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Abstract
In this paper, we study the adaptive step size ran-
dom walk gradient descent with momentum for
decentralized optimization, in which the training
samples are drawn dependently with each other.
We establish theoretical convergence rates of the
adaptive step size random walk gradient descent
with momentum for both convex and nonconvex
settings. In particular, we prove that adaptive ran-
dom walk algorithms perform as well as the non-
adaptive method for dependent data in general
cases but achieve acceleration when the stochas-
tic gradients are “sparse”. Moreover, we study
the zeroth-order version of adaptive random walk
gradient descent and provide corresponding con-
vergence results. All assumptions used in this
paper are mild and general, making our results
applicable to many machine learning problems.

1. Introduction
Given an undirected graph G = (V, E) with V =
{1, 2, · · · , n} and E ⊆ V×V being the set of agents and the
set of edges that connect agents, respectively. We consider
the following decentralized minimization problem over the
graph G

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), fi(x) = Eξ∼DiFi(x; ξ), (1)

where Di denotes the data distribution of the i-th client and
Fi(x; ξ) is the loss function associated with the training
data ξ. In decentralized setting, the raw data Di is only ac-
cessible to the i-th client and clients can share their locally
updated x with other clients through the edges, a.k.a. com-
munication channels. The problem (1) models many crucial
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application problems, including distributed adaptation, dis-
tributed training, and aircraft coordination (Sayed, 2014;
Duchi et al., 2011b; Inalhan et al., 2002). Many interesting
decentralized algorithms have been proposed to solve the
problem in (1), and these algorithms can be classified into
three categories:

• (i) Local computing with all clients + communication.
These algorithms let all agents perform local computation
and share the updated parameters with all or a subset of
the neighboring agents, where the subset of neighbors
can be selected either in a deterministic or a stochastic
manner. Many decentralized algorithms belong to this
category, including both deterministic, see e.g., (Nedic &
Ozdaglar, 2009; Chen & Ozdaglar, 2012; Jakovetić et al.,
2014; Matei & Baras, 2011; Yuan et al., 2016; Chang
et al., 2015; Schizas et al., 2008; Shi et al., 2014; 2015;
Zeng & Yin, 2018; Hosseini et al., 2016; McMahan &
Streeter, 2014) and stochastic algorithms, see, e.g., (Ran
et al., 2020; Xin et al., 2020; Sirb & Ye, 2016; Lan et al.,
2017; Lian et al., 2017; 2018; Lu & De Sa, 2021).

• (ii) Local computing with randomly selected clients +
communication. Algorithms in category (i) suffer from
high computation and communication costs. To alleviate
this problem, a class of algorithms activates randomly
selected communication channels (edges) for bidirectional
communication, and only the clients connected by these
edges are involved in local computing, see e.g., (Boyd
et al., 2005; Ram et al., 2010a; Srivastava & Nedic, 2011;
Ram et al., 2010b; Hendrikx et al., 2019).

• (iii) Random walk. Another class of popular algorithms
for solving (1) is using random walk gradient for decen-
tralized optimization, see e.g., (Bertsekas, 1997; Ram
et al., 2009; Johansson et al., 2010; Lopes & Sayed, 2007;
Yin et al., 2018; Mao et al., 2020; Shah & Avrachenkov,
2018). These algorithms only involve one edge communi-
cation in each iteration, resulting in a minimum commu-
nication cost.

This paper focuses on studying the random walk gradient
descent, a special kind of random walk, in which a variable
x is employed and moves through a (random) succession
of agents on the graph as follows: the agent receives x and
updates it by using the gradient of fi at x; after the update,
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x will be sent to a randomly selected neighbor. It has been
known that the random walk over an undirected graph di-
rectly introduces a Markov chain [Chapter 11, (Levin &
Peres, 2017)]. Thus, the theory of random walk gradient
descent has been well-studied by Agarwal & Duchi (2012);
Duchi et al. (2012); Johansson et al. (2007; 2010); Ram
et al. (2009); Sun et al. (2018; 2020b). Moreover, it is
well-known that the random walk gradient descent can con-
verge as fast as SGD if the mixing time is not very long.
As an efficient and celebrated optimization algorithm for
large-scale machine learning, the adaptive gradient SGD —
i.e., adaptive step size determined by the historical informa-
tion — has been popular for solving many machine learning
tasks (Bartlett et al., 2007; Duchi et al., 2011a; McMahan
& Streeter, 2010; Li & Orabona, 2019; Ward et al., 2019;
Kingma & Ba, 2015). Nevertheless, the adaptive random
walk gradient descent remains unstudied. In particular, it is
natural to ask:

Does adaptive random walk gradient descent output the
desired minimizer? If it does, how fast? Can the adaptive

algorithm be faster than the non-adaptive one?

We answer the above questions affirmatively and derive
convergence rates for adaptive online learning for dependent
data under mild assumptions.

1.1. Notation

Throughout this paper, we use bold face letters to denote
vectors, e.g., x ∈ Rd, and we use I ∈ Rd to denote the
vector whose entries are all 1s. The j-th coordinate of a
vector x is denoted by xj . If t > 0 and xj ≥ 0, we de-
fine (x)t ∈ Rd (or [x]t ∈ Rd) in a coordinate-wise fashion.
For another vector y ∈ Rd, y/x ∈ Rd is again defined
coordinate-wisely as (y/x)j := yj/xj . If all elements of

y are nonnegative, then we define ‖x‖y :=
√∑d

j=1 yjx
2
j .

We denote E[·] as the expectation with respect to the under-
lying probability measure. we use ‖x‖1 and ‖x‖ to denote
the L1- and L2-norm of x, respectively. We denote the
minimum value of the function f as min f . We denote the
sub-algebra as χk := σ(ξ0, ξ1, . . . , ξk) with ξk being the
data received in the k-th iteration. For two positive con-
stants a, b, a = O(b) means that there exists C > 0 such
that a ≤ Cb. The notation a = Θ(b) means that a = O(b)
and b = O(a). We use a = Õ(b) and a = Θ̃(b) to hide the
logarithmic factor of b but still with the same order.

1.2. Adaptive random walk gradient descent

We assume that the random walk is {ik}k≥0, where ik ∈ V .
We formulate the adaptive random walk gradient descent in
Algorithm 1. Hyperparameter δ > 0 is used for numerical
stability, which can be set as a small number, e.g., 10−8. In
Algorithm 1, ηI/(vk + δI) 1

2 is the coordinate-wise learning

rate. Thus, Algorithm 1 can use much larger η than the
previous SGD or random walk gradient descent whose η
is selected in the same order of the desired error ε. The
projection is used to guarantee the sequence to be bounded
in the convex case since our convex analysis below requires
the function values to be Lipschitz. We note that the pro-
jection is also used in previous works on random walk, see
e.g., (Johansson et al., 2010; 2007; Ram et al., 2009; Duchi
et al., 2012; Sun et al., 2018). If {ik}k≥0 reduces to i.i.d.
samples and K is the full space, then Algorithm 1 reduces
to the AdaFom (Li & Orabona, 2019) with θ = 0. Here, we
use θ ≥ 0, i.e., with momentum. Furthermore, if we denote
v̂k := (

∑k
i=1[gi]2)/k = vk/k, step 3 and step 4 can be

reformulated as follows{
step 3← v̂k = (1− 1

k )v̂k−1 + 1
k v̂

k,

step 4← zk+1 = xk − η√
k
mk/(v̂k + δ

k I)
1
2 .

Therefore, if {ik}k≥0 reduces to the i.i.d. data, Algorithm
1 is a modification of Adam (Kingma & Ba, 2015) that
uses varying hyperparameters for the second moment vk.
Compared with the vanilla random walk gradient descent,
Algorithm 1 requires agents to send and receive extra infor-
mation (mk,vk) in each iteration.

