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Abstract
Learning unbiased node representations under
class-imbalanced graph data is challenging due
to interactions between adjacent nodes. Existing
studies have in common that they compensate the
minor class nodes ‘as a group’ according to their
overall quantity (ignoring node connections in
graph), which inevitably increase the false posi-
tive cases for major nodes. We hypothesize that
the increase in these false positive cases is highly
affected by the label distribution around each node
and confirm it experimentally. In addition, in or-
der to handle this issue, we propose Topology-
Aware Margin (TAM) to reflect local topology on
the learning objective. Our method compares the
connectivity pattern of each node with the class-
averaged counter-part and adaptively adjusts the
margin accordingly based on that. Our method
consistently exhibits superiority over the base-
lines on various node classification benchmark
datasets with representative GNN architectures.

1. Introduction
The importance of learning qualitative node representation
has been emerging to accurately classify the node prop-
erty in real-world graphs such as social networks, com-
mercial graphs, and chemical molecules (Mohammadrezaei
et al., 2018; Ying et al., 2018; Hamilton et al., 2017). Re-
cently, graph neural networks (GNNs) (Welling & Kipf,
2016; Veličković et al., 2018; Hamilton et al., 2017) are
widely adopted to handle graph-structured data and have
shown remarkable success in various fields. However, as
natural graphs could be class-imbalanced inherently, GNNs
are prone to be biased toward major classes. Learning from
those graphs without handling class-imbalanced issue leads
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to low accuracy for minor classes. Although the simple so-
lution is to curate class-balanced graphs, collecting data in
a balanced way is not always possible.

To address this problem, diverse imbalance handling strate-
gies for node classification (Shi et al., 2020; Zhao et al.,
2021; Qu et al., 2021; Park et al., 2021) have been recently
proposed. These methods fortify minor classes in their own
way such as extending SMOTE method (Chawla et al., 2002)
to graph-structured data (Zhao et al., 2021), mixing nodes
by considering neighbor structure (Park et al., 2021) or gen-
erating virtual minor nodes via the conditional GAN (Shi
et al., 2020).

However, these approaches overlook the fact that when com-
pensating the minor classes based on their quantity, certain
nodes could significantly degrade the performance of other
classes. Considering the innate characteristics of message
passing algorithms of GNNs, we hypothesize that the entire
representation learning procedure can be misled by weighted
minor nodes in the aggregation of message passing and that
the effect is more attributed to nodes with high connectiv-
ity rates with other (major) classes. Toward this direction,
we observe that compensating such minor nodes with high
connectivity rates to major class significantly increase false
positives for major nodes. In line with this observation, we
confirm that existing imbalance handling algorithms show
sub-optimal performances as they do not reflect this local
topology when weighting the minor classes. Although not
directly related to our hypothesis, ReNode (Chen et al.,
2021) is somehow related in terms of adjusting the weights
of some nodes; this method decreases the weights of nodes
close to topological class boundaries. However, this method
can only work for homogeneously-connected graphs. More-
over, since the connectivity patterns and class-wise relative
weighting for multi-class cases are not considered in the
weighting process, the impacts of individual nodes affecting
other classes are still not properly identified.

Armed with this hypothesis, in this paper we propose
Topology-Aware Margin (TAM), a node-wise logit adjust-
ment method, which takes into account their local topology
in terms of class-pair connectivity and neighbor distribu-
tion statistics. Our key principle is as follows: if a (minor)
node is highly likely to be confused with specific (major)
classes considering its local topology, we should decrease
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the margins for those (major) classes so that GNNs can be
trained in a well-calibrated manner (informally speaking,
when some minor node has abnormally many major neigh-
bors, we reduce the weight for it). Toward this, first we
devise Anomalous Connectivity-aware Margin (ACM) that
decreases the target class margin of a node if it has relatively
high neighbor density for that target class. At the same time,
we introduce Anomalous Distribution-aware Margin (ADM)
that calculates the degree of confusion based on the average
neighbor statistics of target class and additionally adjusts
the margin of the target class.

Our method can be combined with most imbalance han-
dling approaches seamlessly and consistently brings the
performance enhancement over multiple node classifica-
tion benchmark datasets such as citation networks (Sen
et al., 2008), WebKB, and Wikipedia networks (Rozem-
berczki et al., 2021) with various architectures including
GCN (Welling & Kipf, 2016), GAT (Veličković et al., 2018),
and GraphSAGE (Hamilton et al., 2017).

Our contribution is threefold:

• We hypothesize and confirm that false positives due
to compensating minor nodes do not appear evenly
on the graph, and are highly affected by the neighbor
label distribution around each node. Specifically, we
demonstrate that a significantly high false positive ratio
appears around minor nodes that have higher connec-
tivity with major nodes.

• We propose a tailored solution to this hypothesis that
can effectively decrease excessive false positives by in-
dividually adjusting the extent of compensation based
on node topology compared to class statistics.

• Our method can be combined with existing imbalance
handling methods regardless of their compensating
strategies. When combined with our method, baselines
consistently improve the imbalance handling perfor-
mance on multiple benchmark datasets.

2. Preliminary
2.1. Notation and Definitions

We target a semi-supervised node classification task on an
undirected graph G(V,E) where V is a node set, E is the
set of edges, and Y is the set of possible class labels. Y is set
of labels for V and V L is the set of labeled nodes (V L ⊆ V ).
X ∈ R|V |×d is the node feature matrix where the i-th node
vi has the node feature xi (the i-th row of X). Let N (v) be
the set of adjacent nodes to node v: {u ∈ V |u, v ∈ E}. dv
is the degree of node v: |N (v)|.

We here introduce two key definitions leveraged for estimat-
ing the node- and class-level connectivity: neighbor label

distribution (D) and class-wise connectivity matrix (C).

Definition 2.1. (Neighbor Label Distribution D). Let D ∈
R|V |×|Y|. Then, neighbor label distribution (NLD) D is
defined as:

Di,j =
|{v ∈ N (i) ∪ {i}|yv = j}|

di + 1
. (1)

That is, the i-th row represents the distribution of neighbor
labels of node i (including node yi itself).

Definition 2.2. (Class-wise Connectivity Matrix C). Let
C ∈ R|Y|×|Y|. Then, class-wise connectivity matrix C is
defined as:

Ci,j =
1

|{v ∈ V |yv = i}|
∑

u∈{v∈V |yv=i}

Du,j . (2)

We define these two terms similarly with homophily used
in Pei et al. (2019) since our method requires to compute
neighbor label distribution for a given node and its class
statistics. Note that two concepts are computed under the
assumption that neighbor label distributions for all nodes
are given. However, this assumption is hardly satisfied in
real world, hence we utilize model prediction for unlabeled
nodes in main experiments (Section 4.3).

2.2. Node Classification with Graph Neural Networks

In this section, we briefly describe the GNNs in terms of
node classification. The l-th layer of GNNs consists of three
functions including message function ml, feature aggrega-
tion function ψl, and node feature update functions γl. For
node v, node feature x(l+1)

v is derived from x
(l)
v as follows.

x
(l+1)
v = γl

(
x
(l)
v , ψl

(
{ml(x

(l)
v , x

(l)
u , wv,u)|u ∈ N (v)}

))
(3)

where wu,v is the edge weight of edge {v, u} ∈ E. For
example, node feature x(l)v of Graph Convolutional Network
(GCN) (Welling & Kipf, 2016) is computed as x(l+1)

v =∑
u∈N (v)∪{v}

Θ⊤
l x(l)

u√
d̂v d̂u

, where d̂v = 1+
∑

u∈N (v) wv,u and

Θl is the matrix of filter parameters at the l-th layer.

