Correlated Quantization for Distributed Mean Estimation and Optimization

Ananda Theertha Suresh 1 Ziteng Sun 1 Jae Hun Ro 1 Felix Yu 1

Abstract
We study the problem of distributed mean estimation and optimization under communication constraints. We propose a correlated quantization protocol whose error guarantee depends on the deviation of data points instead of their absolute range. The design doesn’t need any prior knowledge on the concentration property of the dataset, which is required to get such dependence in previous works. We show that applying the proposed protocol as a sub-routine in distributed optimization algorithms leads to better convergence rates. We also prove the optimality of our protocol under mild assumptions. Experimental results show that our proposed algorithm outperforms existing mean estimation protocols on a diverse set of tasks.

1. Introduction
Large-scale machine learning systems often require the distribution of data across multiple devices. For example, in federated learning (Kairouz et al., 2021), data is distributed across user devices such as cell phones, and the machine learning models are trained with adaptive stochastic gradient descent methods or their variations like federated averaging (McMahan et al., 2017). Such algorithms require multiple rounds of communication between the devices and the centralized server. At each round, the devices send model updates to the server, and the server aggregates the data and outputs a new model.

In many scenarios like federated learning, the data from devices are sent to the server over wireless channels. Communication between devices and the server, especially the uplink communication, is a bottleneck. This has resulted in a series of works on compression and quantization methods to reduce the communication cost (Konečný et al., 2016; Lin et al., 2018; Alistarh et al., 2017).

At the heart of these algorithms is the distributed mean estimation protocol where each client has a model update (in the form of a vector). Each client compresses its update and transmits the compressed version to the server. The server then decompresses and aggregates the updates to approximate the mean of the updates. In this work, we study the problem of distributed mean estimation and provide the first algorithm whose dominant term of the error depends on the variance of the inputs rather than only their absolute range without additional side information. We then use these results to provide improved convergence guarantees for distributed optimization protocols. Before we proceed further, we need a few definitions.

Distributed mean estimation. Let \(\mathcal{X} \subset \mathbb{R}^d \) be the input space and \(x^n = x_1, x_2, \ldots, x_n \) be the \(n \) data points where each \(x_i \in \mathcal{X} \). For most results, we assume \(\mathcal{X} = \mathbb{B}^d(R) \) \(\overset{\text{def}}{=} \{ x \in \mathbb{R}^d \mid \|x\|_2 \leq R \} \), the \(\ell_2 \) ball of radius \(R \). We denote the mean of the vectors as

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.
\]

In compression, these \(x_i \)'s are encoded at the clients and then decoded at the server (Mayekar and Tyagi, 2020). \(Q_i \), the quantizer (encoder) at client \(i \) is a (possibly randomized) mapping from \(\mathcal{X} \rightarrow \mathcal{Y} \), where \(\mathcal{Y} \) is the quantized space. With the slight abuse of notation let \(Q^n = Q_1, Q_2, \ldots, Q_n \), be the set of quantizers. Each client encodes \(x_i \) and sends \(Q_i(x_i) \) to the server. The server then decodes \(Q^n(x^n) \) to get an estimate of the mean \(\bar{x} \). Following earlier works (Suress et al., 2017; Mayekar and Tyagi, 2020), we measure the performance of the quantizer in terms of mean squared error,

\[
\mathcal{E}(Q^n, x^n) \overset{\text{def}}{=} \mathbb{E}\|\hat{x} - \bar{x}\|_2^2,
\]

where the expectation is over the public and private randomness of the algorithm.

Distributed optimization. We consider solving the following optimization task using distributed stochastic gradient descent (SGD) methods. Let \(F : \mathbb{R}^d \rightarrow \mathbb{R} \) be an objective function and the goal is to minimize the \(F \) over an \(\ell_2 \)-bounded space \(\Omega \) \(\overset{\text{def}}{=} \{ w \in \mathbb{R}^d \mid \|w\|_2 \leq D \} \). Motivated by the federated learning setting, we assume there are \(T \)
rounds of communication. At round t, a set of n clients is involved, and each of them has access to a stochastic gradient oracle of F, denoted by g.

In distributed SGD, after selecting a random initialization $w_0 \in \Omega$, at round t, each client queries the oracle at w_t. Under communication constraints, users must quantize their obtained gradient with limited bits and send it to the server. The server then uses these quantized messages to estimate the true gradient of $F(w)$, which is the average of local gradients. We denote this estimate as $\tilde{\nabla} F(w_t)$. The server then updates the parameter with some learning rate

$$w_{t+1} = w_t - \eta_t \tilde{\nabla} F(w_t),$$

and projects it back to Ω, which is sent to all clients in the next round.

Under smoothness assumptions on F, standard results in optimization, e.g., Bubeck (2015), allow us to obtain convergence results given mean squared error guarantees for the mean estimation primitive $E[(\nabla F(w_t) - \tilde{\nabla} F(w_t))^2]$. Hence we will focus on analyzing error guarantees on the mean estimation task and discuss their implications on distributed optimization.

2. Related Works

The goal of distributed mean estimation is to estimate the empirical mean without making distributional assumptions of the data. This is different from works estimating the mean of the underlying distributional model (Zhang et al., 2013; Garg et al., 2014; Braverman et al., 2016; Cai and Wei, 2020; Acharya et al., 2021). To achieve guarantees in terms of the deviation of the data, these techniques rely on the distributional assumption, which is not applicable in our setting.

The classic algorithm for this problem is stochastic scalar quantization, where each dimension of the data is stochastically quantized to one of the fixed values (such as 0 or 1 in stochastic binary quantization). This provides an unbiased estimation with reduced communication cost. It has been shown that adding random rotation reduces quantization error (Suresh et al., 2017) and variable-length coding provides the near-optimal communication-error trade-off (Alistarh et al., 2017; Suresh et al., 2017). Many variants and improvements of the scalar quantization algorithms exist. For example, Terngrad (Wen et al., 2017) and 3LC (Lim et al., 2019) use a three-level stochastic quantization strategy. SignSGD uses the sign of the coordinate of gradients rather than quantizing it (Bernstein et al., 2018). 1-bit SGD uses error-feedback as a mechanism to reduce the error in quantization (Seide et al., 2014); error-feedback (Stich and Karimireddy, 2020) is orthogonal to our work and can be potentially used in combination. Mitchell et al. (2022) proposes to learn the quantizer leveraging data distribution across the clients using rate-distortion theory. Vargaftik et al. (2021b) proposes DRIVE, an improvement of the random rotation method by replacing the stochastic binary quantization with the sign operator. This method is shown to outperform other variants of scalar quantization. Recent work of Vargaftik et al. (2021a) generalizes DRIVE to handle any communication budget. Other techniques include Sparsified SGD (Stich et al., 2018) and sketching based approaches (Ivkin et al., 2019).

Beyond scalar quantization, vector quantization may lead to higher worst-case communication cost (Gandikota et al., 2021). Kashin’s representation has been used to quantize a d-dimensional vector using less than d bits (Caldas et al., 2018b; Chen et al., 2020; Safaryan et al., 2021). Davies et al. (2021) use the lattice quantization method which will be discussed below.

More broadly, our work is also related to non-quantization methods to improve the communication cost of distributed mean estimation, often under the context of distributed optimization. Examples include gradient sparsification (Aji and Heafield, 2017; Lin et al., 2018; Basu et al., 2019) and low rank decomposition (Wang et al., 2018; Vogels et al., 2019). These methods require assumptions of the data such as high sparsity or low rank. The idea of using correlation between local compressors has also been considered in Szlendak et al. (2021) for gradient sparsification. The paper uses shared randomness to select coordinates without-replacement across clients, which is also shown to be advantageous to independent masking. Without compression, (Yun et al., 2022) studies the effect of randomness in local data reshuffling. The paper shows that for both local and mini-batch SGD, sampling indices without-replacement can outperform sampling with-replacement counterparts in certain regimes.