Algorithm 1 Adaptive Random Walk Gradient Descent
Require: parameters η > 0, 0 ≤ θ < 1, δ > 0

Initialization: g0 = 0, m0 = 0, v0 = 0
for k = 1, 2, . . .

step 1: agent ik calculates gk = ∇fik(xk)
step 2: mk = θmk−1 + (1− θ)gk
step 3: vk = vk−1 + [gk]2

step 4: zk+1 = xk − ηmk/(vk + δI) 1
2

step 5: xk+1 = arg minx∈K ‖zk+1 − x‖2
(vk+δI)

1
2

step 6: uses random walk to choose a neighbor ik+1

and sends (xk,mk,vk) via edge (ik, ik+1) to ik+1

end for

1.3. Comparison with existing theoretical works

Previous closely related theoretical works can be classified
into two categories: random walk gradient descent (Johans-
son et al., 2010; 2007; Ram et al., 2009; Duchi et al., 2012;
Sun et al., 2018; 2020b) and adaptive SGD (Bartlett et al.,
2007; Duchi et al., 2011a; McMahan & Streeter, 2010; Li
& Orabona, 2019; Ward et al., 2019; Kingma & Ba, 2015;
Ward et al., 2019; Reddi et al., 2018; Chen et al., 2019). The
adaptive random walk gradient descent studied in this paper
can be considered as an integration of random walk gradient
descent and adaptive step size used in the adaptive SGD.
We present a comparison of our work against the existing
works in Table 1 to distinguish the novelty of this paper.

The theoretical analysis of adaptive random walk gradi-
ent descent is different from any existing framework. In
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References C NC ASZ Moment RW
(Johansson et al., 2010; 2007; Ram et al., 2009;

Duchi et al., 2012)

√
× × ×

√

(Sun et al., 2018)
√ √

× ×
√

(Bartlett et al., 2007)
√

×
√

× ×
(Duchi et al., 2011a; McMahan & Streeter, 2010)

√
×

√
× ×

(Li & Orabona, 2019)
√ √ √

× ×
(Ward et al., 2019) ×

√ √
× ×

(Kingma & Ba, 2015)
√

×
√

× ×
(Reddi et al., 2018; Chen et al., 2019) ×

√ √
× ×

This paper
√ √ √ √ √

Table 1. Comparisons with previous closely related works under different settings. “C” stands for “Convexity”, “NC” stands for
“NonConvexity”, “ASZ” is short for “ Adaptive Step siZe”, “Moment” means the “Momentum”, and “RW” is “Random Walk”.

particular, the traditional analysis of adaptive stochastic al-
gorithms requires the variance of the stochastic gradient to
be bounded, but this assumption usually does not hold for
random walk. Moreover, the bias cannot be treated as noise
in the random walk scenario; otherwise, the algorithm will
fail to enjoy theoretical convergence.

The dependent samples make the analysis of random walk
much more challenging than the analysis of SGD. Pre-
vious works (Johansson et al., 2010; 2007; Ram et al.,
2009; Duchi et al., 2012; Sun et al., 2018; 2020b)
on random walk gradient descent leverage the delayed
expectation technique, i.e., by investigating the condi-
tional expectation E[∇fik(xk−τ ) | χk−τ ], which is suf-
ficiently close to ∇f(xk−τ ) if τ is larger than the mixing
time. Another important technique is to bound the term
‖∇f(xk−τ )−∇f(xk)‖ by the successive difference sum
L
∑τ
t=1 ‖xk−t+1 − xk−t‖ using the Lipschitz property of

∇f . These techniques pose more challenges for random
walk than SGD. We note that Johansson et al. (2010; 2007);
Ram et al. (2009); Duchi et al. (2012) only consider ran-
dom walk gradient descent in the convex setting; nonconvex
analysis is first established in (Sun et al., 2018).

Agarwal & Duchi (2012) present a framework for analyz-
ing online learning for dependent data (without adaptive
stepsize). However, we cannot use the results presented in
(Agarwal & Duchi, 2012) for three reasons: 1) The step size
in adaptive online learning is not summable. Theoretically,
the k-th step size is greater than 1/

√
k. 2) The convexity

is not satisfied. Our problem considers the case that the
objective may be nonconvex. 3) We use the adaptive step
size determined by the historical information rather than
preset or constants.

Existing works on adaptive SGD (Bartlett et al., 2007; Duchi
et al., 2011a; McMahan & Streeter, 2010; Li & Orabona,
2019; Ward et al., 2019; Kingma & Ba, 2015; Ward et al.,
2019; Reddi et al., 2018; Chen et al., 2019) consider the
unbiased stochastic gradient. This work is the first one

that studies the performance of adaptive random walk gra-
dient descent. We also leverage the delayed expectation
technique, which indicates that our proof needs to deal
with the term L

∑τ
t=1 ‖xk−t+1 − xk−t‖2. The adaptive

SGD is quite complicated, let alone with extra time-varying
items. To this end, a novel line of analysis is developed
in this paper. The high-level idea for overcoming these
difficulties is summarized as follows: In the convex case,
we need to modify the Lyapunov function {ξk}k≥1 used
in the adaptive random walk as {ξk +

∑τ
t=0Ak−t}, where

Ak is a composition of ‖g0‖, ‖g1‖, . . . , ‖gk‖. In this way,
we can derive that E

∑τ
t=0Ak+1−t − E

∑τ
t=0Ak−t ≥∑τ

t=1 E‖xk−t+1 − xk−t‖2. The nonconvex case is even
more complicated, and we need to design another Lyapunov
function.

1.4. More related works

Random walk gradient descent. Bertsekas (1997) uses
a cyclic way to access the data with a special weighting,
which is indeed a random walk on a ring graph, for least
squares problems. Lopes & Sayed (2007) apply random
walks to the adaptive networks to address the problem of
linear estimation in a cooperative fashion. Johansson et al.
(2010; 2007) study the performance of a more general case
of random walk gradient descent, i.e., SGD with Markov
chain samplings. In a later work, Ram et al. (2009) alle-
viate the Markov chain’s time-homogeneous assumption
but present stronger results. Duchi et al. (2012) prove that
random walk gradient descent can be as fast as SGD even
with time non-homogeneous Markov chains. In the works
mentioned above, the Markov chain is required to be re-
versible, and the functions are assumed to be convex. The
non-reversible Markov chains online algorithms are studied
in (Sun et al., 2018). An interesting result is that Sun et al.
(2018) prove the convexity can be removed for an expected
minimization problem. The variance reduction random walk
gradient descent is further studied in (Sun et al., 2020b). The
generalization bound is proved in (Agarwal & Duchi, 2012)
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for general SGD for dependent data, and Lei et al. (2015;
2019) present the data-dependent generalization bounds for
multi-class classification. In (Mao et al., 2020), the ADMM
combined with random walk is proposed for solving convex
decentralized optimization problems, in which the authors
prove that ADMM with random walk can cost less commu-
nications than many other decentralized algorithms to reach
the same desired error in some cases.

Adaptive stochastic algorithms. The first adaptive online
gradient descent is developed in (Bartlett et al., 2007), and
their regret rates are established under the strong convexity
assumption. The adaptive stochastic gradient (AdaGrad)
is proposed by Duchi et al. (2011a); McMahan & Streeter
(2010), whose convergence is proved under the convex as-
sumption. AdaGrad can achieve faster convergence than
SGD when the gradients are sparse. The convergence of
AdaGrad, in terms of gradient norm, for nonconvex prob-
lems is proved by Li & Orabona (2019). A sharp analysis of
AdaGrad is given in (Ward et al., 2019). In (Zou et al., 2018),
the authors present the convergence of a unified variant for
AdaGrad. Momentum has also been integrated into the adap-
tive gradient algorithms to accelerate their convergence and
results in Adam and NAdam (Kingma & Ba, 2015; Dozat,
2016). The nonergodic convergence result of the gradient’s
norm for adaptive gradient descent is presented in (Li &
Orabona, 2019). The authors of (Reddi et al., 2018) provide
a convex stochastic optimization problem for which Adam
fails to converge to the optimal solution. To rectify the pos-
sible divergence of Adam, a maximum way modification to
the weights is proposed in (Reddi et al., 2018). In (Chen
et al., 2019), a theoretical framework for analyzing gen-
eral adaptive stochastic algorithms is established. In (Zou
et al., 2019), the authors provide easy-to-check sufficient
conditions for the convergence of adaptive SGD, helping
to use the algorithms in applications. The non-ergodic con-
vergence results of the adaptive SGD is proved in (Li &
Orabona, 2019; Sun et al., 2020a). The quantized Adam
is proposed by (Chen et al., 2021), which significantly im-
proves the communication efficiency.

1.5. Our contributions

In this paper, we consider the adaptive random walk gradient
descent — a decentralized method — for solving the finite-
sum minimization problem in Equation (1). We summarize
our contributions below.

• In convex cases, we prove the convergence of adaptive
random walk gradient descent in function values, showing
adaptive random walk gradient descent is as fast as the
counterpart algorithm without using adaptive step size.

• In nonconvex cases, we establish the convergence rate,
in the gradient norm, for adaptive random walk gradient
descent.