2.3. Margin-based Class-Imbalance Handling

We revisit margin-based imbalance handling methods in the
vision domain (Cao et al., 2019; Tan et al., 2020; Ren et al.,
2020; Menon et al., 2020). Margin-based approaches alle-
viate the bias to major classes by increasing the margin of
minor classes to major classes or decreasing the margin of
major classes to minor classes in the training phase and show
significantly superior performance than other loss modifica-
tion algorithms (Ren et al., 2020). Specifically, let us define
the quantity of the k-th class Nk, then cross entropy (CE)
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(b) CiteSeer ( =10)
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(c) Chameleon ( =5)
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(d) Wisconsin ( =11.63)
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(e) Baseline with ours in Cora
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(f) Baseline with ours in CiteSeer
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(g) Baselines with ours in Chameleon

Baselines
Baselines+Ours

Re-Weight BalancedSoftmax GraphSMOTE0

10

20

30

40

50

60

70

80

90

Fa
lse

 P
os

iti
ve

s R
at

e 
(%

)

(h) Baselines with ours in Wisconsin
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Figure 1. Comparison of false positive rates near normal minor nodes and anomalously-connected minor nodes. For (a) ∼ (d), Abnormal
Minor FP represents false positive rates when major nodes are connected with anomalous minor nodes. Minor FP presents the average
probability of being false positives. In (e) ∼ (h), the results of the change in false positive rates (caused by abnormal minor nodes) are
presented when baselines are integrated with our method.

with Balanced Softmax (Ren et al., 2020) is computed for
node v as:

L = LCE(lv +m, yv) = −log
(

elv,yv+logNyv∑
k∈Y e

lv,k+logNk

)
,

(4)

where lv, yv are the logit and the label of node v respec-
tively, and m = (logN1, logN2, · · · , logN|Y|). In multi-
class Softmax regression, Balanced Softmax minimizes the
generalization bound (Ren et al., 2020). In that margin-based
approaches could adjust logits by considering the relative
quantity ratio between two classes and are effective in the
vision domain, we adopt margin-based approaches in our
algorithm.

3. Analysis of Anomalous Connectivity
Our primary research hypothesis is minor nodes that de-

viate from the connectivity pattern induce excessive false
positives during the quantity-based compensating process.
To verify our assumption empirically, we investigate the
topological positions of false positives on minor classes.

Experimental Design We design an experiment to com-
pare the false positives ratios on neighbors of anomalously
connected minor nodes with those of normal minor nodes
assuming that neighbor label information is accessible.
First, we define anomalously connected node set V ∗ as
V ∗ = {v ∈ V L| max

t∈|Y|\{yv}

Dv,t

Cyv,t
> 1}, which is a set of

nodes that has more edge connections with other classes

compared to class-averaged level. V ∗
minor ⊂ V ∗ is a set

of minor class nodes belonging to V ∗, Vmajor ⊂ V \ V L

is a set of major nodes in validation set, and FP (·) is a
function that counts the number of false positives for the
minor classes.

We calculate the ratio FP ({N (v)∩Vmajor|v∈V ∗
minor})

|N (v)∩Vmajor|v∈V ∗
minor|

, rep-
resenting the probability of being false positives when
major nodes are connected with anomalous minor nodes
(Abnormal Minor FP in Figure 1). Then we compare the
computed probability with the ratio FP (Vmajor)

|Vmajor| , the aver-
age probability of being false positives (Minor FP in Fig-
ure 1). Experimental details are described in the following
paragraph.

Settings We conduct experiments on two well-known
node classification benchmark datasets - CiteSeer (ho-
mophilous graph) and Wisconsin (heterophilous graph) us-
ing GCN architecture. For CiteSeer dataset (Sen et al., 2008),
we follow the split of Chen et al. (2018) and process the
label distribution to follow step imbalance setting as existing
works (Cao et al., 2019; Chen et al., 2021). In other words,
all minor classes have nminor labeled nodes and the major
class nodes have ρ ∗ nminor where ρ is an imbalance ratio.
We set ρ to 10. All experiments are repeated 100 times.

Results To verify our assumption, we scrutinize three rep-
resentative imbalance handling approaches: Re-Weight (Jap-
kowicz & Stephen, 2002), Balanced Softmax (Ren et al.,
2020), and GraphSMOTE (Zhao et al., 2021). In Fig-
ure 1 (a) and (b), we confirm that false positives on minor
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Figure 2. The overall pipeline of TAM. We first calculate neighbor label distribution D by utilizing model prediction for unlabeled
neighbors, then compute class-wise connectivity matrix C in (a). According to D and C, determine ACM mACM in (b) and ADM mADM

in (c). By applying two margins to logits, we adjust margins in (d).

classes are intensively concentrated around minor nodes
that have higher connectivity with other classes (compared
to class-averaged level) regardless of each baseline’s com-
pensating strategy. Interestingly, the aptness of false posi-
tives is consistently exhibited in both homogeneously- and
heterogeneously-connected graphs. It is worth noting that
the increase in false negative rates is negligible to the de-
crease in false positive rates in Appendix A.1.

4. Proposed Method
We now introduce our effective margin adjustment strategy,

TAM, which determines the intensity of imbalance compen-
sation based on the local topology of individual node. In
Section 3, we investigated that reinforcing minor nodes con-
nected more with other classes than class-averaged level
induces the false positives of minor classes. Inspired by this
observation, we identify topologically improbable nodes and
adaptively adjust the margins for those nodes. We devise two
core components of TAM. First, Anomalous Connectivity
Margin (ACM) decreases the class margin of a target node
(one of the neighbor nodes) if the portion of the class of tar-
get node in neighbor label distribution (NLD) is larger than
class-averaged connectivity (Section 4.1). Then, Anoma-
lous Distribution-aware Margin (ADM) adjusts the margin
according to the relative distance computed using both tar-
get class-averaged NLD and self class-averaged NLD (Sec-
tion 4.2). The overall pipeline and full algorithm of TAM
are provided in Figure 2 and in Algorithm 1, respectively.

Our learning objective function is formulated as:

LTAM =
1

|V L|
∑
v∈V L

L
(
lv + αmACM

v + βmADM
v , yv

)
,

(5)

where L is the loss function (such as cross entropy), lv ∈
R|Y| is the logit of node v, and yv is the label of node v. Our
novel components add the margins here: mACM

v ∈ R|Y|

represents the ACM term of node v and mADM
v ∈ R|Y| is

the ADM term, with respective hyperparameters α and β.

It is worth noting that our method can be orthogonally com-
bined with any imbalance handling methods and GNNs
since our method simply adjusts output logits of the model
before evaluating the loss function. We describe how to
compute mACM

v and mADM
v in the following subsections.

4.1. Anomalous Connectivity-Aware Margin

To restrain the generation of false positives caused by
abnormally connected nodes, we suggest ACM, which mod-
ifies the margin of each class by calibrating the deviation
of Dv,: (NLD of node v) from Cyv,: (connectivity pattern
of class yv). Given a node v, we first compare Dyv,yv with
averaged homophily ratio of class yv, Cyv,yv

, to estimate
how much node v follows the class-homophily. If Cyv,yv

Dv,yv

is high, we decreases the margins on entire classes. The
intuition behind here is: as nodes that do not follow the
class-homophily tendency would be risky in the imbalance
handling process, we make learning signals of these nodes
weak in the training phase.

To further control the margin for each class t, we calculate
the connecting ratio with class t over class-averaged level:
Dv,t

Cyv,t
. The high Dv,t

Cyv,t
implies that node v has a fair chance

to be confused with class t considering the message-passing
of GNNs. Hence, we decreases the margin of class t in
this case so that GNNs can be trained in a well-calibrated
manner.

