B

T

F

´RDpTstopq ě

B

ˆ

1´
Tstop

T

˙

´ βT0 ´RDpTstopq .

Case 2: If Tstop “ T , then B
´

1´
Tstop

T

¯

“ 0. Therefore,

Tstop
ÿ

t“1

gtpθtq ě

Tstop
ÿ

t“1

gtpθ
˚q ´RDpTstopq ě

Tstop
ÿ

t“1

gtp0q ´RDpTstopq “ 0´RDpTstopq “ B

ˆ

1´
Tstop

T

˙

´RDpTstopq .

Therefore, from the results for case 1 and case 2, we get,

Tstop
ÿ

t“1

gtpθtq ě B

ˆ

1´
Tstop

T

˙

´ βT0 ´RDpTstopq . (63)

Therefore from (62) and (63) we get the following advertised result,

EX rγapτq ´ γπpτqs ě B

ˆ

1´
Tstop

T

˙

´ βT0 ´RDpTstopq .

From Proposition 1 we get with probability atleast 1´ δ,

RDpTstopq “ Op
a

T plog dqq ď OpRpT qq . (64)

Also from result of Lemma 1 with probability atleast 1´ δ, β is bounded with the assumption σ “ Ωp1{
?
mq.

β ď O
´

1` σ
a

m logpTK{δq
¯

(65)
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From result of Lemma 4, we have with probability atleast 1´ δ,

OPT1

B
ď ZpT0q ď

ˆ

OPT1

B
` 1

˙

. (66)

Therefore, from equations (58), (59), (64), (65), (66) and the result of Lemma 10, with probability atleast 1´ 5δ

EX rREWs ě
Tstop

T
OPT1´ZB

ˆ

Tstop

T
´ 1

˙

´O

ˆˆ

OPT1

B
` 1

˙

βT0

˙

´O

ˆˆ

OPT1

B
` 1

˙

RpT q

˙

.

EX rREWs ě OPT1´O

ˆˆ

OPT1

B
` 1

˙

βT0

˙

´O

ˆˆ

OPT1

B
` 1

˙

RpT q

˙

, (67)

which is the result in expectation. To bound the actual total reward we use the result of Corollary 3 with zt “ xxtpatq ´
EX rxtpatqs,µ˚y. The vector xtpatq ´ EX rxtpatqs is a sub-Gaussian random vector with sub-Gaussian norm }xtpatq ´
EX rxtpatqs}ψ2

“ supuPSm´1 }xxtpatq ´ EX rxtpatqs, uy}ψ2
ď c1p1` σq. Therefore zt “ xxtpatq ´ EX rxtpatqs,µ˚y is

a c2p1` σq sub-Gaussian random variable. Therefore applying Corollary 3 we get with probability atleast 1´ δ,

REW ě EX rREWs ´Op
a

T logp1{δqq ě EX rREWs ´OpRpT qq . (68)

Combining equations (67), (68) gives the advertised result.

F. Regret for Smoothed Adversarial Linear Bandits with Knapsacks
Theorem 3 Assume B ě ΩpT 3{4q. Then with probability at least 1´ 6δ following is a lower bound on the reward obtained
by the greedy algorithm

REW ě
OPT2

16drlog T s
´O

ˆˆ

OPT2

B
` 1

˙

RpT q

˙

, (25)

where RpT q “ O

ˆ

´

wpAq`
?

logpTdq{δ
¯

β
?
T logK

σ

˙

.

Proof: We first show that by design resource consumption is not exceeded over the T time steps. The algorithm allocates a
budget B0 “ B1{2rlog T s to each epoch. rlog T s is the maximum number of epochs, so a budget of B1{2 is allocated for
running the greedy algorithm. The other B1{2 budget is allocated for the random exploration rounds in each epoch once any
of the resource consumption exceeds B0. In the random exploration rounds an arm is chosen uniformaly at random with
probability T´1{4. Therefore with T rounds with probability 1´ δ at most T 3{4 ` 3

a

T 3{4 logp1{δq rounds are random
exploration rounds. Therefore if B ą 4T 3{4 resource consumptions are not exceeded over the T time steps.