• We further study the zeroth-order adaptive random walk
gradient descent; again we prove its convergence in both
convex and nonconvex settings.

• We show that when the stochastic gradients are sparse,
the adaptive step size schemes considered in this paper all
enjoy theoretical acceleration guarantees.

2. Assumptions
In this section, we list several necessary and commonly used
assumptions for the subsequent analysis.

In the random walk gradient descent, ik calculates local
gradient and selects a neighbor ik+1 ∈ N (ik) randomly.
Then ik sends the gradient information to ik+1 via edge
(ik, ik+1). We assume that the random walk satisfies the
following assumption.

Assumption 1: Let P ∈ Rn×n be the transition probabil-
ity matrix of the irreducible and aperiodic Markov chain
induced by the random walk, where Pi,j = P(ik+1 = j |
ik = i) and the stationary distribution is π∗ := I>/n.

For all i ∈ {1, 2, . . . , n}, the mixing time of the Markov
chain is defined as follows

τmix(ε) := arg min
t
{t | ‖[P t]i,: − π∗‖ ≤ ε}. (2)

Mixing time is an important notion for Markov process,
which tells us how long a stochastic process evolves until its
state has a distribution that is close to its stationary distribu-
tion. Several kinds of mixing times have been well studied,
see, e.g., (Montenegro & Tetali, 2006). For random walk
gradient descent, Assumption 1 has been widely used in
(Johansson et al., 2010; 2007; Ram et al., 2009; Duchi et al.,
2012; Sun et al., 2018; 2020b). In [Footnote 1, (Mao et al.,
2020)], the authors show that

τmix(ε) = Θ
( ln(1/ε)

ln(1/σ(P ))

)
, 1

where 0 ≤ σ(P ) := max{‖P>y‖/‖y‖ | y>I = 0,y ∈
Rn} < 1 2. We can see that σ(P ) represents the speed
of the Markov chain converges to the stationary state: the
smaller σ(P ) is, the faster the Markov chain converges.
Note that σ(P ) = 0 corresponds the complete graph and
i.i.d. sampling case, i.e., P(ik+1 = j | ik = i) = 1/n.
Assumption 1 can also be satisfied for many other kinds of
Markov processes. For instance, Ram et al. (2009) prove
that the time non-homogeneous Markov process with several
extra assumptions [Assumptions 4 and 5 in Section 4 of
(Ram et al., 2009)] also satisfies Assumption 1. Moreover,

1Compared with (Mao et al., 2020), we do not use the Taylor
series version. Instead, we use the convention 1

0
= +∞.

2If the transition matrix P is real and symmetric, it holds that
σ(P ) = λ2(P ) := max{|λi(P )| | λi(P ) 6= 1}.
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Assumption 1 also holds for the finite-state non-reversible
Markov chains, according to [Lemma 1, (Sun et al., 2018)].

Assumption 2: The function fi(x) is convex in the full
space with respect to x, where i ∈ {1, 2, . . . , n}. The set
K is convex and compact, which is bounded by a constant
R > 0, i.e., maxx∈K ‖x‖ ≤ R.

This paper assumes the constrained set is bounded in the
convex case. It is worth mentioning that the constrained
set could be unbounded for stochastic methods in the con-
vex case (McMahan & Abernethy, 2013; McMahan &
Orabona, 2014; Orabona et al., 2015; Joulani et al., 2020);
we leave how to get rid of the boundedness assumption
as future work. Notice that the subgradient is bounded if
the constrained set is bounded [Theorem 10.4, (Rockafel-
lar, 1970)]. Thus, according to Assumption 2, it holds that
maxi∈{1,2,...,n},x∈K{‖∇fi(x)‖} ≤ L, where L is a posi-
tive constant. The Lipschitz continuity of the function value
also follows directly from Assumption 2. In particular, if
Assumptions 2 holds, we have

|fi(x)− fi(y)| ≤ L‖x− y‖,∀i ∈ {1, . . . , n}. (3)

If fi is nonconvex, several contraction properties fail to hold.
In this case, we use the full space assumption to simplify the
algorithm and analysis. In particular, we use the following
Assumption 2’ as a surrogate of Assumption 2.

Assumption 2’: The set K is the full space and
maxi∈{1,...,n}{‖∇f(x)‖} ≤ L.

The continuity of fi(x) with respect to x indicates that
fi(x) enjoys the finite maximum over a constrained set. We
formulate this in Assumption 3 below.

Assumption 3: It holds that R̂ :=
maxx∈K,i∈{1,...,n}{|fi(x)|} < +∞.
In the nonconvex case, we do not need the Lipschitz prop-
erty (3) because the convergence results for the nonconvex
case are described by the gradient norm rather than the func-
tion value. Thus, nonconvex proofs mainly deal with the
(stochastic) gradients instead of the (stochastic) function
values, which are controlled by (3) in the convex case. Al-
ternatively, we need something else to bound the gradients.
Thus, the last assumption is about the differentiability and
gradient Lipschitz property.

Assumption 4: fi(·) is differentiable with Lipschitz gradi-
ent, i.e., for i ∈ {1, . . . , n}, we have

‖∇fi(x)−∇fi(y)‖ ≤ LH‖x− y‖, ∀x,y ∈ Rd. (4)

3. Main Theory
3.1. Convex case

In this part, we consider function fi(x) to be both convex
and smooth, and we show that Algorithm 1 converges as
fast as the random walk gradient descent. Furthermore, if
the historical gradients are “sparse”, we show that Algo-
rithm 1 enjoys a faster rate than the non-adaptive scheme.
Notice that vK collects the historic gradients up to the K-th
iteration, thus, the sparsity is mathematically described as

E‖(vK + δI)
1
2 ‖1 ≤ CKα, (5)

where C > 0 is a constant and 0 < α < 1/2. Due to the
boundedness of stochastic gradients {gk}k≥0, α = 1/2 can
hold in (5) without any extra assumption. Condition (5) is
very standard for analyzing adaptive stochastic optimization
(Liao et al., 2021; Duchi et al., 2011a; Reddi et al., 2018;
Chen et al., 2018; 2019; Liu et al., 2019).

Theorem 3.1. Let Assumptions 1, 2, 3, 4, and condition (5)
hold. Assume {xk}k≥1 is generated by Algorithm 1. By
setting η = min{ ln(1/σ(P ))

ln(1/ε) , 1}, then

E

[
f
(∑K

k=1 x
k

K

)
−min f

]
= O(ε), (6)

with K = Õ
(

max
{

1

ε
1

1−α [ln(1/σ(P ))]
1

1−α
, 1

ε
1

1−α

})
.

From Theorem 3.1, η is set as Õ(1) in Algorithm 1, which is
much larger than Õ(ε) that is used in SGD or random walk.
In the adaptive random walk, the historic gradients affect the
convergence rate. We see that the speed of the Markov chain
converges to the stationary state has an impact on the speed
of the adaptive random walk: the faster the Markov chain
is, i.e., a smaller σ(P ), the faster the adaptive random walk
gradient descent converges. This phenomenon is similar to
the convergence of the Markov gradient descent proved by
Ram et al. (2009); Duchi et al. (2012); Sun et al. (2018).
In the general case (α = 1/2), if σ(P ) is not too closed
to 1, the adaptive random walk gradient descent converges
almost as fast as random walk and SGD (Õ(1/ε2)); while
when stochastic gradients are “sparse”, adaptive random
walk can achieve a better iteration complexity, given by

Õ
( 1

ε
1

1−α

)
, 0 < α <

1

2
.

When σ(P ) = 0 (i.e., the i.i.d case), the convergence result
of Theorem 3.1 matches the existing rates of adaptive SGD.

3.2. Nonconvex case

In this part, we consider nonconvex function fi(x), and we
assume K is the full space. Then, the step 5 of Algorithm 1
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reduces to xk+1 = zk+1, and the update becomes

xk+1 = xk − ηmk/(vk + δI)
1
2 .

In the nonconvex case, we consider the following condition

‖vk‖1 ≤ C · kν , where constants C > 0, 0 < ν ≤ 1. (7)

We can see that ν = 1 holds for the bounded stochastic
gradients; while ν < 1 means the stochastic gradients are
“sparse”. Compared with (5), the interval of ν changes since
(7) gets rid of the square root.