Based on this motivation, the ACM of node v on class t is
derived as:

mACM
v,t = −max

(
log

(
(
Cyv,yv

Dv,yv

) · (Dv,t

Cyv,t
)

)
, 0

)
(6)

Note that the margin of its own class mACM
v,yv

is set to 0 by
the above equation.
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Algorithm 1 Topology-Aware Margin
1: Input: Graph G(X,V,E, Y ), set of possible class labels Y ,

set of labeled nodes V L, model fθ , loss function L, hyperpa-
rameters α, β, learning rate η, label yv onehot vector, eyv .

2: Initialize: Model parameter θ ∈ Rd.
3: Compute T1, T2, · · · , Tk following the Equation (9)
4: for t = 1, 2, . . . , T do
5: l← fθ(X,V,E) {Model prediction}
6: for k = 1, 2, · · · , |Y| do
7: p:,k ←

l:,k
Tk

8: end for{Class-wise temperature}
9: D ← 0

10: for v ∈ V L do
11: for u ∈ N (v) ∪ {v} do
12: if u ∈ V L then
13: Dv,:←Dv,: +

1
|N (v)|+1

eyu
14: else
15: Dv,:←Dv,: +

1
|N (v)|+1

Softmax(pu,:)
16: end if
17: end for
18: end for{Neighbor label distribution}
19: for k = 1, 2, · · · , |Y| do
20: Ck,:← 1

|{v∈V L|yv=k}|
∑

u∈{v∈V L|yv=k}Du,:

21: end for{Class-wise connectivity matrix}
22: for v ∈ V L do
23: for k = 1, 2, · · · , |Y| do
24: Compute cosAv,k following the Equation (7)

25: mACM
v,k ←−max

(
log

(
(
Cyv,yv
Dv,yv

) · ( Dv,t

Cyv,t
)
)
, 0
)

26: mADM
v,k ←− JS(Dv,:,Cyv,:) cosAv,k

JS(Ct,:,Cyv,:)
27: end for
28: end for{ACM & ADM}
29: LTAM ←L(lL + αmACM + βmADM , Y L)
30: θ← θ − η∇LTAM

31: end for
32: Output: θ

4.2. Anomalous Distribution-Aware Margin

Although ACM can identify nodes that deviated from con-
nectivity patterns, it is not sufficient to recognize whether
a deviated node is confused with other classes or simply
an outlier node. However, identifying which classes a node
is likely to be indistinguishable is necessary to explicitly
adjust the margin of confusing classes. Thus, we suggest
Anomalous Distribution-aware Margin (ADM), which com-
plementarily adjusts the target class margin according to
the relative closeness to the target class compared to the
self class (the class of a given node) in NLD space. Since
discriminating two classes is more difficult as NLDs of two
classes are closer, we design ADM to be sensitive to the
distance between the target class and the self class.

The goal for ADM is to decrease the target class margin
more intensively as a given node is closer to the target class
compared to the self class in NLD space. Even though there
are various methods to compute the relative distance, we

calculate the relative distance as in Figure 2 (c). Specifically,
let us define the angle between the segment between self
class-averaged NLD and node NLD, and the segment be-
tween self class-averaged NLD and target class-averaged
NLD as Av,t. Then, following the low of cosine, we can
compute cosAv,t for given node v as:

cosAv,t =
JS(Dv,:,Cyv,:)

2+JS(Ct,:,Cyv,:)
2−JS(Dv,:,Ct,:)

2

2JS(Dv,:,Cyv,:)JS(Ct,:,Cyv,:)
,

(7)
where JS is Jensen-Shannon Divergence. Then, ADM is
computed as:

mADM
v,t = − JS (Dv,:, Cyv,:) cosAv,t

JS (Ct,:, Cyv,:)
. (8)

Note that ADM can also increase the margin if a node is
clearly distinguishable with the given local topology.

4.3. Class-wise Temperature for Unlabeled Nodes

Until this point, we have assumed that the label information
for neighbors of labeled nodes can be accessible during
calculating the NLD D and Class-wise Connectivity Matrix
C. However, in most node classification scenarios, label
information is unknown except for a small set of labeled
node set V L. Therefore, to estimate the class information
required when obtaining D and C, we exploit the model
prediction of the model being trained.

To refine the model predictions, we introduce the class-wise
temperature strategy. A similar concept is also adopted in
the computer vision domain (Wang et al., 2020a), but we use
the reverse direction of temperature compared to an existing
method. As investigated in previous research (Park et al.,
2021), GNNs are prone to overfit to minor class instances
in class-imbalanced settings. This issue can bias the neigh-
bors of minor nodes to be over-confident as minor classes.
Inspired by this problem, we assign the temperature Tk to
logits of each class k based on its quantity Nk. When Nk is
small, the logits of class k are scaled by a large Tk, so the
model predictions become more accurate for minor classes.
We only use class-wise temperature Tk to obtain the label of
neighbors and not for training. The temperature Tk of class
k is derived as:

πk = δ · Nk
1
|Y|

∑
s∈|Y|Ns

+ (1− δ)

Tk =
1

ϕ (πk + 1−maxj πj)
, (9)

where ϕ is a hyperparameter and δ is a parameter that deter-
mines the sensitivity to imbalance ratio. We fix δ to 0.4 for
all experiments.



TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification

Table 1. Experimental results of our algorithm TAM and other baselines on three class-imbalanced node classification benchmark datasets
(homophilous graphs). We report averaged balanced accuracy (bAcc.) and F1-score with the standard errors for 10 repetitions on three
representative GNN architectures.

Dataset Cora CiteSeer PubMed
Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Cross Entropy 60.95 ±1.22 59.30 ±1.66 38.21 ±1.12 29.40 ±1.97 65.21 ±1.40 55.43 ±2.79

Re-Weight 65.52 ±0.84 65.54 ±1.20 44.52 ±1.22 38.85 ±1.62 70.17 ±1.25 66.37 ±1.73

PC Softmax 67.79 ±0.92 67.39 ±1.08 49.81 ±1.12 45.55 ±1.26 70.20 ±0.60 68.83 ±0.73

DR-GCN 60.17 ±0.83 59.31 ±0.97 42.64 ±0.75 38.22 ±1.22 65.51 ±0.81 64.95 ±0.53

GraphSMOTE 66.29 ±0.93 66.30 ±1.25 44.40 ±1.27 39.10 ±1.78 68.51 ±1.14 62.63 ±2.39

BalancedSoftmax 68.46 ±0.67 68.41 ±0.80 53.70 ±1.40 50.73 ±1.64 72.97 ±0.80 70.80 ±1.11

+ TAM 69.90 ±0.73 69.89 ±0.89 55.54 ±1.40 54.18 ±1.69 74.13 ±0.70 73.27 ±0.67

ReNode 67.61 ±0.77 67.27 ±0.91 47.78 ±1.67 42.51 ±2.30 71.59 ±1.70 66.56 ±2.90

+ TAM 67.18 ±1.32 67.39 ±1.62 48.36 ±1.63 42.48 ±2.10 71.00 ±1.86 67.18 ±3.42

GraphENS 70.31 ±0.51 70.30 ±0.65 55.42 ±1.74 53.85 ±2.00 71.89 ±0.80 71.07 ±0.66

+ TAM 71.52 ±0.30 71.71 ±0.45 57.47 ±1.56 56.23 ±1.87 74.01 ±0.73 72.41 ±0.94

G
A

T

Cross Entropy 60.82 ±1.27 59.56 ±1.75 41.16 ±1.49 33.71 ±2.02 63.97 ±1.21 54.59 ±2.42

Re-Weight 66.72 ±0.80 66.52 ±1.06 45.59 ±1.73 39.43 ±2.03 69.13 ±1.25 64.81 ±1.70