Perhaps closest to our work is that of Davies et al. (2021); Mayekar et al. (2021), who proposed algorithms with error that depends on the variance of the inputs. However, these works all need certain side information about the inputs, and deviate from our work in two ways: first in Davies et al. (2021), the clients need to know the input variance. Secondly, both Davies et al. (2021); Mayekar et al. (2021) require the server to know one of the client values to a high accuracy. Finally, their information theoretically optimal algorithm is not computationally efficient, and their efficient algorithm is sub-optimal in logarithmic factors. We note that correlated random variables are also used in Mayekar et al. (2021). They use the same random variable to quantize both the input vector and the side information. This is very different from our proposed approach, which generates correlated random variables which are used for different input vectors.
3. Our Contributions

We propose correlated quantization that only requires a simple modification in the standard stochastic quantization algorithm. Correlated quantization uses shared randomness to introduce correlation between local quantizers at each client, which results in improved error bounds. In the absence of shared randomness, it can be simulated by the server sending a seed to generate randomness to all the clients. We first state the error guarantees below.

In one dimension, if all values lie in the range $[l, r]$, the error of standard stochastic quantization with k levels scales as (Suresh et al., 2017)

$$\mathcal{O}\left(\frac{(r-l)^2}{nk^2}\right).$$

In this work, we show that the modified algorithm (Algorithm 2) has error that scales as

$$\mathcal{O}\left(\min\left(\frac{\sigma_{md}(r-l)}{nk}, \frac{(r-l)^2}{nk^2}\right) + \frac{(r-l)^2}{n^2k^2}\right),$$

where σ_{md} is the empirical mean absolute deviation of points defined below:

$$\sigma_{md} \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|. \quad (1)$$

Informally, σ_{md} models how concentrated the data points are. Compared to other commonly used concentration measures, such as worst-case deviation (Mayekar et al., 2021)

$$\sigma_{\max} \overset{\text{def}}{=} \max_i |x_i - \bar{x}|,$$

and standard deviation (Davies et al., 2021)

$$\sigma \overset{\text{def}}{=} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2},$$

it holds that $\sigma_{md} \leq \sigma \leq \sigma_{\max} \leq r - l$. Hence our result implies bounds in terms of these concentration measures as well.

When $\sigma_{md} < \frac{r-l}{ek}$, i.e., the data points are “close” to each other, the proposed algorithm has smaller error than stochastic quantization. Notice that it was shown in previous works that better error guarantees can be obtained when the data points have better concentration properties. However these works rely on knowing a bound on the concentration radius (Davies et al., 2021) or side information such as a crude bound on the location of the mean (Davies et al., 2021; Mayekar et al., 2021). Different from the above, our proposed scheme doesn’t require any side information. Moreover, we remark that our proposed scheme only requires a simple modification of how randomness is generated in the standard stochastic quantization algorithm while these algorithms are based on sophisticated encoding schemes based on the availability of prior information.

Lower bound. When σ_{md} is small, we further show that in the one-dimensional case, our obtained bound is optimal for any k-interval quantizers (see Definition 1), which is commonly used in many state-of-the-art compression algorithms in distributed optimization including stochastic quantization and our proposed algorithm. Moreover, when each client is only allowed to use one bit (or constant bits), the obtained bound is information-theoretically optimal for any quantizers.

Extension to higher dimensions. In high dimensions, if all values lie in $B^d(R)$, the error of the min-max optimal algorithms with k levels of quantization scales as (Suresh et al., 2017)

$$\tilde{\mathcal{O}}\left(\frac{R^2}{nk^2}\right).$$

We show that an improvement similar to the previous result:

$$\tilde{\mathcal{O}}\left(\min\left(\frac{\sigma_{md}^d R}{nk}, \frac{R^2}{nk^2}\right) + \frac{R^2}{n^2k^2}\right),$$

where σ_{md}^d is the average ℓ_2 distance between data points,

$$\sigma_{md}^d = \frac{1}{n} \sum_{i=1}^{n} \|x_i - \bar{x}\|_2. \quad (2)$$

Similar to the one-dimensional case, it can be shown that σ_{md}^d is upper bounded by $\max_i \|x_i - \bar{x}\|_2$ and $(\frac{1}{n} \sum_{i=1}^{n} \|x_i - \bar{x}\|_2^2)^{1/2}$. And hence the same bound holds for these measures as well.

We note that our dependence on standard deviation is linear. This coincides with the results of Mayekar et al. (2021) for mean estimation with side information. While the results of one are not directly applicable to the other, understanding the two results in the high-dimensional case remains an interesting direction to explore.

Distributed optimization. Turning to the task of distributed optimization, the proposed mean estimation algorithm can be used as a primitive in distributed SGD algorithm. Following stochastic optimization literature, we assume the gradient oracle g satisfies $\forall w \in \Omega$.

- Unbiasedness: $\mathbb{E}[g(w)] = \nabla F(w)$.
- Lipschitzness: $\|g(w)\|_2 \leq R$.
- Bounded variance: $\mathbb{E}[\|g(w) - \nabla F(w)\|_2^2] \leq \sigma^2$.

We also assume that the function is convex and smooth. A function F is H-smooth, if for all $w, w' \in \Omega$,

$$\|\nabla F(w) - \nabla F(w')\|_2 \leq H \|w - w'\|_2.$$

Using standard results on smooth convex optimization (e.g., Theorem 6.3 in Bubeck (2015)) and estimation error guarantee in Corollary 1, we obtain the following bound.
The key insight of correlated quantization is that if the first client rounds up its value, the second client should round down its value to reduce the mean squared error. To see this, we first rewrite the original stochastic quantization Q_i slightly differently. For each i, let U_i be an independent uniform random variable in the range $[0, 1]$. Then we can rewrite Q_i as

$$Q_i(x_i) = 1_{U_i < x_i}.$$

To see the equivalence of the above definition and (3), observe that the probability of $U_i < x_i$ is x_i. Hence $1_{U_i < x_i}$ is one with probability x_i and zero otherwise.

For the special case of $n = 2$, we propose to modify the estimator by making U_i’s dependent on each other. In particular, let U_1 be a uniform random variable in the range $[0, 1]$ and let $U_2 = 1 - U_1$. This can be implemented using shared randomness. Let the modified estimator be as before

$$Q'_i(x_i) = 1_{U_i < x_i}.$$

Since Q_i is an unbiased estimator, Q'_i is also an unbiased estimator. We now compute the mean squared error of Q'

$$\mathcal{E}(Q'^2, x^2)$$

$$= \frac{1}{4} \mathbb{E} \left[(1_{U_1 < x_i} + 1_{1-U_1 < x_i})^2 \right] - x^2$$

$$= \frac{1}{4} \mathbb{E} \left[1_{U_1 < x_i} + 1_{1-U_1 < x_i} + 2 \cdot 1_{U_1 < x_i} \cdot 1_{1-U_1 < x_i} \right] - x^2$$

$$= \frac{1}{4} \left((x + x + 2 \max(2x - 1, 0)) - x^2 \right)$$

$$= \frac{x}{2} + \max \left(x - \frac{1}{2}, 0 \right) - x^2.$$

Notice that $Q_i(x_i)$ takes only two values and the server computes the mean by computing their average

$$\hat{x} = \frac{1}{n} \sum_{i=1}^{n} Q_i(x_i).$$

We first note that $Q_i(x_i)$ is unbiased

$$\mathbb{E}[\hat{x}] = \bar{x}.$$

The mean squared error of this protocol is

$$\mathcal{E}(Q^n, x^n) = \frac{1}{n^2} \sum_{i=1}^{n} x_i(1 - x_i).$$

To motivate our approach, we consider the special case when $n = 2$ and further assume $x_1 = x_2 = x$. In this case, the mean squared error of the stochastic quantizer is

$$\mathcal{E}(Q^2, x^2) = \frac{x(1-x)}{2}. \quad (4)$$

Optimization algorithms based on stochastic rounding (Alistarh et al., 2017; Suresh et al., 2017) has convergence rate of the same form with $\Delta^2 = \mathcal{O}\left(\frac{R^2}{n} \right)$ under the same communication complexity. Notice that the mean squared error (and therefore the convergence rate) we obtain is always better than that of the classic stochastic quantization algorithm, and when $\sigma < R$ the new algorithm gives faster convergence. This corresponds to the case where the clients’ local gradients are better concentrated than their absolute range, which is a mild assumption.