Theorem 3.2. Let Assumptions 1, 2’, 4, and condition (7)
hold. Assume {xk}k≥1 is generated by Algorithm 1. By
setting η = min{ ln(1/σ(P ))

ln(1/ε) , 1}, we have

min
1≤k≤K

{E‖∇f(xk)‖2} = O(ε) (8)

with K = Õ
(

max
{

1

ε
2

2−ν [ln(1/σ(P ))]
2

2−ν
, 1

ε
2

2−ν

})
.

Theorem 3.2 shows that the convergence rate of nonconvex
adaptive random walk gradient descent is almost as fast as
the nonconvex random walk even without sparse gradients
assumption. If σ(P ) = 0, i.e., i.i.d. sampling, we obtain
the same convergence rate for adaptive SGD as the existing
results (Duchi et al., 2011a; Chen et al., 2018) (ν = 1 can
be easily satisfied for the bounded stochastic gradients).
Similar to the convex case, when 0 < ν < 1, adaptive
random walk gradient descent enjoys a faster rate than the
non-adaptive scheme.

4. Extension to Zeroth-Order Oracle
In this section, we consider the zeroth-order adaptive ran-
dom walk gradient descent; the gradient may not be avail-
able in this case. We assume the function fi(x) is differ-
entiable. The first-order information is usually obtained by
using a two-points feedback strategy (Duchi et al., 2015;
Ghadimi & Lan, 2013; Agarwal et al., 2010; Shamir, 2017),
and we employ the method given in (Duchi et al., 2015;
Ghadimi & Lan, 2013). In particular, we use the estima-
tor of the gradient of a smooth function G by querying at
x + rh and x with returning d(G(x+rh)−G(x))

r h, where h
is a random unit vector, and r > 0 is a small parameter, and
d is the number of the dimension. When ∇G is uniformly
bounded, [Theorem 3.1, (Ghadimi & Lan, 2013)] gives∥∥∥∥Eh

[
d(G(x + rh)−G(x))

r
h

]
−∇G(x)

∥∥∥∥ ≤ rL(d+ 3)
3
2

2
.

Note that d+ 3 ≤ 4d, rL(d+3)
3
2

2 ≤ 4Lrd
3
2 , which implies

that∥∥∥∥Eh(
d(G(x + rh)−G(x))

r
h)−∇G(x)

∥∥∥∥ = O(r · d 3
2 ).

In the zeroth-order version, we use the following estimate
of ∇fik(x),

gk =
d(fik(x + rh)− fik(x))

r
h. (9)

We summarize the zeroth-order adaptive gradient online
learning algorithm in Algorithm 2. By the mean value
theorem, it holds that ‖gk‖ ≤ d · R̂. Thus, we consider
replacing C in (5) and (7) with Cdα and Cdν , respectively.

Algorithm 2 Zeroth-Order Adaptive Gradient Online Learn-
ing
Require: parameters η > 0, 0 ≤ θ < 1, ε > 0, τ > 0,
d > 0
Initialization: g0 = 0, m0 = 0, v0 = 0
for k = 1, 2, . . .

step 1: agent ik calculates gk by (9)
step 2∼6: same as Algorithm 1

end for

The convergence of Algorithm 2 with convex and nonconvex
settings is presented in the following proposition.
Proposition 4.1. Assume {xk}k≥1 is generated by Algo-

rithm 2 with η = min
{

ln(1/σ(P ))
ln(1/ε) , 1

}
.

• (Convex) Let Assumptions 1, 2, 3, 4, and condition
(5) hold with 0 < α ≤ 1

2 and C = O(dα). To
reach ε error as (6), we need to set r = O(ε/d

3
2 )

andK = Õ
(

max
{

d
α

1−α

ε
1

1−α [ln(1/σ(P ))]
1

1−α
, 1

ε
1

1−α

})
in the

worst case.

• (Nonconvex) Let Assumptions 1, 2’, 4, and condition
(7) hold with 0 < ν ≤ 1 and C = O(dν). To
reach ε error as (8), we need to set r = O(ε

2
2−ν /d

3
2 )

and K = Õ
(

max
{

d
2ν

2−ν

ε
2

2−ν [ln(1/σ(P ))]
2

2−ν
, 1

ε
2

2−ν

})
in the

worst case.

Proposition 4.1 shows that in zeroth versions, large di-
mension d deteriorates the rate of adaptive algorithms.
When r is small enough, Algorithm 2 can also enjoy the
same convergence rate as the fist-order version, which
is unsurprising due to (9). When r → 0, it follows
limr→0 E(

d(fik (x+rh)−fik (x))
r h

∣∣∣h) = ∇fik(x). Com-
pared to the convex case, the nonconvex case requires a
much smaller r.

5. Experimental Results
We contrast the performance of adaptive and non-adaptive
random walk algorithms for training machine learning mod-
els, including logistic regression (LR), multi-layer percep-
tron (MLP), and convolutional neural networks (CNNs). We
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evaluate the performance of the models on the benchmark
MNIST and CIFAR10 image classification tasks, where
MNIST/CIFAR10 contains 60K/50K and 10K/10K images
for training and test, respectively. For decentralized opti-
mization, we consider two classical undirected graphs that
connect all clients, namely, the ring and 3-regularly ex-
pander graphs (Hoory et al., 2006), as illustrated in Figure 1.
Again, each node represents a client, and each edge repre-
sents a potential communication channel.

Ring 3-regular

Figure 1. An illustration of the ring and 3-regular expander graphs
with 10 nodes.

We aim to validate our theoretical results numerically. In
particular, when the gradients are sparse, adaptive random
walk gradient descent converges faster than the non-adaptive
counterpart. We simulate the sparse gradient in training ma-
chine learning models in a decentralized fashion by using
the following randomized scheme: Given a probability vec-
tor p ∈ Rd (pi > 0 for i ∈ {1, 2, · · · , d}), let z ∈ Rd be
a binary-valued random vector, in which P(zi = 1) = pi
and P(zi = 0) = 1− pi. Then, we define the sparsification
operation Tp(·) : Rd → Rd as follows

[Tp(x)]i :=
xizi
pi

, for i = 1, 2, · · · , d.

It is evident that E[Tp(x)] = x, making the sparsified gradi-
ent an unbiased estimate of the exact gradient. Additionally,
the expected sparsity of Tp(x) is ‖p‖1, which makes it easy
to control the sparsity rate. We denote ‖p‖1/d as p.

5.1. Training LR for MNIST classification

We consider decentralized training of the logistic regression
model for MNIST classification in this subsection. We
randomly partition the training data into ten even groups in
an i.i.d. fashion. Each client keeps one group of training
data without sharing it with other clients. In training, we set
the batch size to be 128. We fine-tune the step size for both
adaptive and non-adaptive random walk gradient descent,
and we use the initial learning rate of 0.003 and 0.1 for
adaptive and non-adaptive algorithms, respectively 3. The
momentum hyperparameter is set to 0.9 for both solvers.

3These step sizes are consistent with the widely used ones
for Adam and SGD, respectively. Indeed, we tune the step sizes
leveraging Adam and SGD experiences.

Moreover, we set the weight decay for both adaptive and
non-adaptive algorithms to be 5× 10−4.

Figures 2 (clients are connected by a ring graph) and 3
(clients are connected by a 3-regular expander graph) plot
the training and test loss of training logistic regression model
for MNIST classification using adaptive and non-adaptive
gradient descent, respectively. In these experiments, we
consider gradient with different sparsity levels, which is
controlled by the parameter p, i.e., we set all components of
the vector s to be p. We see that when p = 1 (non-sparse
gradient) adaptive algorithm achieves the smaller loss in
both training and test. As the sparsity of gradients increases
(p decreases), the performance of the non-adaptive algo-
rithm becomes worse and worse. However, the adaptive
algorithm performs quite consistently under different spar-
sity levels. These results confirm that when the gradient
is sparse, the adaptive algorithm is much faster than the
non-adaptive counterpart. Another interesting result is that
when the gradient is very sparse, e.g., when p = 0.1 or
0.2, both training and test loss of non-adaptive algorithm
increases after a certain number of iterations, indicating
that non-adaptive algorithm can be unstable for stochastic
decentralized optimization with very sparse gradient.
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Figure 2. Contrasting adaptive (Ada) and non-adaptive (NAda)
random walk algorithms for decentralized optimization with both
sparse (p < 1) and non-sparse gradients (p = 1). There are ten
clients connected by a ring graph, and they are training a logistic
regression model for MNIST classification.
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Figure 3. Contrasting adaptive and non-adaptive random walk gra-
dient descent, for training logistic regression model for MNIST
classification, with both sparse (p < 1) and non-sparse gradients
(p = 1). There are ten clients connected by a 3-regular expander
graph.
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5.2. Training MLP for MNIST classification