PC Softmax 67.02 ±0.65 66.57 ±0.89 50.70 ±1.73 47.14 ±1.85 72.20 ±0.49 70.95 ±0.82

DR-GCN 59.30 ±0.76 57.79 ±1.03 44.04 ±1.26 39.44 ±1.76 69.56 ±1.01 68.49 ±0.71

GraphSMOTE 66.08 ±1.37 64.92 ±1.66 45.79 ±1.42 39.92 ±2.11 67.86 ±1.58 61.96 ±2.61

BalancedSoftmax 67.79 ±0.54 67.73 ±0.68 52.83 ±1.25 49.96 ±1.69 72.56 ±0.66 69.90 ±1.13

+ TAM 69.00 ±0.62 69.25 ±0.64 56.32 ±1.65 54.99 ±2.10 73.37 ±0.76 72.60 ±0.89

ReNode 68.34 ±1.25 68.59 ±1.51 48.99 ±1.69 43.90 ±2.15 67.55 ±2.20 64.46 ±2.56

+ TAM 68.39 ±1.15 68.69 ±1.36 48.81 ±1.26 44.40 ±1.91 69.00 ±2.39 67.46 ±2.66

GraphENS 70.45 ±0.49 69.84 ±0.53 52.35 ±1.57 49.35 ±2.31 71.99 ±0.72 70.59 ±0.85

+ TAM 70.00 ±0.60 69.93 ±0.76 55.86 ±1.48 53.85 ±1.98 73.42 ±0.77 71.95 ±1.01

SA
G

E

Cross Entropy 60.41 ±1.09 58.57 ±1.34 44.41 ±1.21 38.20 ±1.68 67.34 ±0.93 62.92 ±1.38

Re-Weight 63.76 ±0.98 63.46 ±1.22 46.64 ±1.92 41.38 ±2.76 69.03 ±1.17 64.01 ±2.18

PC Softmax 64.03 ±0.81 63.73 ±0.99 50.14 ±1.89 47.38 ±2.13 71.39 ±0.84 70.25 ±1.02

DR-GCN 61.05 ±1.17 60.17 ±1.23 46.00 ±0.93 47.73 ±1.12 69.23 ±0.68 67.35 ±0.90

GraphSMOTE 61.75 ±0.07 60.90 ±1.22 42.51 ±1.54 34.93 ±1.67 66.11 ±1.12 61.17 ±2.10

BalancedSoftmax 66.10 ±0.54 66.26 ±0.63 54.18 ±1.79 52.67 ±1.96 70.32 ±0.92 68.81 ±0.99

+ TAM 68.01 ±0.56 68.14 ±0.58 55.47 ±1.33 54.87 ±1.33 72.91 ±0.62 72.61 ±0.68

ReNode 65.18 ±0.96 65.46 ±1.28 48.58 ±1.87 43.62 ±2.17 69.58 ±1.12 67.21 ±1.72

+ TAM 65.54 ±1.02 65.96 ±1.30 49.53 ±1.94 45.96 ±2.52 69.96 ±1.40 66.34 ±2.53

GraphENS 68.65 ±0.49 68.79 ±0.21 53.43 ±1.29 51.70 ±1.46 70.45 ±0.82 68.96 ±1.34

+ TAM 69.12 ±0.81 69.16 ±0.87 55.43 ±1.32 53.82 ±1.49 72.31 ±1.05 71.21 ±1.31

5. Experiments
5.1. Experimental Settings

Datasets To show the effectiveness of our algorithm on
both homophilous and heterophilous graphs, we evaluate
our method on homophilous graphs: Cora, CiteSeer, and
PubMed (Sen et al., 2008), and heterophilous graphs: Wis-
consin1, Chameleon, and Squirrel (Rozemberczki et al.,
2021). We utilize the splits used in Yang et al. (2016) for
Cora, CiteSeer, and PubMed, and in Pei et al. (2019) for
Wisconsin, Chameleon, and Squirrel. To construct class-
imbalanced datasets, we adopt the step imbalance method
following Zhao et al. (2021); Park et al. (2021). Specifically,
we select minor classes as half the number of classes (|Y|/2)
and alter labeled nodes of minor classes to unlabeled nodes
randomly until the number of nodes in each minor class
equals the ratio of the number of major nodes in the most

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
11/www/wwkb/

frequent class to imbalance ratio (maxk∈Y Nk

ρ ). In this paper,
we adopt imbalance ratios of five and ten. For Wisconsin, we
do not modify the number of nodes in each class since the
train splits in Pei et al. (2019) is already highly imbalanced
(11.63). The detailed experimental settings such as evalua-
tion protocol and implementation details of our algorithm
are described in Appendix B.

5.2. Baselines

To validate our method, we first select vanilla (cross en-
tropy) and re-weight (Japkowicz & Stephen, 2002) as base-
lines. We also adopt competitive baselines in the vision
domain and node classification. For the vision domain, Bal-
anced Softmax (Ren et al., 2020) and PC Softmax (Hong
et al., 2021) are introduced as the representative algorithms
of loss modification and post-hoc correction, respectively.
In node classification, we compare our method with DR-
GCN (Shi et al., 2020), GraphSMOTE (Zhao et al., 2021),
and GraphENS (Park et al., 2021). For ReNode (Chen et al.,
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Table 2. Experimental results of our algorithm TAM and other baselines on three class-imbalanced node classification benchmark datasets
(heterophilous graphs). We report averaged balanced accuracy (bAcc.) and F1-score with the standard errors for 10 repetitions on three
representative GNN architectures.

Dataset Chameleon Squirrel Wisconsin

Imbalance Ratio (ρ = 5) (ρ = 5) (ρ = 11.63)
bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Cross Entropy 33.21 ±0.88 31.74 ±0.85 24.06 ±0.43 20.32 ±0.59 29.73 ±1.29 27.51 ±1.45

Re-Weight 37.85 ±0.95 37.46 ±0.95 27.40 ±0.52 26.76 ±0.42 44.13 ±3.08 40.74 ±3.27

PC Softmax 37.98 ±0.83 36.55 ±0.88 27.37 ±0.33 26.67 ±0.27 30.90 ±3.10 28.15 ±2.16

DR-GCN 34.12 ±0.89 31.78 ±1.02 24.67 ±0.39 19.54 ±0.71 29.44 ±1.36 27.08 ±1.37

GraphENS 41.13 ±0.59 39.61 ±0.77 26.79 ±0.43 26.35 ±0.41 44.09 ±2.96 40.86 ±3.29

BalancedSoftmax 38.33 ±0.73 37.54 ±0.68 27.86 ±0.42 27.04 ±0.35 31.51 ±2.28 28.82 ±1.99

+ TAM 41.48 ±0.93 40.43 ±1.02 28.67 ±0.54 27.84 ±0.45 35.97 ±3.68 31.41 ±2.16

ReNode 37.43 ±0.90 36.75 ±0.89 28.38 ±0.46 27.81 ±0.44 36.85 ±2.14 33.30 ±1.79

+ TAM 40.28 ±0.85 39.27 ±0.80 28.19 ±0.36 27.55 ±0.39 36.28 ±2.87 34.10 ±2.38

GraphSMOTE 42.65 ±0.59 41.56 ±0.53 28.29 ±0.60 27.89 ±0.61 45.36 ±4.21 40.91 ±4.39

+ TAM 42.77 ±0.62 41.78 ±0.62 29.18 ±0.46 28.84 ±0.44 45.59 ±3.73 40.76 ±4.01

G
A

T

Cross Entropy 34.33 ±0.74 31.54 ±0.95 24.89 ±0.37 21.33 ±0.52 32.15 ±2.72 30.92 ±2.76

Re-Weight 39.63 ±0.49 39.08 ±0.50 26.49 ±0.41 25.92 ±0.41 42.15 ±2.33 37.66 ±2.27