4. A Toy Example

Before we proceed further, we motivate our result with a simple example. Suppose there are n devices and device i has $x_i \in [0, 1]$. Further, let’s consider the simple scenario in which each client can only send one bit i.e., Q_i can take only two values. The popular algorithm for mean estimation is stochastic quantization, in which client i sends $Q_i(x_i)$ given by

$$Q_i(x_i) = \begin{cases} 1 & \text{with probability } x_i, \\ 0 & \text{with probability } 1 - x_i. \end{cases} \quad (3)$$

Note that here we ignore the statistical variance term $\frac{\sigma^2}{n}$ since it is always smaller than the quantization error. The same applies for the classic stochastic rounding algorithm.

Figure 1: Mean squared error for the toy problem.
We plot the mean squared error of the original quantizer Q and the new quantizer Q' in Figure 1. Observe that the above mean squared error is uniformly upper bounded by the mean squared error of the original quantizer (4). Our goal is to propose a similar estimator for n devices, in d dimensions, that has uniformly low error compared to Q even when the devices have different values of x_i.

5. Correlated Quantization in One Dimension

We first extend the above idea and provide a new quantizer for bounded scalar values. For simplicity, we first assume each $X = [0, 1]$. Recall that the goal is to estimate $\frac{1}{n} \sum_{i=1}^{n} x_i$. Let $Q_i(x_i)$ be some quantization of x_i. We approximate the average by $\frac{1}{n} \sum_{i=1}^{n} Q_i(x_i)$. As we discussed in the previous section, we propose to use

$$Q_i(x_i) = 1_{U_i < x_i},$$

where U_is are uniform random variables between zero and one, but are now correlated across the clients. We generate U_is as follows. Let π denote a random permutation of $\{0, 1, 2, \ldots, n-1\}$. Let $\pi(i)$ denote the i^{th} value of this permutation. Let γ_i be a uniform random variable between $[0, 1/n)$. With these definitions, we let

$$U_i = \frac{\pi(i)}{n} + \gamma_i.$$

Observe that for each i, U_i is a uniform random variable over $[0, 1]$. However, they are now correlated across clients. Hence the quantizer can be written as

$$Q_i(x_i) = 1_{\frac{\pi(i)}{n} + \gamma_i < x_i}.$$

We illustrate why this quantizer is better with an example. If we plot the mean squared error of the original quantizer Q and the new quantizer Q', we see that the new quantizer can be written as

$$Q_i(x_i) = 1_{U_i < x_i},$$

where U_is are uniform random variables between zero and one, but are now correlated across the clients. We generate U_is as follows. Let π denote a random permutation of $\{0, 1, 2, \ldots, n-1\}$. Let $\pi(i)$ denote the i^{th} value of this permutation. Let γ_i be a uniform random variable between $[0, 1/n)$. With these definitions, we let

$$U_i = \frac{\pi(i)}{n} + \gamma_i.$$

Observe that for each i, U_i is a uniform random variable over $[0, 1]$. However, they are now correlated across clients. Hence the quantizer can be written as

$$Q_i(x_i) = 1_{\frac{\pi(i)}{n} + \gamma_i < x_i}.$$

We provide the proof of the theorem in Appendix A. Note that $\sigma_{md} = 0$ in the toy examples described before. We now extend the results to k levels. A standard way of extending one bit quantizers to multiple bits is to divide the interval into multiple fixed length intervals and use stochastic quantization in each interval. While this does provide good worst-case bounds, we cannot get data-dependent bounds in terms of mean deviation. This is because there can be examples in which the samples lie in two different intervals and using stochastic quantization in each interval separately can increase the error. For example, if $k = 4$ and we divide the $[0, 1]$ into intervals $[0, 1/3], [1/3, 2/3], [2/3, 1]$. If all points are in the set $\{1/3 - \epsilon, 1/3 + \epsilon\}$, then they will belong to two different intervals, which yields looser bounds.

We overcome this, by dividing the input space into randomized intervals. Even though the points may lie in different intervals with randomized intervals, we use the fact that the chance of it happening is small to get bounds in terms of...
Algorithm 2 \textsc{OneDimKLevelsCQ}

\textbf{Input}: $x_1, x_2, \ldots, x_n, l, r.$

Let c_1, c_2, \ldots, c_k be k levels such that c_1 is uniformly distributed in the interval $[-\frac{1}{k}, 0)$ and $c_k = c_1 + (i - 1)\beta$ where $\beta = \frac{k+1}{k(k-1)}$.

Generate π, a random permutation of $\{0, 1, 2, \ldots, n - 1\}$.

For $i = 1$ to n:
1. $y_i = \frac{x_i - l}{(r - l)\beta}$.
2. $c'_i = \max_{c_i < y_i} c_i$.
3. $U_i = \frac{\pi_i}{n} + \gamma_i$, where $\gamma_i \sim U[0, 1/n)$.
4. $Q_i(x_i) = (r - l) \cdot (c'_i + \beta 1_{U_i < y_i})$.

\textbf{Output}: $\frac{1}{n} \sum_{i=1}^{n} Q_i(x_i)$.

6.1. Variable length coding

One natural way to extend the above algorithm to high dimensions is to use \textsc{OneDimKLevelsCQ} on each coordinate using k bits. Suresh et al. (2017); Alistarh et al. (2017) observed that while each coordinate is quantized by k bits, instead of using $d \cdot \log_2 k$ bits of communication, one can reduce the communication cost by using variable length codes such as Elias-Gamma codes or Arithmetic coding. We refer to this algorithm as \textsc{Entropycq}. We use the same approach and show the following corollary.

\textbf{Corollary 1}. If all the inputs lie in the range $\mathbb{B}^d(R)$, the proposed estimator \textsc{Entropycq} is unbiased and the mean squared error is upper bounded by

$$\frac{c}{n} \cdot \min \left(\frac{\sqrt{d} \sigma_d R}{k}, \frac{d R^2}{k^2}\right) + \frac{c^2 d}{n^2 k^2},$$

where σ_d is defined in (2) and c is a constant. Furthermore, overall the quantizer can be communicated to the server in $O \left(d \cdot \left(1 + \log_2 \left(\frac{(k-1)^2}{2d} + 1\right)\right)\right) + k \log_2 \left(\frac{(k+d)\epsilon}{k}\right) + O(1)$ bits per client in expectation.

The proof of unbiasedness and variance follows directly from Theorem 3 applied to each coordinate. The proof of communication cost is similar to that of (Suresh et al., 2017, Theorem 4) and omitted. Based on the above corollary, we can set $k = \sqrt{d}$ bits and have a quantizer that uses $O(d)$ bits and has error

$$\frac{c}{n} \cdot \min \left(\sigma_d R, R^2\right) + \frac{R^2}{n^2}.$$

6.2. Random rotation

Instead of using variable length code, one can use a random rotation matrix to reduce the L_∞ norm of the vectors. We use this approach and show the following result. The proof is given in Appendix C. Similar to Suresh et al. (2017), one can use the efficient Walsh-Hadamard rotation which takes $O(d \log d)$ time to compute (Algorithm 3).

\textbf{Corollary 2}. If all the inputs lie in the range $\mathbb{B}^d(R)$, the proposed estimator \textsc{WalshHadamardCQ} has bias at most $3R \sqrt{2 \log (dn) / (n^2 d^{3/2})}$ and the mean squared error is upper bounded by

$$\frac{c \log (dn)}{n} \cdot \left(\min \left(\sigma_d R, R^2\right) + \frac{R^2}{n^2 k^2} + \frac{R^2}{n^3 d^2}\right),$$

where σ_d is defined in (1) and c is a constant. Furthermore, overall the quantizer can be communicated to the server in $d \cdot \log_2 k + O(1)$ bits per client in expectation.

We note that with communication cost of $O(d)$ bits, the bounds with the random rotation are sub-optimal by a log-
Algorithm 3 WALSHHADAMARDCQ

Input: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, R.

For $j \leq d$, let π_j, a random permutation of $\{0, 1, 2, \ldots, n-1\}$.

Let $W = \frac{1}{\sqrt{d}} HD$, where H is a Hadamard matrix and D is a diagonal matrix with independent Rademacher entries2.

For $i = 1$ to n:
1. $y_i = \frac{\sqrt{d}}{R \sqrt{8 \log(dn)}} \cdot W x_i$.
2. For $j = 1$ to d:
 (a) $y_j'(j) = \max(-1, \min(y_j(j), 1))$.