In this part, we consider decentralized training of a simple
MLP model for MNIST classification. The model contains
two hidden layers with 200 units, each using ReLU activa-
tion (199,210 parameters). Again, we consider i.i.d. parti-
tioning of the data into ten clients and using the same setting
as Section 5.1 for both adaptive and non-adaptive stochastic
gradient algorithms. Figures 4 and 5 show the training and
test loss of both solvers when the clients are connected by
the ring and 3-regular expander graphs, respectively. These
results indicate that both adaptive and non-adaptive algo-
rithms converge with different gradient sparsity. However,
when the gradient is sparse, say p = 0.1 or 0.2, the non-
adaptive solver converges much slower in both training and
test loss no matter the clients are connected by a ring or
expander graph. In contrast, the adaptive solver performs
consistently well under different gradient sparsity rates.
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Figure 4. Comparison of adaptive and non-adaptive random walk
algorithms, with both sparse (p < 1) and non-sparse gradients
(p = 1), for training an MLP model for MNIST classification. In
this experiment, we have ten clients connected by a ring graph.
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Figure 5. Comparison of adaptive and non-adaptive random walk
algorithms, with both sparse (p < 1) and non-sparse gradients
(p = 1), for training an MLP for MNIST classification. Here we
consider ten clients connected by a 3-regular expander graph.

5.3. Training CNN for CIFAR10 classification

We further use the adaptive and non-adaptive random walk
to train a small convolutional neural network for CIFAR10
classification. We use the same network architecture, exper-
imental setting, data augmentation, and i.i.d. data partition
over clients as used in the paper (McMahan et al., 2017).
Figures 6 and 7 depict the training and test loss of different

solvers at different gradient sparsity rates when the ring and
3-regular expander graphs are used to connect clients. These
results resonate with the results in Sections 5.1 and 5.2 and
further confirm that adaptive random walk is significantly
faster than the non-adaptive counterpart when the stochastic
gradient is sparse; the gain becomes more significant when
the gradient becomes more sparse. Another interesting ob-
servation is that both adaptive and non-adaptive random
walks can easily overfit when the gradient is not sparse. Us-
ing a sparse gradient can overcome overfitting. We leave
the study of the generalization of the adaptive random walk
as future work.
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Figure 6. Contrasting adaptive and non-adaptive random walk gra-
dient descent for training a CNN model for CIFAR10 classification
in a decentralized fashion. In this experiment, we consider the set-
ting where ten clients are connected by a ring graph and consider
both sparse (p < 1) and non-sparse gradients (p = 1).
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Figure 7. Contrasting adaptive and non-adaptive random walk gra-
dient descent for training a CNN for CIFAR10 classification in a
decentralized fashion. In this experiment, we consider the setting
where ten clients are connected by a 3-regular expander graph and
study both sparse (p < 1) and non-sparse gradients (p = 1).

6. Concluding Remarks
In this paper, we investigate the adaptive random walk gradi-
ent descent and establish its theoretical performance bounds
in both convex and nonconvex settings. Our results reveal
that the convergence speed of adaptive random walk gra-
dient descent outperforms the one without adaptive step
sizes for sparse gradients. We also propose the zeroth-order
surrogate algorithms with performance guarantees when
the gradient is unavailable. There are numerous avenues
for future work: 1) How to relax the constrained set to the
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unbounded scenario in the convex case? 2) Can we estab-
lish the lower bound for adaptive random walk gradient
descent? And 3) Can we integrate the idea of federated
learning (McMahan et al., 2017), i.e., using multiple local
iterations before communication, with the adaptive random
walk?

Acknowledgements
This work is sponsored in part by National Key R&D
Program of China (2021YFB0301200), Hunan Provincial
Natural Science Foundation of China (2022JJ10065), and
the National Science Foundation of China (62025208 and
61906200).

References
Agarwal, A. and Duchi, J. C. The generalization ability of

online algorithms for dependent data. IEEE Transactions
on Information Theory, 59(1):573–587, 2012.

Agarwal, A., Dekel, O., and Xiao, L. Optimal algorithms
for online convex optimization with multi-point bandit
feedback. In The 23rd Conference on Learning Theory,
pp. 28–40, 2010.

Bartlett, P. L., Hazan, E., and Rakhlin, A. Adaptive online
gradient descent. Proceedings of the 20th International
Conference on Neural Information Processing Systems,
pp. 65–72, 2007.

Bertsekas, D. P. A new class of incremental gradient meth-
ods for least squares problems. SIAM Journal on Opti-
mization, 7(4):913–926, 1997.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Gossip
algorithms: Design, analysis and applications. In INFO-
COM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings
IEEE, volume 3, pp. 1653–1664. IEEE, 2005.

Chang, T.-H., Hong, M., and Wang, X. Multi-agent dis-
tributed optimization via inexact consensus admm. IEEE
Trans. Signal Processing, 63(2):482–497, 2015.

Chen, A. I. and Ozdaglar, A. A fast distributed proximal-
gradient method. In Communication, Control, and Com-
puting (Allerton), 2012 50th Annual Allerton Conference
on, pp. 601–608. IEEE, 2012.

Chen, C., Shen, L., Huang, H., and Liu, W. Quantized Adam
with error feedback. ACM Transactions on Intelligent
Systems and Technology (TIST), 12(5):1–26, 2021.

Chen, X., Liu, S., Sun, R., and Hong, M. On the conver-
gence of a class of Adam-type algorithms for non-convex
optimization. In ICLR (Poster), 2019. URL https:
//openreview.net/forum?id=H1x-x309tm.

Chen, Z., Yuan, Z., Yi, J., Zhou, B., Chen, E., and Yang,
T. Universal stagewise learning for non-convex problems
with convergence on averaged solutions. In International
Conference on Learning Representations, 2018.

Dozat, T. Incorporating nesterov momentum into Adam. In
ICLR Workshop, 2016. URL https://openreview.
net/forum?id=OM0jvwB8jIp57ZJjtNEZ.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011a.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual aver-
aging for distributed optimization: Convergence analysis
and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2011b.

Duchi, J. C., Agarwal, A., Johansson, M., and Jordan, M. I.
Ergodic mirror descent. SIAM Journal on Optimization,
22(4):1549–1578, 2012.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., and Wibisono,
A. Optimal rates for zero-order convex optimization: The
power of two function evaluations. IEEE Transactions
on Information Theory, 61(5):2788–2806, 2015.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Hendrikx, H., Bach, F., and Massoulie, L. Accelerated
decentralized optimization with local updates for smooth
and strongly convex objectives. In Chaudhuri, K. and
Sugiyama, M. (eds.), Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learning
Research, pp. 897–906. PMLR, 16–18 Apr 2019.

Hoory, S., Linial, N., and Wigderson, A. Expander graphs
and their applications. Bulletin of the American Mathe-
matical Society, 43(4):439–561, 2006.

Hosseini, S., Chapman, A., and Mesbahi, M. Online dis-
tributed convex optimization on dynamic networks. IEEE
Trans. Automat. Contr., 61(11):3545–3550, 2016.

Inalhan, G., Stipanovic, D. M., and Tomlin, C. J. Decen-
tralized optimization, with application to multiple aircraft
coordination. In Proceedings of the 41st IEEE Confer-
ence on Decision and Control, 2002., volume 1, pp. 1147–
1155. IEEE, 2002.
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We denote

β(T ) :=
{( n∑

i=1

‖[P T ]i,: − π∗‖2
)1/2}

.

With Assumption 1 and [Footnote 1, (Mao et al., 2020)], it holds β(T ) = O
(
σ(P )T

)
.

A. Proofs of Results in the Convex Scenario
A.1. Technical lemmas

Lemma A.1. Let {xk}k≥1 be generated by the adaptive online learning with dependent data (Algorithm 1) and let the set
K be bounded. Then, it follows that

‖xk+1 − xk‖ ≤ ‖xk+1 − xk‖
(vk+δI)

1
2
/δ

1
4 ≤ η‖mk/(vk + δI)

1
4 ‖/δ 1

4 .

Given any x∗ ∈ K, α > 0, and T ∈ Z+, we first introduce the following shorthand notation
Ak := E‖[mk]2/(vk + δI) 1

2 ‖1,
Bk := E

(
〈x∗ − xk,mk〉

)
,

Ck := ηθAk−1 + 2(1− θ)η2TLH
∑T
h=1Ak−h + 2(1− θ)(RL+ R̂)β(T ).