PC Softmax 41.47 ±0.78 40.51 ±0.89 27.31 ±0.51 26.74 ±0.50 41.89 ±3.95 38.03 ±3.35

DR-GCN 36.85 ±0.77 34.61 ±0.62 25.40 ±0.43 22.83 ±0.59 33.93 ±2.34 31.75 ±2.50

GraphENS 40.66 ±1.13 39.49 ±1.10 26.87 ±0.43 26.78 ±0.41 40.93 ±2.78 37.43 ±2.74

BalancedSoftmax 41.47 ±0.71 40.52 ±0.78 26.66 ±0.39 25.97 ±0.35 41.20 ±3.08 37.93 ±2.99

+ TAM 42.56 ±0.59 41.40 ±0.74 27.75 ±0.44 27.23 ±0.45 48.44 ±3.32 43.71 ±2.91

ReNode 40.41 ±0.56 39.85 ±0.60 26.89 ±0.45 26.40 ±0.46 40.88 ±2.84 37.13 ±2.74

+ TAM 41.53 ±0.35 40.76 ±0.50 26.53 ±0.40 26.00 ±0.42 46.64 ±3.35 41.60 ±3.02

GraphSMOTE 42.27 ±0.51 41.43 ±0.54 28.17 ±0.56 27.38 ±0.66 40.77 ±2.24 38.96 ±2.48

+ TAM 42.83 ±0.82 42.26 ±0.83 28.44 ±0.33 28.02 ±0.37 41.82 ±2.94 38.23 ±3.13

SA
G

E

Cross Entropy 35.76 ±0.57 33.55 ±0.68 27.59 ±0.31 25.87 ±0.14 68.76 ±3.57 64.16 ±3.26

Re-Weight 40.85 ±0.69 40.40 ±0.71 29.88 ±0.48 27.59 ±0.42 68.13 ±3.19 63.45 ±2.27

PC Softmax 42.90 ±0.85 42.34 ±0.87 30.54 ±0.62 29.41 ±0.65 70.57 ±3.34 67.13 ±2.91

DR-GCN 39.58 ±0.58 38.37 ±0.72 28.78 ±0.50 25.01 ±0.70 69.30 ±1.99 64.60 ±2.00

GraphENS 37.77 ±0.69 37.36 ±0.67 25.31 ±0.45 25.15 ±0.40 66.23 ±3.17 60.89 ±2.97

BalancedSoftmax 43.03 ±0.98 42.40 ±0.96 30.29 ±0.48 29.37 ±0.44 67.50 ±2.47 63.95 ±2.43

+ TAM 43.77 ±0.90 42.95 ±0.90 30.70 ±0.59 29.82 ±0.53 68.62 ±3.47 65.23 ±2.97

ReNode 40.74 ±0.75 40.45 ±0.77 29.75 ±0.47 28.49 ±0.51 72.52 ±2.13 69.15 ±3.18

+ TAM 41.45 ±0.86 41.00 ±0.86 29.79 ±0.39 28.75 ±0.39 70.97 ±2.05 66.95 ±2.62

GraphSMOTE 34.43 ±0.86 31.16 ±1.21 26.26 ±0.31 23.73 ±0.30 65.14 ±3.84 62.53 ±3.40

+ TAM 36.94 ±0.88 35.00 ±0.93 26.70 ±0.48 24.71 ±0.41 64.07 ±3.15 62.65 ±2.96

2021), we search the best algorithm in each setting among re-
weight (Japkowicz & Stephen, 2002), focal loss (Lin et al.,
2017), and class-balanced weight (Cui et al., 2019). To show
that our algorithm could improve the performance of many
imbalance handling methods, we combine our methods with
competitive approaches in each domain: Balanced Soft-
max, ReNode, and GraphENS. Since GraphSMOTE shows
superior performance only in heterophilous graphs than
GraphENS, we combine our methods with GraphSMOTE
rather than GraphENS in Wisconsin, Chameleon, and Squir-
rel. The implementation details of baselines are suggested
in Appendix B.4.

5.3. Main Results

Homophilous graphs In Table 1, we report the averaged
balanced accuracy (bAcc.) and F1 score with standard er-
ror for the baselines and ours on three homogeneously-

connected citation networks. Existing imbalance approaches
integrated with TAM achieve the best performance for all 9
settings (3 datasets with 3 architectures). Since our method
can detect the nodes of the topological boundaries and adjust
their logits based on ACM module (Section 4.1), TAM suc-
cessfully brings enhancement of imbalance-handling perfor-
mance on homophilous graphs. We also confirm that TAM
consistently improves the performance over various types
of imbalance handling strategies such as logit adjustment
(Balanced Softmax), node weighting (ReNode), and over-
sampling (GraphENS). Note that we validate our method on
another imbalance ratio (ρ = 5) and get consistent results.
These results are deferred to Appendix A.2.

Heterophilous graphs As shown in Table 2, Base-
lines equipped with TAM also exhibit superior
imbalance-handling performances in most cases for
three heterogeneously-connected graphs. The rationale
for these results is that TAM could model the class-wise
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connectivity pattern of heterphilous graphs and identify the
outlier nodes for each class using class-averaged statistic
matrix C. We also verify that TAM indeed reduces the false
positives stemming from abnormally-connected minor
nodes (see Reducing False Positives in Section 5.3). Note
that we also provide the comparison of our method with
other baselines under another imbalance ratio (ρ = 10).
These results are deferred to Appendix A.3.

Reducing False Positives In Section 3, we have observed
that false positives on minor classes are highly located near
the minor nodes which have anomalous connectivity. To
verify that TAM can alleviate this false positive issue, we
compute the ratio of false positives on neighbor nodes of
anomalous minor nodes using GNNs trained with TAM. As
indicated in Figure 1 (c) and (d), TAM steadily reduces the
ratio of false positives without dependence of imbalance han-
dling approaches on both homophilous and heterophilous
graphs.

5.4. Analysis of TAM

Ablation study To validate each component of our
method, we conduct an ablation study on three node classifi-
cation datasets. First, we compare ACM with ACM without
using class-connectivity matrix C to justify exploiting class
connectivity statistics. Specifically ‘ACM w/o C’ solely uses
Dv,t

Dv,yv
to determine the ACM margins. In Table 3, ‘ACM w/o

’ consistently shows inferior performances compared to our
ACM module implying that the class connectivity matrix
plays an important role in modeling connectivity patterns.

We also verify our three key modules: ACM, ADM, and
Class-wise Temperature (Cls-wise Tk). As shown in Table 3,
each component of our method can bring performance im-
provement by itself. From these results, We carefully expect
that our individual module contributes to alleviating the ad-
versarial byproduct in the imbalance-handling process. Note
that we use Balanced Softmax as a base imbalance-handling
approach in the ablation study.