For $j = 1$ to d:
1. $z(j) = \text{ONEDIMKLEVELSCQ}(y_j'(j), \ldots, y_n'(j), -1, 1)$.

Output: $\frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} W^{-1} \cdot z$.

Theorem 4. For any l, r, and $\sigma_{md} < \frac{r-l}{2k}$, and any one-bit quantizer Q^n, when $n > \frac{8(r-l)}{\sigma_{md}} \log((r-l)/\sigma_{md})$, there exists a dataset $x^n \in [l, r)^n$ with mean absolute deviation $O(\sigma_{md})$, such that

$$\mathcal{E}(Q^n, x^n) \geq \frac{\sigma_{md}(r-l)}{64n}.$$

2Both matrices are of dimension $d \times d$. When d is not a power of 2, to multiply with Hadamard matrices, we attach 0’s at the end of the vectors without affecting asymptotic results.

Lower Bound

In this section, we discuss information-theoretic lower bounds on the quantization error. We will focus on the one-dimensional case and show that correlated quantization is optimal in terms of the dependence on σ_{md} and $r-l$ under mild assumptions. For the general d-dimensional case, whether the dependence on σ_{md}^d and R is tight is an interesting question to explore.

In the one-dimensional case with one bit (or constant bits) per client, we obtain the following lower bound, which shows that the upper bound in Theorem 2 is tight up to constant factors in terms of the dependence on σ_{md} when $n = \Omega((r-l)/\sigma_{md})$. Note that the condition is mild since when $n < (r-l)/\sigma_{md}$, the second term in Theorem 2, $(r-l)^2/n^2 > \sigma_{md}(r-l)/n$. As shown in Theorem 5, the $(r-l)^2/n^2$ dependence can not be improved for k-interval quantizers. Whether it can be improved for general quantizers is an interesting future direction.

Theorem 5. Given $\rho \in \mathbb{R}$, $k \in \mathbb{N}$ and $\sigma_{md} < \frac{r-l}{2k}$, for any k-interval quantizer Q^n, there exists a dataset $x^n \in [l, r)^n$ with mean absolute deviation $O(\sigma_{md})$, such that

$$\mathcal{E}(Q^n, x^n) \geq \frac{\sigma_{md}(r-l)}{64nk} + \frac{(r-l)^2}{128nk^2}.$$

Under the condition, $\sigma_{md} < \frac{r-l}{2k}$, the above theorem shows that ONEDIMKLEVELSCQ is nearly-optimal in the class of k-interval quantizers. We defer the proof of the theorems to Appendix D.

8. Experiments

We demonstrate that the proposed algorithm outperforms existing baselines on several distributed tasks. Before we...
We first compare correlated and independent stochastic quantization, where \(\mu \) depends on \(k \) samples according to \(\mu \) and \(\sigma \) is sampled independently according to \(\mu(i) + U \), where \(\mu \) is a sparse vector with \(1\% \) sparse entries and is fixed for all clients and \(U \) is a independent random variable for each client in the range \([-4\sigma_{md}, 4\sigma_{md}]\).

We also compare quantizers on the distributed mean estimation task for the MNIST (\(d = 784 \)) dataset distributed over \(n \) clients. We use quantizers to reduce the communication cost from clients to server and use the MNIST (\(d = 784 \)) dataset and set both the number of centers and number of clients to 10. We split examples evenly amongst clients and use k-means++ to select the initial cluster centers. The results for 20 communication rounds for 10 repeated trials are in Table 2. Observe that correlated quantization outperforms the best.

Distributed k-means clustering.
In the distributed Lloyd’s (k-means) algorithm, each client has access to a subset of data points and the goal of a server is to learn \(k \)-centers by repeatedly interacting with the clients. We employ quantizers to reduce the uplink communication cost from clients to server and use the MNIST (\(d = 784 \)) dataset and set both the number of centers and number of clients to 10. We split examples evenly amongst clients and use k-means++ to select the initial cluster centers. The results for 20 communication rounds for 10 repeated trials are in Table 2. Observe that correlated quantization outperforms all baselines.

Distributed power iteration.
In distributed power iteration, each client has access to a subset of data and the goal of the server is to learn the top eigenvector. Similar to the previous distributed k-means clustering, the quantized setting, we use quantization to reduce the communication cost from clients to server and use the MNIST (\(d = 784 \)) dataset distributed evenly over 100 clients The results for 20 communication rounds for 10 repeated trials are in Table 2. Observe that correlated quantization outperforms all baselines.

Federated learning.
We finally evaluate the effectiveness of the proposed algorithm in reducing the uplink communication costs in federated learning (McMahan et al., 2017). We use the image recognition task for the Federated MNIST dataset (Caldas et al., 2018a) provided by TensorFlow Federated (Bonawitz et al., 2019). This dataset consists of 341K training examples with 10 label classes distributed across 3383 clients. We use quantizers to reduce the uplink communication cost from clients to server and train a logistic regression model for 1000 communication rounds of federated averaging for 5 repeated trials. The results are in

Table 1: Comparison of mean square error of compression algorithms on distributed mean estimation.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Synthetic</th>
<th>MNIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>10.28(0.25)</td>
<td>0.460(0.014)</td>
</tr>
<tr>
<td>Independent + Rotation</td>
<td>3.29(0.19)</td>
<td>1.601(0.126)</td>
</tr>
<tr>
<td>TernGrad (log(3) bits)</td>
<td>2.64(0.01)</td>
<td>0.621(0.006)</td>
</tr>
<tr>
<td>Structured DRIVE</td>
<td>1.38(0.01)</td>
<td>2.165(0.006)</td>
</tr>
<tr>
<td>Correlated</td>
<td>1.40(0.05)</td>
<td>0.141(0.004)</td>
</tr>
<tr>
<td>Correlated + Rotation</td>
<td>1.01(0.06)</td>
<td>0.238(0.012)</td>
</tr>
</tbody>
</table>

https://github.com/google-research/google-research/tree/master/correlated_compression
Table 2: Comparison of compression algorithms on a variety of tasks: distributed mean estimation, distributed k-means clustering, distributed power iteration, and federated averaging on the MNIST dataset. For all tasks, we set the number of quantization levels to two (one bit), except TernGrad which uses three quantization levels.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Dist. k-means Objective</th>
<th>Dist. Power Iteration Error</th>
<th>FedAvg Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No quantization</td>
<td>39.43(0.12)</td>
<td>0.008(0.000)</td>
<td>89.31(0.01)</td>
</tr>
<tr>
<td>Independent</td>
<td>42.98(0.23)</td>
<td>0.242(0.005)</td>
<td>87.38(0.30)</td>
</tr>
<tr>
<td>Independent + Rotation</td>
<td>68.85(2.81)</td>
<td>0.267(0.016)</td>
<td>89.11(0.06)</td>
</tr>
<tr>
<td>TernGrad ($\log_2(3)$ bits)</td>
<td>42.07(0.09)</td>
<td>0.100(0.001)</td>
<td>88.50(0.03)</td>
</tr>
<tr>
<td>Structured DRIVE</td>
<td>46.93(0.17)</td>
<td>0.370(0.001)</td>
<td>89.00(0.03)</td>
</tr>
<tr>
<td>Correlated</td>
<td>39.97(0.13)</td>
<td>0.055(0.002)</td>
<td>88.39(0.12)</td>
</tr>
<tr>
<td>Correlated + Rotation</td>
<td>42.21(0.17)</td>
<td>0.059(0.002)</td>
<td>89.20(0.04)</td>
</tr>
</tbody>
</table>

Table 2. Observe that correlated quantization with rotation achieves the highest test accuracy.

9. Conclusion

We proposed a new quantizer for distributed mean estimation and showed that the error guarantee depends on the deviation of data points instead of their absolute range. We further used this result to provide fast convergence rates for distributed optimization under communication constraints. Experimental results show that our proposed algorithm outperforms existing compression protocols on several tasks. We also proved the optimality of the proposed approach under mild assumptions in one dimension. Extending the lower bounds to high dimensions remains an interesting open question.