We now focus on the last completed epoch of the algorithm from time step T1 to T2. Let κ be the value
of parameter j in the algorithm during time step T1. Therefore, we have the following relationships with
zOPTpT1;ωpT1qq, zOPTpT2;ωpT2qq, zOPTpT ;ωpT qq denoting the maximum reward that can be obtained using only contexts
before time steps T1, T2, T respectively.

zOPTpT ;ωpT qq ď 2κ`2 since a new epoch was not started after T2

zOPTpT2;ωpT2qq ě 2κ`1 a new epoch begins at time step T2

2κ ď zOPTpT1;ωpT1qq ă 2κ ` 2β a new epoch begins at time step T1, reward bounded by β . (69)

Also using estimation error bounds for zOPTpT ;ωpT qq, zOPTpT1;ωpT1qq and zOPTpT2;ωpT2qq from Lemma 4 with
probability at least 1´ δ,

OPTpT ;ωpT qq ´ 2RpT q ď zOPTpT ;ωpT qq ď OPTpT ;ωpT qq ` 9RpT q

ˆ

OPTpT ;ωpT qq

B
` 1

˙

OPTpT1;ωpT1qq ´ 2RpT q ď zOPTpT1;ωpT1qq ď OPTpT1;ωpT1qq ` 9RpT q

ˆ

OPTpT1;ωpT1qq

B
` 1

˙

OPTpT2;ωpT2qq ´ 2RpT q ď zOPTpT2;ωpT2qq ď OPTpT2;ωpT2qq ` 9RpT q

ˆ

OPTpT2;ωpT2qq

B
` 1

˙

, (70)



Smoothed Linear Contextual Bandits with Knapsacks

where OPTpT ;ωpT qq,OPTpT1;ωpT1qq,OPTpT2;ωpT2qq are the optimal values computed at time step T, T1, T2 using
observed data before T, T1, T2 respectively . Also ZpT1q for the last completed epoch is set at the beginning of round T1.

ZpT1q “
zOPTpT1;ωpT1qq

2dB
. (71)

We now focus on analyzing the performance of the algorithm during the last completed epoch. Let Tstop ď T2 denote the
stopping time. Tstop “ T2 if no resource is exhausted else the first time step when any resource consumption exceeds the
allocation B0.

Case 1: Tstop ă T2

By Theorem 1 and 9,
Tstop
ÿ

t“T1

xµ˚,xtpatqy ě γapT1, Tstopq ´OpZpT1qRpT qq , (72)

where γapT1, Tstopq “
řTstop
t“T1

xW ᵀ
˚xtpatq,θty. Since Ervtpatq|Xt, at, Ht´1s “ W ᵀ

˚xtpatq and therefore by Azuma-

Hoeffding }
řTstop
t“T1

vtpatq ´W ᵀ
˚xtpatq}8 ď RpT q. Therefore to bound γapTstopq we will bound xvtpatq,θty. For the

dual OCO algorithm with gtpθtq “ xθt, pvtpatq ´ B0

T 1qy, let θ˚ “ argmax
θ:}θ}1“1,θiě0

řTstop
t“T1

gtpθq. Therefore, due to the OCO

algorithm bounds with probability at least 1´ δ,

Tstop
ÿ

t“T1

gtpθtq ě

Tstop
ÿ

t“T1

gtpθ
˚q ´RDpTstopq ñ

Tstop
ÿ

t“T1

xvtpatq,θty ě

Tstop
ÿ

t“T1

xvtpatq,θ
˚y ´RDpTstopq , (73)

where RDpTstopq is the dual OCO algorithm regret. Now since θ˚ maximizes the objective, for some 1 ď i ď d,

Tstop
ÿ

t“T1

xvtpatq,θ
˚y ě

Tstop
ÿ

t“T1

xvtpatq, eiy ě B0 . (74)

Since RDpτq ď RpT q from equation (72) we get the following,

Tstop
ÿ

t“T1

xµ˚,xtpatqy ě ZpT1qB0 ´OpZpT1qRpT qq . (75)

Case 2: Tstop “ T2

Denote the total optimal reward by OPTpT1, T2;ωpT2qqwhich is the optimal reward between time steps T1 and T2 computed
with reference to time step T2 using all observed data before T2. By Theorem 1 and 9,