Table 3. Ablation Study of our method TAM.
Modules ACM w/o C ACM ADM Cls-wise Tk F1

CiteSeer
+

GCN

✗ ✗ ✗ ✗ 50.73 ±1.40

✓ ✗ ✗ ✗ 50.28 ±1.16

✗ ✓ ✗ ✗ 53.54 ±1.99

✗ ✗ ✓ ✗ 51.95 ±1.71

✗ ✓ ✓ ✗ 54.08 ±1.81

✗ ✓ ✓ ✓ 55.54 ±1.40

PubMed
+

GCN

✗ ✗ ✗ ✗ 70.80 ±1.11

✓ ✗ ✗ ✗ 71.29 ±1.16

✗ ✓ ✗ ✗ 72.59 ±0.93

✗ ✗ ✓ ✗ 71.47 ±1.03

✗ ✓ ✓ ✗ 72.84 ±1.16

✗ ✓ ✓ ✓ 73.27 ±2.39

chameleon
+

SAGE

✗ ✗ ✗ ✗ 42.40 ±0.96

✓ ✗ ✗ ✗ 42.34 ±0.88

✗ ✓ ✗ ✗ 42.53 ±1.07

✗ ✗ ✓ ✗ 42.75 ±1.01

✗ ✓ ✓ ✗ 42.98 ±1.00

✗ ✓ ✓ ✓ 42.95 ±0.90

Adjusting both minor and major nodes TAM also ad-
justs the margins for nodes other than minor class nodes (i.e.
major class nodes). The rationale for this design is that, even
though the impact of anomalous major nodes is far weaker,
they still occur false positives to their neighbors. To vali-
date our principle, we explore the performances of the TAM
that only regulates the margins of minor nodes on Cora and
Chameleon datasets (Figure 3). These results support our
choice in that adjusting only minor nodes shows sub-optimal
performances while it brings considerable improvements
compared to baselines.

bAcc. [%] F1-score [%]67.5

68.0

68.5

69.0

69.5

70.0
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71.0

(a) Cora-GCN ( =10)

Balancedsoft.
TAM (only minor)
TAM

bAcc. [%] F1-score [%]

37

38

39

40

41

42

(b) Chameleon-GCN ( =5)

Balancedsoft.
TAM (only minor)
TAM

Figure 3. Comparison of balanced accuracy and F1-score. For (a)
and (b), performance gains by adjusting all classes compared to
adjusting only minor nodes are shown.

Sensitivity to hyperparameters α and β The two in-
tensity terms - α and β - for ACM and ADM have been
introduced in Section 4. We investigate the sensitivity of
performance to ACM intensity α and ADM intensity β in
Figure 4. We observe the performance drops when α or β
have extreme values. We believe that small α or β might
not sufficiently decrease false positives induced by anoma-
lous nodes. In contrast, large α or β would increase false
negatives of minor classes.
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Figure 4. Sensitivity graphs on CiteSeer (ρ=10). Green and red
graphs show the performance change as ACM intensity α and
ADM intensity β increases, respectively.

6. Related Work
Imbalance handling in the vision domain The key ob-
jective of solving class-imbalanced problem is to mitigate
the bias to major classes induced by the label distribution
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in the training set. There are four major branches for imbal-
ance handling: re-sampling methods, ensemble approaches,
post-hoc correction, and loss modification. Re-sampling
methods (Chawla et al., 2002; Kang et al., 2019; Zhang
et al., 2021; Wang et al., 2021a) sample minor class data
more frequently or augment minor class diversely. Ensem-
ble approaches (Zhou et al., 2020; Xiang et al., 2020; Wang
et al., 2020a; Cai et al., 2021) train multiple head classifiers
and collaboratively inference test data with these classifiers.
Post-hoc correction algorithms (Kang et al., 2019; Tian
et al., 2020; Menon et al., 2020; Hong et al., 2021) reward
minor classes only in the inference. Loss modification meth-
ods (Cui et al., 2019; Menon et al., 2020; Tang et al., 2020)
compensate minor classes in the training phase by assigning
more weights on the loss of minor class data (Japkowicz
& Stephen, 2002; Lin et al., 2017; Cui et al., 2019; Xu
et al., 2020) or expanding the margin of minor classes to
major classes (Cao et al., 2019; Tan et al., 2020; Ren et al.,
2020; Menon et al., 2020; Wang et al., 2021c;b). However,
it is challenging to directly apply these methods to node
classification due to connections between nodes in graphs.

Imbalance handling in node classification Recently, to
utilize topology information in class-imbalanced node clas-
sification, several methods (Shi et al., 2020; Wang et al.,
2020b; Zhao et al., 2021; Liu et al., 2021; Qu et al.,
2021; Chen et al., 2021) are proposed. DR-GCN (Shi
et al., 2020) introduces conditional GAN to generate virtual
nodes which are similar to adjacent node features of source
nodes. GraphSMOTE (Zhao et al., 2021) synthesizes the
features of minor nodes by interpolating two minor nodes as
SMOTE (Chawla et al., 2002) does and determines edges of
synthesized nodes with edge predictor. ImGAGN (Qu et al.,
2021) produces virtual minor nodes by mixing all minor
nodes and these virtual nodes connect only to minor nodes
according to the generated weight matrix. Since ImGAGN
is designed to mainly target binary classification, the exten-
sion of ImGAGN to multi-class classification is non-trivial.
GraphENS (Park et al., 2021) generates diverse minor nodes
by mixing minor nodes with (other class) nodes in neighbor
distribution level utilizing model prediction and node fea-
ture level using saliency map. However, these approaches do
not consider the topologies of nodes when rewarding minor
classes. ReNode (Chen et al., 2021) reduces loss weights
of nearby nodes at topological class boundaries, but it is
only effective when graphs are homophilous and does not
consider class-pair connectivity. Compared to other imbal-
ance handling methods, TAM reflects class-pair connectivity
on logit adjustments and works on both homophilous and
heterophilous graphs.

Algorithms for heterophilous graphs Although our
method mainly targets the class-imbalanced problem in node
classification, handling heterophilous graphs is related in

that we consider connectivity pattern of each class. Since
many GNNs are designed under homophily assumption,
many GNNs fail in heterophilous graphs. Recently, to over-
come this limitation, various algorithms (Abu-El-Haija et al.,
2019; Pei et al., 2019; Zhu et al., 2020; 2021; Jin et al.,
2021; Lim et al., 2021; Yang et al., 2021) are suggested.
CPGNN (Zhu et al., 2021) models Compatibility Matrix
and conducts propagation with this matrix. DMP (Yang
et al., 2021) determines edge attributes for each edge and
propagates node features with these attributes.

7. Conclusion
In class-imbalanced node classification, we found that com-
pensating minor nodes, which deviate from class-wise con-
nectivity patterns, are prone to induce false positives of
minor nodes. From this observation, we proposed TAM to
adjust margins node-wisely according to the extent of devia-
tion from connectivity patterns. We show that our algorithm
consistently improves competitive imbalance handling meth-
ods by simply combining TAM on both homophilous and
heterophilous graphs with various GNN architectures.
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A. Additional Experimental Results
In this section, we provide additional experimental results which are omitted due to the space constraints.

A.1. The False Negative Rates in Section 3

To prove that TAM does not significantly sacrifice the false negative rates for reducing false positive cases, we present the
false negative rates of the results in Section 3. As shown in Table 4, our approach effectively reduces the false positive cases
for major nodes connected with non-typical minor nodes while increasing false negative rates slightly. These consistent
results over multiple benchmark datasets strengthen our claim that TAM can successfully mitigate the false positive cases of
major classes.

Table 4. Comparison of false positive rates (FPR) and false negative rates (FNR) near normal minor nodes and anomalously-connected
minor nodes.

Method
(GCN)

Coraρ=10 CiteSeerρ=10 Chameleonρ=5 Wisconsinρ=12

FPR FNR FPR FNR FPR FNR FPR FNR
Re-Weight 47.68 9.97 64.63 4.74 48.57 29.06 63.90 36.40
+ TAM 29.77(-17.91) 15.83(+5.86) 57.84(-6.79) 4.78(+0.04) 35.78(-12.79) 33.73(+4.67) 34.63(-29.27) 39.67(+3.27)
BalancedSoftmax 56.69 5.91 65.86 4.95 41.85 31.37 52.19 45.77
+ TAM 37.97(-18.72) 11.78(+5.87) 56.32(-9.54) 5.85(+0.90) 36.01(-5.84) 28.27(-3.10) 40.14(-12.05) 40.46(-5.31)
GraphSMOTE 45.19 10.51 62.55 3.80 49.81 19.48 52.90 47.33
+ TAM 29.82(-15.37) 15.58(+5.07) 54.14(-8.41) 5.59(+1.79) 48.73(-1.08) 16.45(-3.03) 48.70(-4.20) 50.30(+2.97)

A.2. The Results of Three Benchmark Datasets (Homophilous Graphs)

In the main paper, we only report the comparison of our method with other baselines on Cora, CiteSeer, and PubMed (Sen
et al., 2008) with the high imbalance ratio (ρ = 10) due to the space limitation. To show that our method is also effective
under low imbalance ratio, we provide the results on Cora, CiteSeer, and PubMed with relatively low imbalance ratio (ρ = 5)
over three GNN architectures: GCN, GAT, and SAGE in Table 5. We observe consistent results with the main paper in that
our method improves various imbalance handling algorithms by combining ours with these baselines.