References

M. Braverman, A. Garg, T. Ma, H. L. Nguyen, and D. P. Woodruff. Communication lower bounds for statistical

A. Proof of Theorem 2

Theorem 2. If all the inputs lie in the range \([l, r)\), the proposed estimator ONEIMONEBITCQ is unbiased and the mean squared error is upper bounded by

\[
\frac{3}{n} \cdot \sigma_{md}(r - l) + \frac{12(r - l)^2}{n^2},
\]

where \(\sigma_{md}\) is defined in (1).

Proof. We first show the result when \(l = 0\) and \(r = 1\), one can obtain the final result by rescaling the quantizer operation

\[(l - u) \cdot Q_{i} \left(\frac{x_{i}}{u - l} \right) .\]

Hence in the following, without loss of generality, let \(l = 0\), \(r = 1\). We first show that \(Q\) is an unbiased equantizer

\[\mathbb{E}[Q_{i}(x_{i})] = \mathbb{E}[1_{\frac{x_i}{n} + \gamma_i < x_i}].\]

Observe that \(\frac{x_i}{n} + \gamma_i\) is a uniform random variable between \([0, 1)\). Hence,

\[\mathbb{E}[Q_{i}(x_{i})] = \mathbb{E}[1_{\frac{x_i}{n} + \gamma_i < x_i}] = \text{Pr}\left(\frac{x_i}{n} + \gamma_i < x_i\right) = x_i.\]

We now bound its variance. To this end let

\[y_i = \frac{\lfloor nx_i \rfloor}{n}.\]

We can rewrite the difference between estimate and the true sum as

\[\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} Q_{i}(x_{i}) = \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i} + \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} Q_{i}(y_{i}) + \sum_{i=1}^{n} Q_{i}(y_{i}) - \sum_{i=1}^{n} Q_{i}(x_{i}).\]

Since \((a + b + c)^2 \leq 3a^2 + 3b^2 + 3c^2,

\[\mathbb{E}\left[\left(\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} Q_{i}(x_{i})\right)^2\right] = 3\mathbb{E}\left[\left(\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i}\right)^2\right] + 3\mathbb{E}\left[\left(\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} Q_{i}(y_{i})\right)^2\right] + 3\mathbb{E}\left[\left(\sum_{i=1}^{n} Q_{i}(y_{i}) - \sum_{i=1}^{n} Q_{i}(x_{i})\right)^2\right].\]

We now bound each of the three terms in the above summation.

First term: Observe that for all \(i\)

\[|x_{i} - y_{i}| \leq \frac{1}{n},\]

Hence,

\[\left|\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i}\right| \leq \sum_{i=1}^{n} |x_{i} - y_{i}| \leq n \cdot \frac{1}{n} = 1.\]

Therefore,

\[\mathbb{E}\left[\left(\sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i}\right)^2\right] \leq 1.\]
Second term: To bound the second term,

$$
\mathbb{E} \left[\left(\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} Q_i(y_i) \right)^2 \right] = \sum_{i=1}^{n} \mathbb{E} \left[(y_i - Q_i(y_i))^2 \right] + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E} [(y_i - Q_i(y_i)) (y_j - Q_j(y_j))]
$$

$$= \sum_{i=1}^{n} y_i(1 - y_i) + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E} [(y_i - Q_i(y_i)) (y_j - Q_j(y_j))]
$$

$$= \sum_{i=1}^{n} y_i(1 - y_i) + \sum_{i=1}^{n} \sum_{j \neq i} (\mathbb{E} [Q_i(y_i)Q_j(y_j)] - y_i y_j),$$

where the second equality uses the fact that $1_{\infty} + \gamma_i < y_i$ is a Bernoulli random variable with parameter y_i. We now bound $\mathbb{E} [Q_i(y_i)Q_j(y_j)] - y_i y_j$ for $i \neq j$. observe that

$$Q_i(y_i) = 1_{\infty} + \gamma_i < y_i.$$

However, since y_i is an integral multiple of $1/n$, and $\gamma_i \in [0, 1/n)$, $\frac{y_i}{n} + \gamma_i < y_i$ if and only if $\frac{y_i}{n} < y_i$. Hence,

$$Q_i(y_i) = 1_{\frac{y_i}{n} < y_i}.$$

Hence,

$$\mathbb{E} [Q_i(y_i)Q_j(y_j)] = \mathbb{E} \left[1_{\frac{y_i}{n} < y_i} 1_{\frac{y_j}{n} < y_j} \right] = \Pr (\pi_i < ny_i \wedge \pi_j < ny_j).$$

Since π is a random permutation,

$$\Pr (\pi_i < ny_i \wedge \pi_j < ny_j) = \frac{1}{n(n-1)} \min(ny_i, ny_j) \cdot (\max(ny_i, ny_j) - 1)$$

$$= \frac{ny_i y_j}{(n-1)} - \frac{\min(y_i, y_j)}{(n-1)}$$

$$= \frac{ny_i y_j}{(n-1)} - \frac{y_i + y_j}{2(n-1)} + \frac{|y_i - y_j|}{2(n-1)}.$$

Hence,

$$\sum_{i=1}^{n} \sum_{j \neq i} (\mathbb{E} [Q_i(y_i)Q_j(y_j)] - y_i y_j) = \sum_{i=1}^{n} \sum_{j \neq i} \left(\frac{ny_i y_j}{(n-1)} - \frac{y_i + y_j}{2(n-1)} + \frac{|y_i - y_j|}{2(n-1)} - y_i y_j \right)
$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \sum_{j \neq i} \left(y_i y_j - \frac{y_i + y_j}{2} + \frac{|y_i - y_j|}{2} \right)
$$

$$= \frac{1}{n-1} \left(\left(\sum_{i=1}^{n} y_i \right)^2 - \sum_{i=1}^{n} y_i^2 - (n-1) \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} \sum_{j \neq i} \frac{|y_i - y_j|}{2} \right)
$$

$$\leq \sum_{i=1}^{n} \sum_{j \neq i} \frac{|y_i - y_j|}{2(n-1)} + \frac{1}{n} \left(\left(\sum_{i=1}^{n} y_i \right)^2 - \sum_{i=1}^{n} y_i \right) - \sum_{i=1}^{n} y_i.$$
Hence,

\[
\mathbb{E} \left[\left(\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} Q_i(y_i) \right)^2 \right] = \sum_{i=1}^{n} y_i (1 - y_i) + \sum_{i=1}^{n} \sum_{j \neq i} (\mathbb{E} [Q_i(y_i)Q_j(y_j)] - y_i y_j) \\
\leq \sum_{i=1}^{n} y_i (1 - y_i) + \sum_{i=1}^{n} \sum_{j \neq i} \frac{|y_i - y_j|}{2(n-1)} + \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2 - \sum_{i=1}^{n} y_i \\
= \sum_{i=1}^{n} \sum_{j \neq i} \frac{|y_i - y_j|}{2(n-1)} + \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2 - \sum_{i=1}^{n} y_i^2 \\
\leq \sum_{i=1}^{n} \sum_{j \neq i} \frac{|y_i - y_j|}{2(n-1)} \\
\leq \sum_{i=1}^{n} \sum_{j \neq i} \frac{|x_i - x_j|}{2(n-1)} + \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{2n(n-1)} \\
= \sum_{i=1}^{n} \sum_{j \neq i} \frac{|x_i - x_j|}{2(n-1)} + \frac{1}{n}. \\
\]

Third term: Observe that

\[Q_i(y_i) - Q_i(x_i) = 1 \frac{y_i}{n} + \gamma_i < y_i - 1 \frac{x_i}{n} + \gamma_i < x_i. \]

Since \(x_i \geq y_i, 1 \frac{y_i}{n} + \gamma_i < y_i \) implies \(1 \frac{y_i}{n} + \gamma_i < x_i \). Hence \(Q_i(y_i) - Q_i(x_i) \) takes at most two values 0, -1. Therefore,

\[Q_i(y_i) - Q_i(x_i) = -1_{y_i \leq \frac{x_i}{n} + \gamma_i < x_i}. \]