(10)

We have the following lemmas.
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Lemma A.2. Assume {xk}k≥1 is generated by Algorithm 1, then we have

K∑
k=1

Ak ≤
K∑
k=1

E‖(gk)2/(vk + δI)
1
2 ‖1.

Lemma A.3. Assume {xk}k≥1 is generated by Algorithm 1, and Assumption 1, 2, 3, 4 hold, then the following result holds

Bk + (1− θ)E(f(xk)− f(x∗)) ≤ θBk−1 + Ck.

A.2. Proof of Theorem 3.1

Given K ∈ Z+, Lemma A.3 indicates the following inequalities

BK + (1− θ)E(f(xK)− f(x∗)) ≤ θBK−1 + CK ,

BK−1 + (1− θ)E(f(xK−1)− f(x∗)) ≤ θBK−2 + CK−1,

BK−2 + (1− θ)E(f(xK−2)− f(x∗)) ≤ θBK−3 + CK−2,

...

B1 + (1− θ)E(f(x1)− f(x∗)) ≤ θB0 + C1.

Summing the inequalities above, we then get

(1− θ)
K∑
k=1

E(f(xk)− f(x∗)) ≤ −BK + (θ − 1)

K−1∑
k=1

Bk +

K∑
k=1

Ck

≤ (θ − 1)

K−1∑
k=1

Bk +

K∑
k=1

Ck + 2RL, (11)

where we used the following inequality

−BK = E
(
〈xK − x∗,mK〉

)
≤ E‖xK − x∗‖ · ‖mK‖ ≤ 2RL,

due to Assumption 2.

The definition of zk indicates that

zk+1 − x∗ = xk − x∗ − ηmk/(vk + δI)
1
2 .

On the other hand, we have

Diag
(
(vk + δI)

1
2

)
· (zk+1 − x∗) = Diag

(
(vk + δI)

1
2

)
· (xk − x∗)− ηmk.

We are then led to

‖zk+1 − x∗‖2
(vk+δI)

1
2

= ‖x∗ − xk‖2
(vk+δI)

1
2

+ 2η〈mk,x∗ − xk〉+ η2‖[mk]2/(vk + δI)
1
2 ‖1.

Let
Proj(x) := arg min

y∈K
‖x− y‖

(vk+δI)
1
2
.

The convexity of K indicates that Proj(·) is contractive. For any x∗ ∈ K, Proj(x∗) = x∗, we then have

‖xk+1 − x∗‖2
(vk+δI)

1
2

= ‖Proj(zk+1)− Proj(x∗)‖2
(vk+δI)

1
2
≤ ‖zk+1 − x∗‖2

(vk+δI)
1
2
.

Thus, we can get

‖xk+1 − x∗‖2
(vk+1+δI)

1
2

= ‖xk+1 − x∗‖2
(vk+δI)

1
2

+ ‖xk+1 − x∗‖2
(vk+1+δI)

1
2−(vk+δI)

1
2

≤ ‖x∗ − xk‖2
(vk+δI)

1
2

+ ‖xk+1 − x∗‖2
(vk+1+δI)

1
2−(vk+δI)

1
2

+ 2η〈mk,x∗ − xk〉+ η2‖[mk]2/(vk + δI)
1
2 ‖1.
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Taking total expectation gives us

− 2ηBk ≤ E‖x∗ − xk‖2
(vk+δI)

1
2
− E‖xk+1 − x∗‖2

(vk+1+δI)
1
2

+ η2Ak + E‖xk+1 − x∗‖2
(vk+1+δI)

1
2−(vk+δI)

1
2
. (12)

With Assumption 2, we are then led to

‖xk+1 − x∗‖2
(vk+1+δI)

1
2−(vk+δI)

1
2
≤ 4R2(‖(vk+1 + δI)

1
2 ‖1 − ‖(vk + δI)

1
2 ‖1). (13)

With (13), summation of (12) from k = 1 to K − 1 yields

K−1∑
k=1

(−Bk) ≤ 1

2η
‖x∗ − x1‖2

(v1+δI)
1
2

+
1

2
η

K−1∑
k=1

Ak +
2R2

η
E‖(vK + δI)

1
2 ‖1.

Together with (11), we then have

(1− θ)
K∑
k=1

E(f(xk)− f(x∗)) ≤ (1− θ)
( 1

2η
E‖x∗ − x1‖2

(v1+δI)
1
2

+
1

2
η

K−1∑
k=1

Ak

+
2R2

η
E‖(vK + δI)

1
2 ‖1
)

+

K∑
k=1

Ck + 2RL. (14)

Now, we turn to bound the right side of (14). Obviously, we have 1
2ηE‖x

∗ − x1‖2
(v1+δI)

1
2
≤ 2R2

η

√
L+ δ. Using [Lemma 9

in the appendix, (Li & Orabona, 2019)] and Lemma A.2, we have

1

2
η

K−1∑
k=1

Ak ≤
η

2
E‖(vK + δI)

1
2 ‖1. (15)

Also, we can get

K−1∑
k=1

Ck ≤ ηθE‖(vK + δI)
1
2 ‖1 + 2K(1− θ)RLβ(T ) + 2T 2η2LH(1− θ)E‖(vK + δI)

1
2 ‖1. (16)

Substituting the bounds (15) and (16) into (14), we then get

E
[
f
(∑K

k=1 x
k

K

)
−min f

]
≤ c1 + c2(K) + c3(T,K)

K
,

where c1 := 2RL
1−θ + 2R2

η

√
L+ δ, c2(K) := [ 2R

2

η + η
2 + ηθ

1−θ ] · E‖(vK + δI) 1
2 ‖1, and c3(T,K) := 2K(RL+ R̂)β(T ) +

2T 2η2LHE‖(vK + δI) 1
2 ‖1. By setting η = min{1/T, 1}, we then get

E
[
f
(∑K

k=1 x
k

K

)
−min f

]
= O

(
(T + 1)E‖(vK + δI) 1

2 ‖1
K

+
T

K
+ β(T )

)
= O

(
T + 1

K1−α +
T

K
+ β(T )

)
. (17)

By setting β(T ) = O(ε), we get T = O
(

ln(1/ε)
ln(1/σ(P ))

)
and K = O

(
max

{
ln(1/ε)

1
1−α

ε
1

1−α [ln(1/σ(P ))]
1

1−α
, ln(1/ε)

1
1−α

ε
1

1−α

})
.

B. Proofs of Results in the Nonconvex Scenario
B.1. Technical lemmas

Due to the fact that the scheme is changed in the nonconvex case (we get rid of the projections), we define new notation for
the subsequent analysis. Given any T ∈ Z+, we denote the following items to simplify the presentations of the following
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lemmas
Âk := E‖[mk]2/(vk + δI)‖1,

B̂k := E
(
〈−∇f(xk),mk/(vk + δI) 1

2 〉
)
,

Ĉk := θLHηÂk−1 +
(1−θ)η2L2

HT
2δ

∑T
h=1 Âk−h + θL2(E‖I/(vk−1 + δI) 1

2 ‖1 − E‖I/(vk + δI) 1
2 ‖1) + (1− θ)L2β(T ).

(18)

Lemma B.1. Assume {xk}k≥1 is generated by Algorithm 1, then we have

K∑
k=1

Âk ≤
K∑
k=1

E‖(gj)2/(vk + δI)‖1.