A.3. The Results of Two Benchmark Datasets (Heterophilous Graphs)

We also provide the additional experimental results on heterophilous graphs: Chameleon and Squirrel (Rozemberczki et al.,
2021) with the different imbalance ratio (ρ = 10). In Table 6, we affirm consistent results with the main paper in that our
method improves various imbalance handling algorithms by combining ours with these baselines in most cases. For the
Squirrel dataset, our method shows comparable performance with baselines. We conjecture that low accuracy of baselines
in Squirrel induces erroneous estimation of neighbor label distribution and class-wise connectivity matrix, resulting in
insignificant improvements.
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Table 5. Experimental results of our algorithm TAM and other baselines on three class-imbalanced node classification benchmark datasets
(homophilous graphs). We report averaged balanced accuracy (bAcc.) and F1-score with the standard errors for 10 repetitions on three
representative GNN architectures.

Dataset Cora CiteSeer PubMed
Imbalance Ratio (ρ = 5) bAcc. F1 bAcc. F1 bAcc. F1

G
C

N

Cross Entropy 69.15 ±0.52 69.36 ±0.75 48.56 ±1.70 44.56 ±2.30 71.89 ±1.04 67.59 ±1.54

Re-Weight 71.86 ±0.76 72.23 ±0.75 54.32 ±1.33 52.37 ±1.65 73.91 ±0.95 71.70 ±0.77

PC Softmax 72.69 ±0.58 72.90 ±0.56 58.86 ±1.27 57.33 ±1.46 74.13 ±0.73 72.84 ±0.72

DR-GCN 67.56 ±0.56 67.29 ±0.73 50.47 ±1.17 47.73 ±1.59 70.36 ±0.66 68.22 ±0.93

GraphSMOTE 73.46 ±0.84 73.07 ±0.67 54.79 ±1.21 53.52 ±1.46 72.49 ±0.79 69.80 ±1.17

BalancedSoftmax 73.63 ±0.68 73.40 ±0.67 60.13 ±1.48 59.30 ±1.61 75.26 ±0.58 73.83 ±0.66

+ TAM 73.75 ±0.66 73.74 ±0.66 60.97 ±1.02 60.46 ±0.98 76.03 ±0.96 75.16 ±1.10

ReNode 74.91 ±0.57 75.37 ±0.62 58.01 ±1.52 56.63 ±1.85 73.99 ±0.88 72.04 ±1.01

+ TAM 74.77 ±0.42 75.57 ±0.43 58.57 ±1.59 57.56 ±1.80 75.22 ±1.05 74.22 ±1.41

GraphENS 75.68 ±0.58 75.47 ±0.58 62.24 ±1.10 61.70 ±1.11 74.30 ±0.59 73.53 ±0.52

+ TAM 75.72 ±0.64 75.93 ±0.62 63.01 ±0.87 62.56 ±0.80 75.62 ±0.55 75.28 ±0.51

G
A

T

Cross Entropy 68.12 ±0.51 68.81 ±0.62 51.43 ±1.67 48.85 ±2.13 70.65 ±1.11 66.73 ±1.69

Re-Weight 73.24 ±0.81 72.40 ±0.96 55.40 ±1.59 53.97 ±1.62 72.94 ±0.77 70.59 ±1.10

PC Softmax 71.24 ±0.52 71.53 ±0.62 58.83 ±1.28 57.45 ±1.37 74.72 ±0.69 72.66 ±0.82

DR-GCN 66.43 ±0.72 66.31 ±0.84 51.48 ±1.63 49.48 ±2.31 72.41 ±0.57 71.74 ±0.63

GraphSMOTE 72.96 ±0.67 72.39 ±0.83 55.38 ±1.52 53.72 ±1.88 72.94 ±0.85 70.65 ±1.23

BalancedSoftmax 72.50 ±0.60 71.96 ±0.67 59.72 ±1.15 58.79 ±1.18 73.38 ±0.74 72.47 ±0.83

+ TAM 72.72 ±0.66 72.78 ±0.81 62.19 ±0.87 61.55 ±0.86 74.71 ±0.74 74.14 ±0.80

ReNode 74.34 ±0.69 74.77 ±0.52 58.69 ±1.64 57.05 ±1.94 73.85 ±0.96 71.79 ±1.16

+ TAM 75.07 ±0.62 75.05 ±0.69 59.11 ±1.41 57.77 ±1.55 73.79 ±0.91 72.30 ±0.88

GraphENS 74.92 ±0.57 74.58 ±0.61 59.40 ±1.08 58.98 ±1.11 73.93 ±0.66 72.99 ±0.90

+ TAM 74.82 ±0.40 75.13 ±0.43 62.23 ±0.79 61.89 ±0.79 75.05 ±0.65 74.47 ±0.66

SA
G

E

Cross Entropy 66.58 ±0.78 66.43 ±0.86 51.50 ±1.55 49.01 ±2.09 71.55 ±0.74 70.38 ±0.73

Re-Weight 71.59 ±0.77 71.91 ±0.87 56.65 ±1.50 55.38 ±1.72 72.22 ±0.95 70.33 ±0.99

PC Softmax 71.55 ±0.72 71.22 ±0.80 56.85 ±1.52 55.27 ±1.73 73.21 ±0.46 72.33 ±0.63

DR-GCN 66.20 ±0.68 66.03 ±0.73 54.31 ±1.42 53.36 ±1.44 71.43 ±0.83 70.22 ±1.03

GraphSMOTE 69.66 ±0.78 69.98 ±0.89 52.90 ±1.19 50.70 ±1.72 70.71 ±1.39 69.12 ±1.68

BalancedSoftmax 71.50 ±0.43 71.68 ±0.47 58.49 ±1.32 57.91 ±1.44 72.82 ±0.53 71.64 ±0.62

+ TAM 72.86 ±0.39 72.81 ±0.44 61.09 ±1.28 60.41 ±1.22 74.37 ±0.56 73.98 ±0.61

ReNode 72.92 ±0.48 73.58 ±0.50 58.36 ±1.69 57.09 ±2.08 73.51 ±1.04 71.98 ±1.07

+ TAM 73.09 ±0.34 73.76 ±0.35 58.69 ±1.28 57.50 ±1.51 73.84 ±0.64 72.86 ±0.92

GraphENS 73.43 ±0.62 73.47 ±0.74 60.17 ±1.33 59.71 ±1.32 73.32 ±0.75 72.74 ±0.68

+ TAM 75.27 ±0.37 75.36 ±0.59 62.40 ±1.10 61.96 ±1.05 73.93 ±0.60 73.74 ±0.47
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Table 6. Experimental results of our algorithm TAM and other baselines on two class-imbalanced node classification benchmark datasets
(heterophilous graphs). We report averaged balanced accuracy (bAcc.) and F1-score with the standard errors for 10 repetitions on three
representative GNN architectures.