Therefore,

\[
\mathbb{E} \left[\left(\sum_{i=1}^{n} Q_i(y_i) - \sum_{i=1}^{n} Q_i(x_i) \right)^2 \right] \\
= \sum_{i=1}^{n} \mathbb{E} \left[(Q_i(y_i) - Q_i(x_i))^2 \right] + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E} \left[(Q_i(y_i) - Q_i(x_i))(Q_j(y_j) - Q_j(x_j)) \right] \\
= \sum_{i=1}^{n} \mathbb{E} \left[1_{y_i \leq \frac{x_i}{n} + \gamma_i < x_i} \right] + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E} \left[1_{y_i \leq \frac{x_i}{n} + \gamma_i < x_i} 1_{y_j \leq \frac{x_j}{n} + \gamma_j < x_j} \right] \\
= \sum_{i=1}^{n} \mathbb{E} \left[1_{y_i \leq \frac{x_i}{n} + \gamma_i < y_i + 1} \right] + \sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E} \left[1_{y_i \leq \frac{x_i}{n} + \gamma_i < y_i + 1} 1_{y_j \leq \frac{x_j}{n} + \gamma_j < y_j + 1} \right] \\
\leq \sum_{i=1}^{n} \frac{1}{n} + \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{n(n-1)} \\
= 2. \\
\]

Combining the analysis of the above three terms we get

\[
\mathbb{E} \left[\left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} Q_i(x_i) \right)^2 \right] \leq \sum_{i=1}^{n} \sum_{j \neq i} \frac{3|x_i - x_j|}{2(n-1)} + 12.
\]
Hence,
\[
\mathcal{E}(Q^n, x^n) \leq \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{3|x_i - x_j|}{2n^2(n - 1)} + \frac{12}{n^2}
\]
\[
\leq \frac{3}{2n} \cdot \frac{1}{n(n - 1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} |x_i - x_j| + \frac{12}{n^2}.
\]

The lemma follows by observing that
\[
\frac{1}{n(n - 1)} \sum_{i=1}^{n} \sum_{j \neq i}^{n} |x_i - x_j| \leq 2\sigma_{md}.
\]

\[\Box\]

B. Proof of Theorem 3

Theorem 3. If all the inputs lie in the range \([l, r], k \geq 3\), the proposed estimator ONEDIMKLEVELSCQ is unbiased and the mean squared error is upper bounded by
\[
\frac{12}{n} \cdot \min\left(\frac{\sigma_{md} \cdot (r - l)}{k}, \frac{(r - l)^2}{k^2}\right) + \frac{48(r - l)^2}{n^2k^2},
\]
where \(\sigma_{md}\) is defined in (1).

Proof. Similar to the proof of Theorem 2, without loss of generality, we let \(l = 0, r = 1\). One can obtain the final result by rescaling the quantizer via
\[(l - u) \cdot Q_i\left(\frac{x}{u - l}\right)\]
The proof of unbiasedness is similar to the proof of Theorem 2 and is omitted. We now bound its variance. Let \(z_i = \frac{x_i - c_i}{\beta}\). We wish to bound
\[
\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} Q_i(x_i) = \beta \left(\sum_{i=1}^{n} z_i - \sum_{i=1}^{n} Q_i(z_i)\right).
\]

Similar to the proof of Theorem 2, it can be shown that
\[
E\left[\left(\sum_{i=1}^{n} z_i - \sum_{i=1}^{n} Q_i(z_i)\right)^2 \right] \leq \frac{n}{2} \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{3|z_i - z_j|}{2(n - 1)} + 12.
\]

Hence,
\[
E\left[\left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} Q_i(x_i)\right)^2 \right] \leq \beta^2 \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{3|z_i - z_j|}{2(n - 1)} + 12\beta^2.
\]

If \(|x_i - x_j| \geq \beta\), then
\(|z_i - z_j| \leq 1\).

If \(|x_i - x_j| \leq \beta\), then
\[
E[|z_i - z_j|] = E[c'_i = c'_j]E[|z_i - z_j|1_{c'_i = c'_j}] + E[c'_i \neq c'_j]E[|z_i - z_j|1_{c'_i \neq c'_j}]
\]
\[
\leq E[c'_i = c'_j]E[|z_i - z_j|1_{c'_i = c'_j}] + E[c'_i \neq c'_j]
\]
\[
\leq E[c'_i = c'_j]|x_i - x_j|\beta + E[c'_i \neq c'_j]
\]
\[
\leq \frac{|x_i - x_j|}{\beta} + E[c'_i \neq c'_j]
\]
\[
\leq \frac{|x_i - x_j|}{\beta} + \frac{|x_i - x_j|}{\beta} = 2\frac{|x_i - x_j|}{\beta}.
\]
Hence,
\[E[|z_i - z_j|] \leq 2 \left(\min \left(\frac{|x_i - x_j|}{\beta}, 1 \right) \right). \]

Therefore,
\[
\begin{align*}
E \left[\left(\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} Q_i(x_i) \right)^2 \right] & \leq \sum_{i=1}^{n} \sum_{j \neq i} \frac{3 \min \left(|x_i - x_j|, \beta \right)}{(n-1)} + 12 \beta^2 \\
& \leq 3 \min \left(\sum_{i=1}^{n} \sum_{j \neq i} \frac{\beta|x_i - x_j|}{(n-1)}, n \beta^2 \right) + 12 \beta^2 \\
& \leq 3 \min \left(2n \beta \sigma_{md}, n \beta^2 \right) + 12 \beta^2.
\end{align*}
\]

Combining with the fact that \(\beta \leq 2/k \) yields the result.

\[\square \]

C. Proof of Corollary 2

Corollary 2. If all the inputs lie in the range \(\mathbb{B}^d(R) \), the proposed estimator WALSH HADAMARD CQ has bias at most
\[3R \sqrt{2 \log(dn)/(n^2 d^{3/2})} \]
and the mean squared error is upper bounded by
\[\frac{c \log(dn)}{n} \cdot \min \left(\beta \sigma_{md} R, \frac{R^2}{k}, \frac{R^2}{nk^2} + \frac{R^2}{n^3 d^3} \right), \]

where \(\sigma_{md} \) is defined in (1) and \(c \) is a constant. Furthermore, overall the quantizer can be communicated to the server in
\[d \cdot \log_2 k + O(1) \]
bits per client in expectation.

Proof. The communication cost follows by observing that we are communication \(k \) level of quantization for each coordinate. We first bound the bias. Observe that
\[
\begin{align*}
\| \bar{x} - E[\bar{x}] \|^2 & \leq \frac{1}{n} \sum_{i=1}^{n} \left\| x_i - \frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} E[W^{-1} \cdot z_i] \right\|^2 \\
& = \frac{1}{n} \sum_{i=1}^{n} \left\| E \left[W^{-1} \cdot \left(W \cdot x_i - \frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} z_i \right) \right] \right\|^2 \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \left\| E \left[W^{-1} \cdot \left(W \cdot x_i - \frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} z_i \right) \right] \right\|^2 \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \left\| W \cdot x_i - \frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} z_i \right\|^2 \\
& \leq \frac{1}{n} \sum_{i=1}^{n} 18R^2 \log(dn) \Pr \left(\frac{\sqrt{d}}{R \sqrt{8 \log(dn)}} W \cdot x_i \neq z_i \right),
\end{align*}
\]

where the last inequality follows from that when \(\frac{\sqrt{d}}{R \sqrt{8 \log(dn)}} W \cdot x_i \neq z_i \), the error is at most
\[\left\| W \cdot x_i - \frac{R \sqrt{8 \log(dn)}}{\sqrt{d}} z_i \right\|^2 \leq 18R^2 \log(dn). \]
Next we bound \(\Pr \left(\frac{\sqrt{d}}{R\sqrt{8\log(dn)}} W \cdot x_i \neq z_i \right) \) for each \(x_i \). For any \(x \) with \(\|x\| \leq R \),

\[
\Pr \left(\frac{\sqrt{d}}{R\sqrt{8\log(dn)}} W \cdot x \neq z \right) \leq \sum_{j=1}^{d} \Pr \left(\frac{\sqrt{d}}{R\sqrt{8\log(dn)}} |Wx|(j) \neq z(j) \right) \\
\leq \sum_{j=1}^{d} \Pr \left(|Wx|(j) \geq \frac{\sqrt{8\log(dn)}}{\sqrt{d}} \|x\|_2 \right) \\
\leq \frac{c}{de^{-4\log(dn)}} ,
\]

where (b) follows from McDiarmid’s inequality. Hence,

\[
\|\bar{x} - \mathbb{E}[\hat{x}]\|_2^2 \leq \frac{18R^2 \log(dn)}{d^3n^4}.
\]