Lemma B.2. Assume {xk}k≥1 is generated by Algorithm 1 and the functions are nonconvex. Let K be the full space and
Assumptions 2’ and 4 hold, then the following result holds

B̂k +
(1− θ)

2
E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)
≤ θB̂k−1 + Ĉk.

B.2. Proof of Theorem 3.2

According to Lemma B.2, we have

(1− θ)
2

K∑
k=1

E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)
≤ −B̂K + (θ − 1)

K−1∑
k=1

B̂k +

K∑
k=1

Ĉk

≤ (θ − 1)

K−1∑
k=1

B̂k +

K∑
k=1

Ĉk +
L2

√
δ
. (19)

The Lipschitz property of the gradients gives

Ef(xk+1)− Ef(xk) ≤ E〈∇f(xk),xk+1 − xk〉+
LHE‖xk+1 − xk‖2

2

= ηB̂k +
LHη

2

2
Âk. (20)

Combine with (20), we get the following estimate

K−1∑
k=1

−B̂k ≤ LHη
K−1∑
k=1

Âk +
2f(x1)

η
. (21)

On the other hand, we have the following bound

2

1− θ

K∑
k=1

Ĉk ≤ (
2θ

1− θ
LHη +

η2L2
HT

2

δ
)

K∑
k=1

Âk +
2θL2

(1− θ)
√
δ

+ 2KL2β(T ). (22)

Using [Lemma 2, (Li & Orabona, 2019)] and Lemma B.1, we have

K∑
k=1

Âk ≤ ln(
KL2 + δ

δ
). (23)

Substituting (23), (22) and (21) into (19), then we get

K∑
k=1

E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)
≤
( 2θ

1− θ
LHη +

η2L2
HT

2

δ

)
ln(

KL2 + δ

δ
)

+
(1 + θ)L2

(1− θ)
√
δ

+ 2KL2β(T ) +
2f(x1)

η
. (24)
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Noticing that

K∑
k=1

E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)
≥ (

K∑
k=1

1

k
ν
2

√
C

) · min
1≤k≤K

{E‖∇f(xk)‖2},

we then complete the proof by the fact that 2
2−ν ≤ 2 when 0 < ν ≤ 1. Thus, we can get

min
1≤k≤K

{E‖∇f(xk)‖2} ≤ c3 + c4(K) + c5(T,K)

K1− ν2
,

where c3 := 8θL2
√
C

(1−θ)
√
δ

+ 8
√
Cf(x1)
η , c4(K) := 4(1+θ)LH

√
Cη

(1−θ) ln(KL
2+δ
δ ), and c5(T,K) := 8KL2

√
Cβ(T ) +

4η2L2
H

√
CT 2

δ ln(KL
2+δ
δ ). With η = min{1/T, 1}, it is easy to see that

min
1≤k≤K

{E‖∇f(xk)‖2} = Õ
( T + 1

K1− ν2
+K

ν
2 β(T )

)
.

If the finite mixing time assumption holds, to get the ε error for min1≤k≤K{E‖∇f(xk)‖2}, we need to set

{
K

ν
2 β(T ) = Õ(ε),
T+1

K1− ν
2

= Õ(ε).
⇒

 T = Θ̃(τmix(ε
2

2−ν )) = Θ̃( ln(1/ε)
ln(1/σ(P )) ),

K = Θ̃
(

max{ [ln(1/ε)]
2

2−ν

ε
2

2−ν [ln(1/σ(P ))]
2

2−ν
, [ln(1/ε)]

2
2−ν

ε
2

2−ν
}
)
.

C. Proofs of Results of the Zeroth Version
C.1. Technical lemmas

Lemma C.1. Assume {xk}k≥1 is generated by Algorithm 2 and Assumption 1 2, 3, 4 hold, then the following result holds

Bk + (1− θ)E(f(xk)− f(x∗)) ≤ θBk−1 + Ck + Fk,

where Ak, Bk and Ck are defined in (10) and Fk = O(r).

Lemma C.2. Assume {xk}k≥1 is generated by Algorithm 2 with nonconvex functions, K is the full space, and Assumptions
1, 2’ and 4 hold. Then the following result holds

B̂k +
(1− θ)

2
E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)
≤ θB̂k−1 + Ĉk + F̂k,

where Âk, B̂k and Ĉk are defined in (18) and F̂k = O(r)

C.2. Proof of Proposition 4.1

Convex part: Note that Lemma A.2 also holds and {gk}k≥1 is uniformly bounded by the mean-value theorem. The rest of
proof is similar to the proof of Theorem 3.1 using Lemma C.1. By setting η = min{1/T, 1}, we can get

E
[
f
(∑K

k=1 x
k

K

)
−min f

]
= O

(
dα

K
+

Tdα

K1−α + β(T ) + r · d 3
2

)
.

Nonconvex part: The proof is similar to the proof of Theorem 3.1 using Lemma C.2. By setting η = min{1/T, 1}, we can
get

min
1≤k≤K

{E‖∇f(xk)‖2} = Õ
(

dν

K1− ν2
+

Tdν

K1− ν2
+K

ν
2 β(T ) +K

ν
2 r · d 3

2

)
.
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D. Proofs of the Technical Lemmas
D.1. Proof of Lemma A.1

Let Proj(x) := arg miny∈K ‖x− y‖
(vk+δI)

1
2

. Note that Proj(xk) = xk, then we have

‖xk+1 − xk‖2
(vk+δI)

1
2

= ‖Proj(zk+1)− Proj(xk)‖2
(vk+δI)

1
2

≤ ‖zk+1 − xk‖2
(vk+δI)

1
2

= η2‖mk/(vk + δI)
1
2 ‖2

(vk+δI)
1
2

= η2‖mk/(vk + δI)
1
4 ‖2.

Combing the fact that δ
1
4 ‖xk+1 − xk‖ ≤ ‖xk+1 − xk‖

(vk+δI)
1
2

, we then get the desired result.

D.2. Proof of Lemma A.2

Notice the fact that mk = (1− θ)
∑k
j=1 θ

k−jgj when k ≥ 1, then we have

‖[mk]2/(vk + δI)
1
2 ‖1 =

d∑
i=1

|mk
i /(v

k
i + δ)

1
4 |2 ≤

d∑
i=1

(1− θ)2|
k∑
j=1

θk−jgji /(v
k
i + δ)

1
4 |2

a)

≤
d∑
i=1

(1− θ)2(

k∑
j=1

θk−j(vki + δ)
1
2 )×

k∑
j=1

θk−j(gji )
2/(vki + δ)

≤
d∑
i=1

(1− θ)2 · (vki + δ)
1
2

1− θ
·
k∑
j=1

θk−j(gji )
2/(vki + δ)

= (1− θ) ·
k∑
j=1

θk−j‖(gj)2/(vk + δI)
1
2 ‖1

b)

≤ (1− θ) ·
k∑
j=1

θk−j‖(gj)2/(vj + δI)
1
2 ‖1

where a) uses the fact that (
∑k
j=1 ajbj)

2 ≤ (
∑k
j=1 a

2
j ) · (

∑k
j=1 b

2
j ) with aj = θ

k−j
2 (vki +δ)

1
4 and bj = θ

k−j
2 gji /(v

k
i +δ)

1
2 ;

b) is due to vji ≤ vki when j ≤ k and 1 ≤ i ≤ d.

Direct calculations yield

K∑
k=1

k∑
j=1

θk−j‖(gj)2/(vj + δI)
1
2 ‖1 =

K∑
j=1

K∑
k=j

θk−j‖(gj)2/(vj + δI)
1
2 ‖1

=

K∑
j=1

K∑
k=j

θk−j‖(gj)2/(vj + δI)
1
2 ‖1 ≤

1

1− θ

K∑
j=1

‖(gj)2/(vj + δI)
1
2 ‖1.

Combining the inequalities above and replace j with k, we then get the desired result.

D.3. Proof of Lemma A.3

The convexity of fik(x) with respect to x and the fact that gk = ∇fik(xk) indicate that

E〈x∗ − xk, gk〉 ≤ E[fik(x∗)− fik(xk)]

= E[fik(xk−T )− fik(xk) + fik(x∗)− fik(xk−T )]. (25)

The Lipchitz gradient continuity of fik(x) with respect to x gives us

E[fik(xk−T )− fik(xk)] ≤ LH
2

E‖xk − xk−T ‖2 + E〈xk−T − xk,∇fik(xk)〉. (26)



Adaptive Random Walk

We also have the following result

E(fik(x∗)− fik(xk−T ) | χk−T )

=

n∑
i=1

(fi(x
∗)− fi(xk−T ))P(ik = i | χk−T )

=

n∑
i=1

(fi(x
∗)− fi(xk−T ))P(ik = i | ik−T )

=

n∑
i=1

(fi(x
∗)− fi(xk−T ))[P T ]ik−T ,i

=

n∑
i=1

(fi(x
∗)− fi(xk−T ))/n+

n∑
i=1

(fi(x
∗)− fi(xk−T ))([P T ]ik−T ,i − 1/n)

≤ f(x∗)− f(xk−T ) + 2R̂β(T )

= f(xk)− f(xk−T ) + f(x∗)− f(xk) + 2R̂β(T ). (27)

and

E(〈xk−T − xk,∇fik(xk−T )−∇f(xk−T )〉 | σ(xk, χk−T ))

= (〈xk−T − xk,

n∑
i=1

∇fi(xk−T )P(ik = i | ik−T )−∇f(xk−T )〉)