Dataset Chameleon Squirrel
Imbalance Ratio (ρ = 10) bAcc. F1 bAcc. F1

G
C

N

Cross Entropy 31.52 ±0.72 29.30 ±0.73 24.76 ±0.37 18.57 ±0.27

Re-Weight 36.07 ±0.87 35.61 ±0.81 26.92 ±0.53 25.04 ±0.59

PC Softmax 36.86 ±1.04 36.24 ±1.01 26.49 ±0.59 25.73 ±0.49

DR-GCN 33.34 ±0.81 29.60 ±0.79 23.34 ±0.43 18.20 ±0.49

GraphENS 41.54 ±0.63 40.19 ±0.68 26.75 ±0.35 26.31 ±0.27

BalancedSoftmax 36.47 ±0.89 35.94 ±0.85 27.32 ±0.52 26.42 ±0.41

+ TAM 38.85 ±1.00 37.44 ±0.96 27.81 ±0.45 27.25 ±0.45

ReNode 34.26 ±1.13 33.66 ±1.09 25.42 ±0.34 24.55 ±0.41

+ TAM 38.01 ±0.97 36.92 ±0.94 26.41 ±0.36 25.87 ±0.43

GraphSMOTE 41.50 ±0.82 40.80 ±0.79 27.14 ±0.49 26.67 ±0.53

+ TAM 42.80 ±0.89 41.91 ±0.88 28.30 ±0.46 27.81 ±0.48

G
A

T

Cross Entropy 32.41 ±0.70 27.33 ±0.94 24.69 ±0.39 18.89 ±0.38

Re-Weight 35.72 ±0.65 34.19 ±0.74 25.79 ±0.52 24.32 ±0.62

PC Softmax 38.32 ±0.88 37.46 ±0.84 26.52 ±0.31 25.71 ±0.44

DR-GCN 34.84 ±0.72 31.53 ±0.86 24.69 ±0.46 21.81 ±0.42

GraphENS 39.71 ±0.55 38.75 ±0.60 26.55 ±0.49 26.00 ±0.52

BalancedSoftmax 39.27 ±0.83 38.53 ±0.87 26.09 ±0.43 25.28 ±0.38

+ TAM 41.40 ±0.57 40.25 ±0.72 26.91 ±0.36 26.19 ±0.38

ReNode 37.95 ±0.78 37.09 ±0.87 26.14 ±0.52 25.47 ±0.52

+ TAM 37.57 ±0.97 36.11 ±0.96 26.08 ±0.41 25.39 ±0.37

GraphSMOTE 40.18 ±0.67 39.43 ±0.76 27.10 ±0.49 26.63 ±0.63

+ TAM 41.19 ±0.55 40.51 ±0.68 26.56 ±0.46 25.74 ±0.47

SA
G

E

Cross Entropy 32.07 ±0.48 25.33 ±0.73 25.55 ±0.41 20.29 ±0.41

Re-Weight 36.49 ±1.21 34.84 ±1.30 29.83 ±0.59 25.88 ±0.42

PC Softmax 40.71 ±0.82 39.95 ±0.98 29.23 ±0.50 28.19 ±0.54

DR-GCN 37.24 ±0.79 34.37 ±0.97 28.77 ±0.70 22.32 ±0.96

GraphENS 34.91 ±0.68 33.47 ±0.81 24.09 ±0.36 23.03 ±0.32

BalancedSoftmax 40.76 ±0.99 40.27 ±1.05 30.07 ±0.44 29.12 ±0.42

+ TAM 41.19 ±1.08 40.41 ±1.13 29.91 ±0.50 28.56 ±0.58

ReNode 37.07 ±1.02 36.02 ±0.99 29.48 ±0.64 26.09 ±0.58

+ TAM 38.24 ±0.93 37.23 ±1.09 29.77 ±0.58 27.72 ±0.68

GraphSMOTE 33.31 ±0.63 30.83 ±0.67 25.51 ±0.43 19.79 ±0.49

+ TAM 33.23 ±0.54 30.66 ±0.74 25.34 ±0.56 22.29 ±0.48
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B. Detailed Experimental Results
In this section, we describe detailed experimental settings: dataset statistics, evaluation protocol, and implementation details.

B.1. Label Distribution in Training Datasets

We provide the label distribution in class-imbalanced datasets in Table 7.

Table 7. Label distribution in training datasets [%]

Dataset L0 L1 L2 L3 L4 L5 L6

Cora (ρ = 5) 21.74 21.74 21.74 21.74 4.35 4.35 4.35
Cora (ρ = 10) 23.26 23.26 23.26 23.26 2.33 2.33 2.33
CiteSeer (ρ = 5) 27.78 27.78 27.78 5.56 5.56 5.56 -
CiteSeer (ρ = 10) 30.30 30.30 30.30 3.03 3.03 3.03 -
PubMed (ρ = 5) 45.45 45.45 9.09 - - - -
PubMed (ρ = 10) 47.62 47.62 4.76 - - - -
Chameleon (ρ = 5) 29.51 29.31 29.03 6.07 6.07 - -
Chameleon (ρ = 10) 31.44 31.22 30.93 3.20 3.20 - -
Squirrel (ρ = 5) 29.54 29.53 29.07 5.98 5.98 - -
Squirrel (ρ = 10) 31.43 31.31 30.93 3.17 3.17 - -
Wisconsin (ρ = 11.63) 46.50 27.92 13.42 8.17 4.00 - -

B.2. Evaluation Protocol

We validate our algorithm and baselines on various GNN architectures: GCN (Welling & Kipf, 2016), GAT (Veličković
et al., 2018) and GraphSAGE (Hamilton et al., 2017). We follow the detailed architecture used in Chen et al. (2021). All
GNNs consist of their own convolutional layers with ReLU activation and dropout (Srivastava et al., 2014) is applied with
dropping rate of 0.5 before the last layer. For 1-layer GNNs, we do not adopt dropout and we use multi-head attention with 4
heads for GAT. We search the best architecture based on the average of validation accuracy and F1 score among the number
of layers l ∈ {1, 2, 3} and the hidden dimension d ∈ {64, 128, 256}. For optimization, we train models for 2000 epochs
with Adam optimizer (Kingma & Ba, 2015). The initial learning rate is set to 0.01 and the learning rate is halved if the
validation loss has not improved for 100 iterations. Weight decay is applied to all learnable parameters as 0.0005 except for
the last convolutional layer.

B.3. Implementation Details

For our algorithm, we search the best hyperparameters based on the average of validation accuracy and F1 among the
coefficient of ACM term α ∈ {0.25, 0.5, 1.5, 2.5}, the coefficient of ADM term β ∈ {0.125, 0.25, 0.5}, and the minimum
temperature of class-wise temperature ϕ ∈ {0.8, 1.2}. The sensitivity to imbalance ratio of class-wise temperature δ is fixed
as 0.4 for all main experiments. We adopt warmup for 5 iterations since we utilize model prediction for unlabeled nodes.

B.4. Baselines

For DR-GCN (Shi et al., 2020), we only utilize the module to keep representations having structure information with
conditional GAN and do not adopt the component, which exploits unlabeled nodes, mainly targeting semi-supervised learning
for a fair comparison. For GraphSMOTE (Zhao et al., 2021), we select the model whose predicted edges have discrete values
among multiple versions in that this setting shows superior performance in many datasets. Since the interpolation happens
in the representation space, we search the best architecture for GraphSMTOE among the number of layers l ∈ {2, 3}. For
ReNode (Chen et al., 2021), we search hyperparameters among lower bound of cosine annealing wmin ∈ {0.25, 0.5, 0.75}
and upper bound of the cosine annealing wmax ∈ {1.25, 1.5, 1.75} as following Chen et al. (2021). PageRank teleport
probability is fixed as α = 0.15, which is the default setting in the released codes.