To bound the mean squared error, observe that

\[
\mathbb{E}\|\bar{x} - \hat{x}\|_2^2 = \mathbb{E}\|\bar{x} - \mathbb{E}[\hat{x}]\|_2^2 + \mathbb{E}\|\hat{x} - \mathbb{E}[\hat{x}]\|_2^2 \\
\leq \mathbb{E}\|\bar{x} - \mathbb{E}[\hat{x}]\|_2^2 + \mathbb{E}\|W\hat{x} - \mathbb{E}[W\hat{x}]\|_2^2 \\
\leq \frac{18R^2 \log(dn)}{d^3n^4} + \mathbb{E}\|W\hat{x} - \mathbb{E}[W\hat{x}]\|_2^2.
\]

For \(j \in [d] \), let \(y^{n}(j) = (y_1(j), \ldots, y_n(j)) \) denote the scalar dataset which only consists of the \(j \)th coordinate of \(y^n \). Define \(\sigma_{\text{ma}}(y^{n}(j)) \) to be the corresponding empirical mean absolute deviation.

\[
\mathbb{E}\|W\hat{x} - \mathbb{E}[W\hat{x}]\|_2^2 = \frac{R^2 (8 \log(dn))}{d} \mathbb{E}\|z - \mathbb{E}[z]\|_2^2 \\
\leq \frac{R^2 (8 \log(dn))}{d} \left(\frac{12}{n} \cdot \sum_{j=1}^{d} \min \left(\frac{\mathbb{E}[\sigma_{\text{ma}}(y^{n}(j))]}{k}, \frac{1}{k^2} \right) + \frac{48d}{n^2k^2} \right) \\
\leq \frac{R^2 (8 \log(dn))}{d} \left(\frac{12}{n} \cdot \sum_{j=1}^{d} \min \left(\frac{2\mathbb{E}[\sigma_{\text{ma}}(y^{n}(j))]}{k}, \frac{1}{k^2} \right) + \frac{48d}{n^2k^2} \right) \\
\leq \frac{R^2 (8 \log(dn))}{d} \left(\frac{12}{n} \cdot \min \left(\frac{2\sqrt{d} \cdot \mathbb{E}[\sigma_{\text{ma}}(y^{n})]}{k}, \frac{d}{k^2} \right) + \frac{48d}{n^2k^2} \right) \\
\leq \frac{R^2 (8 \log(dn))}{d} \left(\frac{12}{n} \cdot \min \left(\frac{2R\sigma_{\text{ma}}(x^n)}{k}, \frac{R^2}{k^2} \right) + \frac{48R^2}{n^2k^2} \right) \\
\leq \frac{192 \log(dn)}{n} \cdot \min \left(\frac{R\sigma_{\text{ma}}(x^n)}{k}, \frac{R^2}{k^2} \right) + \frac{392R^2 \log(dn)}{n^2k^2} ,
\]

where (c) uses the fact that \(\sigma_{\text{ma}}^d(y^n) = \frac{\sqrt{d}}{R\sqrt{8\log(dn)}} \sigma_{\text{ma}}^d(x^n) \) since \(y^n \) is a scaled rotated version of \(x^n \). Combining the above two results yields the result.

D. Proof of Lower bounds (Theorem 4 and Theorem 5)

A general \(k \)-level randomized quantizer \(Q^n \) can be viewed as a distribution over \(Q_{\det} \), which contains all deterministic mappings from \([l, r]^n\) to \([k]^n\). Let \(Q_{\text{rand}} \) be all randomized mappings from \([l, r]^n\) to \([k]^n\). To establish a lower bound for
We first show that if
\[\min_{Q^n \in \mathbb{Q}_{md}} \max_{x^n} \mathcal{E}(Q^n, x^n) \geq \max_P \min_{Q^n \in \mathbb{Q}_{md}} \mathbb{E}_{X^n \sim P} [\mathcal{E}(Q^n, X^n)] = \max_P \min_{Q^n \in \mathbb{Q}_{md}} \mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right]. \]

In the rest of the proof, we focus on deterministic \(Q_i \)'s and bound (5). Without loss of generality we assume \(l = 0 \). We first prove the following general lemma, which will be useful to prove both lower bounds.

Lemma 1. Suppose under distribution \(P \) over \([0, r]^n\), \(X_i \)'s are sampled i.i.d from \(p \) over \([0, r]\), for any deterministic quantizer \(Q^n \), we have
\[
\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \geq \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}_{X_i \sim P} \left[(X_i - \mathbb{E} [X_i | Q_i(X_i)])^2 \right].
\]

Proof. Since conditional expectation minimizes the mean squared error over all functions of \(\hat{x}(Q^n(X^n)) \), we have
\[
\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \geq \mathbb{E}_{X^n \sim P} \left[\left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} X_i | Q^n(X^n) \right] - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right].
\]

Note that since \(X_i \)'s are independent and \(Q^n \) is deterministic, we have all \(Q_i(X_i) \) are independent. Moreover, this implies \(Q_i(X_i) \) is independent of \(X_i \) for \(i \neq j \). Hence
\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} X_i | Q^n(X^n) \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} [X_i | Q_i(X_i)].
\]

Combining these, we get
\[
\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \geq \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}_{X_i \sim P} \left[(X_i - \mathbb{E} [X_i | Q_i(X_i)])^2 \right].
\]

Next we use Lemma 1 to prove Theorems 4 and 5.

Theorem 4. For any \(l, r \) and \(\sigma_{md} < \frac{l - r}{2} \), and any one-bit quantizer \(Q^n \), when \(n > \frac{8(r-l)}{\sigma_{md}} \log((r-l)/\sigma_{md}) \), there exists a dataset \(x^n \in [l, r]^n \) with mean absolute deviation \(O(\sigma_{md}) \), such that
\[
\mathcal{E}(Q^n, x^n) \geq \frac{\sigma_{md} (r-l)}{64n}.
\]

Proof. Consider the following distribution \(p \) over \([0, r]\) where
\[
p(x) = \begin{cases}
\frac{\sigma_{md}}{2r} & \text{if } x = 0, \\
\frac{\sigma_{md}}{2r} & \text{if } x = r, \\
1 - \frac{\sigma_{md}}{r} & \text{if } x = \frac{r}{2}, \\
0 & \text{otherwise.}
\end{cases}
\]

We first show that if \(P \) is the distribution where \(X^n \) is sampled i.i.d from \(p \),
\[
\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \geq \frac{\sigma_{md} \cdot r}{32n}.
\]
Applying Lemma 1, it is enough to show that for any Q_i, we have

$$\mathbb{E}_{X_i \sim P} \left[(X_i - \mathbb{E}[X_i | Q_i(X_i)])^2 \right] \geq \frac{\sigma_{md} \cdot r}{32}.$$

Since Q_i only outputs 1 bit, there must exist two numbers in $\{0, r/2, r\}$ such that they are mapped to the same output. If $\{0, r/2\}$ are mapped to the same output, we have

$$\mathbb{E}_{X_i \sim P} \left[(X_i - \mathbb{E}[X_i | Q_i(X_i)])^2 \right] \geq \text{Pr}(X_i = 0) \cdot \left(\mathbb{E}[X_i | Q_i(X_i) = Q_i(0)] \right)^2 \geq \frac{\sigma_{md} \cdot r}{2r} = \frac{\sigma_{md} \cdot r}{32}.$$

The same result holds when $\{r/2, r\}$ are mapped to the same output. When $\{0, r\}$ are mapped to the same output, we have

$$\mathbb{E}_{X_i \sim P} \left[(X_i - \mathbb{E}[X_i | Q_i(X_i)])^2 \right] \geq \text{Pr}(X_i = 0 \text{ or } r) \cdot \mathbb{E}_{X_i \sim Q_i(X_i) = Q_i(0)} \left[(X_i - \mathbb{E}[X_i | Q_i(X_i) = Q_i(0)])^2 \right] \geq \frac{\sigma_{md}}{r} \cdot \left(\frac{r}{2} \right)^2 = \frac{\sigma_{md} \cdot r}{4}.$$