REW “ OPTpT1, T2;ωpT2qq ´ ZpT1qγ1pT2q ` ZpT1qγ2pT2q ´OpZpT1qRpT qq . (76)

The following is always true,

γ1pT2q “

T2
ÿ

t“T1

xW˚Xtπ
˚pXt;ωpT2qq,θty ď dB . (77)

Also applying OCO regret bounds with probability atleast 1´ δ,

γ1pT2q ě ´RDpT2q , (78)

with RDpT2q “ OpRpT qq. Therefore from (76), (77) and (78), we have

REW ě OPTpT1, T2;ωpT2qq ´ ZpT1qdB ´OpZpT1qRpT qq . (79)
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Combining results (75) and (79),

REW ě minpOPTpT1, T2;ωpT2qq ´ ZpT1qdB,ZpT1qB0q ´OpZpT1qRpT qq . (80)

Next we focus on expressing ZpT1q,OPTpT1, T2;ωpT2qq in terms of the optimal reward OPT “ OPTpT ;ωpT qq and
budget B. Now consider the quantity OPTpT1, T2;ωpT2qq ´ ZpT1qdB.

OPTpT1, T2;ωpT2qq ´ ZpT1qdB ě OPTpT2;ωpT2qq ´OPTpT1;ωpT2qq ´ ZpT1qdB

ě OPTpT2;ωpT2qq ´ zOPTpT1;ωpT1qq ´OpRpT qq ´
zOPTpT1;ωpT1qq

2

....use (71), upper bound for zOPTpT1;ωpT1qq from (70)

ě zOPTpT2;ωpT2qq ´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

´
3

2
zOPTpT1;ωpT1qq ´OpRpT qq

....use lower bound for OPTpT2q from (70)

ě 2κ`1 ´
3

2
2κ ´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

....substituting bounds from (69)

ě 2κ`2

ˆ

1

2
´

3

8

˙

´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

ě
2κ`2 `OpRpT qq

8
´
OpRpT qq

8
´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

ě
OPT

8
´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

....use upper bound for zOPTpT ;ωpT qq from (69), then use (70)
(81)

In the first line above the quantities OPTpT1;ωpT2qq and OPTpT2;ωpT2qq are the optimal reward at time steps T1, T2 with
time step T2 as reference..

π˚ :“ argmax
π

T2
ÿ

t“1

µᵀ
˚XtπpXt;ωpT2qq s.t.

T2
ÿ

t“1

W ᵀ
˚XtπpXt;ωpT2qq ď B1

OPTpT1;ωpT2qq “

T1
ÿ

t“1

µᵀ
˚Xtπ

˚pXt;ωpT2qq

OPTpT2;ωpT2qq “

T2
ÿ

t“1

µᵀ
˚Xtπ

˚pXt;ωpT2qq

The first line above is true because we can always assume our algorithm ends at time T2 choosing no-op arms after T2.
So OPTpT2;ωpT2qq is the maximum reward that can be obtained and reference optimal awards in all time steps before T2

to time step T2. Also zOPTpT1;ωpT1qq ď 2κ ` 2β estimated at the end of time step T1 is the maximum reward that can
be obtained by using all resources and only using contexts before time step T1 and hence zOPTpT1;ωpT2qq computed at
reference time T2 is always less than or equal to 2κ ` 2β.
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Next consider quantity ZpT1qB0.

ZpT1qB0 “
zOPTpT1;ωpT1qq

2dB

ě
2κ

4drlog T s
... use lower bound for zOPTpT1;ωpT1qq from (69), B0 “ B{2rlog T s

ě
2κ`2 `OpRpT qq

16drlog T s
´

OpRpT qq

16drlog T s

ě
2κ`2 `OpRpT qq

16drlog T s
´

OpRpT q

16drlog T s

ě
OPT

16drlog T s
´OpRpT qq . (82)

Also,

ZpT1q “
zOPTpT1;ωpT1qq

2dB
ď O

ˆ

OPT

B
` 1

˙

. (83)

Therefore from equations (80), (81), (82), (83), we get

REW ě
OPT

16drlog T s
´O

ˆˆ

OPT

B
` 1

˙

RpT q

˙

. (84)
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