= (〈xk−T − xk,

n∑
i=1

∇fi(xk−T )[P T ]ik−T ,i −∇f(xk−T )〉)

= 〈xk−T − xk,

n∑
i=1

∇fi(xk−T )([P T ]ik−T ,i − 1/n))〉

≤ 2RLβ(T ). (28)

Note that

f(xk)− f(xk−T ) ≤ 〈∇f(xk−T ),xk − xk−T 〉+
LH
2
‖xk − xk−T ‖2. (29)

Substituting (26), (27), (29) and (28) into (25), we then get

E〈x∗ − xk, gk〉 ≤ LH‖xk − xk−T ‖2 + E〈xk−T − xk,∇fik(xk−T )−∇f(xk−T )〉
+ E〈xk−T − xk,∇fik(xk)−∇fik(xk−T )〉+ f(x∗)− f(xk) + 2R̂β(T )

≤ 2LHE‖xk − xk−T ‖2 + 2RLβ(T ) + f(x∗)− f(xk) + 2R̂β(T )

≤ 2(RL+ R̂)β(T ) + 2TLHη
2

T∑
h=1

E‖[mk−h]2/(vk−h + δI)
1
2 ‖1 + f(x∗)− f(xk). (30)

According to our algorithm and we denote Λ := E(〈x∗ − xk, gk〉 | χk), then we have

E
(
〈x∗ − xk,mk〉 | χk

)
= E

(
〈x∗ − xk, θmk−1 + (1− θ)gk〉 | χk

)
= (1− θ) · Λ + θ〈x∗ − xk,mk−1〉
= (1− θ) · Λ + θ〈x∗ − xk−1,mk−1〉+ θ〈xk − xk−1,mk−1〉
b)

≤ (1− θ) · Λ + θ〈x∗ − xk−1,mk−1〉+ θ‖xk−1 − xk‖
(vk−1+δI)

1
2
· ‖mk−1/(vk−1 + δI)

1
4 ‖

c)

≤ (1− θ) · Λ + θ〈x∗ − xk−1,mk−1〉+ ηθ‖mk−1/(vk−1 + δI)
1
4 ‖2
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where b) uses the Cauchy-Schwarz inequality 〈a, b〉 ≤ ‖a‖c · ‖b/c1/2‖, and c) depends on the iteration of our algorithm.
Taking total expectations on both sides of I and using E(E(· | χk)) = E(·), we get

Bk ≤ (1− θ)E〈x∗ − xk, gk〉+ θBk−1 + ηθAk−1. (31)

Substituting (30) into (31), we then proved the desired result.

D.4. Proof of Lemma B.1

Similar to the proof of Lemma A.2, we have

‖mk/(vk + δI)
1
2 ‖2 =

d∑
i=1

|mk
i /(v

k
i + δ)

1
2 |2 ≤

d∑
i=1

(1− θ)2|
k∑
j=1

θk−jgji /(v
k
i + δ)

1
2 |2

a)

≤
d∑
i=1

(1− θ)2(

k∑
j=1

θk−j) ·
k∑
j=1

θk−j
(gji )

2

(vki + δ)

≤
d∑
i=1

(1− θ)2 · 1

1− θ
·
k−1∑
j=1

θk−j(gji )
2/(vki + δ)

= (1− θ) ·
k∑
j=1

θk−j‖(gj)2/(vk + δI)‖1
b)
= (1− θ) ·

k∑
j=1

θk−j‖(gj)2/(vj + δI)‖1

where a) uses the fact that (
∑k
j=1 ajbj)

2 ≤
∑k
j=1 a

2
j

∑k
j=1 b

2
j with aj = θ

k−j
2 and bj = θ

k−j
2 gji /(v

k
i + δ)

1
2 , and b) is

because of vji ≤ vki when j ≤ k and 1 ≤ i ≤ d. The rest of this proof is identical to the proof of Lemma A.2.

D.5. Proof of Lemma B.2

We first consider to bound

E〈−∇f(xk)/(vk + δI)
1
2 , gk〉 = −E

(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)

+ E〈∇f(xk)/(vk + δI)
1
2 ,∇f(xk)−∇f(xk−T )〉

+ E〈∇f(xk)/(vk + δI)
1
2 ,∇f(xk−T )−∇fik(xk−T )〉

+ E〈∇f(xk)/(vk + δI)
1
2 ,∇fik(xk−T )−∇fik(xk)〉. (32)

Direct calculation together with Assumption 2 give us

|E〈∇f(xk),∇fik(xk−T )−∇f(xk−T )〉| ≤ L2β(T ). (33)

The Lipschitz property of the gradient yields

|E〈∇f(xk)/(vk + δI)
1
2 ,∇fik(xk−T )−∇fik(xk)〉|

≤ LH

δ
1
4

T∑
h=1

E‖xk−h+1 − xk−h‖‖∇f(xk)/(vk + δI)
1
4 ‖

≤ ηLH

δ
1
2

T∑
h=1

E‖mk−h/(vk−h + δI)
1
4 ‖ × ‖∇f(xk)/(vk + δI)

1
4 ‖

a)

≤ ηLH

2αδ
1
2

T∑
h=1

E‖[mk−h]2/(vk−h + δI)
1
2 ‖1 +

ηLHTαE‖[∇f(xk)]2/(vk + δI) 1
2 ‖1

2δ
1
2

b)

≤ η2L2
HT

2δ

T∑
h=1

E‖[mk−h]2/(vk−h + δI)
1
2 ‖1 +

E‖[∇f(xk)]2/(vk + δI) 1
2 ‖1

2
, (34)
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where a) uses the Cauchy inequality and α > 0, and b) is obtained by setting α = δ
1
2

ηLHT
. Substituting (34) and (33) into

(32), we get

E〈−∇f(xk)/(vk + δI)
1
2 , gk〉 ≤ −1

2
E
(
‖[∇f(xk)]2/(vk + δI)

1
2 ‖1
)

+
η2L2

HT

2δ

T∑
h=1

Âk−h + L2β(T ). (35)

We also use a shorthand notation Λ := E(〈−∇f(xk)/(vk + δI) 1
2 , gk〉 | χk) and then we have

E
(
〈−∇f(xk),mk/(vk + δI)

1
2 〉 | χk

)
= E

(
〈−∇f(xk)/(vk + δI)

1
2 , θmk−1 + (1− θ)gk〉 | χk

)
= (1− θ) · Λ + θ〈−∇f(xk)/(vk + δI)

1
2 ,mk−1〉

= (1− θ) · Λ + θ〈−∇f(xk−1)/(vk−1 + δI)
1
2 ,mk−1〉

+ θ〈[∇f(xk−1)−∇f(xk)]/(vk−1 + δI)
1
2 ,mk−1〉

+ θ〈∇f(xk)/(vk−1 + δI)
1
2 −∇f(xk)/(vk + δI)

1
2 ,mk−1〉

a)

≤ (1− θ) · Λ + θB̂k−1 + θLHηÂk−1

+ θL2(‖I/(vk−1 + δI)
1
2 ‖1 − ‖I/(vk + δI)

1
2 ‖1), (36)

where a) uses the Cauchy-Schwarz inequality and the Lipschitz property of f . Substituting (36) into (35), we then proved
the result.

D.6. Proof of Lemma C.1

Direct calculation gives us

E〈x∗ − xk, gk〉 = E〈x∗ − xk,∇fik(xk)〉+ E〈x∗ − xk, gk −∇fik(xk)〉.

[Theorem 3.1, (Ghadimi & Lan, 2013)] gives the following bound

‖E〈x∗ − xk, gk −∇fik(xk)〉‖ = O(r · d3/2).

Note that if gk ← ∇fik(xk) in (30), E〈x∗ − xk,∇fik(xk)〉 can be bounded in the same way as (30), we then complete
the proof.

D.7. Proof of Lemma C.2

For the nonconvex zeroth-order version, we have

E〈−∇f(xk)/(vk + δI)
1
2 , gk〉 = E〈−∇f(xk)/(vk + δI)

1
2 ,∇fik(xk)〉

+ E〈−∇f(xk)/(vk + δI)
1
2 , gk −∇fik(xk)〉.

Leveraging [Theorem 3.1, (Ghadimi & Lan, 2013)] and using the bound

E〈−∇f(xk)/(vk + δI)
1
2 , gk −∇fik(xk)〉 = O(r · d 3

2 ),

we then complete the proof.