The last step is to check the mean absolute deviation. The proof is not complete yet since not all samples X^n from the distribution P has mean deviation $O(\sigma_{md})$. Next we construct a distribution P' where all $X^n \sim P'$ has mean deviation $O(\sigma_{md})$ while the quantity in (5) is still lower bounded by $\Omega(\sigma_{md} \cdot r)$. We start by noting that the mean deviation can be upper bounded as

$$\frac{1}{n^2} \sum_{i=1}^{n} |X_i - \frac{1}{n} \sum_{i=1}^{n} X_i| \leq \frac{1}{n^2} \sum_{i,j \in [n]} |X_i - X_j| = \frac{1}{n^2} \cdot \frac{r}{2} \left(N_0 N_2 + N_r N_2 + 2 N_0 N_r \right),$$

where N_0, N_2, N_r denote the number of appearances of 0, $\frac{r}{2}$ and r respectively. When $N_0 + N_r < \frac{4n \sigma_{md}}{r}$, we have

$$\frac{1}{n^2} \cdot \frac{r}{2} \left(N_0 N_2 + N_r N_2 + 2 N_0 N_r \right) \leq \frac{1}{n^2} \cdot \frac{r}{2} \left(n \cdot \frac{4 \sigma_{md}}{r} + \left(\frac{2n \sigma_{md}}{r} \right)^2 \right) \leq 4 \sigma_{md}.$$

Since $N_0 + N_r$ is a binomial random variable with n trials and success probability $\frac{2 \sigma_{md}}{r}$, by Chernoff bound, we have

$$\text{Pr} \left(N_0 + N_r \geq \frac{4n \sigma_{md}}{r} \right) \leq \exp \left(- \frac{2n \sigma_{md}}{r} \right) \leq \left(\frac{\sigma_{md}}{r} \right)^{16}.$$

Let P' be the distribution of X^n conditioned on the event that $N_0 + N_r < \frac{4n \sigma_{md}}{r}$, we have

$$\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \leq \text{Pr} \left(N_0 + N_r < \frac{4n \sigma_{md}}{r} \right) \mathbb{E}_{X^n \sim P'} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] + r^2 \text{Pr} \left(N_0 + N_r \geq \frac{4n \sigma_{md}}{r} \right),$$

since when $N_0 + N_r \geq \frac{4n \sigma_{md}}{r}$, the error is bounded by at most r^2 since the optimal mean lies in $[0, r]$. Hence we have

$$\mathbb{E}_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] \geq \mathbb{E}_{X^n \sim P'} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] - r^2 \text{Pr} \left(N_0 + N_r \geq \frac{4n \sigma_{md}}{r} \right) \geq \frac{\sigma_{md} \cdot r}{64n}.$$

This completes the proof using (5).
Theorem 5. Given $l < r \in \mathbb{R}, k \in \mathbb{N}$ and $\sigma_{md} < \frac{r-l}{2k}$, for any k-interval quantizer Q^n, there exists a dataset $x^n \in [l, r)^n$ with mean absolute deviation $O(\sigma_{md})$, such that

$$E(Q^n, x^n) \geq \frac{\sigma_{md}(r-l)}{64nk} + \frac{(r-l)^2}{128n^2k^2}.$$

Proof. We show that

$$E(Q^n, x^n) \geq \max \left(\frac{\sigma_{md}(r-l)}{32nk} + \frac{(r-l)^2}{64n^2k^2} \right).$$

The lemma follows by the fact that maximum is lower bounded by the average. Note that here it would be enough to prove the two terms in the above lower bound separately. Assuming $l = 0$, for the $\frac{\sigma_{md} \cdot r}{32nk}$ term, we assume $n = \Omega \left(\frac{r}{k \sigma_{md}} \right)$ since otherwise the second term dominates. We consider $2k$ distributions p_1, p_2, \ldots, p_{2k} where for $j \in \{1, \ldots, 2k\}$,

$$p_j(x) = \begin{cases} \frac{k \sigma_{md}}{r} & \text{if } x = (j-1) \cdot \frac{r}{2k}, \\ 1 - \frac{k \sigma_{md}}{r} & \text{if } x = j \cdot \frac{r}{2k}, \\ 0 & \text{otherwise.} \end{cases}$$

Then we define \tilde{P} over $[0, r]^n$ as a uniform mixture of b distributions,

$$\tilde{P} = \frac{1}{2k} \sum_{j=1}^{2k} P_j,$$

where under P_j, X_i’s are n i.i.d samples from p_j. Then we have for any deterministic quantization scheme Q^n,

$$E_{X^n \sim \tilde{P}} \left[\hat{E}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right]^2 = \frac{1}{2k} \sum_{j=1}^{2k} E_{X^n \sim P_j} \left[\hat{E}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right]^2.$$

Note that each P_j is a product distribution, hence applying Lemma 1, we have

$$E_{X^n \sim \tilde{P}} \left[\hat{E}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right]^2 \geq \frac{1}{2k} \sum_{j=1}^{2k} \frac{1}{n^2} \sum_{i=1}^{n} E_{X_i \sim P_j} \left[(X_i - E[X_i | Q_i(X_i)])^2 \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \left(\frac{1}{2k} \sum_{j=1}^{2k} E_{X_i \sim P_j} \left[(X_i - E[X_i | Q_i(X_i)])^2 \right] \right).$$

Hence it is enough to show that for any k-interval quantization scheme, we have $\forall i \in [n]$,

$$\frac{1}{2k} \sum_{j=1}^{2k} E_{X_i \sim P_j} \left[(X_i - E[X_i | Q_i(X_i)])^2 \right] \geq \frac{\sigma_{md} \cdot r}{32k}.$$

A k-interval quantizer Q_i only partitions the interval into k intervals. Hence among the $2k - 1$ pairs of consecutive points $(j \cdot \frac{r}{2k}, (j+1) \cdot \frac{r}{2k}), j \in \{1, \ldots, 2k - 1\}$, there exists a set S of indices with $|S| \geq k - 1$ that satisfies $\forall j \in S, Q_i(j \cdot \frac{r}{2k}) = Q_i((j+1) \cdot \frac{r}{2k})$. For these j’s, P_j is supported on $\{j \cdot \frac{r}{2k}, (j+1) \cdot \frac{r}{2k}\}$. Hence $Q_i(X_i)$ doesn’t bring any information about X_i. Hence we have

$$\frac{1}{2k} \sum_{j=1}^{2k} E_{X_i \sim P_j} \left[(X_i - E[X_i | Q_i(X_i)])^2 \right] \geq \frac{1}{2k} \sum_{j \in S} \text{Var}_{X_i \sim P_j}(X_i) \geq \frac{\sigma_{md} \cdot r}{32k}.$$

Similar to the proof of Theorem 4, we handle the requirement on mean absolute deviation, which we omit here for brevity. For the $\frac{r^2}{64n^2k^2}$ term, we consider the following $2nk$ datasets where for the jth dataset, we have $\forall i \in [n]$,

$$x_i = v_j = (j-1) \cdot \frac{r}{2nk}.$$
We abuse notation to denote the jth dataset as $(v_j)^n$. Consider distribution P which is uniform over all $2nk$ datasets. Then we have for any deterministic Q^n,

$$
E_{X^n \sim P} \left[\left(\hat{x}(Q^n(X^n)) - \frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 \right] = \frac{1}{2nk} \sum_{j=1}^{2nk} (\hat{x}(Q^n((v_j)^n)) - v_j)^2.
$$

Note that there are n users, each with a k-interval quantizer. Similar to the previous construction, among the $2nk$ possible values, there must exists at least $nk - 1$ disjoint pairs $\{j_1, j_2\}$ such that

$$Q^n((v_{j_1})^n) = Q^n((v_{j_2})^n).$$

For each of these pairs,

$$\left(\hat{x}(Q^n((v_{j_1})^n)) - v_{j_1} \right)^2 + \left(\hat{x}(Q^n((v_{j_2})^n)) - v_{j_2} \right)^2 \geq \frac{1}{4} (v_{j_1} - v_{j_2})^2 \geq \frac{r^2}{16n^2k^2}.$$

Hence we have

$$\frac{1}{2nk} \sum_{j=1}^{2nk} (\hat{x}(Q^n((v_j)^n)) - v_j)^2 \geq \frac{nk - 1}{2nk} \cdot \frac{r^2}{16n^2k^2} \geq \frac{r^2}{64n^2k^2}.$$

\square